4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #define _ATFILE_SOURCE
32 #include <sys/types.h>
38 #include <sys/mount.h>
40 #include <sys/fsuid.h>
41 #include <sys/personality.h>
42 #include <sys/prctl.h>
43 #include <sys/resource.h>
46 #include <linux/capability.h>
50 int __clone2(int (*fn
)(void *), void *child_stack_base
,
51 size_t stack_size
, int flags
, void *arg
, ...);
53 #include <sys/socket.h>
57 #include <sys/times.h>
60 #include <sys/statfs.h>
62 #include <sys/sysinfo.h>
63 //#include <sys/user.h>
64 #include <netinet/ip.h>
65 #include <netinet/tcp.h>
66 #include <linux/wireless.h>
67 #include <linux/icmp.h>
68 #include "qemu-common.h"
70 #include <sys/timerfd.h>
76 #include <sys/eventfd.h>
79 #include <sys/epoll.h>
82 #include "qemu/xattr.h"
84 #ifdef CONFIG_SENDFILE
85 #include <sys/sendfile.h>
88 #define termios host_termios
89 #define winsize host_winsize
90 #define termio host_termio
91 #define sgttyb host_sgttyb /* same as target */
92 #define tchars host_tchars /* same as target */
93 #define ltchars host_ltchars /* same as target */
95 #include <linux/termios.h>
96 #include <linux/unistd.h>
97 #include <linux/cdrom.h>
98 #include <linux/hdreg.h>
99 #include <linux/soundcard.h>
100 #include <linux/kd.h>
101 #include <linux/mtio.h>
102 #include <linux/fs.h>
103 #if defined(CONFIG_FIEMAP)
104 #include <linux/fiemap.h>
106 #include <linux/fb.h>
107 #include <linux/vt.h>
108 #include <linux/dm-ioctl.h>
109 #include <linux/reboot.h>
110 #include <linux/route.h>
111 #include <linux/filter.h>
112 #include <linux/blkpg.h>
113 #include "linux_loop.h"
118 #define CLONE_NPTL_FLAGS2 (CLONE_SETTLS | \
119 CLONE_PARENT_SETTID | CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID)
123 //#include <linux/msdos_fs.h>
124 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2])
125 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2])
136 #define _syscall0(type,name) \
137 static type name (void) \
139 return syscall(__NR_##name); \
142 #define _syscall1(type,name,type1,arg1) \
143 static type name (type1 arg1) \
145 return syscall(__NR_##name, arg1); \
148 #define _syscall2(type,name,type1,arg1,type2,arg2) \
149 static type name (type1 arg1,type2 arg2) \
151 return syscall(__NR_##name, arg1, arg2); \
154 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
155 static type name (type1 arg1,type2 arg2,type3 arg3) \
157 return syscall(__NR_##name, arg1, arg2, arg3); \
160 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
161 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
163 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
166 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
168 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
170 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
174 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
175 type5,arg5,type6,arg6) \
176 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
179 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
183 #define __NR_sys_uname __NR_uname
184 #define __NR_sys_getcwd1 __NR_getcwd
185 #define __NR_sys_getdents __NR_getdents
186 #define __NR_sys_getdents64 __NR_getdents64
187 #define __NR_sys_getpriority __NR_getpriority
188 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
189 #define __NR_sys_syslog __NR_syslog
190 #define __NR_sys_tgkill __NR_tgkill
191 #define __NR_sys_tkill __NR_tkill
192 #define __NR_sys_futex __NR_futex
193 #define __NR_sys_inotify_init __NR_inotify_init
194 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
195 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
197 #if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__) || \
199 #define __NR__llseek __NR_lseek
202 /* Newer kernel ports have llseek() instead of _llseek() */
203 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
204 #define TARGET_NR__llseek TARGET_NR_llseek
208 _syscall0(int, gettid
)
210 /* This is a replacement for the host gettid() and must return a host
212 static int gettid(void) {
217 _syscall3(int, sys_getdents
, uint
, fd
, struct linux_dirent
*, dirp
, uint
, count
);
219 #if !defined(__NR_getdents) || \
220 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
221 _syscall3(int, sys_getdents64
, uint
, fd
, struct linux_dirent64
*, dirp
, uint
, count
);
223 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
224 _syscall5(int, _llseek
, uint
, fd
, ulong
, hi
, ulong
, lo
,
225 loff_t
*, res
, uint
, wh
);
227 _syscall3(int,sys_rt_sigqueueinfo
,int,pid
,int,sig
,siginfo_t
*,uinfo
)
228 _syscall3(int,sys_syslog
,int,type
,char*,bufp
,int,len
)
229 #if defined(TARGET_NR_tgkill) && defined(__NR_tgkill)
230 _syscall3(int,sys_tgkill
,int,tgid
,int,pid
,int,sig
)
232 #if defined(TARGET_NR_tkill) && defined(__NR_tkill)
233 _syscall2(int,sys_tkill
,int,tid
,int,sig
)
235 #ifdef __NR_exit_group
236 _syscall1(int,exit_group
,int,error_code
)
238 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
239 _syscall1(int,set_tid_address
,int *,tidptr
)
241 #if defined(TARGET_NR_futex) && defined(__NR_futex)
242 _syscall6(int,sys_futex
,int *,uaddr
,int,op
,int,val
,
243 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
245 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
246 _syscall3(int, sys_sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
247 unsigned long *, user_mask_ptr
);
248 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
249 _syscall3(int, sys_sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
250 unsigned long *, user_mask_ptr
);
251 _syscall4(int, reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
253 _syscall2(int, capget
, struct __user_cap_header_struct
*, header
,
254 struct __user_cap_data_struct
*, data
);
255 _syscall2(int, capset
, struct __user_cap_header_struct
*, header
,
256 struct __user_cap_data_struct
*, data
);
257 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
258 _syscall2(int, ioprio_get
, int, which
