memory: add owner argument to initialization functions
[qemu/ar7.git] / hw / mips / mips_malta.c
blobc27ed0b8ed96b40af802c223346dbbbdf0949097
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/block/fdc.h"
29 #include "net/net.h"
30 #include "hw/boards.h"
31 #include "hw/i2c/smbus.h"
32 #include "block/block.h"
33 #include "hw/block/flash.h"
34 #include "hw/mips/mips.h"
35 #include "hw/mips/cpudevs.h"
36 #include "hw/pci/pci.h"
37 #include "sysemu/char.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/arch_init.h"
40 #include "qemu/log.h"
41 #include "hw/mips/bios.h"
42 #include "hw/ide.h"
43 #include "hw/loader.h"
44 #include "elf.h"
45 #include "hw/timer/mc146818rtc.h"
46 #include "hw/timer/i8254.h"
47 #include "sysemu/blockdev.h"
48 #include "exec/address-spaces.h"
49 #include "hw/sysbus.h" /* SysBusDevice */
51 //#define DEBUG_BOARD_INIT
53 #define ENVP_ADDR 0x80002000l
54 #define ENVP_NB_ENTRIES 16
55 #define ENVP_ENTRY_SIZE 256
57 /* Hardware addresses */
58 #define FLASH_ADDRESS 0x1e000000ULL
59 #define FPGA_ADDRESS 0x1f000000ULL
60 #define RESET_ADDRESS 0x1fc00000ULL
62 #define FLASH_SIZE 0x400000
64 #define MAX_IDE_BUS 2
66 typedef struct {
67 MemoryRegion iomem;
68 MemoryRegion iomem_lo; /* 0 - 0x900 */
69 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
70 uint32_t leds;
71 uint32_t brk;
72 uint32_t gpout;
73 uint32_t i2cin;
74 uint32_t i2coe;
75 uint32_t i2cout;
76 uint32_t i2csel;
77 CharDriverState *display;
78 char display_text[9];
79 SerialState *uart;
80 } MaltaFPGAState;
82 typedef struct {
83 SysBusDevice busdev;
84 qemu_irq *i8259;
85 } MaltaState;
87 static ISADevice *pit;
89 static struct _loaderparams {
90 int ram_size;
91 const char *kernel_filename;
92 const char *kernel_cmdline;
93 const char *initrd_filename;
94 } loaderparams;
96 /* Malta FPGA */
97 static void malta_fpga_update_display(void *opaque)
99 char leds_text[9];
100 int i;
101 MaltaFPGAState *s = opaque;
103 for (i = 7 ; i >= 0 ; i--) {
104 if (s->leds & (1 << i))
105 leds_text[i] = '#';
106 else
107 leds_text[i] = ' ';
109 leds_text[8] = '\0';
111 qemu_chr_fe_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
112 qemu_chr_fe_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
116 * EEPROM 24C01 / 24C02 emulation.
