memory: add owner argument to initialization functions
[qemu/ar7.git] / hw / arm / omap1.c
blob19be5fcd01ff19d0e2b8c9408b1cdf3a73584277
1 /*
2 * TI OMAP processors emulation.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "hw/hw.h"
20 #include "hw/arm/arm.h"
21 #include "hw/arm/omap.h"
22 #include "sysemu/sysemu.h"
23 #include "hw/arm/soc_dma.h"
24 #include "sysemu/blockdev.h"
25 #include "qemu/range.h"
26 #include "hw/sysbus.h"
28 /* Should signal the TCMI/GPMC */
29 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
31 uint8_t ret;
33 OMAP_8B_REG(addr);
34 cpu_physical_memory_read(addr, &ret, 1);
35 return ret;
38 void omap_badwidth_write8(void *opaque, hwaddr addr,
39 uint32_t value)
41 uint8_t val8 = value;
43 OMAP_8B_REG(addr);
44 cpu_physical_memory_write(addr, &val8, 1);
47 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
49 uint16_t ret;
51 OMAP_16B_REG(addr);
52 cpu_physical_memory_read(addr, &ret, 2);
53 return ret;
56 void omap_badwidth_write16(void *opaque, hwaddr addr,
57 uint32_t value)
59 uint16_t val16 = value;
61 OMAP_16B_REG(addr);
62 cpu_physical_memory_write(addr, &val16, 2);
65 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
67 uint32_t ret;
69 OMAP_32B_REG(addr);
70 cpu_physical_memory_read(addr, &ret, 4);
71 return ret;
74 void omap_badwidth_write32(void *opaque, hwaddr addr,
75 uint32_t value)
77 OMAP_32B_REG(addr);
78 cpu_physical_memory_write(addr, &value, 4);
81 /* MPU OS timers */
82 struct omap_mpu_timer_s {
83 MemoryRegion iomem;
84 qemu_irq irq;
85 omap_clk clk;
86 uint32_t val;
87 int64_t time;
88 QEMUTimer *timer;
89 QEMUBH *tick;
90 int64_t rate;
91 int it_ena;
93 int enable;
94 int ptv;
95 int ar;
96 int st;
97 uint32_t reset_val;
100 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
102 uint64_t distance = qemu_get_clock_ns(vm_clock) - timer->time;
104 if (timer->st && timer->enable && timer->rate)
105 return timer->val - muldiv64(distance >> (timer->ptv + 1),
106 timer->rate, get_ticks_per_sec());
107 else
108 return timer->val;
111 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
113 timer->val = omap_timer_read(timer);
114 timer->time = qemu_get_clock_ns(vm_clock);
117 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
119 int64_t expires;
121 if (timer->enable && timer->st && timer->rate) {
122 timer->val = timer->reset_val; /* Should skip this on clk enable */
123 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
124 get_ticks_per_sec(), timer->rate);
126 /* If timer expiry would be sooner than in about 1 ms and
127 * auto-reload isn't set, then fire immediately. This is a hack
128 * to make systems like PalmOS run in acceptable time. PalmOS
129 * sets the interval to a very low value and polls the status bit
130 * in a busy loop when it wants to sleep just a couple of CPU
131 * ticks. */
132 if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
133 qemu_mod_timer(timer->timer, timer->time + expires);
134 else
135 qemu_bh_schedule(timer->tick);
136 } else
137 qemu_del_timer(timer->timer);
140 static void omap_timer_fire(void *opaque)
142 struct omap_mpu_timer_s *timer = opaque;
144 if (!timer->ar) {
145 timer->val = 0;
146 timer->st = 0;
149 if (timer->it_ena)
150 /* Edge-triggered irq */
151 qemu_irq_pulse(timer->irq);
154 static void omap_timer_tick(void *opaque)
156 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
158 omap_timer_sync(timer);
159 omap_timer_fire(timer);
160 omap_timer_update(timer);
163 static void omap_timer_clk_update(void *opaque, int line, int on)
165 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
167 omap_timer_sync(timer);
168 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
169 omap_timer_update(timer);
172 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
174 omap_clk_adduser(timer->clk,
175 qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
176 timer->rate = omap_clk_getrate(timer->clk);
179 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
180 unsigned size)
182 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
184 if (size != 4) {
185 return omap_badwidth_read32(opaque, addr);
188 switch (addr) {
189 case 0x00: /* CNTL_TIMER */
190 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
192 case 0x04: /* LOAD_TIM */
193 break;
195 case 0x08: /* READ_TIM */
196 return omap_timer_read(s);
199 OMAP_BAD_REG(addr);
200 return 0;
203 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
204 uint64_t value, unsigned size)
206 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
208 if (size != 4) {
209 return omap_badwidth_write32(opaque, addr, value);
212 switch (addr) {
213 case 0x00: /* CNTL_TIMER */
214 omap_timer_sync(s);
215 s->enable = (value >> 5) & 1;
216 s->ptv = (value >> 2) & 7;
217 s->ar = (value >> 1) & 1;
218 s->st = value & 1;
219 omap_timer_update(s);
220 return;
222 case 0x04: /* LOAD_TIM */
223 s->reset_val = value;
224 return;
226 case 0x08: /* READ_TIM */
227 OMAP_RO_REG(addr);
228 break;
230 default:
231 OMAP_BAD_REG(addr);
235 static const MemoryRegionOps omap_mpu_timer_ops = {
236 .read = omap_mpu_timer_read,
237 .write = omap_mpu_timer_write,
238 .endianness = DEVICE_LITTLE_ENDIAN,
241 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
243 qemu_del_timer(s->timer);
244 s->enable = 0;
245 s->reset_val = 31337;
246 s->val = 0;
247 s->ptv = 0;
248 s->ar = 0;
249 s->st = 0;
250 s->it_ena = 1;
253 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
254 hwaddr base,
255 qemu_irq irq, omap_clk clk)
257 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
258 g_malloc0(sizeof(struct omap_mpu_timer_s));
260 s->irq = irq;
261 s->clk = clk;
262 s->timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, s);
263 s->tick = qemu_bh_new(omap_timer_fire, s);
264 omap_mpu_timer_reset(s);
265 omap_timer_clk_setup(s);
267 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
268 "omap-mpu-timer", 0x100);
270 memory_region_add_subregion(system_memory, base, &s->iomem);
272 return s;
275 /* Watchdog timer */
276 struct omap_watchdog_timer_s {
277 struct omap_mpu_timer_s timer;
278 MemoryRegion iomem;
279 uint8_t last_wr;
280 int mode;
281 int free;
282 int reset;
285 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
286 unsigned size)
288 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
290 if (size != 2) {
291 return omap_badwidth_read16(opaque, addr);
294 switch (addr) {
295 case 0x00: /* CNTL_TIMER */
296 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
297 (s->timer.st << 7) | (s->free << 1);
299 case 0x04: /* READ_TIMER */
300 return omap_timer_read(&s->timer);
302 case 0x08: /* TIMER_MODE */
303 return s->mode << 15;
306 OMAP_BAD_REG(addr);
307 return 0;
310 static void omap_wd_timer_write(void *opaque, hwaddr addr,
311 uint64_t value, unsigned size)
313 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
315 if (size != 2) {
316 return omap_badwidth_write16(opaque, addr, value);
319 switch (addr) {
320 case 0x00: /* CNTL_TIMER */
321 omap_timer_sync(&s->timer);
322 s->timer.ptv = (value >> 9) & 7;
323 s->timer.ar = (value >> 8) & 1;
324 s->timer.st = (value >> 7) & 1;
325 s->free = (value >> 1) & 1;
326 omap_timer_update(&s->timer);
327 break;
329 case 0x04: /* LOAD_TIMER */
330 s->timer.reset_val = value & 0xffff;
331 break;
333 case 0x08: /* TIMER_MODE */
334 if (!s->mode && ((value >> 15) & 1))
335 omap_clk_get(s->timer.clk);
336 s->mode |= (value >> 15) & 1;
337 if (s->last_wr == 0xf5) {
338 if ((value & 0xff) == 0xa0) {
339 if (s->mode) {
340 s->mode = 0;
341 omap_clk_put(s->timer.clk);
343 } else {
344 /* XXX: on T|E hardware somehow this has no effect,
345 * on Zire 71 it works as specified. */
346 s->reset = 1;
347 qemu_system_reset_request();
350 s->last_wr = value & 0xff;
351 break;
353 default:
354 OMAP_BAD_REG(addr);
358 static const MemoryRegionOps omap_wd_timer_ops = {
359 .read = omap_wd_timer_read,
360 .write = omap_wd_timer_write,
361 .endianness = DEVICE_NATIVE_ENDIAN,
364 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
366 qemu_del_timer(s->timer.timer);
367 if (!s->mode)
368 omap_clk_get(s->timer.clk);
369 s->mode = 1;
370 s->free = 1;
371 s->reset = 0;
372 s->timer.enable = 1;
373 s->timer.it_ena = 1;
374 s->timer.reset_val = 0xffff;
375 s->timer.val = 0;
376 s->timer.st = 0;
377 s->timer.ptv = 0;
378 s->timer.ar = 0;
379 omap_timer_update(&s->timer);
382 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
383 hwaddr base,
384 qemu_irq irq, omap_clk clk)
386 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
387 g_malloc0(sizeof(struct omap_watchdog_timer_s));
389 s->timer.irq = irq;
390 s->timer.clk = clk;
391 s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
392 omap_wd_timer_reset(s);
393 omap_timer_clk_setup(&s->timer);
395 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
396 "omap-wd-timer", 0x100);
397 memory_region_add_subregion(memory, base, &s->iomem);
399 return s;
402 /* 32-kHz timer */
403 struct omap_32khz_timer_s {
404 struct omap_mpu_timer_s timer;
405 MemoryRegion iomem;
408 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
409 unsigned size)
411 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
412 int offset = addr & OMAP_MPUI_REG_MASK;
414 if (size != 4) {
415 return omap_badwidth_read32(opaque, addr);
418 switch (offset) {
419 case 0x00: /* TVR */
420 return s->timer.reset_val;
422 case 0x04: /* TCR */
423 return omap_timer_read(&s->timer);
425 case 0x08: /* CR */
426 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
428 default:
429 break;
431 OMAP_BAD_REG(addr);
432 return 0;
435 static void omap_os_timer_write(void *opaque, hwaddr addr,
436 uint64_t value, unsigned size)
438 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
439 int offset = addr & OMAP_MPUI_REG_MASK;
441 if (size != 4) {
442 return omap_badwidth_write32(opaque, addr, value);
445 switch (offset) {
446 case 0x00: /* TVR */
447 s->timer.reset_val = value & 0x00ffffff;
448 break;
450 case 0x04: /* TCR */
451 OMAP_RO_REG(addr);
452 break;
454 case 0x08: /* CR */
455 s->timer.ar = (value >> 3) & 1;
456 s->timer.it_ena = (value >> 2) & 1;
457 if (s->timer.st != (value & 1) || (value & 2)) {
458 omap_timer_sync(&s->timer);
459 s->timer.enable = value & 1;
460 s->timer.st = value & 1;
461 omap_timer_update(&s->timer);
463 break;
465 default:
466 OMAP_BAD_REG(addr);
470 static const MemoryRegionOps omap_os_timer_ops = {
471 .read = omap_os_timer_read,
472 .write = omap_os_timer_write,
473 .endianness = DEVICE_NATIVE_ENDIAN,
476 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
478 qemu_del_timer(s->timer.timer);
479 s->timer.enable = 0;
480 s->timer.it_ena = 0;
481 s->timer.reset_val = 0x00ffffff;
482 s->timer.val = 0;
483 s->timer.st = 0;
484 s->timer.ptv = 0;
485 s->timer.ar = 1;
488 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
489 hwaddr base,
490 qemu_irq irq, omap_clk clk)
492 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
493 g_malloc0(sizeof(struct omap_32khz_timer_s));
495 s->timer.irq = irq;
496 s->timer.clk = clk;
497 s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
498 omap_os_timer_reset(s);
499 omap_timer_clk_setup(&s->timer);
501 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
502 "omap-os-timer", 0x800);
503 memory_region_add_subregion(memory, base, &s->iomem);
505 return s;
508 /* Ultra Low-Power Device Module */
509 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
510 unsigned size)
512 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
513 uint16_t ret;
515 if (size != 2) {
516 return omap_badwidth_read16(opaque, addr);
519 switch (addr) {
520 case 0x14: /* IT_STATUS */
521 ret = s->ulpd_pm_regs[addr >> 2];
522 s->ulpd_pm_regs[addr >> 2] = 0;
523 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
524 return ret;
526 case 0x18: /* Reserved */
527 case 0x1c: /* Reserved */
528 case 0x20: /* Reserved */
529 case 0x28: /* Reserved */
530 case 0x2c: /* Reserved */
531 OMAP_BAD_REG(addr);
532 /* fall through */
533 case 0x00: /* COUNTER_32_LSB */
534 case 0x04: /* COUNTER_32_MSB */
535 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
536 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
537 case 0x10: /* GAUGING_CTRL */
538 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
539 case 0x30: /* CLOCK_CTRL */
540 case 0x34: /* SOFT_REQ */
541 case 0x38: /* COUNTER_32_FIQ */
542 case 0x3c: /* DPLL_CTRL */
543 case 0x40: /* STATUS_REQ */
544 /* XXX: check clk::usecount state for every clock */
545 case 0x48: /* LOCL_TIME */
546 case 0x4c: /* APLL_CTRL */
547 case 0x50: /* POWER_CTRL */
548 return s->ulpd_pm_regs[addr >> 2];
551 OMAP_BAD_REG(addr);
552 return 0;
555 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
556 uint16_t diff, uint16_t value)
558 if (diff & (1 << 4)) /* USB_MCLK_EN */
559 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
560 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
561 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
564 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
565 uint16_t diff, uint16_t value)
567 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
568 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
569 if (diff & (1 << 1)) /* SOFT_COM_REQ */
570 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
571 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
572 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