, int, who
)
260 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
261 _syscall3(int, ioprio_set
, int, which
, int, who
, int, ioprio
)
264 static bitmask_transtbl fcntl_flags_tbl
[] = {
265 { TARGET_O_ACCMODE
, TARGET_O_WRONLY
, O_ACCMODE
, O_WRONLY
, },
266 { TARGET_O_ACCMODE
, TARGET_O_RDWR
, O_ACCMODE
, O_RDWR
, },
267 { TARGET_O_CREAT
, TARGET_O_CREAT
, O_CREAT
, O_CREAT
, },
268 { TARGET_O_EXCL
, TARGET_O_EXCL
, O_EXCL
, O_EXCL
, },
269 { TARGET_O_NOCTTY
, TARGET_O_NOCTTY
, O_NOCTTY
, O_NOCTTY
, },
270 { TARGET_O_TRUNC
, TARGET_O_TRUNC
, O_TRUNC
, O_TRUNC
, },
271 { TARGET_O_APPEND
, TARGET_O_APPEND
, O_APPEND
, O_APPEND
, },
272 { TARGET_O_NONBLOCK
, TARGET_O_NONBLOCK
, O_NONBLOCK
, O_NONBLOCK
, },
273 { TARGET_O_SYNC
, TARGET_O_DSYNC
, O_SYNC
, O_DSYNC
, },
274 { TARGET_O_SYNC
, TARGET_O_SYNC
, O_SYNC
, O_SYNC
, },
275 { TARGET_FASYNC
, TARGET_FASYNC
, FASYNC
, FASYNC
, },
276 { TARGET_O_DIRECTORY
, TARGET_O_DIRECTORY
, O_DIRECTORY
, O_DIRECTORY
, },
277 { TARGET_O_NOFOLLOW
, TARGET_O_NOFOLLOW
, O_NOFOLLOW
, O_NOFOLLOW
, },
278 #if defined(O_DIRECT)
279 { TARGET_O_DIRECT
, TARGET_O_DIRECT
, O_DIRECT
, O_DIRECT
, },
281 #if defined(O_NOATIME)
282 { TARGET_O_NOATIME
, TARGET_O_NOATIME
, O_NOATIME
, O_NOATIME
},
284 #if defined(O_CLOEXEC)
285 { TARGET_O_CLOEXEC
, TARGET_O_CLOEXEC
, O_CLOEXEC
, O_CLOEXEC
},
288 { TARGET_O_PATH
, TARGET_O_PATH
, O_PATH
, O_PATH
},
290 /* Don't terminate the list prematurely on 64-bit host+guest. */
291 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
292 { TARGET_O_LARGEFILE
, TARGET_O_LARGEFILE
, O_LARGEFILE
, O_LARGEFILE
, },
297 static int sys_getcwd1(char *buf
, size_t size
)
299 if (getcwd(buf
, size
) == NULL
) {
300 /* getcwd() sets errno */
303 return strlen(buf
)+1;
306 static int sys_openat(int dirfd
, const char *pathname
, int flags
, mode_t mode
)
309 * open(2) has extra parameter 'mode' when called with
312 if ((flags
& O_CREAT
) != 0) {
313 return (openat(dirfd
, pathname
, flags
, mode
));
315 return (openat(dirfd
, pathname
, flags
));
318 #ifdef TARGET_NR_utimensat
319 #ifdef CONFIG_UTIMENSAT
320 static int sys_utimensat(int dirfd
, const char *pathname
,
321 const struct timespec times
[2], int flags
)
323 if (pathname
== NULL
)
324 return futimens(dirfd
, times
);
326 return utimensat(dirfd
, pathname
, times
, flags
);
328 #elif defined(__NR_utimensat)
329 #define __NR_sys_utimensat __NR_utimensat
330 _syscall4(int,sys_utimensat
,int,dirfd
,const char *,pathname
,
331 const struct timespec
*,tsp
,int,flags
)
333 static int sys_utimensat(int dirfd
, const char *pathname
,
334 const struct timespec times
[2], int flags
)
340 #endif /* TARGET_NR_utimensat */
342 #ifdef CONFIG_INOTIFY
343 #include <sys/inotify.h>
345 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
346 static int sys_inotify_init(void)
348 return (inotify_init());
351 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
352 static int sys_inotify_add_watch(int fd
,const char *pathname
, int32_t mask
)
354 return (inotify_add_watch(fd
, pathname
, mask
));
357 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
358 static int sys_inotify_rm_watch(int fd
, int32_t wd
)
360 return (inotify_rm_watch(fd
, wd
));
363 #ifdef CONFIG_INOTIFY1
364 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
365 static int sys_inotify_init1(int flags
)
367 return (inotify_init1(flags
));
372 /* Userspace can usually survive runtime without inotify */
373 #undef TARGET_NR_inotify_init
374 #undef TARGET_NR_inotify_init1
375 #undef TARGET_NR_inotify_add_watch
376 #undef TARGET_NR_inotify_rm_watch
377 #endif /* CONFIG_INOTIFY */
379 #if defined(TARGET_NR_ppoll)
381 # define __NR_ppoll -1
383 #define __NR_sys_ppoll __NR_ppoll
384 _syscall5(int, sys_ppoll
, struct pollfd
*, fds
, nfds_t
, nfds
,
385 struct timespec
*, timeout
, const sigset_t
*, sigmask
,
389 #if defined(TARGET_NR_pselect6)
390 #ifndef __NR_pselect6
391 # define __NR_pselect6 -1
393 #define __NR_sys_pselect6 __NR_pselect6
394 _syscall6(int, sys_pselect6
, int, nfds
, fd_set
*, readfds
, fd_set
*, writefds
,
395 fd_set
*, exceptfds
, struct timespec
*, timeout
, void *, sig
);
398 #if defined(TARGET_NR_prlimit64)
399 #ifndef __NR_prlimit64
400 # define __NR_prlimit64 -1
402 #define __NR_sys_prlimit64 __NR_prlimit64
403 /* The glibc rlimit structure may not be that used by the underlying syscall */
404 struct host_rlimit64
{
408 _syscall4(int, sys_prlimit64
, pid_t
, pid
, int, resource
,
409 const struct host_rlimit64
*, new_limit
,
410 struct host_rlimit64
*, old_limit
)
414 #if defined(TARGET_NR_timer_create)
415 /* Maxiumum of 32 active POSIX timers allowed at any one time. */
416 static timer_t g_posix_timers
[32] = { 0, } ;
418 static inline int next_free_host_timer(void)
421 /* FIXME: Does finding the next free slot require a lock? */
422 for (k
= 0; k
< ARRAY_SIZE(g_posix_timers
); k
++) {
423 if (g_posix_timers
[k
] == 0) {
424 g_posix_timers
[k
] = (timer_t
) 1;
432 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
434 static inline int regpairs_aligned(void *cpu_env
) {
435 return ((((CPUARMState
*)cpu_env
)->eabi
) == 1) ;
437 #elif defined(TARGET_MIPS)
438 static inline int regpairs_aligned(void *cpu_env
) { return 1; }
439 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
440 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
441 * of registers which translates to the same as ARM/MIPS, because we start with
443 static inline int regpairs_aligned(void *cpu_env
) { return 1; }
445 static inline int regpairs_aligned(void *cpu_env
) { return 0; }
448 #define ERRNO_TABLE_SIZE 1200
450 /* target_to_host_errno_table[] is initialized from
451 * host_to_target_errno_table[] in syscall_init(). */
452 static uint16_t target_to_host_errno_table
[ERRNO_TABLE_SIZE
] = {
456 * This list is the union of errno values overridden in asm-<arch>/errno.h
457 * minus the errnos that are not actually generic to all archs.
