kvm: better advice for failed s390x startup
[qemu/ar7.git] / target-s390x / kvm.c
blob8e65e43f029840e4ec86067e5878152bc84e150b
1 /*
2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include <sys/types.h>
25 #include <sys/ioctl.h>
26 #include <sys/mman.h>
28 #include <linux/kvm.h>
29 #include <asm/ptrace.h>
31 #include "qemu-common.h"
32 #include "qemu/timer.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/kvm.h"
35 #include "hw/hw.h"
36 #include "cpu.h"
37 #include "sysemu/device_tree.h"
38 #include "qapi/qmp/qjson.h"
39 #include "monitor/monitor.h"
40 #include "exec/gdbstub.h"
41 #include "exec/address-spaces.h"
42 #include "trace.h"
43 #include "qapi-event.h"
44 #include "hw/s390x/s390-pci-inst.h"
45 #include "hw/s390x/s390-pci-bus.h"
46 #include "hw/s390x/ipl.h"
47 #include "hw/s390x/ebcdic.h"
49 /* #define DEBUG_KVM */
51 #ifdef DEBUG_KVM
52 #define DPRINTF(fmt, ...) \
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54 #else
55 #define DPRINTF(fmt, ...) \
56 do { } while (0)
57 #endif
59 #define kvm_vm_check_mem_attr(s, attr) \
60 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
62 #define IPA0_DIAG 0x8300
63 #define IPA0_SIGP 0xae00
64 #define IPA0_B2 0xb200
65 #define IPA0_B9 0xb900
66 #define IPA0_EB 0xeb00
67 #define IPA0_E3 0xe300
69 #define PRIV_B2_SCLP_CALL 0x20
70 #define PRIV_B2_CSCH 0x30
71 #define PRIV_B2_HSCH 0x31
72 #define PRIV_B2_MSCH 0x32
73 #define PRIV_B2_SSCH 0x33
74 #define PRIV_B2_STSCH 0x34
75 #define PRIV_B2_TSCH 0x35
76 #define PRIV_B2_TPI 0x36
77 #define PRIV_B2_SAL 0x37
78 #define PRIV_B2_RSCH 0x38
79 #define PRIV_B2_STCRW 0x39
80 #define PRIV_B2_STCPS 0x3a
81 #define PRIV_B2_RCHP 0x3b
82 #define PRIV_B2_SCHM 0x3c
83 #define PRIV_B2_CHSC 0x5f
84 #define PRIV_B2_SIGA 0x74
85 #define PRIV_B2_XSCH 0x76
87 #define PRIV_EB_SQBS 0x8a
88 #define PRIV_EB_PCISTB 0xd0
89 #define PRIV_EB_SIC 0xd1
91 #define PRIV_B9_EQBS 0x9c
92 #define PRIV_B9_CLP 0xa0
93 #define PRIV_B9_PCISTG 0xd0
94 #define PRIV_B9_PCILG 0xd2
95 #define PRIV_B9_RPCIT 0xd3
97 #define PRIV_E3_MPCIFC 0xd0
98 #define PRIV_E3_STPCIFC 0xd4
100 #define DIAG_IPL 0x308
101 #define DIAG_KVM_HYPERCALL 0x500
102 #define DIAG_KVM_BREAKPOINT 0x501
104 #define ICPT_INSTRUCTION 0x04
105 #define ICPT_PROGRAM 0x08
106 #define ICPT_EXT_INT 0x14
107 #define ICPT_WAITPSW 0x1c
108 #define ICPT_SOFT_INTERCEPT 0x24
109 #define ICPT_CPU_STOP 0x28
110 #define ICPT_IO 0x40
112 static CPUWatchpoint hw_watchpoint;
114 * We don't use a list because this structure is also used to transmit the
115 * hardware breakpoints to the kernel.
117 static struct kvm_hw_breakpoint *hw_breakpoints;
118 static int nb_hw_breakpoints;
120 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
121 KVM_CAP_LAST_INFO
124 static int cap_sync_regs;
125 static int cap_async_pf;
126 static int cap_mem_op;
128 static void *legacy_s390_alloc(size_t size, uint64_t *align);
130 static int kvm_s390_query_mem_limit(KVMState *s, uint64_t *memory_limit)
132 struct kvm_device_attr attr = {
133 .group = KVM_S390_VM_MEM_CTRL,
134 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
135 .addr = (uint64_t) memory_limit,
138 return kvm_vm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
141 int kvm_s390_set_mem_limit(KVMState *s, uint64_t new_limit, uint64_t *hw_limit)
143 int rc;
145 struct kvm_device_attr attr = {
146 .group = KVM_S390_VM_MEM_CTRL,
147 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
148 .addr = (uint64_t) &new_limit,
151 if (!kvm_vm_check_mem_attr(s, KVM_S390_VM_MEM_LIMIT_SIZE)) {
152 return 0;
155 rc = kvm_s390_query_mem_limit(s, hw_limit);
156 if (rc) {
157 return rc;
158 } else if (*hw_limit < new_limit) {
159 return -E2BIG;
162 return kvm_vm_ioctl(s, KVM_SET_DEVICE_ATTR, &attr);
165 void kvm_s390_clear_cmma_callback(void *opaque)
167 int rc;
168 KVMState *s = opaque;
169 struct kvm_device_attr attr = {
170 .group = KVM_S390_VM_MEM_CTRL,
171 .attr = KVM_S390_VM_MEM_CLR_CMMA,
174 rc = kvm_vm_ioctl(s, KVM_SET_DEVICE_ATTR, &attr);
175 trace_kvm_clear_cmma(rc);
178 static void kvm_s390_enable_cmma(KVMState *s)
180 int rc;
181 struct kvm_device_attr attr = {
182 .group = KVM_S390_VM_MEM_CTRL,
183 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
186 if (!kvm_vm_check_mem_attr(s, KVM_S390_VM_MEM_ENABLE_CMMA) ||
187 !kvm_vm_check_mem_attr(s, KVM_S390_VM_MEM_CLR_CMMA)) {
188 return;
191 rc = kvm_vm_ioctl(s, KVM_SET_DEVICE_ATTR, &attr);
192 if (!rc) {
193 qemu_register_reset(kvm_s390_clear_cmma_callback, s);
195 trace_kvm_enable_cmma(rc);
198 static void kvm_s390_set_attr(uint64_t attr)
200 struct kvm_device_attr attribute = {
201 .group = KVM_S390_VM_CRYPTO,
202 .attr = attr,
205 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
207 if (ret) {
208 error_report("Failed to set crypto device attribute %lu: %s",
209 attr, strerror(-ret));
213 static void kvm_s390_init_aes_kw(void)
215 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
217 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
218 NULL)) {
219 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
222 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
223 kvm_s390_set_attr(attr);
227 static void kvm_s390_init_dea_kw(void)
229 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
231 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
232 NULL)) {
233 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
236 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
237 kvm_s390_set_attr(attr);
241 static void kvm_s390_init_crypto(void)
243 kvm_s390_init_aes_kw();
244 kvm_s390_init_dea_kw();
247 int kvm_arch_init(MachineState *ms, KVMState *s)
249 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
250 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
251 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
253 kvm_s390_enable_cmma(s);
255 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
256 || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
257 phys_mem_set_alloc(legacy_s390_alloc);
260 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
261 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
263 return 0;
266 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
268 return cpu->cpu_index;
271 int kvm_arch_init_vcpu(CPUState *cs)
273 S390CPU *cpu = S390_CPU(cs);
274 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
275 return 0;
278 void kvm_s390_reset_vcpu(S390CPU *cpu)
280 CPUState *cs = CPU(cpu);
282 /* The initial reset call is needed here to reset in-kernel
283 * vcpu data that we can't access directly from QEMU
284 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
285 * Before this ioctl cpu_synchronize_state() is called in common kvm
286 * code (kvm-all) */
287 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
288 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
291 kvm_s390_init_crypto();
294 static int can_sync_regs(CPUState *cs, int regs)
296 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
299 int kvm_arch_put_registers(CPUState *cs, int level)
301 S390CPU *cpu = S390_CPU(cs);
302 CPUS390XState *env = &cpu->env;
303 struct kvm_sregs sregs;
304 struct kvm_regs regs;