573 if (diff & (1 << 3)) /* SOFT_USB_REQ */
574 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
577 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
578 uint64_t value, unsigned size)
580 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
581 int64_t now, ticks;
582 int div, mult;
583 static const int bypass_div[4] = { 1, 2, 4, 4 };
584 uint16_t diff;
586 if (size != 2) {
587 return omap_badwidth_write16(opaque, addr, value);
590 switch (addr) {
591 case 0x00: /* COUNTER_32_LSB */
592 case 0x04: /* COUNTER_32_MSB */
593 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
594 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
595 case 0x14: /* IT_STATUS */
596 case 0x40: /* STATUS_REQ */
597 OMAP_RO_REG(addr);
598 break;
600 case 0x10: /* GAUGING_CTRL */
601 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
602 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
603 now = qemu_get_clock_ns(vm_clock);
605 if (value & 1)
606 s->ulpd_gauge_start = now;
607 else {
608 now -= s->ulpd_gauge_start;
610 /* 32-kHz ticks */
611 ticks = muldiv64(now, 32768, get_ticks_per_sec());
612 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
613 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
614 if (ticks >> 32) /* OVERFLOW_32K */
615 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
617 /* High frequency ticks */
618 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
619 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
620 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
621 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
622 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
624 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
625 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
628 s->ulpd_pm_regs[addr >> 2] = value;
629 break;
631 case 0x18: /* Reserved */
632 case 0x1c: /* Reserved */
633 case 0x20: /* Reserved */
634 case 0x28: /* Reserved */
635 case 0x2c: /* Reserved */
636 OMAP_BAD_REG(addr);
637 /* fall through */
638 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
639 case 0x38: /* COUNTER_32_FIQ */
640 case 0x48: /* LOCL_TIME */
641 case 0x50: /* POWER_CTRL */
642 s->ulpd_pm_regs[addr >> 2] = value;
643 break;
645 case 0x30: /* CLOCK_CTRL */
646 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
647 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
648 omap_ulpd_clk_update(s, diff, value);
649 break;
651 case 0x34: /* SOFT_REQ */
652 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
653 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
654 omap_ulpd_req_update(s, diff, value);
655 break;
657 case 0x3c: /* DPLL_CTRL */
658 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
659 * omitted altogether, probably a typo. */
660 /* This register has identical semantics with DPLL(1:3) control
661 * registers, see omap_dpll_write() */
662 diff = s->ulpd_pm_regs[addr >> 2] & value;
663 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
664 if (diff & (0x3ff << 2)) {
665 if (value & (1 << 4)) { /* PLL_ENABLE */
666 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
667 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
668 } else {
669 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
670 mult = 1;
672 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
675 /* Enter the desired mode. */
676 s->ulpd_pm_regs[addr >> 2] =
677 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
678 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
680 /* Act as if the lock is restored. */
681 s->ulpd_pm_regs[addr >> 2] |= 2;
682 break;
684 case 0x4c: /* APLL_CTRL */
685 diff = s->ulpd_pm_regs[addr >> 2] & value;
686 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
687 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
688 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
689 (value & (1 << 0)) ? "apll" : "dpll4"));
690 break;
692 default:
693 OMAP_BAD_REG(addr);
697 static const MemoryRegionOps omap_ulpd_pm_ops = {
698 .read = omap_ulpd_pm_read,
699 .write = omap_ulpd_pm_write,
700 .endianness = DEVICE_NATIVE_ENDIAN,
703 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
705 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
706 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
707 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
708 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
709 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
710 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
711 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
712 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
713 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
714 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
715 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
716 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
717 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
718 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
719 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
720 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
721 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
722 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
723 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
724 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
725 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
726 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
727 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
730 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
731 hwaddr base,
732 struct omap_mpu_state_s *mpu)
734 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
735 "omap-ulpd-pm", 0x800);
736 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
737 omap_ulpd_pm_reset(mpu);
740 /* OMAP Pin Configuration */
741 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
742 unsigned size)
744 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
746 if (size != 4) {
747 return omap_badwidth_read32(opaque, addr);
750 switch (addr) {
751 case 0x00: /* FUNC_MUX_CTRL_0 */
752 case 0x04: /* FUNC_MUX_CTRL_1 */
753 case 0x08: /* FUNC_MUX_CTRL_2 */
754 return s->func_mux_ctrl[addr >> 2];
756 case 0x0c: /* COMP_MODE_CTRL_0 */
757 return s->comp_mode_ctrl[0];
759 case 0x10: /* FUNC_MUX_CTRL_3 */
760 case 0x14: /* FUNC_MUX_CTRL_4 */
761 case 0x18: /* FUNC_MUX_CTRL_5 */
762 case 0x1c: /* FUNC_MUX_CTRL_6 */
763 case 0x20: /* FUNC_MUX_CTRL_7 */
764 case 0x24: /* FUNC_MUX_CTRL_8 */
765 case 0x28: /* FUNC_MUX_CTRL_9 */
766 case 0x2c: /* FUNC_MUX_CTRL_A */
767 case 0x30: /* FUNC_MUX_CTRL_B */
768 case 0x34: /* FUNC_MUX_CTRL_C */
769 case 0x38: /* FUNC_MUX_CTRL_D */
770 return s->func_mux_ctrl[(addr >> 2) - 1];
772 case 0x40: /* PULL_DWN_CTRL_0 */
773 case 0x44: /* PULL_DWN_CTRL_1 */
774 case 0x48: /* PULL_DWN_CTRL_2 */
775 case 0x4c: /* PULL_DWN_CTRL_3 */
776 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
778 case 0x50: /* GATE_INH_CTRL_0 */
779 return s->gate_inh_ctrl[0];
781 case 0x60: /* VOLTAGE_CTRL_0 */
782 return s->voltage_ctrl[0];
784 case 0x70: /* TEST_DBG_CTRL_0 */
785 return s->test_dbg_ctrl[0];
787 case 0x80: /* MOD_CONF_CTRL_0 */
788 return s->mod_conf_ctrl[0];
791 OMAP_BAD_REG(addr);
792 return 0;
795 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
796 uint32_t diff, uint32_t value)
798 if (s->compat1509) {
799 if (diff & (1 << 9)) /* BLUETOOTH */
800 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
801 (~value >> 9) & 1);
802 if (diff & (1 << 7)) /* USB.CLKO */
803 omap_clk_onoff(omap_findclk(s, "usb.clko"),
804 (value >> 7) & 1);
808 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
809 uint32_t diff, uint32_t value)
811 if (s->compat1509) {
812 if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
813 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
814 (value >> 31) & 1);
815 if (diff & (1 << 1)) /* CLK32K */
816 omap_clk_onoff(omap_findclk(s, "clk32k_out"),
817 (~value >> 1) & 1);
821 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
822 uint32_t diff, uint32_t value)
824 if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
825 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
826 omap_findclk(s, ((value >> 31) & 1) ?
827 "ck_48m" : "armper_ck"));
828 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
829 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
830 omap_findclk(s, ((value >> 30) & 1) ?
831 "ck_48m" : "armper_ck"));
832 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
833 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
834 omap_findclk(s, ((value >> 29) & 1) ?
835 "ck_48m" : "armper_ck"));
836 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
837 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
838 omap_findclk(s, ((value >> 23) & 1) ?
839 "ck_48m" : "armper_ck"));
840 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
841 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
842 omap_findclk(s, ((value >> 12) & 1) ?
843 "ck_48m" : "armper_ck"));
844 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
845 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
848 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
849 uint64_t value, unsigned size)
851 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
852 uint32_t diff;
854 if (size != 4) {
855 return omap_badwidth_write32(opaque, addr, value);
858 switch (addr) {
859 case 0x00: /* FUNC_MUX_CTRL_0 */
860 diff = s->func_mux_ctrl[addr >> 2] ^ value;
861 s->func_mux_ctrl[addr >> 2] = value;
862 omap_pin_funcmux0_update(s, diff, value);
863 return;
865 case 0x04: /* FUNC_MUX_CTRL_1 */
866 diff = s->func_mux_ctrl[addr >> 2] ^ value;
867 s->func_mux_ctrl[addr >> 2] = value;
868 omap_pin_funcmux1_update(s, diff, value);
869 return;
871 case 0x08: /* FUNC_MUX_CTRL_2 */
872 s->func_mux_ctrl[addr >> 2] = value;
873 return;
875 case 0x0c: /* COMP_MODE_CTRL_0 */
876 s->comp_mode_ctrl[0] = value;
877 s->compat1509 = (value != 0x0000eaef);
878 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
879 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
880 return;
882 case 0x10: /* FUNC_MUX_CTRL_3 */
883 case 0x14: /* FUNC_MUX_CTRL_4 */
884 case 0x18: /* FUNC_MUX_CTRL_5 */
885 case 0x1c: /* FUNC_MUX_CTRL_6 */
886 case 0x20: /* FUNC_MUX_CTRL_7 */
887 case 0x24: /* FUNC_MUX_CTRL_8 */
888 case 0x28: /* FUNC_MUX_CTRL_9 */
889 case 0x2c: /* FUNC_MUX_CTRL_A */
890 case 0x30: /* FUNC_MUX_CTRL_B */
891 case 0x34: /* FUNC_MUX_CTRL_C */
892 case 0x38: /* FUNC_MUX_CTRL_D */
893 s->func_mux_ctrl[(addr >> 2) - 1] = value;
894 return;
896 case 0x40: /* PULL_DWN_CTRL_0 */
897 case 0x44: /* PULL_DWN_CTRL_1 */
898 case 0x48: /* PULL_DWN_CTRL_2 */
899 case 0x4c: /* PULL_DWN_CTRL_3 */
900 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
901 return;
903 case 0x50: /* GATE_INH_CTRL_0 */
904 s->gate_inh_ctrl[0] = value;
905 return;
907 case 0x60: /* VOLTAGE_CTRL_0 */
908 s->voltage_ctrl[0] = value;
909 return;
911 case 0x70: /* TEST_DBG_CTRL_0 */
912 s->test_dbg_ctrl[0] = value;
913 return;
915 case 0x80: /* MOD_CONF_CTRL_0 */
916 diff = s->mod_conf_ctrl[0] ^ value;
917 s->mod_conf_ctrl[0] = value;
918 omap_pin_modconf1_update(s, diff, value);
919 return;
921 default:
922 OMAP_BAD_REG(addr);
926 static const MemoryRegionOps omap_pin_cfg_ops = {
927 .read = omap_pin_cfg_read,
928 .write = omap_pin_cfg_write,
929 .endianness = DEVICE_NATIVE_ENDIAN,
932 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
934 /* Start in Compatibility Mode. */
935 mpu->compat1509 = 1;
936 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
937 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
938 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
939 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
940 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
941 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
942 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
943 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
944 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
945 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
948 static void omap_pin_cfg_init(MemoryRegion *system_memory,
949 hwaddr base,
950 struct omap_mpu_state_s *mpu)
952 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
953 "omap-pin-cfg", 0x800);
954 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
955 omap_pin_cfg_reset(mpu);
958 /* Device Identification, Die Identification */
959 static uint64_t omap_id_read(void *opaque, hwaddr addr,
960 unsigned size)
962 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
964 if (size != 4) {
965 return omap_badwidth_read32(opaque, addr);
968 switch (addr) {
969 case 0xfffe1800: /* DIE_ID_LSB */
970 return 0xc9581f0e;
971 case 0xfffe1804: /* DIE_ID_MSB */
972 return 0xa8858bfa;
974 case 0xfffe2000: /* PRODUCT_ID_LSB */
975 return 0x00aaaafc;
976 case 0xfffe2004: /* PRODUCT_ID_MSB */
977 return 0xcafeb574;
979 case 0xfffed400: /* JTAG_ID_LSB */
980 switch (s->mpu_model) {
981 case omap310:
982 return 0x03310315;
983 case omap1510:
984 return 0x03310115;
985 default:
986 hw_error("%s: bad mpu model\n", __FUNCTION__);
988 break;
990 case 0xfffed404: /* JTAG_ID_MSB */
991 switch (s->mpu_model) {
992 case omap310:
993 return 0xfb57402f;
994 case omap1510:
995 return 0xfb47002f;
996 default:
997 hw_error("%s: bad mpu model\n", __FUNCTION__);
999 break;