118 * Emulation for serial EEPROMs:
119 * 24C01 - 1024 bit (128 x 8)
120 * 24C02 - 2048 bit (256 x 8)
122 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
125 //~ #define DEBUG
127 #if defined(DEBUG)
128 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
129 #else
130 # define logout(fmt, ...) ((void)0)
131 #endif
133 struct _eeprom24c0x_t {
134 uint8_t tick;
135 uint8_t address;
136 uint8_t command;
137 uint8_t ack;
138 uint8_t scl;
139 uint8_t sda;
140 uint8_t data;
141 //~ uint16_t size;
142 uint8_t contents[256];
145 typedef struct _eeprom24c0x_t eeprom24c0x_t;
147 static eeprom24c0x_t eeprom = {
148 .contents = {
149 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
150 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
151 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
152 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
153 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
154 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
155 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
156 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
157 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
158 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
159 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
160 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
161 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
162 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
163 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
164 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
168 static uint8_t eeprom24c0x_read(void)
170 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
171 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
172 return eeprom.sda;
175 static void eeprom24c0x_write(int scl, int sda)
177 if (eeprom.scl && scl && (eeprom.sda != sda)) {
178 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
179 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
180 if (!sda) {
181 eeprom.tick = 1;
182 eeprom.command = 0;
184 } else if (eeprom.tick == 0 && !eeprom.ack) {
185 /* Waiting for start. */
186 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
187 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
188 } else if (!eeprom.scl && scl) {
189 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
190 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
191 if (eeprom.ack) {
192 logout("\ti2c ack bit = 0\n");
193 sda = 0;
194 eeprom.ack = 0;
195 } else if (eeprom.sda == sda) {
196 uint8_t bit = (sda != 0);
197 logout("\ti2c bit = %d\n", bit);
198 if (eeprom.tick < 9) {
199 eeprom.command <<= 1;
200 eeprom.command += bit;
201 eeprom.tick++;
202 if (eeprom.tick == 9) {
203 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
204 eeprom.ack = 1;
206 } else if (eeprom.tick < 17) {
207 if (eeprom.command & 1) {
208 sda = ((eeprom.data & 0x80) != 0);
210 eeprom.address <<= 1;
211 eeprom.address += bit;
212 eeprom.tick++;
213 eeprom.data <<= 1;
214 if (eeprom.tick == 17) {
215 eeprom.data = eeprom.contents[eeprom.address];
216 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
217 eeprom.ack = 1;
218 eeprom.tick = 0;
220 } else if (eeprom.tick >= 17) {
221 sda = 0;
223 } else {
224 logout("\tsda changed with raising scl\n");
226 } else {
227 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
229 eeprom.scl = scl;
230 eeprom.sda = sda;
233 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
234 unsigned size)
236 MaltaFPGAState *s = opaque;
237 uint32_t val = 0;
238 uint32_t saddr;
240 saddr = (addr & 0xfffff);
242 switch (saddr) {
244 /* SWITCH Register */
245 case 0x00200:
246 val = 0x00000000; /* All switches closed */
247 break;
249 /* STATUS Register */
250 case 0x00208:
251 #ifdef TARGET_WORDS_BIGENDIAN
252 val = 0x00000012;
253 #else
254 val = 0x00000010;
255 #endif
256 break;
258 /* JMPRS Register */
259 case 0x00210:
260 val = 0x00;
261 break;
263 /* LEDBAR Register */
264 case 0x00408:
265 val = s->leds;
266 break;
268 /* BRKRES Register */
269 case 0x00508:
270 val = s->brk;
271 break;
273 /* UART Registers are handled directly by the serial device */
275 /* GPOUT Register */
276 case 0x00a00:
277 val = s->gpout;
278 break;
280 /* XXX: implement a real I2C controller */
282 /* GPINP Register */
283 case 0x00a08:
284 /* IN = OUT until a real I2C control is implemented */
285 if (s->i2csel)
286 val = s->i2cout;
287 else
288 val = 0x00;
289 break;
291 /* I2CINP Register */
292 case 0x00b00:
293 val = ((s->i2cin & ~1) | eeprom24c0x_read());
294 break;
296 /* I2COE Register */