305 struct kvm_fpu fpu = {};
306 int r;
307 int i;
309 /* always save the PSW and the GPRS*/
310 cs->kvm_run->psw_addr = env->psw.addr;
311 cs->kvm_run->psw_mask = env->psw.mask;
313 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
314 for (i = 0; i < 16; i++) {
315 cs->kvm_run->s.regs.gprs[i] = env->regs[i];
316 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
318 } else {
319 for (i = 0; i < 16; i++) {
320 regs.gprs[i] = env->regs[i];
322 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
323 if (r < 0) {
324 return r;
328 /* Floating point */
329 for (i = 0; i < 16; i++) {
330 fpu.fprs[i] = env->fregs[i].ll;
332 fpu.fpc = env->fpc;
334 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
335 if (r < 0) {
336 return r;
339 /* Do we need to save more than that? */
340 if (level == KVM_PUT_RUNTIME_STATE) {
341 return 0;
344 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
345 cs->kvm_run->s.regs.cputm = env->cputm;
346 cs->kvm_run->s.regs.ckc = env->ckc;
347 cs->kvm_run->s.regs.todpr = env->todpr;
348 cs->kvm_run->s.regs.gbea = env->gbea;
349 cs->kvm_run->s.regs.pp = env->pp;
350 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
351 } else {
353 * These ONE_REGS are not protected by a capability. As they are only
354 * necessary for migration we just trace a possible error, but don't
355 * return with an error return code.
357 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
358 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
359 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
360 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
361 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
364 /* pfault parameters */
365 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
366 cs->kvm_run->s.regs.pft = env->pfault_token;
367 cs->kvm_run->s.regs.pfs = env->pfault_select;
368 cs->kvm_run->s.regs.pfc = env->pfault_compare;
369 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
370 } else if (cap_async_pf) {
371 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
372 if (r < 0) {
373 return r;
375 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
376 if (r < 0) {
377 return r;
379 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
380 if (r < 0) {
381 return r;
385 /* access registers and control registers*/
386 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
387 for (i = 0; i < 16; i++) {
388 cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
389 cs->kvm_run->s.regs.crs[i] = env->cregs[i];
391 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
392 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
393 } else {
394 for (i = 0; i < 16; i++) {
395 sregs.acrs[i] = env->aregs[i];
396 sregs.crs[i] = env->cregs[i];
398 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
399 if (r < 0) {
400 return r;
404 /* Finally the prefix */
405 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
406 cs->kvm_run->s.regs.prefix = env->psa;
407 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
408 } else {
409 /* prefix is only supported via sync regs */
411 return 0;
414 int kvm_arch_get_registers(CPUState *cs)
416 S390CPU *cpu = S390_CPU(cs);
417 CPUS390XState *env = &cpu->env;
418 struct kvm_sregs sregs;
419 struct kvm_regs regs;
420 struct kvm_fpu fpu;
421 int i, r;
423 /* get the PSW */
424 env->psw.addr = cs->kvm_run->psw_addr;
425 env->psw.mask = cs->kvm_run->psw_mask;
427 /* the GPRS */
428 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
429 for (i = 0; i < 16; i++) {
430 env->regs[i] = cs->kvm_run->s.regs.gprs[i];
432 } else {
433 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
434 if (r < 0) {
435 return r;
437 for (i = 0; i < 16; i++) {
438 env->regs[i] = regs.gprs[i];
442 /* The ACRS and CRS */
443 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
444 for (i = 0; i < 16; i++) {
445 env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
446 env->cregs[i] = cs->kvm_run->s.regs.crs[i];
448 } else {
449 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
450 if (r < 0) {
451 return r;
453 for (i = 0; i < 16; i++) {
454 env->aregs[i] = sregs.acrs[i];
455 env->cregs[i] = sregs.crs[i];
459 /* Floating point */
460 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
461 if (r < 0) {
462 return r;
464 for (i = 0; i < 16; i++) {
465 env->fregs[i].ll = fpu.fprs[i];
467 env->fpc = fpu.fpc;
469 /* The prefix */
470 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
471 env->psa = cs->kvm_run->s.regs.prefix;
474 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
475 env->cputm = cs->kvm_run->s.regs.cputm;
476 env->ckc = cs->kvm_run->s.regs.ckc;
477 env->todpr = cs->kvm_run->s.regs.todpr;
478 env->gbea = cs->kvm_run->s.regs.gbea;
479 env->pp = cs->kvm_run->s.regs.pp;
480 } else {
482 * These ONE_REGS are not protected by a capability. As they are only
483 * necessary for migration we just trace a possible error, but don't
484 * return with an error return code.
486 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
487 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
488 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
489 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
490 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
493 /* pfault parameters */
494 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
495 env->pfault_token = cs->kvm_run->s.regs.pft;
496 env->pfault_select = cs->kvm_run->s.regs.pfs;
497 env->pfault_compare = cs->kvm_run->s.regs.pfc;
498 } else if (cap_async_pf) {
499 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
500 if (r < 0) {
501 return r;
503 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
504 if (r < 0) {
505 return r;
507 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
508 if (r < 0) {
509 return r;
513 return 0;
516 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
518 int r;
519 struct kvm_device_attr attr = {
520 .group = KVM_S390_VM_TOD,
521 .attr = KVM_S390_VM_TOD_LOW,
522 .addr = (uint64_t)tod_low,
525 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
526 if (r) {
527 return r;
530 attr.attr = KVM_S390_VM_TOD_HIGH;
531 attr.addr = (uint64_t)tod_high;
532 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
535 int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low)
537 int r;
539 struct kvm_device_attr attr = {
540 .group = KVM_S390_VM_TOD,
541 .attr = KVM_S390_VM_TOD_LOW,
542 .addr = (uint64_t)tod_low,
545 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
546 if (r) {
547 return r;
550 attr.attr = KVM_S390_VM_TOD_HIGH;
551 attr.addr = (uint64_t)tod_high;
552 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
556 * kvm_s390_mem_op:
557 * @addr: the logical start address in guest memory
558 * @ar: the access register number
559 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
560 * @len: length that should be transfered
561 * @is_write: true = write, false = read
562 * Returns: 0 on success, non-zero if an exception or error occured
564 * Use KVM ioctl to read/write from/to guest memory. An access exception
565 * is injected into the vCPU in case of translation errors.