459 static uint16_t host_to_target_errno_table
[ERRNO_TABLE_SIZE
] = {
460 [EIDRM
] = TARGET_EIDRM
,
461 [ECHRNG
] = TARGET_ECHRNG
,
462 [EL2NSYNC
] = TARGET_EL2NSYNC
,
463 [EL3HLT
] = TARGET_EL3HLT
,
464 [EL3RST
] = TARGET_EL3RST
,
465 [ELNRNG
] = TARGET_ELNRNG
,
466 [EUNATCH
] = TARGET_EUNATCH
,
467 [ENOCSI
] = TARGET_ENOCSI
,
468 [EL2HLT
] = TARGET_EL2HLT
,
469 [EDEADLK
] = TARGET_EDEADLK
,
470 [ENOLCK
] = TARGET_ENOLCK
,
471 [EBADE
] = TARGET_EBADE
,
472 [EBADR
] = TARGET_EBADR
,
473 [EXFULL
] = TARGET_EXFULL
,
474 [ENOANO
] = TARGET_ENOANO
,
475 [EBADRQC
] = TARGET_EBADRQC
,
476 [EBADSLT
] = TARGET_EBADSLT
,
477 [EBFONT
] = TARGET_EBFONT
,
478 [ENOSTR
] = TARGET_ENOSTR
,
479 [ENODATA
] = TARGET_ENODATA
,
480 [ETIME
] = TARGET_ETIME
,
481 [ENOSR
] = TARGET_ENOSR
,
482 [ENONET
] = TARGET_ENONET
,
483 [ENOPKG
] = TARGET_ENOPKG
,
484 [EREMOTE
] = TARGET_EREMOTE
,
485 [ENOLINK
] = TARGET_ENOLINK
,
486 [EADV
] = TARGET_EADV
,
487 [ESRMNT
] = TARGET_ESRMNT
,
488 [ECOMM
] = TARGET_ECOMM
,
489 [EPROTO
] = TARGET_EPROTO
,
490 [EDOTDOT
] = TARGET_EDOTDOT
,
491 [EMULTIHOP
] = TARGET_EMULTIHOP
,
492 [EBADMSG
] = TARGET_EBADMSG
,
493 [ENAMETOOLONG
] = TARGET_ENAMETOOLONG
,
494 [EOVERFLOW
] = TARGET_EOVERFLOW
,
495 [ENOTUNIQ
] = TARGET_ENOTUNIQ
,
496 [EBADFD
] = TARGET_EBADFD
,
497 [EREMCHG
] = TARGET_EREMCHG
,
498 [ELIBACC
] = TARGET_ELIBACC
,
499 [ELIBBAD
] = TARGET_ELIBBAD
,
500 [ELIBSCN
] = TARGET_ELIBSCN
,
501 [ELIBMAX
] = TARGET_ELIBMAX
,
502 [ELIBEXEC
] = TARGET_ELIBEXEC
,
503 [EILSEQ
] = TARGET_EILSEQ
,
504 [ENOSYS
] = TARGET_ENOSYS
,
505 [ELOOP
] = TARGET_ELOOP
,
506 [ERESTART
] = TARGET_ERESTART
,
507 [ESTRPIPE
] = TARGET_ESTRPIPE
,
508 [ENOTEMPTY
] = TARGET_ENOTEMPTY
,
509 [EUSERS
] = TARGET_EUSERS
,
510 [ENOTSOCK
] = TARGET_ENOTSOCK
,
511 [EDESTADDRREQ
] = TARGET_EDESTADDRREQ
,
512 [EMSGSIZE
] = TARGET_EMSGSIZE
,
513 [EPROTOTYPE
] = TARGET_EPROTOTYPE
,
514 [ENOPROTOOPT
] = TARGET_ENOPROTOOPT
,
515 [EPROTONOSUPPORT
] = TARGET_EPROTONOSUPPORT
,
516 [ESOCKTNOSUPPORT
] = TARGET_ESOCKTNOSUPPORT
,
517 [EOPNOTSUPP
] = TARGET_EOPNOTSUPP
,
518 [EPFNOSUPPORT
] = TARGET_EPFNOSUPPORT
,
519 [EAFNOSUPPORT
] = TARGET_EAFNOSUPPORT
,
520 [EADDRINUSE
] = TARGET_EADDRINUSE
,
521 [EADDRNOTAVAIL
] = TARGET_EADDRNOTAVAIL
,
522 [ENETDOWN
] = TARGET_ENETDOWN
,
523 [ENETUNREACH
] = TARGET_ENETUNREACH
,
524 [ENETRESET
] = TARGET_ENETRESET
,
525 [ECONNABORTED
] = TARGET_ECONNABORTED
,
526 [ECONNRESET
] = TARGET_ECONNRESET
,
527 [ENOBUFS
] = TARGET_ENOBUFS
,
528 [EISCONN
] = TARGET_EISCONN
,
529 [ENOTCONN
] = TARGET_ENOTCONN
,
530 [EUCLEAN
] = TARGET_EUCLEAN
,
531 [ENOTNAM
] = TARGET_ENOTNAM
,
532 [ENAVAIL
] = TARGET_ENAVAIL
,
533 [EISNAM
] = TARGET_EISNAM
,
534 [EREMOTEIO
] = TARGET_EREMOTEIO
,
535 [ESHUTDOWN
] = TARGET_ESHUTDOWN
,
536 [ETOOMANYREFS
] = TARGET_ETOOMANYREFS
,
537 [ETIMEDOUT
] = TARGET_ETIMEDOUT
,
538 [ECONNREFUSED
] = TARGET_ECONNREFUSED
,
539 [EHOSTDOWN
] = TARGET_EHOSTDOWN
,
540 [EHOSTUNREACH
] = TARGET_EHOSTUNREACH
,
541 [EALREADY
] = TARGET_EALREADY
,
542 [EINPROGRESS
] = TARGET_EINPROGRESS
,
543 [ESTALE
] = TARGET_ESTALE
,
544 [ECANCELED
] = TARGET_ECANCELED
,
545 [ENOMEDIUM
] = TARGET_ENOMEDIUM
,
546 [EMEDIUMTYPE
] = TARGET_EMEDIUMTYPE
,
548 [ENOKEY
] = TARGET_ENOKEY
,
551 [EKEYEXPIRED
] = TARGET_EKEYEXPIRED
,
554 [EKEYREVOKED
] = TARGET_EKEYREVOKED
,
557 [EKEYREJECTED
] = TARGET_EKEYREJECTED
,
560 [EOWNERDEAD
] = TARGET_EOWNERDEAD
,
562 #ifdef ENOTRECOVERABLE
563 [ENOTRECOVERABLE
] = TARGET_ENOTRECOVERABLE
,
567 static inline int host_to_target_errno(int err
)
569 if(host_to_target_errno_table
[err
])
570 return host_to_target_errno_table
[err
];
574 static inline int target_to_host_errno(int err
)
576 if (target_to_host_errno_table
[err
])
577 return target_to_host_errno_table
[err
];
581 static inline abi_long
get_errno(abi_long ret
)
584 return -host_to_target_errno(errno
);
589 static inline int is_error(abi_long ret
)
591 return (abi_ulong
)ret
>= (abi_ulong
)(-4096);
594 char *target_strerror(int err
)
596 if ((err
>= ERRNO_TABLE_SIZE
) || (err
< 0)) {
599 return strerror(target_to_host_errno(err
));
602 static inline int host_to_target_sock_type(int host_type
)
606 switch (host_type
& 0xf /* SOCK_TYPE_MASK */) {
608 target_type
= TARGET_SOCK_DGRAM
;
611 target_type
= TARGET_SOCK_STREAM
;
614 target_type
= host_type
& 0xf /* SOCK_TYPE_MASK */;
618 #if defined(SOCK_CLOEXEC)
619 if (host_type
& SOCK_CLOEXEC
) {
620 target_type
|= TARGET_SOCK_CLOEXEC
;
624 #if defined(SOCK_NONBLOCK)
625 if (host_type
& SOCK_NONBLOCK
) {
626 target_type
|= TARGET_SOCK_NONBLOCK
;
633 static abi_ulong target_brk
;
634 static abi_ulong target_original_brk
;
635 static abi_ulong brk_page
;
637 void target_set_brk(abi_ulong new_brk
)
639 target_original_brk
= target_brk
= HOST_PAGE_ALIGN(new_brk
);
640 brk_page
= HOST_PAGE_ALIGN(target_brk
);
643 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
644 #define DEBUGF_BRK(message, args...)
646 /* do_brk() must return target values and target errnos. */
647 abi_long
do_brk(abi_ulong new_brk
)
649 abi_long mapped_addr
;
652 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx
") -> ", new_brk
);
655 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (!new_brk)\n", target_brk
);
658 if (new_brk
< target_original_brk
) {
659 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (new_brk < target_original_brk)\n",
664 /* If the new brk is less than the highest page reserved to the
665 * target heap allocation, set it and we're almost done... */
666 if (new_brk
<= brk_page
) {
667 /* Heap contents are initialized to zero, as for anonymous
669 if (new_brk
> target_brk
) {
670 memset(g2h(target_brk
), 0, new_brk
- target_brk
);
672 target_brk
= new_brk
;
673 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (new_brk <= brk_page)\n", target_brk
);
677 /* We need to allocate more memory after the brk... Note that
678 * we don't use MAP_FIXED because that will map over the top of
679 * any existing mapping (like the one with the host libc or qemu
680 * itself); instead we treat "mapped but at wrong address" as
681 * a failure and unmap again.