297 case 0x00b08:
298 val = s->i2coe;
299 break;
301 /* I2COUT Register */
302 case 0x00b10:
303 val = s->i2cout;
304 break;
306 /* I2CSEL Register */
307 case 0x00b18:
308 val = s->i2csel;
309 break;
311 default:
312 #if 0
313 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
314 addr);
315 #endif
316 break;
318 return val;
321 static void malta_fpga_write(void *opaque, hwaddr addr,
322 uint64_t val, unsigned size)
324 MaltaFPGAState *s = opaque;
325 uint32_t saddr;
327 saddr = (addr & 0xfffff);
329 switch (saddr) {
331 /* SWITCH Register */
332 case 0x00200:
333 break;
335 /* JMPRS Register */
336 case 0x00210:
337 break;
339 /* LEDBAR Register */
340 case 0x00408:
341 s->leds = val & 0xff;
342 malta_fpga_update_display(s);
343 break;
345 /* ASCIIWORD Register */
346 case 0x00410:
347 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
348 malta_fpga_update_display(s);
349 break;
351 /* ASCIIPOS0 to ASCIIPOS7 Registers */
352 case 0x00418:
353 case 0x00420:
354 case 0x00428:
355 case 0x00430:
356 case 0x00438:
357 case 0x00440:
358 case 0x00448:
359 case 0x00450:
360 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
361 malta_fpga_update_display(s);
362 break;
364 /* SOFTRES Register */
365 case 0x00500:
366 if (val == 0x42)
367 qemu_system_reset_request ();
368 break;
370 /* BRKRES Register */
371 case 0x00508:
372 s->brk = val & 0xff;
373 break;
375 /* UART Registers are handled directly by the serial device */
377 /* GPOUT Register */
378 case 0x00a00:
379 s->gpout = val & 0xff;
380 break;
382 /* I2COE Register */
383 case 0x00b08:
384 s->i2coe = val & 0x03;
385 break;
387 /* I2COUT Register */
388 case 0x00b10:
389 eeprom24c0x_write(val & 0x02, val & 0x01);
390 s->i2cout = val;
391 break;
393 /* I2CSEL Register */
394 case 0x00b18:
395 s->i2csel = val & 0x01;
396 break;
398 default:
399 #if 0
400 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
401 addr);
402 #endif
403 break;
407 static const MemoryRegionOps malta_fpga_ops = {
408 .read = malta_fpga_read,
409 .write = malta_fpga_write,
410 .endianness = DEVICE_NATIVE_ENDIAN,
413 static void malta_fpga_reset(void *opaque)
415 MaltaFPGAState *s = opaque;
417 s->leds = 0x00;
418 s->brk = 0x0a;
419 s->gpout = 0x00;
420 s->i2cin = 0x3;
421 s->i2coe = 0x0;
422 s->i2cout = 0x3;
423 s->i2csel = 0x1;
425 s->display_text[8] = '\0';
426 snprintf(s->display_text, 9, " ");
429 static void malta_fpga_led_init(CharDriverState *chr)
431 qemu_chr_fe_printf(chr, "\e[HMalta LEDBAR\r\n");
432 qemu_chr_fe_printf(chr, "+--------+\r\n");
433 qemu_chr_fe_printf(chr, "+ +\r\n");
434 qemu_chr_fe_printf(chr, "+--------+\r\n");
435 qemu_chr_fe_printf(chr, "\n");
436 qemu_chr_fe_printf(chr, "Malta ASCII\r\n");
437 qemu_chr_fe_printf(chr, "+--------+\r\n");
438 qemu_chr_fe_printf(chr, "+ +\r\n");
439 qemu_chr_fe_printf(chr, "+--------+\r\n");
442 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
443 hwaddr base, qemu_irq uart_irq, CharDriverState *uart_chr)
445 MaltaFPGAState *s;
447 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
449 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
450 "malta-fpga", 0x100000);
451 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
452 &s->iomem, 0, 0x900);
453 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
454 &s->iomem, 0xa00, 0x10000-0xa00);
456 memory_region_add_subregion(address_space, base, &s->iomem_lo);
457 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
459 s->display = qemu_chr_new("fpga", "vc:320x200", malta_fpga_led_init);
461 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
462 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
464 malta_fpga_reset(s);
465 qemu_register_reset(malta_fpga_reset, s);
467 return s;
470 /* Network support */
471 static void network_init(void)
473 int i;
475 for(i = 0; i < nb_nics; i++) {
476 NICInfo *nd = &nd_table[i];
477 const char *default_devaddr = NULL;
479 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
480 /* The malta board has a PCNet card using PCI SLOT 11 */
481 default_devaddr = "0b";
483 pci_nic_init_nofail(nd, "pcnet", default_devaddr);
487 /* ROM and pseudo bootloader
489 The following code implements a very very simple bootloader. It first
490 loads the registers a0 to a3 to the values expected by the OS, and
491 then jump at the kernel address.
493 The bootloader should pass the locations of the kernel arguments and
494 environment variables tables. Those tables contain the 32-bit address
495 of NULL terminated strings. The environment variables table should be
496 terminated by a NULL address.