567 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
568 int len, bool is_write)
570 struct kvm_s390_mem_op mem_op = {
571 .gaddr = addr,
572 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
573 .size = len,
574 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
575 : KVM_S390_MEMOP_LOGICAL_READ,
576 .buf = (uint64_t)hostbuf,
577 .ar = ar,
579 int ret;
581 if (!cap_mem_op) {
582 return -ENOSYS;
584 if (!hostbuf) {
585 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
588 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
589 if (ret < 0) {
590 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret));
592 return ret;
596 * Legacy layout for s390:
597 * Older S390 KVM requires the topmost vma of the RAM to be
598 * smaller than an system defined value, which is at least 256GB.
599 * Larger systems have larger values. We put the guest between
600 * the end of data segment (system break) and this value. We
601 * use 32GB as a base to have enough room for the system break
602 * to grow. We also have to use MAP parameters that avoid
603 * read-only mapping of guest pages.
605 static void *legacy_s390_alloc(size_t size, uint64_t *align)
607 void *mem;
609 mem = mmap((void *) 0x800000000ULL, size,
610 PROT_EXEC|PROT_READ|PROT_WRITE,
611 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
612 return mem == MAP_FAILED ? NULL : mem;
615 /* DIAG 501 is used for sw breakpoints */
616 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
618 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
621 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
622 sizeof(diag_501), 0) ||
623 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)diag_501,
624 sizeof(diag_501), 1)) {
625 return -EINVAL;
627 return 0;
630 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
632 uint8_t t[sizeof(diag_501)];
634 if (cpu_memory_rw_debug(cs, bp->pc, t, sizeof(diag_501), 0)) {
635 return -EINVAL;
636 } else if (memcmp(t, diag_501, sizeof(diag_501))) {
637 return -EINVAL;
638 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
639 sizeof(diag_501), 1)) {
640 return -EINVAL;
643 return 0;
646 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
647 int len, int type)
649 int n;
651 for (n = 0; n < nb_hw_breakpoints; n++) {
652 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
653 (hw_breakpoints[n].len == len || len == -1)) {
654 return &hw_breakpoints[n];
658 return NULL;
661 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
663 int size;
665 if (find_hw_breakpoint(addr, len, type)) {
666 return -EEXIST;
669 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
671 if (!hw_breakpoints) {
672 nb_hw_breakpoints = 0;
673 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
674 } else {
675 hw_breakpoints =
676 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
679 if (!hw_breakpoints) {
680 nb_hw_breakpoints = 0;
681 return -ENOMEM;
684 hw_breakpoints[nb_hw_breakpoints].addr = addr;
685 hw_breakpoints[nb_hw_breakpoints].len = len;
686 hw_breakpoints[nb_hw_breakpoints].type = type;
688 nb_hw_breakpoints++;
690 return 0;
693 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
694 target_ulong len, int type)
696 switch (type) {
697 case GDB_BREAKPOINT_HW:
698 type = KVM_HW_BP;
699 break;
700 case GDB_WATCHPOINT_WRITE:
701 if (len < 1) {
702 return -EINVAL;
704 type = KVM_HW_WP_WRITE;
705 break;
706 default:
707 return -ENOSYS;
709 return insert_hw_breakpoint(addr, len, type);
712 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
713 target_ulong len, int type)
715 int size;
716 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
718 if (bp == NULL) {
719 return -ENOENT;
722 nb_hw_breakpoints--;
723 if (nb_hw_breakpoints > 0) {
725 * In order to trim the array, move the last element to the position to
726 * be removed - if necessary.
728 if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
729 *bp = hw_breakpoints[nb_hw_breakpoints];
731 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
732 hw_breakpoints =
733 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
734 } else {
735 g_free(hw_breakpoints);
736 hw_breakpoints = NULL;
739 return 0;
742 void kvm_arch_remove_all_hw_breakpoints(void)
744 nb_hw_breakpoints = 0;
745 g_free(hw_breakpoints);
746 hw_breakpoints = NULL;
749 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
751 int i;
753 if (nb_hw_breakpoints > 0) {
754 dbg->arch.nr_hw_bp = nb_hw_breakpoints;
755 dbg->arch.hw_bp = hw_breakpoints;
757 for (i = 0; i < nb_hw_breakpoints; ++i) {
758 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
759 hw_breakpoints[i].addr);
761 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
762 } else {
763 dbg->arch.nr_hw_bp = 0;
764 dbg->arch.hw_bp = NULL;
768 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
772 void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
776 int kvm_arch_process_async_events(CPUState *cs)
778 return cs->halted;
781 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
782 struct kvm_s390_interrupt *interrupt)
784 int r = 0;
786 interrupt->type = irq->type;
787 switch (irq->type) {
788 case KVM_S390_INT_VIRTIO:
789 interrupt->parm = irq->u.ext.ext_params;
790 /* fall through */
791 case KVM_S390_INT_PFAULT_INIT:
792 case KVM_S390_INT_PFAULT_DONE:
793 interrupt->parm64 = irq->u.ext.ext_params2;
794 break;
795 case KVM_S390_PROGRAM_INT:
796 interrupt->parm = irq->u.pgm.code;
797 break;
798 case KVM_S390_SIGP_SET_PREFIX:
799 interrupt->parm = irq->u.prefix.address;
800 break;
801 case KVM_S390_INT_SERVICE:
802 interrupt->parm = irq->u.ext.ext_params;
803 break;
804 case KVM_S390_MCHK:
805 interrupt->parm = irq->u.mchk.cr14;
806 interrupt->parm64 = irq->u.mchk.mcic;
807 break;
808 case KVM_S390_INT_EXTERNAL_CALL:
809 interrupt->parm = irq->u.extcall.code;
810 break;
811 case KVM_S390_INT_EMERGENCY:
812 interrupt->parm = irq->u.emerg.code;
813 break;
814 case KVM_S390_SIGP_STOP:
815 case KVM_S390_RESTART:
816 break; /* These types have no parameters */
817 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