683 new_alloc_size
= HOST_PAGE_ALIGN(new_brk
- brk_page
);
684 mapped_addr
= get_errno(target_mmap(brk_page
, new_alloc_size
,
685 PROT_READ
|PROT_WRITE
,
686 MAP_ANON
|MAP_PRIVATE
, 0, 0));
688 if (mapped_addr
== brk_page
) {
689 /* Heap contents are initialized to zero, as for anonymous
690 * mapped pages. Technically the new pages are already
691 * initialized to zero since they *are* anonymous mapped
692 * pages, however we have to take care with the contents that
693 * come from the remaining part of the previous page: it may
694 * contains garbage data due to a previous heap usage (grown
696 memset(g2h(target_brk
), 0, brk_page
- target_brk
);
698 target_brk
= new_brk
;
699 brk_page
= HOST_PAGE_ALIGN(target_brk
);
700 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (mapped_addr == brk_page)\n",
703 } else if (mapped_addr
!= -1) {
704 /* Mapped but at wrong address, meaning there wasn't actually
705 * enough space for this brk.
707 target_munmap(mapped_addr
, new_alloc_size
);
709 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (mapped_addr != -1)\n", target_brk
);
712 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (otherwise)\n", target_brk
);
715 #if defined(TARGET_ALPHA)
716 /* We (partially) emulate OSF/1 on Alpha, which requires we
717 return a proper errno, not an unchanged brk value. */
718 return -TARGET_ENOMEM
;
720 /* For everything else, return the previous break. */
724 static inline abi_long
copy_from_user_fdset(fd_set
*fds
,
725 abi_ulong target_fds_addr
,
729 abi_ulong b
, *target_fds
;
731 nw
= (n
+ TARGET_ABI_BITS
- 1) / TARGET_ABI_BITS
;
732 if (!(target_fds
= lock_user(VERIFY_READ
,
734 sizeof(abi_ulong
) * nw
,
736 return -TARGET_EFAULT
;
740 for (i
= 0; i
< nw
; i
++) {
741 /* grab the abi_ulong */
742 __get_user(b
, &target_fds
[i
]);
743 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
744 /* check the bit inside the abi_ulong */
751 unlock_user(target_fds
, target_fds_addr
, 0);
756 static inline abi_ulong
copy_from_user_fdset_ptr(fd_set
*fds
, fd_set
**fds_ptr
,
757 abi_ulong target_fds_addr
,
760 if (target_fds_addr
) {
761 if (copy_from_user_fdset(fds
, target_fds_addr
, n
))
762 return -TARGET_EFAULT
;
770 static inline abi_long
copy_to_user_fdset(abi_ulong target_fds_addr
,
776 abi_ulong
*target_fds
;
778 nw
= (n
+ TARGET_ABI_BITS
- 1) / TARGET_ABI_BITS
;
779 if (!(target_fds
= lock_user(VERIFY_WRITE
,
781 sizeof(abi_ulong
) * nw
,
783 return -TARGET_EFAULT
;
786 for (i
= 0; i
< nw
; i
++) {
788 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
789 v
|= ((abi_ulong
)(FD_ISSET(k
, fds
) != 0) << j
);
792 __put_user(v
, &target_fds
[i
]);
795 unlock_user(target_fds
, target_fds_addr
, sizeof(abi_ulong
) * nw
);
800 #if defined(__alpha__)
806 static inline abi_long
host_to_target_clock_t(long ticks
)
808 #if HOST_HZ == TARGET_HZ
811 return ((int64_t)ticks
* TARGET_HZ
) / HOST_HZ
;
815 static inline abi_long
host_to_target_rusage(abi_ulong target_addr
,
816 const struct rusage
*rusage
)
818 struct target_rusage
*target_rusage
;
820 if (!lock_user_struct(VERIFY_WRITE
, target_rusage
, target_addr
, 0))
821 return -TARGET_EFAULT
;
822 target_rusage
->ru_utime
.tv_sec
= tswapal(rusage
->ru_utime
.tv_sec
);
823 target_rusage
->ru_utime
.tv_usec
= tswapal(rusage
->ru_utime
.tv_usec
);
824 target_rusage
->ru_stime
.tv_sec
= tswapal(rusage
->ru_stime
.tv_sec
);
825 target_rusage
->ru_stime
.tv_usec
= tswapal(rusage
->ru_stime
.tv_usec
);
826 target_rusage
->ru_maxrss
= tswapal(rusage
->ru_maxrss
);
827 target_rusage
->ru_ixrss
= tswapal(rusage
->ru_ixrss
);
828 target_rusage
->ru_idrss
= tswapal(rusage
->ru_idrss
);
829 target_rusage
->ru_isrss
= tswapal(rusage
->ru_isrss
);
830 target_rusage
->ru_minflt
= tswapal(rusage
->ru_minflt
);
831 target_rusage
->ru_majflt
= tswapal(rusage
->ru_majflt
);
832 target_rusage
->ru_nswap
= tswapal(rusage
->ru_nswap
);
833 target_rusage
->ru_inblock
= tswapal(rusage
->ru_inblock
);
834 target_rusage
->ru_oublock
= tswapal(rusage
->ru_oublock
);
835 target_rusage
->ru_msgsnd
= tswapal(rusage
->ru_msgsnd
);
836 target_rusage
->ru_msgrcv
= tswapal(rusage
->ru_msgrcv
);
837 target_rusage
->ru_nsignals
= tswapal(rusage
->ru_nsignals
);
838 target_rusage
->ru_nvcsw
= tswapal(rusage
->ru_nvcsw
);
839 target_rusage
->ru_nivcsw
= tswapal(rusage
->ru_nivcsw
);
840 unlock_user_struct(target_rusage
, target_addr
, 1);
845 static inline rlim_t
target_to_host_rlim(abi_ulong target_rlim
)
847 abi_ulong target_rlim_swap
;
850 target_rlim_swap
= tswapal(target_rlim
);
851 if (target_rlim_swap
== TARGET_RLIM_INFINITY
)
852 return RLIM_INFINITY
;
854 result
= target_rlim_swap
;
855 if (target_rlim_swap
!= (rlim_t
)result
)
856 return RLIM_INFINITY
;
861 static inline abi_ulong
host_to_target_rlim(rlim_t rlim
)
863 abi_ulong target_rlim_swap
;
866 if (rlim
== RLIM_INFINITY
|| rlim
!= (abi_long
)rlim
)
867 target_rlim_swap
= TARGET_RLIM_INFINITY
;
869 target_rlim_swap
= rlim
;
870 result
= tswapal(target_rlim_swap
);
875 static inline int target_to_host_resource(int code
)
878 case TARGET_RLIMIT_AS
:
880 case TARGET_RLIMIT_CORE
:
882 case TARGET_RLIMIT_CPU
:
884 case TARGET_RLIMIT_DATA
:
886 case TARGET_RLIMIT_FSIZE
:
888 case TARGET_RLIMIT_LOCKS
:
890 case TARGET_RLIMIT_MEMLOCK
:
891 return RLIMIT_MEMLOCK
;
892 case TARGET_RLIMIT_MSGQUEUE
:
893 return RLIMIT_MSGQUEUE
;
894 case TARGET_RLIMIT_NICE
:
896 case TARGET_RLIMIT_NOFILE
:
897 return RLIMIT_NOFILE
;
898 case TARGET_RLIMIT_NPROC
:
900 case TARGET_RLIMIT_RSS
:
902 case TARGET_RLIMIT_RTPRIO
:
903 return RLIMIT_RTPRIO
;
904 case TARGET_RLIMIT_SIGPENDING
:
905 return RLIMIT_SIGPENDING
;
906 case TARGET_RLIMIT_STACK
:
913 static inline abi_long
copy_from_user_timeval(struct timeval
*tv
,
914 abi_ulong target_tv_addr
)
916 struct target_timeval
*target_tv
;
918 if (!lock_user_struct(VERIFY_READ
, target_tv
, target_tv_addr
, 1))