1002 OMAP_BAD_REG(addr);
1003 return 0;
1006 static void omap_id_write(void *opaque, hwaddr addr,
1007 uint64_t value, unsigned size)
1009 if (size != 4) {
1010 return omap_badwidth_write32(opaque, addr, value);
1013 OMAP_BAD_REG(addr);
1016 static const MemoryRegionOps omap_id_ops = {
1017 .read = omap_id_read,
1018 .write = omap_id_write,
1019 .endianness = DEVICE_NATIVE_ENDIAN,
1022 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1024 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1025 "omap-id", 0x100000000ULL);
1026 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1027 0xfffe1800, 0x800);
1028 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1029 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1030 0xfffed400, 0x100);
1031 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1032 if (!cpu_is_omap15xx(mpu)) {
1033 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1034 &mpu->id_iomem, 0xfffe2000, 0x800);
1035 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1039 /* MPUI Control (Dummy) */
1040 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1041 unsigned size)
1043 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1045 if (size != 4) {
1046 return omap_badwidth_read32(opaque, addr);
1049 switch (addr) {
1050 case 0x00: /* CTRL */
1051 return s->mpui_ctrl;
1052 case 0x04: /* DEBUG_ADDR */
1053 return 0x01ffffff;
1054 case 0x08: /* DEBUG_DATA */
1055 return 0xffffffff;
1056 case 0x0c: /* DEBUG_FLAG */
1057 return 0x00000800;
1058 case 0x10: /* STATUS */
1059 return 0x00000000;
1061 /* Not in OMAP310 */
1062 case 0x14: /* DSP_STATUS */
1063 case 0x18: /* DSP_BOOT_CONFIG */
1064 return 0x00000000;
1065 case 0x1c: /* DSP_MPUI_CONFIG */
1066 return 0x0000ffff;
1069 OMAP_BAD_REG(addr);
1070 return 0;
1073 static void omap_mpui_write(void *opaque, hwaddr addr,
1074 uint64_t value, unsigned size)
1076 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1078 if (size != 4) {
1079 return omap_badwidth_write32(opaque, addr, value);
1082 switch (addr) {
1083 case 0x00: /* CTRL */
1084 s->mpui_ctrl = value & 0x007fffff;
1085 break;
1087 case 0x04: /* DEBUG_ADDR */
1088 case 0x08: /* DEBUG_DATA */
1089 case 0x0c: /* DEBUG_FLAG */
1090 case 0x10: /* STATUS */
1091 /* Not in OMAP310 */
1092 case 0x14: /* DSP_STATUS */
1093 OMAP_RO_REG(addr);
1094 break;
1095 case 0x18: /* DSP_BOOT_CONFIG */
1096 case 0x1c: /* DSP_MPUI_CONFIG */
1097 break;
1099 default:
1100 OMAP_BAD_REG(addr);
1104 static const MemoryRegionOps omap_mpui_ops = {
1105 .read = omap_mpui_read,
1106 .write = omap_mpui_write,
1107 .endianness = DEVICE_NATIVE_ENDIAN,
1110 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1112 s->mpui_ctrl = 0x0003ff1b;
1115 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1116 struct omap_mpu_state_s *mpu)
1118 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1119 "omap-mpui", 0x100);
1120 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1122 omap_mpui_reset(mpu);
1125 /* TIPB Bridges */
1126 struct omap_tipb_bridge_s {
1127 qemu_irq abort;
1128 MemoryRegion iomem;
1130 int width_intr;
1131 uint16_t control;
1132 uint16_t alloc;
1133 uint16_t buffer;
1134 uint16_t enh_control;
1137 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1138 unsigned size)
1140 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1142 if (size < 2) {
1143 return omap_badwidth_read16(opaque, addr);
1146 switch (addr) {
1147 case 0x00: /* TIPB_CNTL */
1148 return s->control;
1149 case 0x04: /* TIPB_BUS_ALLOC */
1150 return s->alloc;
1151 case 0x08: /* MPU_TIPB_CNTL */
1152 return s->buffer;
1153 case 0x0c: /* ENHANCED_TIPB_CNTL */
1154 return s->enh_control;
1155 case 0x10: /* ADDRESS_DBG */
1156 case 0x14: /* DATA_DEBUG_LOW */
1157 case 0x18: /* DATA_DEBUG_HIGH */
1158 return 0xffff;
1159 case 0x1c: /* DEBUG_CNTR_SIG */
1160 return 0x00f8;
1163 OMAP_BAD_REG(addr);
1164 return 0;
1167 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1168 uint64_t value, unsigned size)
1170 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1172 if (size < 2) {
1173 return omap_badwidth_write16(opaque, addr, value);
1176 switch (addr) {
1177 case 0x00: /* TIPB_CNTL */
1178 s->control = value & 0xffff;
1179 break;
1181 case 0x04: /* TIPB_BUS_ALLOC */
1182 s->alloc = value & 0x003f;
1183 break;
1185 case 0x08: /* MPU_TIPB_CNTL */
1186 s->buffer = value & 0x0003;
1187 break;
1189 case 0x0c: /* ENHANCED_TIPB_CNTL */
1190 s->width_intr = !(value & 2);
1191 s->enh_control = value & 0x000f;
1192 break;
1194 case 0x10: /* ADDRESS_DBG */
1195 case 0x14: /* DATA_DEBUG_LOW */
1196 case 0x18: /* DATA_DEBUG_HIGH */
1197 case 0x1c: /* DEBUG_CNTR_SIG */
1198 OMAP_RO_REG(addr);
1199 break;
1201 default:
1202 OMAP_BAD_REG(addr);
1206 static const MemoryRegionOps omap_tipb_bridge_ops = {
1207 .read = omap_tipb_bridge_read,
1208 .write = omap_tipb_bridge_write,
1209 .endianness = DEVICE_NATIVE_ENDIAN,
1212 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1214 s->control = 0xffff;
1215 s->alloc = 0x0009;
1216 s->buffer = 0x0000;
1217 s->enh_control = 0x000f;
1220 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1221 MemoryRegion *memory, hwaddr base,
1222 qemu_irq abort_irq, omap_clk clk)
1224 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1225 g_malloc0(sizeof(struct omap_tipb_bridge_s));
1227 s->abort = abort_irq;
1228 omap_tipb_bridge_reset(s);
1230 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1231 "omap-tipb-bridge", 0x100);
1232 memory_region_add_subregion(memory, base, &s->iomem);
1234 return s;
1237 /* Dummy Traffic Controller's Memory Interface */
1238 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1239 unsigned size)
1241 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1242 uint32_t ret;
1244 if (size != 4) {
1245 return omap_badwidth_read32(opaque, addr);
1248 switch (addr) {
1249 case 0x00: /* IMIF_PRIO */
1250 case 0x04: /* EMIFS_PRIO */
1251 case 0x08: /* EMIFF_PRIO */
1252 case 0x0c: /* EMIFS_CONFIG */
1253 case 0x10: /* EMIFS_CS0_CONFIG */
1254 case 0x14: /* EMIFS_CS1_CONFIG */
1255 case 0x18: /* EMIFS_CS2_CONFIG */
1256 case 0x1c: /* EMIFS_CS3_CONFIG */
1257 case 0x24: /* EMIFF_MRS */
1258 case 0x28: /* TIMEOUT1 */
1259 case 0x2c: /* TIMEOUT2 */
1260 case 0x30: /* TIMEOUT3 */
1261 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1262 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1263 return s->tcmi_regs[addr >> 2];
1265 case 0x20: /* EMIFF_SDRAM_CONFIG */
1266 ret = s->tcmi_regs[addr >> 2];
1267 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1268 /* XXX: We can try using the VGA_DIRTY flag for this */
1269 return ret;
1272 OMAP_BAD_REG(addr);
1273 return 0;
1276 static void omap_tcmi_write(void *opaque, hwaddr addr,
1277 uint64_t value, unsigned size)
1279 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1281 if (size != 4) {
1282 return omap_badwidth_write32(opaque, addr, value);
1285 switch (addr) {
1286 case 0x00: /* IMIF_PRIO */
1287 case 0x04: /* EMIFS_PRIO */
1288 case 0x08: /* EMIFF_PRIO */
1289 case 0x10: /* EMIFS_CS0_CONFIG */
1290 case 0x14: /* EMIFS_CS1_CONFIG */
1291 case 0x18: /* EMIFS_CS2_CONFIG */
1292 case 0x1c: /* EMIFS_CS3_CONFIG */
1293 case 0x20: /* EMIFF_SDRAM_CONFIG */
1294 case 0x24: /* EMIFF_MRS */
1295 case 0x28: /* TIMEOUT1 */
1296 case 0x2c: /* TIMEOUT2 */
1297 case 0x30: /* TIMEOUT3 */
1298 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1299 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1300 s->tcmi_regs[addr >> 2] = value;
1301 break;
1302 case 0x0c: /* EMIFS_CONFIG */
1303 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1304 break;
1306 default:
1307 OMAP_BAD_REG(addr);
1311 static const MemoryRegionOps omap_tcmi_ops = {
1312 .read = omap_tcmi_read,
1313 .write = omap_tcmi_write,
1314 .endianness = DEVICE_NATIVE_ENDIAN,
1317 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1319 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1320 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1321 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1322 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1323 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1324 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1325 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1326 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1327 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1328 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1329 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1330 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1331 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1332 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1333 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1336 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1337 struct omap_mpu_state_s *mpu)
1339 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1340 "omap-tcmi", 0x100);
1341 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1342 omap_tcmi_reset(mpu);
1345 /* Digital phase-locked loops control */
1346 struct dpll_ctl_s {
1347 MemoryRegion iomem;
1348 uint16_t mode;
1349 omap_clk dpll;
1352 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1353 unsigned size)
1355 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1357 if (size != 2) {
1358 return omap_badwidth_read16(opaque, addr);
1361 if (addr == 0x00) /* CTL_REG */
1362 return s->mode;
1364 OMAP_BAD_REG(addr);
1365 return 0;
1368 static void omap_dpll_write(void *opaque, hwaddr addr,
1369 uint64_t value, unsigned size)
1371 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1372 uint16_t diff;
1373 static const int bypass_div[4] = { 1, 2, 4, 4 };
1374 int div, mult;
1376 if (size != 2) {
1377 return omap_badwidth_write16(opaque, addr, value);
1380 if (addr == 0x00) { /* CTL_REG */
1381 /* See omap_ulpd_pm_write() too */
1382 diff = s->mode & value;
1383 s->mode = value & 0x2fff;
1384 if (diff & (0x3ff << 2)) {
1385 if (value & (1 << 4)) { /* PLL_ENABLE */
1386 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1387 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1388 } else {
1389 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1390 mult = 1;
1392 omap_clk_setrate(s->dpll, div, mult);
1395 /* Enter the desired mode. */
1396 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1398 /* Act as if the lock is restored. */
1399 s->mode |= 2;
1400 } else {
1401 OMAP_BAD_REG(addr);
1405 static const MemoryRegionOps omap_dpll_ops = {
1406 .read = omap_dpll_read,
1407 .write = omap_dpll_write,
1408 .endianness = DEVICE_NATIVE_ENDIAN,
1411 static void omap_dpll_reset(struct dpll_ctl_s *s)
1413 s->mode = 0x2002;
1414 omap_clk_setrate(s->dpll, 1, 1);
1417 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1418 hwaddr base, omap_clk clk)
1420 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1421 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1423 s->dpll = clk;
1424 omap_dpll_reset(s);
1426 memory_region_add_subregion(memory, base, &s->iomem);
1427 return s;
1430 /* MPU Clock/Reset/Power Mode Control */
1431 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1432 unsigned size)
1434 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1436 if (size != 2) {
1437 return omap_badwidth_read16(opaque, addr);
1440 switch (addr) {
1441 case 0x00: /* ARM_CKCTL */
1442 return s->clkm.arm_ckctl;
1444 case 0x04: /* ARM_IDLECT1 */
1445 return s->clkm.arm_idlect1;
1447 case 0x08: /* ARM_IDLECT2 */
1448 return s->clkm.arm_idlect2;
1450 case 0x0c: /* ARM_EWUPCT */
1451 return s->clkm.arm_ewupct;
1453 case 0x10: /* ARM_RSTCT1 */
1454 return s->clkm.arm_rstct1;
1456 case 0x14: /* ARM_RSTCT2 */
1457 return s->clkm.arm_rstct2;
1459 case 0x18: /* ARM_SYSST */
1460 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1462 case 0x1c: /* ARM_CKOUT1 */
1463 return s->clkm.arm_ckout1;
1465 case 0x20: /* ARM_CKOUT2 */
1466 break;
1469 OMAP_BAD_REG(addr);
1470 return 0;
1473 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1474 uint16_t diff, uint16_t value)
1476 omap_clk clk;
1478 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1479 if (value & (1 << 14))
1480 /* Reserved */;
1481 else {
1482 clk = omap_findclk(s, "arminth_ck");
1483 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1486 if (diff & (1 << 12)) { /* ARM_TIMXO */
1487 clk = omap_findclk(s, "armtim_ck");
1488 if (value & (1 << 12))
1489 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1490 else
1491 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1493 /* XXX: en_dspck */
1494 if (diff & (3 << 10)) { /* DSPMMUDIV */
1495 clk = omap_findclk(s, "dspmmu_ck");
1496 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1498 if (diff & (3 << 8)) { /* TCDIV */
1499 clk = omap_findclk(s, "tc_ck");
1500 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1502 if (diff & (3 << 6)) { /* DSPDIV */
1503 clk = omap_findclk(s, "dsp_ck");
1504 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1506 if (diff & (3 << 4)) { /* ARMDIV */
1507 clk = omap_findclk(s, "arm_ck");
1508 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1510 if (diff & (3 << 2)) { /* LCDDIV */
1511 clk = omap_findclk(s, "lcd_ck");
1512 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1514 if (diff & (3 << 0)) { /* PERDIV */
1515 clk = omap_findclk(s, "armper_ck");