818 interrupt->parm = irq->u.io.subchannel_id << 16;
819 interrupt->parm |= irq->u.io.subchannel_nr;
820 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
821 interrupt->parm64 |= irq->u.io.io_int_word;
822 break;
823 default:
824 r = -EINVAL;
825 break;
827 return r;
830 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
832 struct kvm_s390_interrupt kvmint = {};
833 CPUState *cs = CPU(cpu);
834 int r;
836 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
837 if (r < 0) {
838 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
839 exit(1);
842 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
843 if (r < 0) {
844 fprintf(stderr, "KVM failed to inject interrupt\n");
845 exit(1);
849 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
851 struct kvm_s390_interrupt kvmint = {};
852 int r;
854 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
855 if (r < 0) {
856 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
857 exit(1);
860 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
861 if (r < 0) {
862 fprintf(stderr, "KVM failed to inject interrupt\n");
863 exit(1);
867 void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
869 static bool use_flic = true;
870 int r;
872 if (use_flic) {
873 r = kvm_s390_inject_flic(irq);
874 if (r == -ENOSYS) {
875 use_flic = false;
877 if (!r) {
878 return;
881 __kvm_s390_floating_interrupt(irq);
884 void kvm_s390_virtio_irq(int config_change, uint64_t token)
886 struct kvm_s390_irq irq = {
887 .type = KVM_S390_INT_VIRTIO,
888 .u.ext.ext_params = config_change,
889 .u.ext.ext_params2 = token,
892 kvm_s390_floating_interrupt(&irq);
895 void kvm_s390_service_interrupt(uint32_t parm)
897 struct kvm_s390_irq irq = {
898 .type = KVM_S390_INT_SERVICE,
899 .u.ext.ext_params = parm,
902 kvm_s390_floating_interrupt(&irq);
905 static void enter_pgmcheck(S390CPU *cpu, uint16_t code)
907 struct kvm_s390_irq irq = {
908 .type = KVM_S390_PROGRAM_INT,
909 .u.pgm.code = code,
912 kvm_s390_vcpu_interrupt(cpu, &irq);
915 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
917 struct kvm_s390_irq irq = {
918 .type = KVM_S390_PROGRAM_INT,
919 .u.pgm.code = code,
920 .u.pgm.trans_exc_code = te_code,
921 .u.pgm.exc_access_id = te_code & 3,
924 kvm_s390_vcpu_interrupt(cpu, &irq);
927 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
928 uint16_t ipbh0)
930 CPUS390XState *env = &cpu->env;
931 uint64_t sccb;
932 uint32_t code;
933 int r = 0;
935 cpu_synchronize_state(CPU(cpu));
936 sccb = env->regs[ipbh0 & 0xf];
937 code = env->regs[(ipbh0 & 0xf0) >> 4];
939 r = sclp_service_call(env, sccb, code);
940 if (r < 0) {
941 enter_pgmcheck(cpu, -r);
942 } else {
943 setcc(cpu, r);
946 return 0;
949 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
951 CPUS390XState *env = &cpu->env;
952 int rc = 0;
953 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
955 cpu_synchronize_state(CPU(cpu));
957 switch (ipa1) {
958 case PRIV_B2_XSCH:
959 ioinst_handle_xsch(cpu, env->regs[1]);
960 break;
961 case PRIV_B2_CSCH:
962 ioinst_handle_csch(cpu, env->regs[1]);
963 break;
964 case PRIV_B2_HSCH:
965 ioinst_handle_hsch(cpu, env->regs[1]);
966 break;
967 case PRIV_B2_MSCH:
968 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb);
969 break;
970 case PRIV_B2_SSCH:
971 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb);
972 break;
973 case PRIV_B2_STCRW:
974 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb);
975 break;
976 case PRIV_B2_STSCH:
977 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb);
978 break;
979 case PRIV_B2_TSCH:
980 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
981 fprintf(stderr, "Spurious tsch intercept\n");
982 break;
983 case PRIV_B2_CHSC:
984 ioinst_handle_chsc(cpu, run->s390_sieic.ipb);
985 break;
986 case PRIV_B2_TPI:
987 /* This should have been handled by kvm already. */
988 fprintf(stderr, "Spurious tpi intercept\n");
989 break;
990 case PRIV_B2_SCHM:
991 ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
992 run->s390_sieic.ipb);
993 break;
994 case PRIV_B2_RSCH:
995 ioinst_handle_rsch(cpu, env->regs[1]);
996 break;
997 case PRIV_B2_RCHP:
998 ioinst_handle_rchp(cpu, env->regs[1]);
999 break;
1000 case PRIV_B2_STCPS:
1001 /* We do not provide this instruction, it is suppressed. */
1002 break;
1003 case PRIV_B2_SAL:
1004 ioinst_handle_sal(cpu, env->regs[1]);
1005 break;
1006 case PRIV_B2_SIGA:
1007 /* Not provided, set CC = 3 for subchannel not operational */
1008 setcc(cpu, 3);
1009 break;
1010 case PRIV_B2_SCLP_CALL:
1011 rc = kvm_sclp_service_call(cpu, run, ipbh0);
1012 break;
1013 default:
1014 rc = -1;
1015 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1016 break;
1019 return rc;
1022 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1023 uint8_t *ar)
1025 CPUS390XState *env = &cpu->env;
1026 uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1027 uint32_t base2 = run->s390_sieic.ipb >> 28;
1028 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1029 ((run->s390_sieic.ipb & 0xff00) << 4);
1031 if (disp2 & 0x80000) {
1032 disp2 += 0xfff00000;
1034 if (ar) {
1035 *ar = base2;
1038 return (base2 ? env->regs[base2] : 0) +
1039 (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1042 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1043 uint8_t *ar)
1045 CPUS390XState *env = &cpu->env;
1046 uint32_t base2 = run->s390_sieic.ipb >> 28;
1047 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1048 ((run->s390_sieic.ipb & 0xff00) << 4);
1050 if (disp2 & 0x80000) {
1051 disp2 += 0xfff00000;
1053 if (ar) {
1054 *ar = base2;
1057 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1060 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1062 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1064 return clp_service_call(cpu, r2);
1067 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1069 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1070 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1072 return pcilg_service_call(cpu, r1, r2);