919 return -TARGET_EFAULT
;
921 __get_user(tv
->tv_sec
, &target_tv
->tv_sec
);
922 __get_user(tv
->tv_usec
, &target_tv
->tv_usec
);
924 unlock_user_struct(target_tv
, target_tv_addr
, 0);
929 static inline abi_long
copy_to_user_timeval(abi_ulong target_tv_addr
,
930 const struct timeval
*tv
)
932 struct target_timeval
*target_tv
;
934 if (!lock_user_struct(VERIFY_WRITE
, target_tv
, target_tv_addr
, 0))
935 return -TARGET_EFAULT
;
937 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
938 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
940 unlock_user_struct(target_tv
, target_tv_addr
, 1);
945 static inline abi_long
copy_from_user_timezone(struct timezone
*tz
,
946 abi_ulong target_tz_addr
)
948 struct target_timezone
*target_tz
;
950 if (!lock_user_struct(VERIFY_READ
, target_tz
, target_tz_addr
, 1)) {
951 return -TARGET_EFAULT
;
954 __get_user(tz
->tz_minuteswest
, &target_tz
->tz_minuteswest
);
955 __get_user(tz
->tz_dsttime
, &target_tz
->tz_dsttime
);
957 unlock_user_struct(target_tz
, target_tz_addr
, 0);
962 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
965 static inline abi_long
copy_from_user_mq_attr(struct mq_attr
*attr
,
966 abi_ulong target_mq_attr_addr
)
968 struct target_mq_attr
*target_mq_attr
;
970 if (!lock_user_struct(VERIFY_READ
, target_mq_attr
,
971 target_mq_attr_addr
, 1))
972 return -TARGET_EFAULT
;
974 __get_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
975 __get_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
976 __get_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
977 __get_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
979 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 0);
984 static inline abi_long
copy_to_user_mq_attr(abi_ulong target_mq_attr_addr
,
985 const struct mq_attr
*attr
)
987 struct target_mq_attr
*target_mq_attr
;
989 if (!lock_user_struct(VERIFY_WRITE
, target_mq_attr
,
990 target_mq_attr_addr
, 0))
991 return -TARGET_EFAULT
;
993 __put_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
994 __put_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
995 __put_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
996 __put_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
998 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 1);
1004 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1005 /* do_select() must return target values and target errnos. */
1006 static abi_long
do_select(int n
,
1007 abi_ulong rfd_addr
, abi_ulong wfd_addr
,
1008 abi_ulong efd_addr
, abi_ulong target_tv_addr
)
1010 fd_set rfds
, wfds
, efds
;
1011 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
1012 struct timeval tv
, *tv_ptr
;
1015 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
1019 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
1023 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
1028 if (target_tv_addr
) {
1029 if (copy_from_user_timeval(&tv
, target_tv_addr
))
1030 return -TARGET_EFAULT
;
1036 ret
= get_errno(select(n
, rfds_ptr
, wfds_ptr
, efds_ptr
, tv_ptr
));
1038 if (!is_error(ret
)) {
1039 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
))
1040 return -TARGET_EFAULT
;
1041 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
))
1042 return -TARGET_EFAULT
;
1043 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
))
1044 return -TARGET_EFAULT
;
1046 if (target_tv_addr
&& copy_to_user_timeval(target_tv_addr
, &tv
))
1047 return -TARGET_EFAULT
;
1054 static abi_long
do_pipe2(int host_pipe
[], int flags
)
1057 return pipe2(host_pipe
, flags
);
1063 static abi_long
do_pipe(void *cpu_env
, abi_ulong pipedes
,
1064 int flags
, int is_pipe2
)
1068 ret
= flags
? do_pipe2(host_pipe
, flags
) : pipe(host_pipe
);
1071 return get_errno(ret
);
1073 /* Several targets have special calling conventions for the original
1074 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1076 #if defined(TARGET_ALPHA)
1077 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
] = host_pipe
[1];
1078 return host_pipe
[0];
1079 #elif defined(TARGET_MIPS)
1080 ((CPUMIPSState
*)cpu_env
)->active_tc
.gpr
[3] = host_pipe
[1];
1081 return host_pipe
[0];
1082 #elif defined(TARGET_SH4)
1083 ((CPUSH4State
*)cpu_env
)->gregs
[1] = host_pipe
[1];
1084 return host_pipe
[0];
1085 #elif defined(TARGET_SPARC)
1086 ((CPUSPARCState
*)cpu_env
)->regwptr
[1] = host_pipe
[1];
1087 return host_pipe
[0];
1091 if (put_user_s32(host_pipe
[0], pipedes
)
1092 || put_user_s32(host_pipe
[1], pipedes
+ sizeof(host_pipe
[0])))
1093 return -TARGET_EFAULT
;
1094 return get_errno(ret
);
1097 static inline abi_long
target_to_host_ip_mreq(struct ip_mreqn
*mreqn
,
1098 abi_ulong target_addr
,
1101 struct target_ip_mreqn
*target_smreqn
;
1103 target_smreqn
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1105 return -TARGET_EFAULT
;
1106 mreqn
->imr_multiaddr
.s_addr
= target_smreqn
->imr_multiaddr
.s_addr
;
1107 mreqn
->imr_address
.s_addr
= target_smreqn
->imr_address
.s_addr
;
1108 if (len
== sizeof(struct target_ip_mreqn
))
1109 mreqn
->imr_ifindex
= tswapal(target_smreqn
->imr_ifindex
);
1110 unlock_user(target_smreqn
, target_addr
, 0);
1115 static inline abi_long
target_to_host_sockaddr(struct sockaddr
*addr
,
1116 abi_ulong target_addr
,
1119 const socklen_t unix_maxlen
= sizeof (struct sockaddr_un
);
1120 sa_family_t sa_family
;
1121 struct target_sockaddr
*target_saddr
;
1123 target_saddr
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1125 return -TARGET_EFAULT
;
1127 sa_family
= tswap16(target_saddr
->sa_family
);
1129 /* Oops. The caller might send a incomplete sun_path; sun_path
1130 * must be terminated by \0 (see the manual page), but
1131 * unfortunately it is quite common to specify sockaddr_un
1132 * length as "strlen(x->sun_path)" while it should be
1133 * "strlen(...) + 1". We'll fix that here if needed.
1134 * Linux kernel has a similar feature.