1516 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1520 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1521 uint16_t diff, uint16_t value)
1523 omap_clk clk;
1525 if (value & (1 << 11)) { /* SETARM_IDLE */
1526 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1528 if (!(value & (1 << 10))) /* WKUP_MODE */
1529 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1531 #define SET_CANIDLE(clock, bit) \
1532 if (diff & (1 << bit)) { \
1533 clk = omap_findclk(s, clock); \
1534 omap_clk_canidle(clk, (value >> bit) & 1); \
1536 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1537 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1538 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1539 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1540 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1541 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1542 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1543 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1544 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1545 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1546 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1547 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1548 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1549 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1552 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1553 uint16_t diff, uint16_t value)
1555 omap_clk clk;
1557 #define SET_ONOFF(clock, bit) \
1558 if (diff & (1 << bit)) { \
1559 clk = omap_findclk(s, clock); \
1560 omap_clk_onoff(clk, (value >> bit) & 1); \
1562 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1563 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1564 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1565 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1566 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1567 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1568 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1569 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1570 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1571 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1572 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1575 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1576 uint16_t diff, uint16_t value)
1578 omap_clk clk;
1580 if (diff & (3 << 4)) { /* TCLKOUT */
1581 clk = omap_findclk(s, "tclk_out");
1582 switch ((value >> 4) & 3) {
1583 case 1:
1584 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1585 omap_clk_onoff(clk, 1);
1586 break;
1587 case 2:
1588 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1589 omap_clk_onoff(clk, 1);
1590 break;
1591 default:
1592 omap_clk_onoff(clk, 0);
1595 if (diff & (3 << 2)) { /* DCLKOUT */
1596 clk = omap_findclk(s, "dclk_out");
1597 switch ((value >> 2) & 3) {
1598 case 0:
1599 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1600 break;
1601 case 1:
1602 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1603 break;
1604 case 2:
1605 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1606 break;
1607 case 3:
1608 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1609 break;
1612 if (diff & (3 << 0)) { /* ACLKOUT */
1613 clk = omap_findclk(s, "aclk_out");
1614 switch ((value >> 0) & 3) {
1615 case 1:
1616 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1617 omap_clk_onoff(clk, 1);
1618 break;
1619 case 2:
1620 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1621 omap_clk_onoff(clk, 1);
1622 break;
1623 case 3:
1624 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1625 omap_clk_onoff(clk, 1);
1626 break;
1627 default:
1628 omap_clk_onoff(clk, 0);
1633 static void omap_clkm_write(void *opaque, hwaddr addr,
1634 uint64_t value, unsigned size)
1636 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1637 uint16_t diff;
1638 omap_clk clk;
1639 static const char *clkschemename[8] = {
1640 "fully synchronous", "fully asynchronous", "synchronous scalable",
1641 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1644 if (size != 2) {
1645 return omap_badwidth_write16(opaque, addr, value);
1648 switch (addr) {
1649 case 0x00: /* ARM_CKCTL */
1650 diff = s->clkm.arm_ckctl ^ value;
1651 s->clkm.arm_ckctl = value & 0x7fff;
1652 omap_clkm_ckctl_update(s, diff, value);
1653 return;
1655 case 0x04: /* ARM_IDLECT1 */
1656 diff = s->clkm.arm_idlect1 ^ value;
1657 s->clkm.arm_idlect1 = value & 0x0fff;
1658 omap_clkm_idlect1_update(s, diff, value);
1659 return;
1661 case 0x08: /* ARM_IDLECT2 */
1662 diff = s->clkm.arm_idlect2 ^ value;
1663 s->clkm.arm_idlect2 = value & 0x07ff;
1664 omap_clkm_idlect2_update(s, diff, value);
1665 return;
1667 case 0x0c: /* ARM_EWUPCT */
1668 s->clkm.arm_ewupct = value & 0x003f;
1669 return;
1671 case 0x10: /* ARM_RSTCT1 */
1672 diff = s->clkm.arm_rstct1 ^ value;
1673 s->clkm.arm_rstct1 = value & 0x0007;
1674 if (value & 9) {
1675 qemu_system_reset_request();
1676 s->clkm.cold_start = 0xa;
1678 if (diff & ~value & 4) { /* DSP_RST */
1679 omap_mpui_reset(s);
1680 omap_tipb_bridge_reset(s->private_tipb);
1681 omap_tipb_bridge_reset(s->public_tipb);
1683 if (diff & 2) { /* DSP_EN */
1684 clk = omap_findclk(s, "dsp_ck");
1685 omap_clk_canidle(clk, (~value >> 1) & 1);
1687 return;
1689 case 0x14: /* ARM_RSTCT2 */
1690 s->clkm.arm_rstct2 = value & 0x0001;
1691 return;
1693 case 0x18: /* ARM_SYSST */
1694 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1695 s->clkm.clocking_scheme = (value >> 11) & 7;
1696 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1697 clkschemename[s->clkm.clocking_scheme]);
1699 s->clkm.cold_start &= value & 0x3f;
1700 return;
1702 case 0x1c: /* ARM_CKOUT1 */
1703 diff = s->clkm.arm_ckout1 ^ value;
1704 s->clkm.arm_ckout1 = value & 0x003f;
1705 omap_clkm_ckout1_update(s, diff, value);
1706 return;
1708 case 0x20: /* ARM_CKOUT2 */
1709 default:
1710 OMAP_BAD_REG(addr);
1714 static const MemoryRegionOps omap_clkm_ops = {
1715 .read = omap_clkm_read,
1716 .write = omap_clkm_write,
1717 .endianness = DEVICE_NATIVE_ENDIAN,
1720 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1721 unsigned size)
1723 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1724 CPUState *cpu = CPU(s->cpu);
1726 if (size != 2) {
1727 return omap_badwidth_read16(opaque, addr);
1730 switch (addr) {
1731 case 0x04: /* DSP_IDLECT1 */
1732 return s->clkm.dsp_idlect1;
1734 case 0x08: /* DSP_IDLECT2 */
1735 return s->clkm.dsp_idlect2;
1737 case 0x14: /* DSP_RSTCT2 */
1738 return s->clkm.dsp_rstct2;
1740 case 0x18: /* DSP_SYSST */
1741 cpu = CPU(s->cpu);
1742 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1743 (cpu->halted << 6); /* Quite useless... */
1746 OMAP_BAD_REG(addr);
1747 return 0;
1750 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1751 uint16_t diff, uint16_t value)
1753 omap_clk clk;
1755 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1758 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1759 uint16_t diff, uint16_t value)
1761 omap_clk clk;
1763 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1766 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1767 uint64_t value, unsigned size)
1769 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1770 uint16_t diff;
1772 if (size != 2) {
1773 return omap_badwidth_write16(opaque, addr, value);
1776 switch (addr) {
1777 case 0x04: /* DSP_IDLECT1 */
1778 diff = s->clkm.dsp_idlect1 ^ value;
1779 s->clkm.dsp_idlect1 = value & 0x01f7;
1780 omap_clkdsp_idlect1_update(s, diff, value);
1781 break;
1783 case 0x08: /* DSP_IDLECT2 */
1784 s->clkm.dsp_idlect2 = value & 0x0037;
1785 diff = s->clkm.dsp_idlect1 ^ value;
1786 omap_clkdsp_idlect2_update(s, diff, value);
1787 break;
1789 case 0x14: /* DSP_RSTCT2 */
1790 s->clkm.dsp_rstct2 = value & 0x0001;
1791 break;
1793 case 0x18: /* DSP_SYSST */
1794 s->clkm.cold_start &= value & 0x3f;
1795 break;
1797 default:
1798 OMAP_BAD_REG(addr);
1802 static const MemoryRegionOps omap_clkdsp_ops = {
1803 .read = omap_clkdsp_read,
1804 .write = omap_clkdsp_write,
1805 .endianness = DEVICE_NATIVE_ENDIAN,
1808 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1810 if (s->wdt && s->wdt->reset)
1811 s->clkm.cold_start = 0x6;
1812 s->clkm.clocking_scheme = 0;
1813 omap_clkm_ckctl_update(s, ~0, 0x3000);
1814 s->clkm.arm_ckctl = 0x3000;
1815 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1816 s->clkm.arm_idlect1 = 0x0400;
1817 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1818 s->clkm.arm_idlect2 = 0x0100;
1819 s->clkm.arm_ewupct = 0x003f;
1820 s->clkm.arm_rstct1 = 0x0000;
1821 s->clkm.arm_rstct2 = 0x0000;
1822 s->clkm.arm_ckout1 = 0x0015;
1823 s->clkm.dpll1_mode = 0x2002;
1824 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1825 s->clkm.dsp_idlect1 = 0x0040;
1826 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1827 s->clkm.dsp_idlect2 = 0x0000;
1828 s->clkm.dsp_rstct2 = 0x0000;
1831 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1832 hwaddr dsp_base, struct omap_mpu_state_s *s)
1834 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1835 "omap-clkm", 0x100);
1836 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1837 "omap-clkdsp", 0x1000);
1839 s->clkm.arm_idlect1 = 0x03ff;
1840 s->clkm.arm_idlect2 = 0x0100;
1841 s->clkm.dsp_idlect1 = 0x0002;
1842 omap_clkm_reset(s);
1843 s->clkm.cold_start = 0x3a;
1845 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1846 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1849 /* MPU I/O */
1850 struct omap_mpuio_s {
1851 qemu_irq irq;
1852 qemu_irq kbd_irq;
1853 qemu_irq *in;
1854 qemu_irq handler[16];
1855 qemu_irq wakeup;
1856 MemoryRegion iomem;
1858 uint16_t inputs;
1859 uint16_t outputs;
1860 uint16_t dir;
1861 uint16_t edge;
1862 uint16_t mask;
1863 uint16_t ints;
1865 uint16_t debounce;
1866 uint16_t latch;
1867 uint8_t event;
1869 uint8_t buttons[5];
1870 uint8_t row_latch;
1871 uint8_t cols;
1872 int kbd_mask;
1873 int clk;
1876 static void omap_mpuio_set(void *opaque, int line, int level)
1878 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1879 uint16_t prev = s->inputs;
1881 if (level)
1882 s->inputs |= 1 << line;
1883 else
1884 s->inputs &= ~(1 << line);
1886 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1887 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1888 s->ints |= 1 << line;
1889 qemu_irq_raise(s->irq);
1890 /* TODO: wakeup */
1892 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1893 (s->event >> 1) == line) /* PIN_SELECT */
1894 s->latch = s->inputs;
1898 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1900 int i;
1901 uint8_t *row, rows = 0, cols = ~s->cols;
1903 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1904 if (*row & cols)
1905 rows |= i;
1907 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1908 s->row_latch = ~rows;
1911 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1912 unsigned size)
1914 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1915 int offset = addr & OMAP_MPUI_REG_MASK;
1916 uint16_t ret;
1918 if (size != 2) {
1919 return omap_badwidth_read16(opaque, addr);
1922 switch (offset) {
1923 case 0x00: /* INPUT_LATCH */
1924 return s->inputs;
1926 case 0x04: /* OUTPUT_REG */
1927 return s->outputs;
1929 case 0x08: /* IO_CNTL */
1930 return s->dir;
1932 case 0x10: /* KBR_LATCH */
1933 return s->row_latch;
1935 case 0x14: /* KBC_REG */
1936 return s->cols;
1938 case 0x18: /* GPIO_EVENT_MODE_REG */
1939 return s->event;
1941 case 0x1c: /* GPIO_INT_EDGE_REG */
1942 return s->edge;
1944 case 0x20: /* KBD_INT */
1945 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1947 case 0x24: /* GPIO_INT */
1948 ret = s->ints;
1949 s->ints &= s->mask;
1950 if (ret)
1951 qemu_irq_lower(s->irq);
1952 return ret;
1954 case 0x28: /* KBD_MASKIT */
1955 return s->kbd_mask;
1957 case 0x2c: /* GPIO_MASKIT */
1958 return s->mask;
1960 case 0x30: /* GPIO_DEBOUNCING_REG */
1961 return s->debounce;
1963 case 0x34: /* GPIO_LATCH_REG */
1964 return s->latch;
1967 OMAP_BAD_REG(addr);
1968 return 0;
1971 static void omap_mpuio_write(void *opaque, hwaddr addr,
1972 uint64_t value, unsigned size)
1974 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1975 int offset = addr & OMAP_MPUI_REG_MASK;
1976 uint16_t diff;
1977 int ln;
1979 if (size != 2) {
1980 return omap_badwidth_write16(opaque, addr, value);
1983 switch (offset) {
1984 case 0x04: /* OUTPUT_REG */
1985 diff = (s->outputs ^ value) & ~s->dir;
1986 s->outputs = value;
1987 while ((ln = ffs(diff))) {
1988 ln --;
1989 if (s->handler[ln])
1990 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1991 diff &= ~(1 << ln);
1993 break;
1995 case 0x08: /* IO_CNTL */
1996 diff = s->outputs & (s->dir ^ value);
1997 s->dir = value;
1999 value = s->outputs & ~s->dir;
2000 while ((ln = ffs(diff))) {
2001 ln --;
2002 if (s->handler[ln])
2003 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2004 diff &= ~(1 << ln);
2006 break;
2008 case 0x14: /* KBC_REG */
2009 s->cols = value;
2010 omap_mpuio_kbd_update(s);
2011 break;
2013 case 0x18: /* GPIO_EVENT_MODE_REG */
2014 s->event = value & 0x1f;
2015 break;
2017 case 0x1c: /* GPIO_INT_EDGE_REG */
2018 s->edge = value;
2019 break;
2021 case 0x28: /* KBD_MASKIT */
2022 s->kbd_mask = value & 1;
2023 omap_mpuio_kbd_update(s);
2024 break;
2026 case 0x2c: /* GPIO_MASKIT */
2027 s->mask = value;
2028 break;
2030 case 0x30: /* GPIO_DEBOUNCING_REG */
2031 s->debounce = value & 0x1ff;
2032 break;