1075 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1077 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1078 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1080 return pcistg_service_call(cpu, r1, r2);
1083 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1085 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1086 uint64_t fiba;
1087 uint8_t ar;
1089 cpu_synchronize_state(CPU(cpu));
1090 fiba = get_base_disp_rxy(cpu, run, &ar);
1092 return stpcifc_service_call(cpu, r1, fiba, ar);
1095 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1097 /* NOOP */
1098 return 0;
1101 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1103 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1104 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1106 return rpcit_service_call(cpu, r1, r2);
1109 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1111 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1112 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1113 uint64_t gaddr;
1114 uint8_t ar;
1116 cpu_synchronize_state(CPU(cpu));
1117 gaddr = get_base_disp_rsy(cpu, run, &ar);
1119 return pcistb_service_call(cpu, r1, r3, gaddr, ar);
1122 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1124 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1125 uint64_t fiba;
1126 uint8_t ar;
1128 cpu_synchronize_state(CPU(cpu));
1129 fiba = get_base_disp_rxy(cpu, run, &ar);
1131 return mpcifc_service_call(cpu, r1, fiba, ar);
1134 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1136 int r = 0;
1138 switch (ipa1) {
1139 case PRIV_B9_CLP:
1140 r = kvm_clp_service_call(cpu, run);
1141 break;
1142 case PRIV_B9_PCISTG:
1143 r = kvm_pcistg_service_call(cpu, run);
1144 break;
1145 case PRIV_B9_PCILG:
1146 r = kvm_pcilg_service_call(cpu, run);
1147 break;
1148 case PRIV_B9_RPCIT:
1149 r = kvm_rpcit_service_call(cpu, run);
1150 break;
1151 case PRIV_B9_EQBS:
1152 /* just inject exception */
1153 r = -1;
1154 break;
1155 default:
1156 r = -1;
1157 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1158 break;
1161 return r;
1164 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1166 int r = 0;
1168 switch (ipbl) {
1169 case PRIV_EB_PCISTB:
1170 r = kvm_pcistb_service_call(cpu, run);
1171 break;
1172 case PRIV_EB_SIC:
1173 r = kvm_sic_service_call(cpu, run);
1174 break;
1175 case PRIV_EB_SQBS:
1176 /* just inject exception */
1177 r = -1;
1178 break;
1179 default:
1180 r = -1;
1181 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1182 break;
1185 return r;
1188 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1190 int r = 0;
1192 switch (ipbl) {
1193 case PRIV_E3_MPCIFC:
1194 r = kvm_mpcifc_service_call(cpu, run);
1195 break;
1196 case PRIV_E3_STPCIFC:
1197 r = kvm_stpcifc_service_call(cpu, run);
1198 break;
1199 default:
1200 r = -1;
1201 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1202 break;
1205 return r;
1208 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1210 CPUS390XState *env = &cpu->env;
1211 int ret;
1213 cpu_synchronize_state(CPU(cpu));
1214 ret = s390_virtio_hypercall(env);
1215 if (ret == -EINVAL) {
1216 enter_pgmcheck(cpu, PGM_SPECIFICATION);
1217 return 0;
1220 return ret;
1223 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1225 uint64_t r1, r3;
1227 cpu_synchronize_state(CPU(cpu));
1228 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1229 r3 = run->s390_sieic.ipa & 0x000f;
1230 handle_diag_308(&cpu->env, r1, r3);
1233 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1235 CPUS390XState *env = &cpu->env;
1236 unsigned long pc;
1238 cpu_synchronize_state(CPU(cpu));
1240 pc = env->psw.addr - 4;
1241 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1242 env->psw.addr = pc;
1243 return EXCP_DEBUG;
1246 return -ENOENT;
1249 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1251 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1253 int r = 0;
1254 uint16_t func_code;
1257 * For any diagnose call we support, bits 48-63 of the resulting
1258 * address specify the function code; the remainder is ignored.
1260 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1261 switch (func_code) {
1262 case DIAG_IPL:
1263 kvm_handle_diag_308(cpu, run);
1264 break;
1265 case DIAG_KVM_HYPERCALL:
1266 r = handle_hypercall(cpu, run);
1267 break;
1268 case DIAG_KVM_BREAKPOINT:
1269 r = handle_sw_breakpoint(cpu, run);
1270 break;
1271 default:
1272 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1273 enter_pgmcheck(cpu, PGM_SPECIFICATION);
1274 break;
1277 return r;
1280 typedef struct SigpInfo {
1281 S390CPU *cpu;
1282 uint64_t param;
1283 int cc;
1284 uint64_t *status_reg;
1285 } SigpInfo;
1287 static void set_sigp_status(SigpInfo *si, uint64_t status)
1289 *si->status_reg &= 0xffffffff00000000ULL;
1290 *si->status_reg |= status;
1291 si->cc = SIGP_CC_STATUS_STORED;
1294 static void sigp_start(void *arg)
1296 SigpInfo *si = arg;
1298 if (s390_cpu_get_state(si->cpu) != CPU_STATE_STOPPED) {
1299 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1300 return;
1303 s390_cpu_set_state(CPU_STATE_OPERATING, si->cpu);
1304 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1307 static void sigp_stop(void *arg)
1309 SigpInfo *si = arg;
1310 struct kvm_s390_irq irq = {
1311 .type = KVM_S390_SIGP_STOP,
1314 if (s390_cpu_get_state(si->cpu) != CPU_STATE_OPERATING) {
1315 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1316 return;
1319 /* disabled wait - sleeping in user space */
1320 if (CPU(si->cpu)->halted) {
1321 s390_cpu_set_state(CPU_STATE_STOPPED, si->cpu);
1322 } else {
1323 /* execute the stop function */
1324 si->cpu->env.sigp_order = SIGP_STOP;
1325 kvm_s390_vcpu_interrupt(si->cpu, &irq);
1327 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1330 #define KVM_S390_STORE_STATUS_DEF_ADDR offsetof(LowCore, floating_pt_save_area)
1331 #define SAVE_AREA_SIZE 512
1332 static int kvm_s390_store_status(S390CPU *cpu, hwaddr addr, bool store_arch)
1334 static const uint8_t ar_id = 1;
1335 uint64_t ckc = cpu->env.ckc >> 8;
1336 void *mem;