1137 if (sa_family
== AF_UNIX
) {
1138 if (len
< unix_maxlen
&& len
> 0) {
1139 char *cp
= (char*)target_saddr
;
1141 if ( cp
[len
-1] && !cp
[len
] )
1144 if (len
> unix_maxlen
)
1148 memcpy(addr
, target_saddr
, len
);
1149 addr
->sa_family
= sa_family
;
1150 if (sa_family
== AF_PACKET
) {
1151 struct target_sockaddr_ll
*lladdr
;
1153 lladdr
= (struct target_sockaddr_ll
*)addr
;
1154 lladdr
->sll_ifindex
= tswap32(lladdr
->sll_ifindex
);
1155 lladdr
->sll_hatype
= tswap16(lladdr
->sll_hatype
);
1157 unlock_user(target_saddr
, target_addr
, 0);
1162 static inline abi_long
host_to_target_sockaddr(abi_ulong target_addr
,
1163 struct sockaddr
*addr
,
1166 struct target_sockaddr
*target_saddr
;
1168 target_saddr
= lock_user(VERIFY_WRITE
, target_addr
, len
, 0);
1170 return -TARGET_EFAULT
;
1171 memcpy(target_saddr
, addr
, len
);
1172 target_saddr
->sa_family
= tswap16(addr
->sa_family
);
1173 unlock_user(target_saddr
, target_addr
, len
);
1178 static inline abi_long
target_to_host_cmsg(struct msghdr
*msgh
,
1179 struct target_msghdr
*target_msgh
)
1181 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1182 abi_long msg_controllen
;
1183 abi_ulong target_cmsg_addr
;
1184 struct target_cmsghdr
*target_cmsg
;
1185 socklen_t space
= 0;
1187 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1188 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1190 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1191 target_cmsg
= lock_user(VERIFY_READ
, target_cmsg_addr
, msg_controllen
, 1);
1193 return -TARGET_EFAULT
;
1195 while (cmsg
&& target_cmsg
) {
1196 void *data
= CMSG_DATA(cmsg
);
1197 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1199 int len
= tswapal(target_cmsg
->cmsg_len
)
1200 - TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr
));
1202 space
+= CMSG_SPACE(len
);
1203 if (space
> msgh
->msg_controllen
) {
1204 space
-= CMSG_SPACE(len
);
1205 gemu_log("Host cmsg overflow\n");
1209 if (tswap32(target_cmsg
->cmsg_level
) == TARGET_SOL_SOCKET
) {
1210 cmsg
->cmsg_level
= SOL_SOCKET
;
1212 cmsg
->cmsg_level
= tswap32(target_cmsg
->cmsg_level
);
1214 cmsg
->cmsg_type
= tswap32(target_cmsg
->cmsg_type
);
1215 cmsg
->cmsg_len
= CMSG_LEN(len
);
1217 if (cmsg
->cmsg_level
== SOL_SOCKET
&& cmsg
->cmsg_type
== SCM_RIGHTS
) {
1218 int *fd
= (int *)data
;
1219 int *target_fd
= (int *)target_data
;
1220 int i
, numfds
= len
/ sizeof(int);
1222 for (i
= 0; i
< numfds
; i
++)
1223 fd
[i
] = tswap32(target_fd
[i
]);
1224 } else if (cmsg
->cmsg_level
== SOL_SOCKET
1225 && cmsg
->cmsg_type
== SCM_CREDENTIALS
) {
1226 struct ucred
*cred
= (struct ucred
*)data
;
1227 struct target_ucred
*target_cred
=
1228 (struct target_ucred
*)target_data
;
1230 __put_user(target_cred
->pid
, &cred
->pid
);
1231 __put_user(target_cred
->uid
, &cred
->uid
);
1232 __put_user(target_cred
->gid
, &cred
->gid
);
1234 gemu_log("Unsupported ancillary data: %d/%d\n",
1235 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
1236 memcpy(data
, target_data
, len
);
1239 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
1240 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
);
1242 unlock_user(target_cmsg
, target_cmsg_addr
, 0);
1244 msgh
->msg_controllen
= space
;
1248 static inline abi_long
host_to_target_cmsg(struct target_msghdr
*target_msgh
,
1249 struct msghdr
*msgh
)
1251 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1252 abi_long msg_controllen
;
1253 abi_ulong target_cmsg_addr
;
1254 struct target_cmsghdr
*target_cmsg
;
1255 socklen_t space
= 0;
1257 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1258 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1260 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1261 target_cmsg
= lock_user(VERIFY_WRITE
, target_cmsg_addr
, msg_controllen
, 0);
1263 return -TARGET_EFAULT
;
1265 while (cmsg
&& target_cmsg
) {
1266 void *data
= CMSG_DATA(cmsg
);
1267 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1269 int len
= cmsg
->cmsg_len
- CMSG_ALIGN(sizeof (struct cmsghdr
));
1271 space
+= TARGET_CMSG_SPACE(len
);
1272 if (space
> msg_controllen
) {
1273 space
-= TARGET_CMSG_SPACE(len
);
1274 gemu_log("Target cmsg overflow\n");
1278 if (cmsg
->cmsg_level
== SOL_SOCKET
) {
1279 target_cmsg
->cmsg_level
= tswap32(TARGET_SOL_SOCKET
);
1281 target_cmsg
->cmsg_level
= tswap32(cmsg
->cmsg_level
);
1283 target_cmsg
->cmsg_type
= tswap32(cmsg
->cmsg_type
);
1284 target_cmsg
->cmsg_len
= tswapal(TARGET_CMSG_LEN(len
));
1286 switch (cmsg
->cmsg_level
) {
1288 switch (cmsg
->cmsg_type
) {
1291 int *fd
= (int *)data
;
1292 int *target_fd
= (int *)target_data
;
1293 int i
, numfds
= len
/ sizeof(int);
1295 for (i
= 0; i
< numfds
; i
++)
1296 target_fd
[i
] = tswap32(fd
[i
]);
1301 struct timeval
*tv
= (struct timeval
*)data
;
1302 struct target_timeval
*target_tv
=
1303 (struct target_timeval
*)target_data
;
1305 if (len
!= sizeof(struct timeval
))
1308 /* copy struct timeval to target */
1309 target_tv
->tv_sec
= tswapal(tv
->tv_sec
);
1310 target_tv
->tv_usec
= tswapal(tv
->tv_usec
);
1313 case SCM_CREDENTIALS
:
1315 struct ucred
*cred
= (struct ucred
*)data
;
1316 struct target_ucred
*target_cred
=
1317 (struct target_ucred
*)target_data
;
1319 __put_user(cred
->pid
, &target_cred
->pid
);
1320 __put_user(cred
->uid
, &target_cred
->uid
);
1321 __put_user(cred
->gid
, &target_cred
->gid
);
1331 gemu_log("Unsupported ancillary data: %d/%d\n",
1332 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
1333 memcpy(target_data
, data
, len
);
1336 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
1337 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
);
1339 unlock_user(target_cmsg
, target_cmsg_addr
, space
);
1341 target_msgh
->msg_controllen
= tswapal(space
);
1345 /* do_setsockopt() Must return target values and target errnos. */
1346 static abi_long
do_setsockopt(int sockfd
, int level
, int optname
,
1347 abi_ulong optval_addr
, socklen_t optlen
)
1351 struct ip_mreqn
*ip_mreq
;
1352 struct ip_mreq_source
*ip_mreq_source
;
1356 /* TCP options all take an 'int' value. */
1357 if (optlen
< sizeof(uint32_t))
1358 return -TARGET_EINVAL
;
1360 if (get_user_u32(val