2034 case 0x00: /* INPUT_LATCH */
2035 case 0x10: /* KBR_LATCH */
2036 case 0x20: /* KBD_INT */
2037 case 0x24: /* GPIO_INT */
2038 case 0x34: /* GPIO_LATCH_REG */
2039 OMAP_RO_REG(addr);
2040 return;
2042 default:
2043 OMAP_BAD_REG(addr);
2044 return;
2048 static const MemoryRegionOps omap_mpuio_ops = {
2049 .read = omap_mpuio_read,
2050 .write = omap_mpuio_write,
2051 .endianness = DEVICE_NATIVE_ENDIAN,
2054 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2056 s->inputs = 0;
2057 s->outputs = 0;
2058 s->dir = ~0;
2059 s->event = 0;
2060 s->edge = 0;
2061 s->kbd_mask = 0;
2062 s->mask = 0;
2063 s->debounce = 0;
2064 s->latch = 0;
2065 s->ints = 0;
2066 s->row_latch = 0x1f;
2067 s->clk = 1;
2070 static void omap_mpuio_onoff(void *opaque, int line, int on)
2072 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2074 s->clk = on;
2075 if (on)
2076 omap_mpuio_kbd_update(s);
2079 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2080 hwaddr base,
2081 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2082 omap_clk clk)
2084 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2085 g_malloc0(sizeof(struct omap_mpuio_s));
2087 s->irq = gpio_int;
2088 s->kbd_irq = kbd_int;
2089 s->wakeup = wakeup;
2090 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2091 omap_mpuio_reset(s);
2093 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2094 "omap-mpuio", 0x800);
2095 memory_region_add_subregion(memory, base, &s->iomem);
2097 omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2099 return s;
2102 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2104 return s->in;
2107 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2109 if (line >= 16 || line < 0)
2110 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2111 s->handler[line] = handler;
2114 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2116 if (row >= 5 || row < 0)
2117 hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2119 if (down)
2120 s->buttons[row] |= 1 << col;
2121 else
2122 s->buttons[row] &= ~(1 << col);
2124 omap_mpuio_kbd_update(s);
2127 /* MicroWire Interface */
2128 struct omap_uwire_s {
2129 MemoryRegion iomem;
2130 qemu_irq txirq;
2131 qemu_irq rxirq;
2132 qemu_irq txdrq;
2134 uint16_t txbuf;
2135 uint16_t rxbuf;
2136 uint16_t control;
2137 uint16_t setup[5];
2139 uWireSlave *chip[4];
2142 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2144 int chipselect = (s->control >> 10) & 3; /* INDEX */
2145 uWireSlave *slave = s->chip[chipselect];
2147 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2148 if (s->control & (1 << 12)) /* CS_CMD */
2149 if (slave && slave->send)
2150 slave->send(slave->opaque,
2151 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2152 s->control &= ~(1 << 14); /* CSRB */
2153 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2154 * a DRQ. When is the level IRQ supposed to be reset? */
2157 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2158 if (s->control & (1 << 12)) /* CS_CMD */
2159 if (slave && slave->receive)
2160 s->rxbuf = slave->receive(slave->opaque);
2161 s->control |= 1 << 15; /* RDRB */
2162 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2163 * a DRQ. When is the level IRQ supposed to be reset? */
2167 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2168 unsigned size)
2170 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2171 int offset = addr & OMAP_MPUI_REG_MASK;
2173 if (size != 2) {
2174 return omap_badwidth_read16(opaque, addr);
2177 switch (offset) {
2178 case 0x00: /* RDR */
2179 s->control &= ~(1 << 15); /* RDRB */
2180 return s->rxbuf;
2182 case 0x04: /* CSR */
2183 return s->control;
2185 case 0x08: /* SR1 */
2186 return s->setup[0];
2187 case 0x0c: /* SR2 */
2188 return s->setup[1];
2189 case 0x10: /* SR3 */
2190 return s->setup[2];
2191 case 0x14: /* SR4 */
2192 return s->setup[3];
2193 case 0x18: /* SR5 */
2194 return s->setup[4];
2197 OMAP_BAD_REG(addr);
2198 return 0;
2201 static void omap_uwire_write(void *opaque, hwaddr addr,
2202 uint64_t value, unsigned size)
2204 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2205 int offset = addr & OMAP_MPUI_REG_MASK;
2207 if (size != 2) {
2208 return omap_badwidth_write16(opaque, addr, value);
2211 switch (offset) {
2212 case 0x00: /* TDR */
2213 s->txbuf = value; /* TD */
2214 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2215 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2216 (s->control & (1 << 12)))) { /* CS_CMD */
2217 s->control |= 1 << 14; /* CSRB */
2218 omap_uwire_transfer_start(s);
2220 break;
2222 case 0x04: /* CSR */
2223 s->control = value & 0x1fff;
2224 if (value & (1 << 13)) /* START */
2225 omap_uwire_transfer_start(s);
2226 break;
2228 case 0x08: /* SR1 */
2229 s->setup[0] = value & 0x003f;
2230 break;
2232 case 0x0c: /* SR2 */
2233 s->setup[1] = value & 0x0fc0;
2234 break;
2236 case 0x10: /* SR3 */
2237 s->setup[2] = value & 0x0003;
2238 break;
2240 case 0x14: /* SR4 */
2241 s->setup[3] = value & 0x0001;
2242 break;
2244 case 0x18: /* SR5 */
2245 s->setup[4] = value & 0x000f;
2246 break;
2248 default:
2249 OMAP_BAD_REG(addr);
2250 return;
2254 static const MemoryRegionOps omap_uwire_ops = {
2255 .read = omap_uwire_read,
2256 .write = omap_uwire_write,
2257 .endianness = DEVICE_NATIVE_ENDIAN,
2260 static void omap_uwire_reset(struct omap_uwire_s *s)
2262 s->control = 0;
2263 s->setup[0] = 0;
2264 s->setup[1] = 0;
2265 s->setup[2] = 0;
2266 s->setup[3] = 0;
2267 s->setup[4] = 0;
2270 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2271 hwaddr base,
2272 qemu_irq txirq, qemu_irq rxirq,
2273 qemu_irq dma,
2274 omap_clk clk)
2276 struct omap_uwire_s *s = (struct omap_uwire_s *)
2277 g_malloc0(sizeof(struct omap_uwire_s));
2279 s->txirq = txirq;
2280 s->rxirq = rxirq;
2281 s->txdrq = dma;
2282 omap_uwire_reset(s);
2284 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2285 memory_region_add_subregion(system_memory, base, &s->iomem);
2287 return s;
2290 void omap_uwire_attach(struct omap_uwire_s *s,
2291 uWireSlave *slave, int chipselect)
2293 if (chipselect < 0 || chipselect > 3) {
2294 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2295 exit(-1);
2298 s->chip[chipselect] = slave;
2301 /* Pseudonoise Pulse-Width Light Modulator */
2302 struct omap_pwl_s {
2303 MemoryRegion iomem;
2304 uint8_t output;
2305 uint8_t level;
2306 uint8_t enable;
2307 int clk;
2310 static void omap_pwl_update(struct omap_pwl_s *s)
2312 int output = (s->clk && s->enable) ? s->level : 0;
2314 if (output != s->output) {
2315 s->output = output;
2316 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2320 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2321 unsigned size)
2323 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2324 int offset = addr & OMAP_MPUI_REG_MASK;
2326 if (size != 1) {
2327 return omap_badwidth_read8(opaque, addr);
2330 switch (offset) {
2331 case 0x00: /* PWL_LEVEL */
2332 return s->level;
2333 case 0x04: /* PWL_CTRL */
2334 return s->enable;
2336 OMAP_BAD_REG(addr);
2337 return 0;
2340 static void omap_pwl_write(void *opaque, hwaddr addr,
2341 uint64_t value, unsigned size)
2343 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2344 int offset = addr & OMAP_MPUI_REG_MASK;
2346 if (size != 1) {
2347 return omap_badwidth_write8(opaque, addr, value);
2350 switch (offset) {
2351 case 0x00: /* PWL_LEVEL */
2352 s->level = value;
2353 omap_pwl_update(s);
2354 break;
2355 case 0x04: /* PWL_CTRL */
2356 s->enable = value & 1;
2357 omap_pwl_update(s);
2358 break;
2359 default:
2360 OMAP_BAD_REG(addr);
2361 return;
2365 static const MemoryRegionOps omap_pwl_ops = {
2366 .read = omap_pwl_read,
2367 .write = omap_pwl_write,
2368 .endianness = DEVICE_NATIVE_ENDIAN,
2371 static void omap_pwl_reset(struct omap_pwl_s *s)
2373 s->output = 0;
2374 s->level = 0;
2375 s->enable = 0;
2376 s->clk = 1;
2377 omap_pwl_update(s);
2380 static void omap_pwl_clk_update(void *opaque, int line, int on)
2382 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2384 s->clk = on;
2385 omap_pwl_update(s);
2388 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2389 hwaddr base,
2390 omap_clk clk)
2392 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2394 omap_pwl_reset(s);
2396 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2397 "omap-pwl", 0x800);
2398 memory_region_add_subregion(system_memory, base, &s->iomem);
2400 omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
2401 return s;
2404 /* Pulse-Width Tone module */
2405 struct omap_pwt_s {
2406 MemoryRegion iomem;
2407 uint8_t frc;
2408 uint8_t vrc;
2409 uint8_t gcr;
2410 omap_clk clk;
2413 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2414 unsigned size)
2416 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2417 int offset = addr & OMAP_MPUI_REG_MASK;
2419 if (size != 1) {
2420 return omap_badwidth_read8(opaque, addr);
2423 switch (offset) {
2424 case 0x00: /* FRC */
2425 return s->frc;
2426 case 0x04: /* VCR */
2427 return s->vrc;
2428 case 0x08: /* GCR */
2429 return s->gcr;
2431 OMAP_BAD_REG(addr);
2432 return 0;
2435 static void omap_pwt_write(void *opaque, hwaddr addr,
2436 uint64_t value, unsigned size)
2438 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2439 int offset = addr & OMAP_MPUI_REG_MASK;
2441 if (size != 1) {
2442 return omap_badwidth_write8(opaque, addr, value);
2445 switch (offset) {
2446 case 0x00: /* FRC */
2447 s->frc = value & 0x3f;
2448 break;
2449 case 0x04: /* VRC */
2450 if ((value ^ s->vrc) & 1) {
2451 if (value & 1)
2452 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2453 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2454 ((omap_clk_getrate(s->clk) >> 3) /
2455 /* Pre-multiplexer divider */
2456 ((s->gcr & 2) ? 1 : 154) /
2457 /* Octave multiplexer */
2458 (2 << (value & 3)) *
2459 /* 101/107 divider */
2460 ((value & (1 << 2)) ? 101 : 107) *
2461 /* 49/55 divider */
2462 ((value & (1 << 3)) ? 49 : 55) *
2463 /* 50/63 divider */
2464 ((value & (1 << 4)) ? 50 : 63) *
2465 /* 80/127 divider */
2466 ((value & (1 << 5)) ? 80 : 127) /
2467 (107 * 55 * 63 * 127)));
2468 else
2469 printf("%s: silence!\n", __FUNCTION__);
2471 s->vrc = value & 0x7f;
2472 break;
2473 case 0x08: /* GCR */
2474 s->gcr = value & 3;
2475 break;
2476 default:
2477 OMAP_BAD_REG(addr);
2478 return;
2482 static const MemoryRegionOps omap_pwt_ops = {
2483 .read =omap_pwt_read,
2484 .write = omap_pwt_write,
2485 .endianness = DEVICE_NATIVE_ENDIAN,
2488 static void omap_pwt_reset(struct omap_pwt_s *s)
2490 s->frc = 0;
2491 s->vrc = 0;
2492 s->gcr = 0;
2495 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2496 hwaddr base,
2497 omap_clk clk)
2499 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2500 s->clk = clk;
2501 omap_pwt_reset(s);
2503 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2504 "omap-pwt", 0x800);
2505 memory_region_add_subregion(system_memory, base, &s->iomem);
2506 return s;
2509 /* Real-time Clock module */
2510 struct omap_rtc_s {
2511 MemoryRegion iomem;
2512 qemu_irq irq;
2513 qemu_irq alarm;
2514 QEMUTimer *clk;
2516 uint8_t interrupts;
2517 uint8_t status;
2518 int16_t comp_reg;
2519 int running;
2520 int pm_am;
2521 int auto_comp;
2522 int round;
2523 struct tm alarm_tm;
2524 time_t alarm_ti;
2526 struct tm current_tm;
2527 time_t ti;
2528 uint64_t tick;
2531 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2533 /* s->alarm is level-triggered */
2534 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2537 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2539 s->alarm_ti = mktimegm(&s->alarm_tm);
2540 if (s->alarm_ti == -1)
2541 printf("%s: conversion failed\n", __FUNCTION__);
2544 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2545 unsigned size)
2547 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2548 int offset = addr & OMAP_MPUI_REG_MASK;
2549 uint8_t i;
2551 if (size != 1) {
2552 return omap_badwidth_read8(opaque, addr);
2555 switch (offset) {
2556 case 0x00: /* SECONDS_REG */
2557 return to_bcd(s->current_tm.tm_sec);
2559 case 0x04: /* MINUTES_REG */
2560 return to_bcd(s->current_tm.tm_min);
2562 case 0x08: /* HOURS_REG */
2563 if (s->pm_am)
2564 return ((s->current_tm.tm_hour > 11) << 7) |
2565 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2566 else
2567 return to_bcd(s->current_tm.tm_hour);
2569 case 0x0c: /* DAYS_REG */
2570 return to_bcd(s->current_tm.tm_mday);
2572 case 0x10: /* MONTHS_REG */
2573 return to_bcd(s->current_tm.tm_mon + 1);
2575 case 0x14: /* YEARS_REG */
2576 return to_bcd(s->current_tm.tm_year % 100);
2578 case 0x18: /* WEEK_REG */
2579 return s->current_tm.tm_wday;
2581 case 0x20: /* ALARM_SECONDS_REG */
2582 return to_bcd(s->alarm_tm.tm_sec);
2584 case 0x24: /* ALARM_MINUTES_REG */
2585 return to_bcd(s->alarm_tm.tm_min);
2587 case 0x28: /* ALARM_HOURS_REG */
2588 if (s->pm_am)
2589 return ((s->alarm_tm.tm_hour > 11) << 7) |
2590 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2591 else
2592 return to_bcd(s->alarm_tm.tm_hour);
2594 case 0x2c: /* ALARM_DAYS_REG */
2595 return to_bcd(s->alarm_tm.tm_mday);
2597 case 0x30: /* ALARM_MONTHS_REG */
2598 return to_bcd(s->alarm_tm.tm_mon + 1);
2600 case 0x34: /* ALARM_YEARS_REG */
2601 return to_bcd(s->alarm_tm.tm_year % 100);
2603 case 0x40: /* RTC_CTRL_REG */
2604 return (s->pm_am << 3) | (s->auto_comp << 2) |
2605 (s->round << 1) | s->running;
2607 case 0x44: /* RTC_STATUS_REG */
2608 i = s->status;