1337 hwaddr len = SAVE_AREA_SIZE;
1339 mem = cpu_physical_memory_map(addr, &len, 1);
1340 if (!mem) {
1341 return -EFAULT;
1343 if (len != SAVE_AREA_SIZE) {
1344 cpu_physical_memory_unmap(mem, len, 1, 0);
1345 return -EFAULT;
1348 if (store_arch) {
1349 cpu_physical_memory_write(offsetof(LowCore, ar_access_id), &ar_id, 1);
1351 memcpy(mem, &cpu->env.fregs, 128);
1352 memcpy(mem + 128, &cpu->env.regs, 128);
1353 memcpy(mem + 256, &cpu->env.psw, 16);
1354 memcpy(mem + 280, &cpu->env.psa, 4);
1355 memcpy(mem + 284, &cpu->env.fpc, 4);
1356 memcpy(mem + 292, &cpu->env.todpr, 4);
1357 memcpy(mem + 296, &cpu->env.cputm, 8);
1358 memcpy(mem + 304, &ckc, 8);
1359 memcpy(mem + 320, &cpu->env.aregs, 64);
1360 memcpy(mem + 384, &cpu->env.cregs, 128);
1362 cpu_physical_memory_unmap(mem, len, 1, len);
1364 return 0;
1367 static void sigp_stop_and_store_status(void *arg)
1369 SigpInfo *si = arg;
1370 struct kvm_s390_irq irq = {
1371 .type = KVM_S390_SIGP_STOP,
1374 /* disabled wait - sleeping in user space */
1375 if (s390_cpu_get_state(si->cpu) == CPU_STATE_OPERATING &&
1376 CPU(si->cpu)->halted) {
1377 s390_cpu_set_state(CPU_STATE_STOPPED, si->cpu);
1380 switch (s390_cpu_get_state(si->cpu)) {
1381 case CPU_STATE_OPERATING:
1382 si->cpu->env.sigp_order = SIGP_STOP_STORE_STATUS;
1383 kvm_s390_vcpu_interrupt(si->cpu, &irq);
1384 /* store will be performed when handling the stop intercept */
1385 break;
1386 case CPU_STATE_STOPPED:
1387 /* already stopped, just store the status */
1388 cpu_synchronize_state(CPU(si->cpu));
1389 kvm_s390_store_status(si->cpu, KVM_S390_STORE_STATUS_DEF_ADDR, true);
1390 break;
1392 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1395 static void sigp_store_status_at_address(void *arg)
1397 SigpInfo *si = arg;
1398 uint32_t address = si->param & 0x7ffffe00u;
1400 /* cpu has to be stopped */
1401 if (s390_cpu_get_state(si->cpu) != CPU_STATE_STOPPED) {
1402 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1403 return;
1406 cpu_synchronize_state(CPU(si->cpu));
1408 if (kvm_s390_store_status(si->cpu, address, false)) {
1409 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1410 return;
1412 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1415 static void sigp_restart(void *arg)
1417 SigpInfo *si = arg;
1418 struct kvm_s390_irq irq = {
1419 .type = KVM_S390_RESTART,
1422 switch (s390_cpu_get_state(si->cpu)) {
1423 case CPU_STATE_STOPPED:
1424 /* the restart irq has to be delivered prior to any other pending irq */
1425 cpu_synchronize_state(CPU(si->cpu));
1426 do_restart_interrupt(&si->cpu->env);
1427 s390_cpu_set_state(CPU_STATE_OPERATING, si->cpu);
1428 break;
1429 case CPU_STATE_OPERATING:
1430 kvm_s390_vcpu_interrupt(si->cpu, &irq);
1431 break;
1433 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1436 int kvm_s390_cpu_restart(S390CPU *cpu)
1438 SigpInfo si = {
1439 .cpu = cpu,
1442 run_on_cpu(CPU(cpu), sigp_restart, &si);
1443 DPRINTF("DONE: KVM cpu restart: %p\n", &cpu->env);
1444 return 0;
1447 static void sigp_initial_cpu_reset(void *arg)
1449 SigpInfo *si = arg;
1450 CPUState *cs = CPU(si->cpu);
1451 S390CPUClass *scc = S390_CPU_GET_CLASS(si->cpu);
1453 cpu_synchronize_state(cs);
1454 scc->initial_cpu_reset(cs);
1455 cpu_synchronize_post_reset(cs);
1456 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1459 static void sigp_cpu_reset(void *arg)
1461 SigpInfo *si = arg;
1462 CPUState *cs = CPU(si->cpu);
1463 S390CPUClass *scc = S390_CPU_GET_CLASS(si->cpu);
1465 cpu_synchronize_state(cs);
1466 scc->cpu_reset(cs);
1467 cpu_synchronize_post_reset(cs);
1468 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1471 static void sigp_set_prefix(void *arg)
1473 SigpInfo *si = arg;
1474 uint32_t addr = si->param & 0x7fffe000u;
1476 cpu_synchronize_state(CPU(si->cpu));
1478 if (!address_space_access_valid(&address_space_memory, addr,
1479 sizeof(struct LowCore), false)) {
1480 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1481 return;
1484 /* cpu has to be stopped */
1485 if (s390_cpu_get_state(si->cpu) != CPU_STATE_STOPPED) {
1486 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1487 return;
1490 si->cpu->env.psa = addr;
1491 cpu_synchronize_post_init(CPU(si->cpu));
1492 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1495 static int handle_sigp_single_dst(S390CPU *dst_cpu, uint8_t order,
1496 uint64_t param, uint64_t *status_reg)
1498 SigpInfo si = {
1499 .cpu = dst_cpu,
1500 .param = param,
1501 .status_reg = status_reg,
1504 /* cpu available? */
1505 if (dst_cpu == NULL) {
1506 return SIGP_CC_NOT_OPERATIONAL;
1509 /* only resets can break pending orders */
1510 if (dst_cpu->env.sigp_order != 0 &&
1511 order != SIGP_CPU_RESET &&
1512 order != SIGP_INITIAL_CPU_RESET) {
1513 return SIGP_CC_BUSY;
1516 switch (order) {
1517 case SIGP_START:
1518 run_on_cpu(CPU(dst_cpu), sigp_start, &si);
1519 break;
1520 case SIGP_STOP:
1521 run_on_cpu(CPU(dst_cpu), sigp_stop, &si);
1522 break;
1523 case SIGP_RESTART:
1524 run_on_cpu(CPU(dst_cpu), sigp_restart, &si);
1525 break;
1526 case SIGP_STOP_STORE_STATUS:
1527 run_on_cpu(CPU(dst_cpu), sigp_stop_and_store_status, &si);
1528 break;
1529 case SIGP_STORE_STATUS_ADDR:
1530 run_on_cpu(CPU(dst_cpu), sigp_store_status_at_address, &si);
1531 break;
1532 case SIGP_SET_PREFIX:
1533 run_on_cpu(CPU(dst_cpu), sigp_set_prefix, &si);
1534 break;
1535 case SIGP_INITIAL_CPU_RESET:
1536 run_on_cpu(CPU(dst_cpu), sigp_initial_cpu_reset, &si);
1537 break;
1538 case SIGP_CPU_RESET:
1539 run_on_cpu(CPU(dst_cpu), sigp_cpu_reset, &si);
1540 break;
1541 default:
1542 DPRINTF("KVM: unknown SIGP: 0x%x\n", order);
1543 set_sigp_status(&si, SIGP_STAT_INVALID_ORDER);
1546 return si.cc;
1549 static int sigp_set_architecture(S390CPU *cpu, uint32_t param,
1550 uint64_t *status_reg)
1552 CPUState *cur_cs;
1553 S390CPU *cur_cpu;
1555 /* due to the BQL, we are the only active cpu */
1556 CPU_FOREACH(cur_cs) {
1557 cur_cpu = S390_CPU(cur_cs);
1558 if (cur_cpu->env.sigp_order != 0) {
1559 return SIGP_CC_BUSY;
1561 cpu_synchronize_state(cur_cs);