498 For a simpler implementation, the number of kernel arguments is fixed
499 to two (the name of the kernel and the command line), and the two
500 tables are actually the same one.
502 The registers a0 to a3 should contain the following values:
503 a0 - number of kernel arguments
504 a1 - 32-bit address of the kernel arguments table
505 a2 - 32-bit address of the environment variables table
506 a3 - RAM size in bytes
509 static void write_bootloader (CPUMIPSState *env, uint8_t *base,
510 int64_t kernel_entry)
512 uint32_t *p;
514 /* Small bootloader */
515 p = (uint32_t *)base;
516 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
517 stl_raw(p++, 0x00000000); /* nop */
519 /* YAMON service vector */
520 stl_raw(base + 0x500, 0xbfc00580); /* start: */
521 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
522 stl_raw(base + 0x520, 0xbfc00580); /* start: */
523 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
524 stl_raw(base + 0x534, 0xbfc00808); /* print: */
525 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
526 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
527 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
528 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
529 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
530 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
531 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
532 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
535 /* Second part of the bootloader */
536 p = (uint32_t *) (base + 0x580);
537 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
538 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
539 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
540 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
541 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
542 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
543 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
544 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
545 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
547 /* Load BAR registers as done by YAMON */
548 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
550 #ifdef TARGET_WORDS_BIGENDIAN
551 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
552 #else
553 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
554 #endif
555 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
557 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
559 #ifdef TARGET_WORDS_BIGENDIAN
560 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
561 #else
562 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
563 #endif
564 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
565 #ifdef TARGET_WORDS_BIGENDIAN
566 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
567 #else
568 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
569 #endif
570 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
572 #ifdef TARGET_WORDS_BIGENDIAN
573 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
574 #else
575 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
576 #endif
577 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
578 #ifdef TARGET_WORDS_BIGENDIAN
579 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
580 #else
581 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
582 #endif
583 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
585 #ifdef TARGET_WORDS_BIGENDIAN
586 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
587 #else
588 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
589 #endif
590 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
591 #ifdef TARGET_WORDS_BIGENDIAN
592 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
593 #else
594 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
595 #endif
596 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
598 /* Jump to kernel code */
599 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
600 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
601 stl_raw(p++, 0x03e00008); /* jr ra */
602 stl_raw(p++, 0x00000000); /* nop */
604 /* YAMON subroutines */
605 p = (uint32_t *) (base + 0x800);
606 stl_raw(p++, 0x03e00008); /* jr ra */
607 stl_raw(p++, 0x24020000); /* li v0,0 */
608 /* 808 YAMON print */
609 stl_raw(p++, 0x03e06821); /* move t5,ra */
610 stl_raw(p++, 0x00805821); /* move t3,a0 */
611 stl_raw(p++, 0x00a05021); /* move t2,a1 */
612 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
613 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
614 stl_raw(p++, 0x10800005); /* beqz a0,834 */
615 stl_raw(p++, 0x00000000); /* nop */
616 stl_raw(p++, 0x0ff0021c); /* jal 870 */
617 stl_raw(p++, 0x00000000); /* nop */
618 stl_raw(p++, 0x08000205); /* j 814 */
619 stl_raw(p++, 0x00000000); /* nop */
620 stl_raw(p++, 0x01a00008); /* jr t5 */
621 stl_raw(p++, 0x01602021); /* move a0,t3 */
622 /* 0x83c YAMON print_count */
623 stl_raw(p++, 0x03e06821); /* move t5,ra */
624 stl_raw(p++, 0x00805821); /* move t3,a0 */
625 stl_raw(p++, 0x00a05021); /* move t2,a1 */
626 stl_raw(p++, 0x00c06021); /* move t4,a2 */
627 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
628 stl_raw(p++, 0x0ff0021c); /* jal 870 */
629 stl_raw(p++, 0x00000000); /* nop */
630 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
631 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
632 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
633 stl_raw(p++, 0x00000000); /* nop */
634 stl_raw(p++, 0x01a00008); /* jr t5 */
635 stl_raw(p++, 0x01602021); /* move a0,t3 */
636 /* 0x870 */
637 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
638 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
639 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
640 stl_raw(p++, 0x00000000); /* nop */
641 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
642 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
643 stl_raw(p++, 0x00000000); /* nop */
644 stl_raw(p++, 0x03e00008); /* jr ra */
645 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
649 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
650 const char *string, ...)