2609 s->status &= ~0x3d;
2610 return i;
2612 case 0x48: /* RTC_INTERRUPTS_REG */
2613 return s->interrupts;
2615 case 0x4c: /* RTC_COMP_LSB_REG */
2616 return ((uint16_t) s->comp_reg) & 0xff;
2618 case 0x50: /* RTC_COMP_MSB_REG */
2619 return ((uint16_t) s->comp_reg) >> 8;
2622 OMAP_BAD_REG(addr);
2623 return 0;
2626 static void omap_rtc_write(void *opaque, hwaddr addr,
2627 uint64_t value, unsigned size)
2629 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2630 int offset = addr & OMAP_MPUI_REG_MASK;
2631 struct tm new_tm;
2632 time_t ti[2];
2634 if (size != 1) {
2635 return omap_badwidth_write8(opaque, addr, value);
2638 switch (offset) {
2639 case 0x00: /* SECONDS_REG */
2640 #ifdef ALMDEBUG
2641 printf("RTC SEC_REG <-- %02x\n", value);
2642 #endif
2643 s->ti -= s->current_tm.tm_sec;
2644 s->ti += from_bcd(value);
2645 return;
2647 case 0x04: /* MINUTES_REG */
2648 #ifdef ALMDEBUG
2649 printf("RTC MIN_REG <-- %02x\n", value);
2650 #endif
2651 s->ti -= s->current_tm.tm_min * 60;
2652 s->ti += from_bcd(value) * 60;
2653 return;
2655 case 0x08: /* HOURS_REG */
2656 #ifdef ALMDEBUG
2657 printf("RTC HRS_REG <-- %02x\n", value);
2658 #endif
2659 s->ti -= s->current_tm.tm_hour * 3600;
2660 if (s->pm_am) {
2661 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2662 s->ti += ((value >> 7) & 1) * 43200;
2663 } else
2664 s->ti += from_bcd(value & 0x3f) * 3600;
2665 return;
2667 case 0x0c: /* DAYS_REG */
2668 #ifdef ALMDEBUG
2669 printf("RTC DAY_REG <-- %02x\n", value);
2670 #endif
2671 s->ti -= s->current_tm.tm_mday * 86400;
2672 s->ti += from_bcd(value) * 86400;
2673 return;
2675 case 0x10: /* MONTHS_REG */
2676 #ifdef ALMDEBUG
2677 printf("RTC MTH_REG <-- %02x\n", value);
2678 #endif
2679 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2680 new_tm.tm_mon = from_bcd(value);
2681 ti[0] = mktimegm(&s->current_tm);
2682 ti[1] = mktimegm(&new_tm);
2684 if (ti[0] != -1 && ti[1] != -1) {
2685 s->ti -= ti[0];
2686 s->ti += ti[1];
2687 } else {
2688 /* A less accurate version */
2689 s->ti -= s->current_tm.tm_mon * 2592000;
2690 s->ti += from_bcd(value) * 2592000;
2692 return;
2694 case 0x14: /* YEARS_REG */
2695 #ifdef ALMDEBUG
2696 printf("RTC YRS_REG <-- %02x\n", value);
2697 #endif
2698 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2699 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2700 ti[0] = mktimegm(&s->current_tm);
2701 ti[1] = mktimegm(&new_tm);
2703 if (ti[0] != -1 && ti[1] != -1) {
2704 s->ti -= ti[0];
2705 s->ti += ti[1];
2706 } else {
2707 /* A less accurate version */
2708 s->ti -= (s->current_tm.tm_year % 100) * 31536000;
2709 s->ti += from_bcd(value) * 31536000;
2711 return;
2713 case 0x18: /* WEEK_REG */
2714 return; /* Ignored */
2716 case 0x20: /* ALARM_SECONDS_REG */
2717 #ifdef ALMDEBUG
2718 printf("ALM SEC_REG <-- %02x\n", value);
2719 #endif
2720 s->alarm_tm.tm_sec = from_bcd(value);
2721 omap_rtc_alarm_update(s);
2722 return;
2724 case 0x24: /* ALARM_MINUTES_REG */
2725 #ifdef ALMDEBUG
2726 printf("ALM MIN_REG <-- %02x\n", value);
2727 #endif
2728 s->alarm_tm.tm_min = from_bcd(value);
2729 omap_rtc_alarm_update(s);
2730 return;
2732 case 0x28: /* ALARM_HOURS_REG */
2733 #ifdef ALMDEBUG
2734 printf("ALM HRS_REG <-- %02x\n", value);
2735 #endif
2736 if (s->pm_am)
2737 s->alarm_tm.tm_hour =
2738 ((from_bcd(value & 0x3f)) % 12) +
2739 ((value >> 7) & 1) * 12;
2740 else
2741 s->alarm_tm.tm_hour = from_bcd(value);
2742 omap_rtc_alarm_update(s);
2743 return;
2745 case 0x2c: /* ALARM_DAYS_REG */
2746 #ifdef ALMDEBUG
2747 printf("ALM DAY_REG <-- %02x\n", value);
2748 #endif
2749 s->alarm_tm.tm_mday = from_bcd(value);
2750 omap_rtc_alarm_update(s);
2751 return;
2753 case 0x30: /* ALARM_MONTHS_REG */
2754 #ifdef ALMDEBUG
2755 printf("ALM MON_REG <-- %02x\n", value);
2756 #endif
2757 s->alarm_tm.tm_mon = from_bcd(value);
2758 omap_rtc_alarm_update(s);
2759 return;
2761 case 0x34: /* ALARM_YEARS_REG */
2762 #ifdef ALMDEBUG
2763 printf("ALM YRS_REG <-- %02x\n", value);
2764 #endif
2765 s->alarm_tm.tm_year = from_bcd(value);
2766 omap_rtc_alarm_update(s);
2767 return;
2769 case 0x40: /* RTC_CTRL_REG */
2770 #ifdef ALMDEBUG
2771 printf("RTC CONTROL <-- %02x\n", value);
2772 #endif
2773 s->pm_am = (value >> 3) & 1;
2774 s->auto_comp = (value >> 2) & 1;
2775 s->round = (value >> 1) & 1;
2776 s->running = value & 1;
2777 s->status &= 0xfd;
2778 s->status |= s->running << 1;
2779 return;
2781 case 0x44: /* RTC_STATUS_REG */
2782 #ifdef ALMDEBUG
2783 printf("RTC STATUSL <-- %02x\n", value);
2784 #endif
2785 s->status &= ~((value & 0xc0) ^ 0x80);
2786 omap_rtc_interrupts_update(s);
2787 return;
2789 case 0x48: /* RTC_INTERRUPTS_REG */
2790 #ifdef ALMDEBUG
2791 printf("RTC INTRS <-- %02x\n", value);
2792 #endif
2793 s->interrupts = value;
2794 return;
2796 case 0x4c: /* RTC_COMP_LSB_REG */
2797 #ifdef ALMDEBUG
2798 printf("RTC COMPLSB <-- %02x\n", value);
2799 #endif
2800 s->comp_reg &= 0xff00;
2801 s->comp_reg |= 0x00ff & value;
2802 return;
2804 case 0x50: /* RTC_COMP_MSB_REG */
2805 #ifdef ALMDEBUG
2806 printf("RTC COMPMSB <-- %02x\n", value);
2807 #endif
2808 s->comp_reg &= 0x00ff;
2809 s->comp_reg |= 0xff00 & (value << 8);
2810 return;
2812 default:
2813 OMAP_BAD_REG(addr);
2814 return;
2818 static const MemoryRegionOps omap_rtc_ops = {
2819 .read = omap_rtc_read,
2820 .write = omap_rtc_write,
2821 .endianness = DEVICE_NATIVE_ENDIAN,
2824 static void omap_rtc_tick(void *opaque)
2826 struct omap_rtc_s *s = opaque;
2828 if (s->round) {
2829 /* Round to nearest full minute. */
2830 if (s->current_tm.tm_sec < 30)
2831 s->ti -= s->current_tm.tm_sec;
2832 else
2833 s->ti += 60 - s->current_tm.tm_sec;
2835 s->round = 0;
2838 localtime_r(&s->ti, &s->current_tm);
2840 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2841 s->status |= 0x40;
2842 omap_rtc_interrupts_update(s);
2845 if (s->interrupts & 0x04)
2846 switch (s->interrupts & 3) {
2847 case 0:
2848 s->status |= 0x04;
2849 qemu_irq_pulse(s->irq);
2850 break;
2851 case 1:
2852 if (s->current_tm.tm_sec)
2853 break;
2854 s->status |= 0x08;
2855 qemu_irq_pulse(s->irq);
2856 break;
2857 case 2:
2858 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2859 break;
2860 s->status |= 0x10;
2861 qemu_irq_pulse(s->irq);
2862 break;
2863 case 3:
2864 if (s->current_tm.tm_sec ||
2865 s->current_tm.tm_min || s->current_tm.tm_hour)
2866 break;
2867 s->status |= 0x20;
2868 qemu_irq_pulse(s->irq);
2869 break;
2872 /* Move on */
2873 if (s->running)
2874 s->ti ++;
2875 s->tick += 1000;
2878 * Every full hour add a rough approximation of the compensation
2879 * register to the 32kHz Timer (which drives the RTC) value.
2881 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2882 s->tick += s->comp_reg * 1000 / 32768;
2884 qemu_mod_timer(s->clk, s->tick);
2887 static void omap_rtc_reset(struct omap_rtc_s *s)
2889 struct tm tm;
2891 s->interrupts = 0;
2892 s->comp_reg = 0;
2893 s->running = 0;
2894 s->pm_am = 0;
2895 s->auto_comp = 0;
2896 s->round = 0;
2897 s->tick = qemu_get_clock_ms(rtc_clock);
2898 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2899 s->alarm_tm.tm_mday = 0x01;
2900 s->status = 1 << 7;
2901 qemu_get_timedate(&tm, 0);
2902 s->ti = mktimegm(&tm);
2904 omap_rtc_alarm_update(s);
2905 omap_rtc_tick(s);
2908 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2909 hwaddr base,
2910 qemu_irq timerirq, qemu_irq alarmirq,
2911 omap_clk clk)
2913 struct omap_rtc_s *s = (struct omap_rtc_s *)
2914 g_malloc0(sizeof(struct omap_rtc_s));
2916 s->irq = timerirq;
2917 s->alarm = alarmirq;
2918 s->clk = qemu_new_timer_ms(rtc_clock, omap_rtc_tick, s);
2920 omap_rtc_reset(s);
2922 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2923 "omap-rtc", 0x800);
2924 memory_region_add_subregion(system_memory, base, &s->iomem);
2926 return s;
2929 /* Multi-channel Buffered Serial Port interfaces */
2930 struct omap_mcbsp_s {
2931 MemoryRegion iomem;
2932 qemu_irq txirq;
2933 qemu_irq rxirq;
2934 qemu_irq txdrq;
2935 qemu_irq rxdrq;
2937 uint16_t spcr[2];
2938 uint16_t rcr[2];
2939 uint16_t xcr[2];
2940 uint16_t srgr[2];
2941 uint16_t mcr[2];
2942 uint16_t pcr;
2943 uint16_t rcer[8];
2944 uint16_t xcer[8];
2945 int tx_rate;
2946 int rx_rate;
2947 int tx_req;
2948 int rx_req;
2950 I2SCodec *codec;
2951 QEMUTimer *source_timer;
2952 QEMUTimer *sink_timer;
2955 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2957 int irq;
2959 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2960 case 0:
2961 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2962 break;
2963 case 3:
2964 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2965 break;
2966 default:
2967 irq = 0;
2968 break;
2971 if (irq)
2972 qemu_irq_pulse(s->rxirq);
2974 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
2975 case 0:
2976 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
2977 break;
2978 case 3:
2979 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
2980 break;
2981 default:
2982 irq = 0;
2983 break;
2986 if (irq)
2987 qemu_irq_pulse(s->txirq);
2990 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
2992 if ((s->spcr[0] >> 1) & 1) /* RRDY */
2993 s->spcr[0] |= 1 << 2; /* RFULL */
2994 s->spcr[0] |= 1 << 1; /* RRDY */
2995 qemu_irq_raise(s->rxdrq);
2996 omap_mcbsp_intr_update(s);
2999 static void omap_mcbsp_source_tick(void *opaque)
3001 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3002 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3004 if (!s->rx_rate)
3005 return;
3006 if (s->rx_req)
3007 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3009 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3011 omap_mcbsp_rx_newdata(s);
3012 qemu_mod_timer(s->source_timer, qemu_get_clock_ns(vm_clock) +
3013 get_ticks_per_sec());
3016 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3018 if (!s->codec || !s->codec->rts)
3019 omap_mcbsp_source_tick(s);
3020 else if (s->codec->in.len) {
3021 s->rx_req = s->codec->in.len;
3022 omap_mcbsp_rx_newdata(s);
3026 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3028 qemu_del_timer(s->source_timer);
3031 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3033 s->spcr[0] &= ~(1 << 1); /* RRDY */
3034 qemu_irq_lower(s->rxdrq);
3035 omap_mcbsp_intr_update(s);
3038 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3040 s->spcr[1] |= 1 << 1; /* XRDY */
3041 qemu_irq_raise(s->txdrq);
3042 omap_mcbsp_intr_update(s);
3045 static void omap_mcbsp_sink_tick(void *opaque)
3047 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3048 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3050 if (!s->tx_rate)
3051 return;
3052 if (s->tx_req)
3053 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3055 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3057 omap_mcbsp_tx_newdata(s);
3058 qemu_mod_timer(s->sink_timer, qemu_get_clock_ns(vm_clock) +
3059 get_ticks_per_sec());
3062 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3064 if (!s->codec || !s->codec->cts)
3065 omap_mcbsp_sink_tick(s);
3066 else if (s->codec->out.size) {
3067 s->tx_req = s->codec->out.size;
3068 omap_mcbsp_tx_newdata(s);
3072 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3074 s->spcr[1] &= ~(1 << 1); /* XRDY */
3075 qemu_irq_lower(s->txdrq);
3076 omap_mcbsp_intr_update(s);
3077 if (s->codec && s->codec->cts)
3078 s->codec->tx_swallow(s->codec->opaque);
3081 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3083 s->tx_req = 0;
3084 omap_mcbsp_tx_done(s);
3085 qemu_del_timer(s->sink_timer);
3088 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3090 int prev_rx_rate, prev_tx_rate;
3091 int rx_rate = 0, tx_rate = 0;
3092 int cpu_rate = 1500000; /* XXX */
3094 /* TODO: check CLKSTP bit */
3095 if (s->spcr[1] & (1 << 6)) { /* GRST */
3096 if (s->spcr[0] & (1 << 0)) { /* RRST */
3097 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3098 (s->pcr & (1 << 8))) { /* CLKRM */
3099 if (~s->pcr & (1 << 7)) /* SCLKME */
3100 rx_rate = cpu_rate /
3101 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3102 } else
3103 if (s->codec)
3104 rx_rate = s->codec->rx_rate;
3107 if (s->spcr[1] & (1 << 0)) { /* XRST */
3108 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3109 (s->pcr & (1 << 9))) { /* CLKXM */
3110 if (~s->pcr & (1 << 7)) /* SCLKME */
3111 tx_rate = cpu_rate /
3112 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3113 } else
3114 if (s->codec)
3115 tx_rate = s->codec->tx_rate;
3118 prev_tx_rate = s->tx_rate;
3119 prev_rx_rate = s->rx_rate;
3120 s->tx_rate = tx_rate;
3121 s->rx_rate = rx_rate;
3123 if (s->codec)
3124 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3126 if (!prev_tx_rate && tx_rate)
3127 omap_mcbsp_tx_start(s);
3128 else if (s->tx_rate && !tx_rate)
3129 omap_mcbsp_tx_stop(s);
3131 if (!prev_rx_rate && rx_rate)
3132 omap_mcbsp_rx_start(s);
3133 else if (prev_tx_rate && !tx_rate)
3134 omap_mcbsp_rx_stop(s);
3137 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3138 unsigned size)
3140 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3141 int offset = addr & OMAP_MPUI_REG_MASK;
3142 uint16_t ret;
3144 if (size != 2) {
3145 return omap_badwidth_read16(opaque, addr);
3148 switch (offset) {
3149 case 0x00: /* DRR2 */
3150 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3151 return 0x0000;
3152 /* Fall through. */
3153 case 0x02: /* DRR1 */
3154 if (s->rx_req < 2) {
3155 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3156 omap_mcbsp_rx_done(s);