1562 /* all but the current one have to be stopped */
1563 if (cur_cpu != cpu &&
1564 s390_cpu_get_state(cur_cpu) != CPU_STATE_STOPPED) {
1565 *status_reg &= 0xffffffff00000000ULL;
1566 *status_reg |= SIGP_STAT_INCORRECT_STATE;
1567 return SIGP_CC_STATUS_STORED;
1571 switch (param & 0xff) {
1572 case SIGP_MODE_ESA_S390:
1573 /* not supported */
1574 return SIGP_CC_NOT_OPERATIONAL;
1575 case SIGP_MODE_Z_ARCH_TRANS_ALL_PSW:
1576 case SIGP_MODE_Z_ARCH_TRANS_CUR_PSW:
1577 CPU_FOREACH(cur_cs) {
1578 cur_cpu = S390_CPU(cur_cs);
1579 cur_cpu->env.pfault_token = -1UL;
1581 break;
1582 default:
1583 *status_reg &= 0xffffffff00000000ULL;
1584 *status_reg |= SIGP_STAT_INVALID_PARAMETER;
1585 return SIGP_CC_STATUS_STORED;
1588 return SIGP_CC_ORDER_CODE_ACCEPTED;
1591 #define SIGP_ORDER_MASK 0x000000ff
1593 static int handle_sigp(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1595 CPUS390XState *env = &cpu->env;
1596 const uint8_t r1 = ipa1 >> 4;
1597 const uint8_t r3 = ipa1 & 0x0f;
1598 int ret;
1599 uint8_t order;
1600 uint64_t *status_reg;
1601 uint64_t param;
1602 S390CPU *dst_cpu = NULL;
1604 cpu_synchronize_state(CPU(cpu));
1606 /* get order code */
1607 order = decode_basedisp_rs(env, run->s390_sieic.ipb, NULL)
1608 & SIGP_ORDER_MASK;
1609 status_reg = &env->regs[r1];
1610 param = (r1 % 2) ? env->regs[r1] : env->regs[r1 + 1];
1612 switch (order) {
1613 case SIGP_SET_ARCH:
1614 ret = sigp_set_architecture(cpu, param, status_reg);
1615 break;
1616 default:
1617 /* all other sigp orders target a single vcpu */
1618 dst_cpu = s390_cpu_addr2state(env->regs[r3]);
1619 ret = handle_sigp_single_dst(dst_cpu, order, param, status_reg);
1622 trace_kvm_sigp_finished(order, CPU(cpu)->cpu_index,
1623 dst_cpu ? CPU(dst_cpu)->cpu_index : -1, ret);
1625 if (ret >= 0) {
1626 setcc(cpu, ret);
1627 return 0;
1630 return ret;
1633 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1635 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1636 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1637 int r = -1;
1639 DPRINTF("handle_instruction 0x%x 0x%x\n",
1640 run->s390_sieic.ipa, run->s390_sieic.ipb);
1641 switch (ipa0) {
1642 case IPA0_B2:
1643 r = handle_b2(cpu, run, ipa1);
1644 break;
1645 case IPA0_B9:
1646 r = handle_b9(cpu, run, ipa1);
1647 break;
1648 case IPA0_EB:
1649 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1650 break;
1651 case IPA0_E3:
1652 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1653 break;
1654 case IPA0_DIAG:
1655 r = handle_diag(cpu, run, run->s390_sieic.ipb);
1656 break;
1657 case IPA0_SIGP:
1658 r = handle_sigp(cpu, run, ipa1);
1659 break;
1662 if (r < 0) {
1663 r = 0;
1664 enter_pgmcheck(cpu, 0x0001);
1667 return r;
1670 static bool is_special_wait_psw(CPUState *cs)
1672 /* signal quiesce */
1673 return cs->kvm_run->psw_addr == 0xfffUL;
1676 static void guest_panicked(void)
1678 qapi_event_send_guest_panicked(GUEST_PANIC_ACTION_PAUSE,
1679 &error_abort);
1680 vm_stop(RUN_STATE_GUEST_PANICKED);
1683 static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset)
1685 CPUState *cs = CPU(cpu);
1687 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
1688 str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset),
1689 ldq_phys(cs->as, cpu->env.psa + pswoffset + 8));
1690 s390_cpu_halt(cpu);
1691 guest_panicked();
1694 static int handle_intercept(S390CPU *cpu)
1696 CPUState *cs = CPU(cpu);
1697 struct kvm_run *run = cs->kvm_run;
1698 int icpt_code = run->s390_sieic.icptcode;
1699 int r = 0;
1701 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1702 (long)cs->kvm_run->psw_addr);
1703 switch (icpt_code) {
1704 case ICPT_INSTRUCTION:
1705 r = handle_instruction(cpu, run);
1706 break;
1707 case ICPT_PROGRAM:
1708 unmanageable_intercept(cpu, "program interrupt",
1709 offsetof(LowCore, program_new_psw));
1710 r = EXCP_HALTED;
1711 break;
1712 case ICPT_EXT_INT:
1713 unmanageable_intercept(cpu, "external interrupt",
1714 offsetof(LowCore, external_new_psw));
1715 r = EXCP_HALTED;
1716 break;
1717 case ICPT_WAITPSW:
1718 /* disabled wait, since enabled wait is handled in kernel */
1719 cpu_synchronize_state(cs);
1720 if (s390_cpu_halt(cpu) == 0) {
1721 if (is_special_wait_psw(cs)) {
1722 qemu_system_shutdown_request();
1723 } else {
1724 guest_panicked();
1727 r = EXCP_HALTED;
1728 break;
1729 case ICPT_CPU_STOP:
1730 if (s390_cpu_set_state(CPU_STATE_STOPPED, cpu) == 0) {
1731 qemu_system_shutdown_request();
1733 if (cpu->env.sigp_order == SIGP_STOP_STORE_STATUS) {
1734 kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR,
1735 true);
1737 cpu->env.sigp_order = 0;
1738 r = EXCP_HALTED;
1739 break;
1740 case ICPT_SOFT_INTERCEPT:
1741 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1742 exit(1);
1743 break;
1744 case ICPT_IO:
1745 fprintf(stderr, "KVM unimplemented icpt IO\n");
1746 exit(1);
1747 break;
1748 default:
1749 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1750 exit(1);
1751 break;
1754 return r;
1757 static int handle_tsch(S390CPU *cpu)
1759 CPUState *cs = CPU(cpu);
1760 struct kvm_run *run = cs->kvm_run;
1761 int ret;
1763 cpu_synchronize_state(cs);
1765 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb);
1766 if (ret < 0) {
1768 * Failure.
1769 * If an I/O interrupt had been dequeued, we have to reinject it.
1771 if (run->s390_tsch.dequeued) {
1772 kvm_s390_io_interrupt(run->s390_tsch.subchannel_id,
1773 run->s390_tsch.subchannel_nr,
1774 run->s390_tsch.io_int_parm,
1775 run->s390_tsch.io_int_word);
1777 ret = 0;
1779 return ret;
1782 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1784 struct sysib_322 sysib;
1785 int del;
1787 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1788 return;
1790 /* Shift the stack of Extended Names to prepare for our own data */
1791 memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1792 sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1793 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1794 * assumed it's not capable of managing Extended Names for lower levels.