652 va_list ap;
653 int32_t table_addr;
655 if (index >= ENVP_NB_ENTRIES)
656 return;
658 if (string == NULL) {
659 prom_buf[index] = 0;
660 return;
663 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
664 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
666 va_start(ap, string);
667 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
668 va_end(ap);
671 /* Kernel */
672 static int64_t load_kernel (void)
674 int64_t kernel_entry, kernel_high;
675 long initrd_size;
676 ram_addr_t initrd_offset;
677 int big_endian;
678 uint32_t *prom_buf;
679 long prom_size;
680 int prom_index = 0;
682 #ifdef TARGET_WORDS_BIGENDIAN
683 big_endian = 1;
684 #else
685 big_endian = 0;
686 #endif
688 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
689 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
690 big_endian, ELF_MACHINE, 1) < 0) {
691 fprintf(stderr, "qemu: could not load kernel '%s'\n",
692 loaderparams.kernel_filename);
693 exit(1);
696 /* load initrd */
697 initrd_size = 0;
698 initrd_offset = 0;
699 if (loaderparams.initrd_filename) {
700 initrd_size = get_image_size (loaderparams.initrd_filename);
701 if (initrd_size > 0) {
702 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
703 if (initrd_offset + initrd_size > ram_size) {
704 fprintf(stderr,
705 "qemu: memory too small for initial ram disk '%s'\n",
706 loaderparams.initrd_filename);
707 exit(1);
709 initrd_size = load_image_targphys(loaderparams.initrd_filename,
710 initrd_offset,
711 ram_size - initrd_offset);
713 if (initrd_size == (target_ulong) -1) {
714 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
715 loaderparams.initrd_filename);
716 exit(1);
720 /* Setup prom parameters. */
721 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
722 prom_buf = g_malloc(prom_size);
724 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
725 if (initrd_size > 0) {
726 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
727 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
728 loaderparams.kernel_cmdline);
729 } else {
730 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
733 prom_set(prom_buf, prom_index++, "memsize");
734 prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
735 prom_set(prom_buf, prom_index++, "modetty0");
736 prom_set(prom_buf, prom_index++, "38400n8r");
737 prom_set(prom_buf, prom_index++, NULL);
739 rom_add_blob_fixed("prom", prom_buf, prom_size,
740 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
742 return kernel_entry;
745 static void malta_mips_config(MIPSCPU *cpu)
747 CPUMIPSState *env = &cpu->env;
748 CPUState *cs = CPU(cpu);
750 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
751 ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
754 static void main_cpu_reset(void *opaque)
756 MIPSCPU *cpu = opaque;
757 CPUMIPSState *env = &cpu->env;
759 cpu_reset(CPU(cpu));
761 /* The bootloader does not need to be rewritten as it is located in a
762 read only location. The kernel location and the arguments table
763 location does not change. */
764 if (loaderparams.kernel_filename) {
765 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
768 malta_mips_config(cpu);
771 static void cpu_request_exit(void *opaque, int irq, int level)
773 CPUMIPSState *env = cpu_single_env;
775 if (env && level) {
776 cpu_exit(CPU(mips_env_get_cpu(env)));
780 static
781 void mips_malta_init(QEMUMachineInitArgs *args)
783 ram_addr_t ram_size = args->ram_size;
784 const char *cpu_model = args->cpu_model;
785 const char *kernel_filename = args->kernel_filename;
786 const char *kernel_cmdline = args->kernel_cmdline;