3157 } else {
3158 s->tx_req -= 2;
3159 if (s->codec && s->codec->in.len >= 2) {
3160 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3161 ret |= s->codec->in.fifo[s->codec->in.start ++];
3162 s->codec->in.len -= 2;
3163 } else
3164 ret = 0x0000;
3165 if (!s->tx_req)
3166 omap_mcbsp_rx_done(s);
3167 return ret;
3169 return 0x0000;
3171 case 0x04: /* DXR2 */
3172 case 0x06: /* DXR1 */
3173 return 0x0000;
3175 case 0x08: /* SPCR2 */
3176 return s->spcr[1];
3177 case 0x0a: /* SPCR1 */
3178 return s->spcr[0];
3179 case 0x0c: /* RCR2 */
3180 return s->rcr[1];
3181 case 0x0e: /* RCR1 */
3182 return s->rcr[0];
3183 case 0x10: /* XCR2 */
3184 return s->xcr[1];
3185 case 0x12: /* XCR1 */
3186 return s->xcr[0];
3187 case 0x14: /* SRGR2 */
3188 return s->srgr[1];
3189 case 0x16: /* SRGR1 */
3190 return s->srgr[0];
3191 case 0x18: /* MCR2 */
3192 return s->mcr[1];
3193 case 0x1a: /* MCR1 */
3194 return s->mcr[0];
3195 case 0x1c: /* RCERA */
3196 return s->rcer[0];
3197 case 0x1e: /* RCERB */
3198 return s->rcer[1];
3199 case 0x20: /* XCERA */
3200 return s->xcer[0];
3201 case 0x22: /* XCERB */
3202 return s->xcer[1];
3203 case 0x24: /* PCR0 */
3204 return s->pcr;
3205 case 0x26: /* RCERC */
3206 return s->rcer[2];
3207 case 0x28: /* RCERD */
3208 return s->rcer[3];
3209 case 0x2a: /* XCERC */
3210 return s->xcer[2];
3211 case 0x2c: /* XCERD */
3212 return s->xcer[3];
3213 case 0x2e: /* RCERE */
3214 return s->rcer[4];
3215 case 0x30: /* RCERF */
3216 return s->rcer[5];
3217 case 0x32: /* XCERE */
3218 return s->xcer[4];
3219 case 0x34: /* XCERF */
3220 return s->xcer[5];
3221 case 0x36: /* RCERG */
3222 return s->rcer[6];
3223 case 0x38: /* RCERH */
3224 return s->rcer[7];
3225 case 0x3a: /* XCERG */
3226 return s->xcer[6];
3227 case 0x3c: /* XCERH */
3228 return s->xcer[7];
3231 OMAP_BAD_REG(addr);
3232 return 0;
3235 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3236 uint32_t value)
3238 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3239 int offset = addr & OMAP_MPUI_REG_MASK;
3241 switch (offset) {
3242 case 0x00: /* DRR2 */
3243 case 0x02: /* DRR1 */
3244 OMAP_RO_REG(addr);
3245 return;
3247 case 0x04: /* DXR2 */
3248 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3249 return;
3250 /* Fall through. */
3251 case 0x06: /* DXR1 */
3252 if (s->tx_req > 1) {
3253 s->tx_req -= 2;
3254 if (s->codec && s->codec->cts) {
3255 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3256 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3258 if (s->tx_req < 2)
3259 omap_mcbsp_tx_done(s);
3260 } else
3261 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3262 return;
3264 case 0x08: /* SPCR2 */
3265 s->spcr[1] &= 0x0002;
3266 s->spcr[1] |= 0x03f9 & value;
3267 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3268 if (~value & 1) /* XRST */
3269 s->spcr[1] &= ~6;
3270 omap_mcbsp_req_update(s);
3271 return;
3272 case 0x0a: /* SPCR1 */
3273 s->spcr[0] &= 0x0006;
3274 s->spcr[0] |= 0xf8f9 & value;
3275 if (value & (1 << 15)) /* DLB */
3276 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3277 if (~value & 1) { /* RRST */
3278 s->spcr[0] &= ~6;
3279 s->rx_req = 0;
3280 omap_mcbsp_rx_done(s);
3282 omap_mcbsp_req_update(s);
3283 return;
3285 case 0x0c: /* RCR2 */
3286 s->rcr[1] = value & 0xffff;
3287 return;
3288 case 0x0e: /* RCR1 */
3289 s->rcr[0] = value & 0x7fe0;
3290 return;
3291 case 0x10: /* XCR2 */
3292 s->xcr[1] = value & 0xffff;
3293 return;
3294 case 0x12: /* XCR1 */
3295 s->xcr[0] = value & 0x7fe0;
3296 return;
3297 case 0x14: /* SRGR2 */
3298 s->srgr[1] = value & 0xffff;
3299 omap_mcbsp_req_update(s);
3300 return;
3301 case 0x16: /* SRGR1 */
3302 s->srgr[0] = value & 0xffff;
3303 omap_mcbsp_req_update(s);
3304 return;
3305 case 0x18: /* MCR2 */
3306 s->mcr[1] = value & 0x03e3;
3307 if (value & 3) /* XMCM */
3308 printf("%s: Tx channel selection mode enable attempt\n",
3309 __FUNCTION__);
3310 return;
3311 case 0x1a: /* MCR1 */
3312 s->mcr[0] = value & 0x03e1;
3313 if (value & 1) /* RMCM */
3314 printf("%s: Rx channel selection mode enable attempt\n",
3315 __FUNCTION__);
3316 return;
3317 case 0x1c: /* RCERA */
3318 s->rcer[0] = value & 0xffff;
3319 return;
3320 case 0x1e: /* RCERB */
3321 s->rcer[1] = value & 0xffff;
3322 return;
3323 case 0x20: /* XCERA */
3324 s->xcer[0] = value & 0xffff;
3325 return;
3326 case 0x22: /* XCERB */
3327 s->xcer[1] = value & 0xffff;
3328 return;
3329 case 0x24: /* PCR0 */
3330 s->pcr = value & 0x7faf;
3331 return;
3332 case 0x26: /* RCERC */
3333 s->rcer[2] = value & 0xffff;
3334 return;
3335 case 0x28: /* RCERD */
3336 s->rcer[3] = value & 0xffff;
3337 return;
3338 case 0x2a: /* XCERC */
3339 s->xcer[2] = value & 0xffff;
3340 return;
3341 case 0x2c: /* XCERD */
3342 s->xcer[3] = value & 0xffff;
3343 return;
3344 case 0x2e: /* RCERE */
3345 s->rcer[4] = value & 0xffff;
3346 return;
3347 case 0x30: /* RCERF */
3348 s->rcer[5] = value & 0xffff;
3349 return;
3350 case 0x32: /* XCERE */
3351 s->xcer[4] = value & 0xffff;
3352 return;
3353 case 0x34: /* XCERF */
3354 s->xcer[5] = value & 0xffff;
3355 return;
3356 case 0x36: /* RCERG */
3357 s->rcer[6] = value & 0xffff;
3358 return;
3359 case 0x38: /* RCERH */
3360 s->rcer[7] = value & 0xffff;
3361 return;
3362 case 0x3a: /* XCERG */
3363 s->xcer[6] = value & 0xffff;
3364 return;
3365 case 0x3c: /* XCERH */
3366 s->xcer[7] = value & 0xffff;
3367 return;
3370 OMAP_BAD_REG(addr);
3373 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3374 uint32_t value)
3376 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3377 int offset = addr & OMAP_MPUI_REG_MASK;
3379 if (offset == 0x04) { /* DXR */
3380 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3381 return;
3382 if (s->tx_req > 3) {
3383 s->tx_req -= 4;
3384 if (s->codec && s->codec->cts) {
3385 s->codec->out.fifo[s->codec->out.len ++] =
3386 (value >> 24) & 0xff;
3387 s->codec->out.fifo[s->codec->out.len ++] =
3388 (value >> 16) & 0xff;
3389 s->codec->out.fifo[s->codec->out.len ++] =
3390 (value >> 8) & 0xff;
3391 s->codec->out.fifo[s->codec->out.len ++] =
3392 (value >> 0) & 0xff;
3394 if (s->tx_req < 4)
3395 omap_mcbsp_tx_done(s);
3396 } else
3397 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3398 return;
3401 omap_badwidth_write16(opaque, addr, value);
3404 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3405 uint64_t value, unsigned size)
3407 switch (size) {
3408 case 2: return omap_mcbsp_writeh(opaque, addr, value);
3409 case 4: return omap_mcbsp_writew(opaque, addr, value);
3410 default: return omap_badwidth_write16(opaque, addr, value);
3414 static const MemoryRegionOps omap_mcbsp_ops = {
3415 .read = omap_mcbsp_read,
3416 .write = omap_mcbsp_write,
3417 .endianness = DEVICE_NATIVE_ENDIAN,
3420 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3422 memset(&s->spcr, 0, sizeof(s->spcr));
3423 memset(&s->rcr, 0, sizeof(s->rcr));
3424 memset(&s->xcr, 0, sizeof(s->xcr));
3425 s->srgr[0] = 0x0001;
3426 s->srgr[1] = 0x2000;
3427 memset(&s->mcr, 0, sizeof(s->mcr));
3428 memset(&s->pcr, 0, sizeof(s->pcr));
3429 memset(&s->rcer, 0, sizeof(s->rcer));
3430 memset(&s->xcer, 0, sizeof(s->xcer));
3431 s->tx_req = 0;
3432 s->rx_req = 0;
3433 s->tx_rate = 0;
3434 s->rx_rate = 0;
3435 qemu_del_timer(s->source_timer);
3436 qemu_del_timer(s->sink_timer);
3439 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3440 hwaddr base,
3441 qemu_irq txirq, qemu_irq rxirq,
3442 qemu_irq *dma, omap_clk clk)
3444 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
3445 g_malloc0(sizeof(struct omap_mcbsp_s));
3447 s->txirq = txirq;
3448 s->rxirq = rxirq;
3449 s->txdrq = dma[0];
3450 s->rxdrq = dma[1];
3451 s->sink_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_sink_tick, s);
3452 s->source_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_source_tick, s);
3453 omap_mcbsp_reset(s);
3455 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3456 memory_region_add_subregion(system_memory, base, &s->iomem);
3458 return s;
3461 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3463 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3465 if (s->rx_rate) {
3466 s->rx_req = s->codec->in.len;
3467 omap_mcbsp_rx_newdata(s);
3471 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3473 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3475 if (s->tx_rate) {
3476 s->tx_req = s->codec->out.size;
3477 omap_mcbsp_tx_newdata(s);
3481 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3483 s->codec = slave;
3484 slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
3485 slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
3488 /* LED Pulse Generators */
3489 struct omap_lpg_s {
3490 MemoryRegion iomem;
3491 QEMUTimer *tm;
3493 uint8_t control;
3494 uint8_t power;
3495 int64_t on;
3496 int64_t period;
3497 int clk;
3498 int cycle;
3501 static void omap_lpg_tick(void *opaque)
3503 struct omap_lpg_s *s = opaque;
3505 if (s->cycle)
3506 qemu_mod_timer(s->tm, qemu_get_clock_ms(vm_clock) + s->period - s->on);
3507 else
3508 qemu_mod_timer(s->tm, qemu_get_clock_ms(vm_clock) + s->on);
3510 s->cycle = !s->cycle;
3511 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3514 static void omap_lpg_update(struct omap_lpg_s *s)
3516 int64_t on, period = 1, ticks = 1000;
3517 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3519 if (~s->control & (1 << 6)) /* LPGRES */
3520 on = 0;
3521 else if (s->control & (1 << 7)) /* PERM_ON */
3522 on = period;
3523 else {
3524 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3525 256 / 32);
3526 on = (s->clk && s->power) ? muldiv64(ticks,
3527 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3530 qemu_del_timer(s->tm);
3531 if (on == period && s->on < s->period)
3532 printf("%s: LED is on\n", __FUNCTION__);
3533 else if (on == 0 && s->on)
3534 printf("%s: LED is off\n", __FUNCTION__);
3535 else if (on && (on != s->on || period != s->period)) {
3536 s->cycle = 0;
3537 s->on = on;
3538 s->period = period;
3539 omap_lpg_tick(s);
3540 return;
3543 s->on = on;
3544 s->period = period;
3547 static void omap_lpg_reset(struct omap_lpg_s *s)
3549 s->control = 0x00;
3550 s->power = 0x00;
3551 s->clk = 1;
3552 omap_lpg_update(s);
3555 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3556 unsigned size)
3558 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3559 int offset = addr & OMAP_MPUI_REG_MASK;
3561 if (size != 1) {
3562 return omap_badwidth_read8(opaque, addr);
3565 switch (offset) {
3566 case 0x00: /* LCR */
3567 return s->control;
3569 case 0x04: /* PMR */
3570 return s->power;
3573 OMAP_BAD_REG(addr);
3574 return 0;
3577 static void omap_lpg_write(void *opaque, hwaddr addr,
3578 uint64_t value, unsigned size)
3580 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3581 int offset = addr & OMAP_MPUI_REG_MASK;
3583 if (size != 1) {
3584 return omap_badwidth_write8(opaque, addr, value);
3587 switch (offset) {
3588 case 0x00: /* LCR */
3589 if (~value & (1 << 6)) /* LPGRES */
3590 omap_lpg_reset(s);
3591 s->control = value & 0xff;
3592 omap_lpg_update(s);
3593 return;
3595 case 0x04: /* PMR */
3596 s->power = value & 0x01;
3597 omap_lpg_update(s);
3598 return;
3600 default:
3601 OMAP_BAD_REG(addr);
3602 return;
3606 static const MemoryRegionOps omap_lpg_ops = {
3607 .read = omap_lpg_read,
3608 .write = omap_lpg_write,
3609 .endianness = DEVICE_NATIVE_ENDIAN,
3612 static void omap_lpg_clk_update(void *opaque, int line, int on)
3614 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3616 s->clk = on;
3617 omap_lpg_update(s);
3620 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3621 hwaddr base, omap_clk clk)
3623 struct omap_lpg_s *s = (struct omap_lpg_s *)
3624 g_malloc0(sizeof(struct omap_lpg_s));
3626 s->tm = qemu_new_timer_ms(vm_clock, omap_lpg_tick, s);
3628 omap_lpg_reset(s);
3630 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3631 memory_region_add_subregion(system_memory, base, &s->iomem);
3633 omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
3635 return s;
3638 /* MPUI Peripheral Bridge configuration */
3639 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3640 unsigned size)
3642 if (size != 2) {
3643 return omap_badwidth_read16(opaque, addr);
3646 if (addr == OMAP_MPUI_BASE) /* CMR */
3647 return 0xfe4d;
3649 OMAP_BAD_REG(addr);
3650 return 0;
3653 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3654 uint64_t value, unsigned size)
3656 /* FIXME: infinite loop */
3657 omap_badwidth_write16(opaque, addr, value);
3660 static const MemoryRegionOps omap_mpui_io_ops = {
3661 .read = omap_mpui_io_read,
3662 .write = omap_mpui_io_write,
3663 .endianness = DEVICE_NATIVE_ENDIAN,
3666 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3667 struct omap_mpu_state_s *mpu)
3669 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3670 "omap-mpui-io", 0x7fff);
3671 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3672 &mpu->mpui_io_iomem);
3675 /* General chip reset */
3676 static void omap1_mpu_reset(void *opaque)
3678 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3680 omap_dma_reset(mpu->dma);
3681 omap_mpu_timer_reset(mpu->timer[0]);
3682 omap_mpu_timer_reset(mpu->timer[1]);
3683 omap_mpu_timer_reset(mpu->timer[2]);
3684 omap_wd_timer_reset(mpu->wdt);
3685 omap_os_timer_reset(mpu->os_timer);
3686 omap_lcdc_reset(mpu->lcd);
3687 omap_ulpd_pm_reset(mpu);
3688 omap_pin_cfg_reset(mpu);
3689 omap_mpui_reset(mpu);