, optval_addr
))
1361 return -TARGET_EFAULT
;
1362 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
1369 case IP_ROUTER_ALERT
:
1373 case IP_MTU_DISCOVER
:
1379 case IP_MULTICAST_TTL
:
1380 case IP_MULTICAST_LOOP
:
1382 if (optlen
>= sizeof(uint32_t)) {
1383 if (get_user_u32(val
, optval_addr
))
1384 return -TARGET_EFAULT
;
1385 } else if (optlen
>= 1) {
1386 if (get_user_u8(val
, optval_addr
))
1387 return -TARGET_EFAULT
;
1389 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
1391 case IP_ADD_MEMBERSHIP
:
1392 case IP_DROP_MEMBERSHIP
:
1393 if (optlen
< sizeof (struct target_ip_mreq
) ||
1394 optlen
> sizeof (struct target_ip_mreqn
))
1395 return -TARGET_EINVAL
;
1397 ip_mreq
= (struct ip_mreqn
*) alloca(optlen
);
1398 target_to_host_ip_mreq(ip_mreq
, optval_addr
, optlen
);
1399 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq
, optlen
));
1402 case IP_BLOCK_SOURCE
:
1403 case IP_UNBLOCK_SOURCE
:
1404 case IP_ADD_SOURCE_MEMBERSHIP
:
1405 case IP_DROP_SOURCE_MEMBERSHIP
:
1406 if (optlen
!= sizeof (struct target_ip_mreq_source
))
1407 return -TARGET_EINVAL
;
1409 ip_mreq_source
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
1410 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq_source
, optlen
));
1411 unlock_user (ip_mreq_source
, optval_addr
, 0);
1420 case IPV6_MTU_DISCOVER
:
1423 case IPV6_RECVPKTINFO
:
1425 if (optlen
< sizeof(uint32_t)) {
1426 return -TARGET_EINVAL
;
1428 if (get_user_u32(val
, optval_addr
)) {
1429 return -TARGET_EFAULT
;
1431 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
1432 &val
, sizeof(val
)));
1441 /* struct icmp_filter takes an u32 value */
1442 if (optlen
< sizeof(uint32_t)) {
1443 return -TARGET_EINVAL
;
1446 if (get_user_u32(val
, optval_addr
)) {
1447 return -TARGET_EFAULT
;
1449 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
1450 &val
, sizeof(val
)));
1457 case TARGET_SOL_SOCKET
:
1459 case TARGET_SO_RCVTIMEO
:
1463 optname
= SO_RCVTIMEO
;
1466 if (optlen
!= sizeof(struct target_timeval
)) {
1467 return -TARGET_EINVAL
;
1470 if (copy_from_user_timeval(&tv
, optval_addr
)) {
1471 return -TARGET_EFAULT
;
1474 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
,
1478 case TARGET_SO_SNDTIMEO
:
1479 optname
= SO_SNDTIMEO
;
1481 case TARGET_SO_ATTACH_FILTER
:
1483 struct target_sock_fprog
*tfprog
;
1484 struct target_sock_filter
*tfilter
;
1485 struct sock_fprog fprog
;
1486 struct sock_filter
*filter
;
1489 if (optlen
!= sizeof(*tfprog
)) {
1490 return -TARGET_EINVAL
;
1492 if (!lock_user_struct(VERIFY_READ
, tfprog
, optval_addr
, 0)) {
1493 return -TARGET_EFAULT
;
1495 if (!lock_user_struct(VERIFY_READ
, tfilter
,
1496 tswapal(tfprog
->filter
), 0)) {
1497 unlock_user_struct(tfprog
, optval_addr
, 1);
1498 return -TARGET_EFAULT
;
1501 fprog
.len
= tswap16(tfprog
->len
);
1502 filter
= malloc(fprog
.len
* sizeof(*filter
));
1503 if (filter
== NULL
) {
1504 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
1505 unlock_user_struct(tfprog
, optval_addr
, 1);
1506 return -TARGET_ENOMEM
;
1508 for (i
= 0; i
< fprog
.len
; i
++) {
1509 filter
[i
].code
= tswap16(tfilter
[i
].code
);
1510 filter
[i
].jt
= tfilter
[i
].jt
;
1511 filter
[i
].jf
= tfilter
[i
].jf
;
1512 filter
[i
].k
= tswap32(tfilter
[i
].k
);
1514 fprog
.filter
= filter
;
1516 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
,
1517 SO_ATTACH_FILTER
, &fprog
, sizeof(fprog
)));
1520 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
1521 unlock_user_struct(tfprog
, optval_addr
, 1);
1524 case TARGET_SO_BINDTODEVICE
:
1526 char *dev_ifname
, *addr_ifname
;
1528 if (optlen
> IFNAMSIZ
- 1) {
1529 optlen
= IFNAMSIZ
- 1;
1531 dev_ifname
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
1533 return -TARGET_EFAULT
;
1535 optname
= SO_BINDTODEVICE
;
1536 addr_ifname
= alloca(IFNAMSIZ
);
1537 memcpy(addr_ifname
, dev_ifname
, optlen
);
1538 addr_ifname
[optlen
] = 0;
1539 ret
= get_errno(setsockopt(sockfd
, level
, optname
, addr_ifname
, optlen
));
1540 unlock_user (dev_ifname
, optval_addr
, 0);
1543 /* Options with 'int' argument. */
1544 case TARGET_SO_DEBUG
:
1547 case TARGET_SO_REUSEADDR
:
1548 optname
= SO_REUSEADDR
;
1550 case TARGET_SO_TYPE
:
1553 case TARGET_SO_ERROR
:
1556 case TARGET_SO_DONTROUTE
:
1557 optname
= SO_DONTROUTE
;
1559 case TARGET_SO_BROADCAST
:
1560 optname
= SO_BROADCAST
;
1562 case TARGET_SO_SNDBUF
:
1563 optname
= SO_SNDBUF
;
1565 case TARGET_SO_SNDBUFFORCE
:
1566 optname
= SO_SNDBUFFORCE
;
1568 case TARGET_SO_RCVBUF
:
1569 optname
= SO_RCVBUF
;
1571 case TARGET_SO_RCVBUFFORCE
:
1572 optname
= SO_RCVBUFFORCE
;
1574 case TARGET_SO_KEEPALIVE
:
1575 optname
= SO_KEEPALIVE
;
1577 case TARGET_SO_OOBINLINE
:
1578 optname
= SO_OOBINLINE
;
1580 case TARGET_SO_NO_CHECK
:
1581 optname
= SO_NO_CHECK
;
1583 case TARGET_SO_PRIORITY
:
1584 optname
= SO_PRIORITY
;
1587 case TARGET_SO_BSDCOMPAT
:
1588 optname
= SO_BSDCOMPAT
;
1591 case TARGET_SO_PASSCRED
:
1592 optname
= SO_PASSCRED
;
1594 case TARGET_SO_PASSSEC
:
1595 optname
= SO_PASSSEC
;
1597 case TARGET_SO_TIMESTAMP
:
1598 optname
= SO_TIMESTAMP
;
1600 case TARGET_SO_RCVLOWAT
:
1601 optname
= SO_RCVLOWAT
;
1607 if (optlen
< sizeof(uint32_t))
1608 return -TARGET_EINVAL
;
1610 if (get_user_u32(val
, optval_addr
))
1611 return -TARGET_EFAULT
;
1612 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
, &val
, sizeof(val
)));
1616 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level
, optname
);
1617 ret
= -TARGET_ENOPROTOOPT
;
1622 /* do_getsockopt() Must return target values and target errnos. */
1623 static abi_long
do_getsockopt(int sockfd
, int level
, int optname
,
1624 abi_ulong optval_addr
, abi_ulong optlen
)
1631 case TARGET_SOL_SOCKET
:
1634 /* These don't just return a single integer */
1635 case TARGET_SO_LINGER
:
1636 case TARGET_SO_RCVTIMEO
:
1637 case TARGET_SO_SNDTIMEO
:
1638 case TARGET_SO_PEERNAME
:
1640 case TARGET_SO_PEERCRED
: {
1643 struct target_ucred
*tcr
;
1645 if (get_user_u32(len
, optlen
)) {
1646 return -TARGET_EFAULT
;
1649 return -TARGET_EINVAL
;
1653 ret
= get_errno(getsockopt(sockfd
, level
, SO_PEERCRED
,
1661 if (!lock_user_struct(VERIFY_WRITE
, tcr
, optval_addr
, 0)) {