787 const char *initrd_filename = args->initrd_filename;
788 char *filename;
789 pflash_t *fl;
790 MemoryRegion *system_memory = get_system_memory();
791 MemoryRegion *ram = g_new(MemoryRegion, 1);
792 MemoryRegion *bios, *bios_alias = g_new(MemoryRegion, 1);
793 target_long bios_size = FLASH_SIZE;
794 int64_t kernel_entry;
795 PCIBus *pci_bus;
796 ISABus *isa_bus;
797 MIPSCPU *cpu;
798 CPUMIPSState *env;
799 qemu_irq *isa_irq;
800 qemu_irq *cpu_exit_irq;
801 int piix4_devfn;
802 i2c_bus *smbus;
803 int i;
804 DriveInfo *dinfo;
805 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
806 DriveInfo *fd[MAX_FD];
807 int fl_idx = 0;
808 int fl_sectors = bios_size >> 16;
809 int be;
811 DeviceState *dev = qdev_create(NULL, "mips-malta");
812 MaltaState *s = DO_UPCAST(MaltaState, busdev.qdev, dev);
814 qdev_init_nofail(dev);
816 /* Make sure the first 3 serial ports are associated with a device. */
817 for(i = 0; i < 3; i++) {
818 if (!serial_hds[i]) {
819 char label[32];
820 snprintf(label, sizeof(label), "serial%d", i);
821 serial_hds[i] = qemu_chr_new(label, "null", NULL);
825 /* init CPUs */
826 if (cpu_model == NULL) {
827 #ifdef TARGET_MIPS64
828 cpu_model = "20Kc";
829 #else
830 cpu_model = "24Kf";
831 #endif
834 for (i = 0; i < smp_cpus; i++) {
835 cpu = cpu_mips_init(cpu_model);
836 if (cpu == NULL) {
837 fprintf(stderr, "Unable to find CPU definition\n");
838 exit(1);
840 env = &cpu->env;
842 /* Init internal devices */
843 cpu_mips_irq_init_cpu(env);
844 cpu_mips_clock_init(env);
845 qemu_register_reset(main_cpu_reset, cpu);
847 env = first_cpu;
849 /* allocate RAM */
850 if (ram_size > (256 << 20)) {
851 fprintf(stderr,
852 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
853 ((unsigned int)ram_size / (1 << 20)));
854 exit(1);
856 memory_region_init_ram(ram, NULL, "mips_malta.ram", ram_size);
857 vmstate_register_ram_global(ram);
858 memory_region_add_subregion(system_memory, 0, ram);
860 #ifdef TARGET_WORDS_BIGENDIAN
861 be = 1;
862 #else
863 be = 0;
864 #endif
865 /* FPGA */
866 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
867 malta_fpga_init(system_memory, FPGA_ADDRESS, env->irq[4], serial_hds[2]);
869 /* Load firmware in flash / BIOS. */
870 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
871 #ifdef DEBUG_BOARD_INIT
872 if (dinfo) {
873 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
874 "addr %08llx '%s' %x\n",
875 fl_idx, bios_size, FLASH_ADDRESS,
876 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
878 #endif
879 fl = pflash_cfi01_register(FLASH_ADDRESS, NULL, "mips_malta.bios",
880 BIOS_SIZE, dinfo ? dinfo->bdrv : NULL,
881 65536, fl_sectors,
882 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
883 bios = pflash_cfi01_get_memory(fl);
884 fl_idx++;
885 if (kernel_filename) {
886 /* Write a small bootloader to the flash location. */
887 loaderparams.ram_size = ram_size;
888 loaderparams.kernel_filename = kernel_filename;
889 loaderparams.kernel_cmdline = kernel_cmdline;
890 loaderparams.initrd_filename = initrd_filename;
891 kernel_entry = load_kernel();
892 write_bootloader(env, memory_region_get_ram_ptr(bios), kernel_entry);
893 } else {
894 /* Load firmware from flash. */
895 if (!dinfo) {
896 /* Load a BIOS image. */
897 if (bios_name == NULL) {
898 bios_name = BIOS_FILENAME;
900 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
901 if (filename) {
902 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
903 BIOS_SIZE);
904 g_free(filename);
905 } else {
906 bios_size = -1;
908 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