3690 omap_tipb_bridge_reset(mpu->private_tipb);
3691 omap_tipb_bridge_reset(mpu->public_tipb);
3692 omap_dpll_reset(mpu->dpll[0]);
3693 omap_dpll_reset(mpu->dpll[1]);
3694 omap_dpll_reset(mpu->dpll[2]);
3695 omap_uart_reset(mpu->uart[0]);
3696 omap_uart_reset(mpu->uart[1]);
3697 omap_uart_reset(mpu->uart[2]);
3698 omap_mmc_reset(mpu->mmc);
3699 omap_mpuio_reset(mpu->mpuio);
3700 omap_uwire_reset(mpu->microwire);
3701 omap_pwl_reset(mpu->pwl);
3702 omap_pwt_reset(mpu->pwt);
3703 omap_rtc_reset(mpu->rtc);
3704 omap_mcbsp_reset(mpu->mcbsp1);
3705 omap_mcbsp_reset(mpu->mcbsp2);
3706 omap_mcbsp_reset(mpu->mcbsp3);
3707 omap_lpg_reset(mpu->led[0]);
3708 omap_lpg_reset(mpu->led[1]);
3709 omap_clkm_reset(mpu);
3710 cpu_reset(CPU(mpu->cpu));
3713 static const struct omap_map_s {
3714 hwaddr phys_dsp;
3715 hwaddr phys_mpu;
3716 uint32_t size;
3717 const char *name;
3718 } omap15xx_dsp_mm[] = {
3719 /* Strobe 0 */
3720 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3721 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3722 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3723 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3724 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3725 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3726 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3727 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3728 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3729 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3730 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3731 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3732 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3733 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3734 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3735 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3736 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3737 /* Strobe 1 */
3738 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3740 { 0 }
3743 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3744 const struct omap_map_s *map)
3746 MemoryRegion *io;
3748 for (; map->phys_dsp; map ++) {
3749 io = g_new(MemoryRegion, 1);
3750 memory_region_init_alias(io, NULL, map->name,
3751 system_memory, map->phys_mpu, map->size);
3752 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3756 void omap_mpu_wakeup(void *opaque, int irq, int req)
3758 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3759 CPUState *cpu = CPU(mpu->cpu);
3761 if (cpu->halted) {
3762 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3766 static const struct dma_irq_map omap1_dma_irq_map[] = {
3767 { 0, OMAP_INT_DMA_CH0_6 },
3768 { 0, OMAP_INT_DMA_CH1_7 },
3769 { 0, OMAP_INT_DMA_CH2_8 },
3770 { 0, OMAP_INT_DMA_CH3 },
3771 { 0, OMAP_INT_DMA_CH4 },
3772 { 0, OMAP_INT_DMA_CH5 },
3773 { 1, OMAP_INT_1610_DMA_CH6 },
3774 { 1, OMAP_INT_1610_DMA_CH7 },
3775 { 1, OMAP_INT_1610_DMA_CH8 },
3776 { 1, OMAP_INT_1610_DMA_CH9 },
3777 { 1, OMAP_INT_1610_DMA_CH10 },
3778 { 1, OMAP_INT_1610_DMA_CH11 },
3779 { 1, OMAP_INT_1610_DMA_CH12 },
3780 { 1, OMAP_INT_1610_DMA_CH13 },
3781 { 1, OMAP_INT_1610_DMA_CH14 },
3782 { 1, OMAP_INT_1610_DMA_CH15 }
3785 /* DMA ports for OMAP1 */
3786 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3787 hwaddr addr)
3789 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3792 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3793 hwaddr addr)
3795 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3796 addr);
3799 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3800 hwaddr addr)
3802 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3805 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3806 hwaddr addr)
3808 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3811 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3812 hwaddr addr)
3814 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3817 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3818 hwaddr addr)
3820 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3823 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3824 unsigned long sdram_size,
3825 const char *core)
3827 int i;
3828 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3829 g_malloc0(sizeof(struct omap_mpu_state_s));
3830 qemu_irq *cpu_irq;
3831 qemu_irq dma_irqs[6];
3832 DriveInfo *dinfo;
3833 SysBusDevice *busdev;
3835 if (!core)
3836 core = "ti925t";
3838 /* Core */
3839 s->mpu_model = omap310;
3840 s->cpu = cpu_arm_init(core);
3841 if (s->cpu == NULL) {
3842 fprintf(stderr, "Unable to find CPU definition\n");
3843 exit(1);
3845 s->sdram_size = sdram_size;
3846 s->sram_size = OMAP15XX_SRAM_SIZE;
3848 s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
3850 /* Clocks */
3851 omap_clk_init(s);
3853 /* Memory-mapped stuff */
3854 memory_region_init_ram(&s->emiff_ram, NULL, "omap1.dram", s->sdram_size);
3855 vmstate_register_ram_global(&s->emiff_ram);
3856 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3857 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size);
3858 vmstate_register_ram_global(&s->imif_ram);
3859 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3861 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3863 cpu_irq = arm_pic_init_cpu(s->cpu);
3864 s->ih[0] = qdev_create(NULL, "omap-intc");
3865 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3866 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3867 qdev_init_nofail(s->ih[0]);
3868 busdev = SYS_BUS_DEVICE(s->ih[0]);
3869 sysbus_connect_irq(busdev, 0, cpu_irq[ARM_PIC_CPU_IRQ]);
3870 sysbus_connect_irq(busdev, 1, cpu_irq[ARM_PIC_CPU_FIQ]);
3871 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3872 s->ih[1] = qdev_create(NULL, "omap-intc");
3873 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3874 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3875 qdev_init_nofail(s->ih[1]);
3876 busdev = SYS_BUS_DEVICE(s->ih[1]);
3877 sysbus_connect_irq(busdev, 0,
3878 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3879 /* The second interrupt controller's FIQ output is not wired up */
3880 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3882 for (i = 0; i < 6; i++) {
3883 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3884 omap1_dma_irq_map[i].intr);
3886 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3887 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3888 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3890 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3891 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3892 s->port[imif ].addr_valid = omap_validate_imif_addr;
3893 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3894 s->port[local ].addr_valid = omap_validate_local_addr;
3895 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3897 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3898 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3899 OMAP_EMIFF_BASE, s->sdram_size);
3900 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3901 OMAP_IMIF_BASE, s->sram_size);
3903 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3904 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3905 omap_findclk(s, "mputim_ck"));
3906 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3907 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3908 omap_findclk(s, "mputim_ck"));
3909 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3910 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3911 omap_findclk(s, "mputim_ck"));
3913 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3914 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3915 omap_findclk(s, "armwdt_ck"));
3917 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3918 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3919 omap_findclk(s, "clk32-kHz"));
3921 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3922 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3923 omap_dma_get_lcdch(s->dma),
3924 omap_findclk(s, "lcd_ck"));
3926 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3927 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3928 omap_id_init(system_memory, s);
3930 omap_mpui_init(system_memory, 0xfffec900, s);
3932 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3933 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3934 omap_findclk(s, "tipb_ck"));
3935 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3936 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3937 omap_findclk(s, "tipb_ck"));
3939 omap_tcmi_init(system_memory, 0xfffecc00, s);
3941 s->uart[0] = omap_uart_init(0xfffb0000,
3942 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3943 omap_findclk(s, "uart1_ck"),
3944 omap_findclk(s, "uart1_ck"),
3945 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3946 "uart1",
3947 serial_hds[0]);
3948 s->uart[1] = omap_uart_init(0xfffb0800,
3949 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3950 omap_findclk(s, "uart2_ck"),
3951 omap_findclk(s, "uart2_ck"),
3952 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3953 "uart2",
3954 serial_hds[0] ? serial_hds[1] : NULL);
3955 s->uart[2] = omap_uart_init(0xfffb9800,
3956 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3957 omap_findclk(s, "uart3_ck"),
3958 omap_findclk(s, "uart3_ck"),
3959 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3960 "uart3",
3961 serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3963 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3964 omap_findclk(s, "dpll1"));
3965 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3966 omap_findclk(s, "dpll2"));
3967 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3968 omap_findclk(s, "dpll3"));
3970 dinfo = drive_get(IF_SD, 0, 0);
3971 if (!dinfo) {
3972 fprintf(stderr, "qemu: missing SecureDigital device\n");
3973 exit(1);
3975 s->mmc = omap_mmc_init(0xfffb7800, system_memory, dinfo->bdrv,
3976 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
3977 &s->drq[OMAP_DMA_MMC_TX],
3978 omap_findclk(s, "mmc_ck"));
3980 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
3981 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
3982 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
3983 s->wakeup, omap_findclk(s, "clk32-kHz"));
3985 s->gpio = qdev_create(NULL, "omap-gpio");
3986 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
3987 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
3988 qdev_init_nofail(s->gpio);
3989 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
3990 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
3991 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
3993 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
3994 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
3995 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
3996 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
3998 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
3999 omap_findclk(s, "armxor_ck"));
4000 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4001 omap_findclk(s, "armxor_ck"));
4003 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4004 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4005 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4006 qdev_init_nofail(s->i2c[0]);
4007 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4008 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4009 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4010 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4011 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4013 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4014 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4015 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4016 omap_findclk(s, "clk32-kHz"));
4018 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4019 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4020 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4021 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4022 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4023 qdev_get_gpio_in(s->ih[0],
4024 OMAP_INT_310_McBSP2_TX),
4025 qdev_get_gpio_in(s->ih[0],
4026 OMAP_INT_310_McBSP2_RX),
4027 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4028 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4029 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4030 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4031 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4033 s->led[0] = omap_lpg_init(system_memory,
4034 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4035 s->led[1] = omap_lpg_init(system_memory,
4036 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4038 /* Register mappings not currenlty implemented:
4039 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4040 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4041 * USB W2FC fffb4000 - fffb47ff
4042 * Camera Interface fffb6800 - fffb6fff
4043 * USB Host fffba000 - fffba7ff
4044 * FAC fffba800 - fffbafff
4045 * HDQ/1-Wire fffbc000 - fffbc7ff
4046 * TIPB switches fffbc800 - fffbcfff
4047 * Mailbox fffcf000 - fffcf7ff
4048 * Local bus IF fffec100 - fffec1ff
4049 * Local bus MMU fffec200 - fffec2ff
4050 * DSP MMU fffed200 - fffed2ff
4053 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4054 omap_setup_mpui_io(system_memory, s);
4056 qemu_register_reset(omap1_mpu_reset, s);
4058 return s;