1796 for (del = 1; del < sysib.count; del++) {
1797 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1798 break;
1801 if (del < sysib.count) {
1802 memset(sysib.ext_names[del], 0,
1803 sizeof(sysib.ext_names[0]) * (sysib.count - del));
1805 /* Insert short machine name in EBCDIC, padded with blanks */
1806 if (qemu_name) {
1807 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1808 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1809 strlen(qemu_name)));
1811 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1812 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
1813 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1814 * considered by s390 as not capable of providing any Extended Name.
1815 * Therefore if no name was specified on qemu invocation, we go with the
1816 * same "KVMguest" default, which KVM has filled into short name field.
1818 if (qemu_name) {
1819 strncpy((char *)sysib.ext_names[0], qemu_name,
1820 sizeof(sysib.ext_names[0]));
1821 } else {
1822 strcpy((char *)sysib.ext_names[0], "KVMguest");
1824 /* Insert UUID */
1825 memcpy(sysib.vm[0].uuid, qemu_uuid, sizeof(sysib.vm[0].uuid));
1827 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1830 static int handle_stsi(S390CPU *cpu)
1832 CPUState *cs = CPU(cpu);
1833 struct kvm_run *run = cs->kvm_run;
1835 switch (run->s390_stsi.fc) {
1836 case 3:
1837 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1838 return 0;
1840 /* Only sysib 3.2.2 needs post-handling for now. */
1841 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1842 return 0;
1843 default:
1844 return 0;
1848 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1850 CPUState *cs = CPU(cpu);
1851 struct kvm_run *run = cs->kvm_run;
1853 int ret = 0;
1854 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1856 switch (arch_info->type) {
1857 case KVM_HW_WP_WRITE:
1858 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1859 cs->watchpoint_hit = &hw_watchpoint;
1860 hw_watchpoint.vaddr = arch_info->addr;
1861 hw_watchpoint.flags = BP_MEM_WRITE;
1862 ret = EXCP_DEBUG;
1864 break;
1865 case KVM_HW_BP:
1866 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1867 ret = EXCP_DEBUG;
1869 break;
1870 case KVM_SINGLESTEP:
1871 if (cs->singlestep_enabled) {
1872 ret = EXCP_DEBUG;
1874 break;
1875 default:
1876 ret = -ENOSYS;
1879 return ret;
1882 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1884 S390CPU *cpu = S390_CPU(cs);
1885 int ret = 0;
1887 switch (run->exit_reason) {
1888 case KVM_EXIT_S390_SIEIC:
1889 ret = handle_intercept(cpu);
1890 break;
1891 case KVM_EXIT_S390_RESET:
1892 s390_reipl_request();
1893 break;
1894 case KVM_EXIT_S390_TSCH:
1895 ret = handle_tsch(cpu);
1896 break;
1897 case KVM_EXIT_S390_STSI:
1898 ret = handle_stsi(cpu);
1899 break;
1900 case KVM_EXIT_DEBUG:
1901 ret = kvm_arch_handle_debug_exit(cpu);
1902 break;
1903 default:
1904 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1905 break;
1908 if (ret == 0) {
1909 ret = EXCP_INTERRUPT;
1911 return ret;
1914 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1916 return true;
1919 int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
1921 return 1;
1924 int kvm_arch_on_sigbus(int code, void *addr)
1926 return 1;
1929 void kvm_s390_io_interrupt(uint16_t subchannel_id,
1930 uint16_t subchannel_nr, uint32_t io_int_parm,
1931 uint32_t io_int_word)
1933 struct kvm_s390_irq irq = {
1934 .u.io.subchannel_id = subchannel_id,
1935 .u.io.subchannel_nr = subchannel_nr,
1936 .u.io.io_int_parm = io_int_parm,
1937 .u.io.io_int_word = io_int_word,
1940 if (io_int_word & IO_INT_WORD_AI) {
1941 irq.type = KVM_S390_INT_IO(1, 0, 0, 0);
1942 } else {
1943 irq.type = ((subchannel_id & 0xff00) << 24) |
1944 ((subchannel_id & 0x00060) << 22) | (subchannel_nr << 16);
1946 kvm_s390_floating_interrupt(&irq);
1949 void kvm_s390_crw_mchk(void)
1951 struct kvm_s390_irq irq = {
1952 .type = KVM_S390_MCHK,
1953 .u.mchk.cr14 = 1 << 28,
1954 .u.mchk.mcic = 0x00400f1d40330000ULL,
1956 kvm_s390_floating_interrupt(&irq);
1959 void kvm_s390_enable_css_support(S390CPU *cpu)
1961 int r;
1963 /* Activate host kernel channel subsystem support. */
1964 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
1965 assert(r == 0);
1968 void kvm_arch_init_irq_routing(KVMState *s)
1971 * Note that while irqchip capabilities generally imply that cpustates
1972 * are handled in-kernel, it is not true for s390 (yet); therefore, we
1973 * have to override the common code kvm_halt_in_kernel_allowed setting.
1975 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
1976 kvm_gsi_routing_allowed = true;
1977 kvm_halt_in_kernel_allowed = false;
1981 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
1982 int vq, bool assign)
1984 struct kvm_ioeventfd kick = {
1985 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
1986 KVM_IOEVENTFD_FLAG_DATAMATCH,
1987 .fd = event_notifier_get_fd(notifier),
1988 .datamatch = vq,
1989 .addr = sch,
1990 .len = 8,
1992 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
1993 return -ENOSYS;
1995 if (!assign) {
1996 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1998 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2001 int kvm_s390_get_memslot_count(KVMState *s)
2003 return kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2006 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2008 struct kvm_mp_state mp_state = {};
2009 int ret;
2011 /* the kvm part might not have been initialized yet */
2012 if (CPU(cpu)->kvm_state == NULL) {
2013 return 0;
2016 switch (cpu_state) {
2017 case CPU_STATE_STOPPED:
2018 mp_state.mp_state = KVM_MP_STATE_STOPPED;
2019 break;
2020 case CPU_STATE_CHECK_STOP:
2021 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2022 break;
2023 case CPU_STATE_OPERATING:
2024 mp_state.mp_state = KVM_MP_STATE_OPERATING;
2025 break;
2026 case CPU_STATE_LOAD:
2027 mp_state.mp_state = KVM_MP_STATE_LOAD;
2028 break;
2029 default:
2030 error_report("Requested CPU state is not a valid S390 CPU state: %u",
2031 cpu_state);
2032 exit(1);
2035 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2036 if (ret) {
2037 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2038 strerror(-ret));
2041 return ret;
2044 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2045 uint64_t address, uint32_t data)
2047 S390PCIBusDevice *pbdev;
2048 uint32_t fid = data >> ZPCI_MSI_VEC_BITS;
2049 uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2051 pbdev = s390_pci_find_dev_by_fid(fid);
2052 if (!pbdev) {
2053 DPRINTF("add_msi_route no dev\n");
2054 return -ENODEV;
2057 pbdev->routes.adapter.ind_offset = vec;
2059 route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2060 route->flags = 0;
2061 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2062 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2063 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2064 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset;
2065 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2066 return 0;