909 fprintf(stderr,
910 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
911 bios_name);
912 exit(1);
915 /* In little endian mode the 32bit words in the bios are swapped,
916 a neat trick which allows bi-endian firmware. */
917 #ifndef TARGET_WORDS_BIGENDIAN
919 uint32_t *addr = memory_region_get_ram_ptr(bios);
920 uint32_t *end = addr + bios_size;
921 while (addr < end) {
922 bswap32s(addr);
923 addr++;
926 #endif
929 /* Map the BIOS at a 2nd physical location, as on the real board. */
930 memory_region_init_alias(bios_alias, NULL, "bios.1fc", bios, 0, BIOS_SIZE);
931 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_alias);
933 /* Board ID = 0x420 (Malta Board with CoreLV)
934 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
935 map to the board ID. */
936 stl_p(memory_region_get_ram_ptr(bios) + 0x10, 0x00000420);
938 /* Init internal devices */
939 cpu_mips_irq_init_cpu(env);
940 cpu_mips_clock_init(env);
943 * We have a circular dependency problem: pci_bus depends on isa_irq,
944 * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
945 * on piix4, and piix4 depends on pci_bus. To stop the cycle we have
946 * qemu_irq_proxy() adds an extra bit of indirection, allowing us
947 * to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
949 isa_irq = qemu_irq_proxy(&s->i8259, 16);
951 /* Northbridge */
952 pci_bus = gt64120_register(isa_irq);
954 /* Southbridge */
955 ide_drive_get(hd, MAX_IDE_BUS);
957 piix4_devfn = piix4_init(pci_bus, &isa_bus, 80);
959 /* Interrupt controller */
960 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
961 s->i8259 = i8259_init(isa_bus, env->irq[2]);
963 isa_bus_irqs(isa_bus, s->i8259);
964 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
965 pci_create_simple(pci_bus, piix4_devfn + 2, "piix4-usb-uhci");
966 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100,
967 isa_get_irq(NULL, 9), NULL, 0, NULL);
968 /* TODO: Populate SPD eeprom data. */
969 smbus_eeprom_init(smbus, 8, NULL, 0);
970 pit = pit_init(isa_bus, 0x40, 0, NULL);
971 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
972 DMA_init(0, cpu_exit_irq);
974 /* Super I/O */
975 isa_create_simple(isa_bus, "i8042");
977 rtc_init(isa_bus, 2000, NULL);
978 serial_isa_init(isa_bus, 0, serial_hds[0]);
979 serial_isa_init(isa_bus, 1, serial_hds[1]);
980 if (parallel_hds[0])
981 parallel_init(isa_bus, 0, parallel_hds[0]);
982 for(i = 0; i < MAX_FD; i++) {
983 fd[i] = drive_get(IF_FLOPPY, 0, i);
985 fdctrl_init_isa(isa_bus, fd);
987 /* Network card */
988 network_init();
990 /* Optional PCI video card */
991 pci_vga_init(pci_bus);
994 static int mips_malta_sysbus_device_init(SysBusDevice *sysbusdev)
996 return 0;
999 static void mips_malta_class_init(ObjectClass *klass, void *data)
1001 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1003 k->init = mips_malta_sysbus_device_init;
1006 static const TypeInfo mips_malta_device = {
1007 .name = "mips-malta",
1008 .parent = TYPE_SYS_BUS_DEVICE,
1009 .instance_size = sizeof(MaltaState),
1010 .class_init = mips_malta_class_init,
1013 static QEMUMachine mips_malta_machine = {
1014 .name = "malta",
1015 .desc = "MIPS Malta Core LV",
1016 .init = mips_malta_init,
1017 .max_cpus = 16,
1018 .is_default = 1,
1019 DEFAULT_MACHINE_OPTIONS,
1022 static void mips_malta_register_types(void)
1024 type_register_static(&mips_malta_device);
1027 static void mips_malta_machine_init(void)
1029 qemu_register_machine(&mips_malta_machine);
1032 type_init(mips_malta_register_types)
1033 machine_init(mips_malta_machine_init);