1662 return -TARGET_EFAULT
;
1664 __put_user(cr
.pid
, &tcr
->pid
);
1665 __put_user(cr
.uid
, &tcr
->uid
);
1666 __put_user(cr
.gid
, &tcr
->gid
);
1667 unlock_user_struct(tcr
, optval_addr
, 1);
1668 if (put_user_u32(len
, optlen
)) {
1669 return -TARGET_EFAULT
;
1673 /* Options with 'int' argument. */
1674 case TARGET_SO_DEBUG
:
1677 case TARGET_SO_REUSEADDR
:
1678 optname
= SO_REUSEADDR
;
1680 case TARGET_SO_TYPE
:
1683 case TARGET_SO_ERROR
:
1686 case TARGET_SO_DONTROUTE
:
1687 optname
= SO_DONTROUTE
;
1689 case TARGET_SO_BROADCAST
:
1690 optname
= SO_BROADCAST
;
1692 case TARGET_SO_SNDBUF
:
1693 optname
= SO_SNDBUF
;
1695 case TARGET_SO_RCVBUF
:
1696 optname
= SO_RCVBUF
;
1698 case TARGET_SO_KEEPALIVE
:
1699 optname
= SO_KEEPALIVE
;
1701 case TARGET_SO_OOBINLINE
:
1702 optname
= SO_OOBINLINE
;
1704 case TARGET_SO_NO_CHECK
:
1705 optname
= SO_NO_CHECK
;
1707 case TARGET_SO_PRIORITY
:
1708 optname
= SO_PRIORITY
;
1711 case TARGET_SO_BSDCOMPAT
:
1712 optname
= SO_BSDCOMPAT
;
1715 case TARGET_SO_PASSCRED
:
1716 optname
= SO_PASSCRED
;
1718 case TARGET_SO_TIMESTAMP
:
1719 optname
= SO_TIMESTAMP
;
1721 case TARGET_SO_RCVLOWAT
:
1722 optname
= SO_RCVLOWAT
;
1724 case TARGET_SO_ACCEPTCONN
:
1725 optname
= SO_ACCEPTCONN
;
1732 /* TCP options all take an 'int' value. */
1734 if (get_user_u32(len
, optlen
))
1735 return -TARGET_EFAULT
;
1737 return -TARGET_EINVAL
;
1739 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
1742 if (optname
== SO_TYPE
) {
1743 val
= host_to_target_sock_type(val
);
1748 if (put_user_u32(val
, optval_addr
))
1749 return -TARGET_EFAULT
;
1751 if (put_user_u8(val
, optval_addr
))
1752 return -TARGET_EFAULT
;
1754 if (put_user_u32(len
, optlen
))
1755 return -TARGET_EFAULT
;
1762 case IP_ROUTER_ALERT
:
1766 case IP_MTU_DISCOVER
:
1772 case IP_MULTICAST_TTL
:
1773 case IP_MULTICAST_LOOP
:
1774 if (get_user_u32(len
, optlen
))
1775 return -TARGET_EFAULT
;
1777 return -TARGET_EINVAL
;
1779 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
1782 if (len
< sizeof(int) && len
> 0 && val
>= 0 && val
< 255) {
1784 if (put_user_u32(len
, optlen
)
1785 || put_user_u8(val
, optval_addr
))
1786 return -TARGET_EFAULT
;
1788 if (len
> sizeof(int))
1790 if (put_user_u32(len
, optlen
)
1791 || put_user_u32(val
, optval_addr
))
1792 return -TARGET_EFAULT
;
1796 ret
= -TARGET_ENOPROTOOPT
;
1802 gemu_log("getsockopt level=%d optname=%d not yet supported\n",
1804 ret
= -TARGET_EOPNOTSUPP
;
1810 static struct iovec
*lock_iovec(int type
, abi_ulong target_addr
,
1811 int count
, int copy
)
1813 struct target_iovec
*target_vec
;
1815 abi_ulong total_len
, max_len
;
1818 bool bad_address
= false;
1824 if (count
< 0 || count
> IOV_MAX
) {
1829 vec
= calloc(count
, sizeof(struct iovec
));
1835 target_vec
= lock_user(VERIFY_READ
, target_addr
,
1836 count
* sizeof(struct target_iovec
), 1);
1837 if (target_vec
== NULL
) {
1842 /* ??? If host page size > target page size, this will result in a
1843 value larger than what we can actually support. */
1844 max_len
= 0x7fffffff & TARGET_PAGE_MASK
;
1847 for (i
= 0; i
< count
; i
++) {
1848 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
1849 abi_long len
= tswapal(target_vec
[i
].iov_len
);
1854 } else if (len
== 0) {
1855 /* Zero length pointer is ignored. */
1856 vec
[i
].iov_base
= 0;
1858 vec
[i
].iov_base
= lock_user(type
, base
, len
, copy
);
1859 /* If the first buffer pointer is bad, this is a fault. But
1860 * subsequent bad buffers will result in a partial write; this
1861 * is realized by filling the vector with null pointers and
1863 if (!vec
[i
].iov_base
) {
1874 if (len
> max_len
- total_len
) {
1875 len
= max_len
- total_len
;
1878 vec
[i
].iov_len
= len
;
1882 unlock_user(target_vec
, target_addr
, 0);
1887 if (tswapal(target_vec
[i
].iov_len
) > 0) {
1888 unlock_user(vec
[i
].iov_base
, tswapal(target_vec
[i
].iov_base
), 0);
1891 unlock_user(target_vec
, target_addr
, 0);
1898 static void unlock_iovec(struct iovec
*vec
, abi_ulong target_addr
,
1899 int count
, int copy
)
1901 struct target_iovec
*target_vec
;
1904 target_vec
= lock_user(VERIFY_READ
, target_addr
,
1905 count
* sizeof(struct target_iovec
), 1);
1907 for (i
= 0; i
< count
; i
++) {
1908 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
1909 abi_long len
= tswapal(target_vec
[i
].iov_len
);
1913 unlock_user(vec
[i
].iov_base
, base
, copy
? vec
[i
].iov_len
: 0);
1915 unlock_user(target_vec
, target_addr
, 0);
1921 static inline int target_to_host_sock_type(int *type
)
1924 int target_type
= *type
;
1926 switch (target_type
& TARGET_SOCK_TYPE_MASK
) {
1927 case TARGET_SOCK_DGRAM
:
1928 host_type
= SOCK_DGRAM
;
1930 case TARGET_SOCK_STREAM
:
1931 host_type
= SOCK_STREAM
;
1934 host_type
= target_type
& TARGET_SOCK_TYPE_MASK
;
1937 if (target_type
& TARGET_SOCK_CLOEXEC
) {
1938 #if defined(SOCK_CLOEXEC)
1939 host_type
|= SOCK_CLOEXEC
;
1941 return -TARGET_EINVAL
;
1944 if (target_type
& TARGET_SOCK_NONBLOCK
) {
1945 #if defined(SOCK_NONBLOCK)
1946 host_type
|= SOCK_NONBLOCK
;
1947 #elif !defined(O_NONBLOCK)
1948 return -TARGET_EINVAL
;
1955 /* Try to emulate socket type flags after socket creation. */
1956 static int sock_flags_fixup(int fd
, int target_type
)
1958 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
1959 if (target_type
& TARGET_SOCK_NONBLOCK
) {
1960 int flags
= fcntl(fd
, F_GETFL
);
1961 if (fcntl(fd
, F_SETFL
, O_NONBLOCK
| flags
) == -1) {
1963 return -TARGET_EINVAL
;
1970 /* do_socket() Must return target values and target errnos. */
1971 static abi_long
do_socket(int domain
, int type
, int protocol
)
1973 int target_type
= type
;
1976 ret
= target_to_host_sock_type(&type
);
1981 if (domain
== PF_NETLINK
)
1982 return -TARGET_EAFNOSUPPORT
;
1983 ret
= get_errno(socket(domain
, type
, protocol
));
1985 ret
= sock_flags_fixup(ret
, target_type
);
1990 /* do_bind() Must return target values and target errnos. */
1991 static abi_long
do_bind(int sockfd
, abi_ulong target_addr
,
1997 if ((int)addrlen
< 0) {
1998 return -TARGET_EINVAL
;
2001 addr
= alloca(addrlen
+1);
2003 ret
= target_to_host_sockaddr(addr
, target_addr
, addrlen
);
2007 return get_errno(bind(sockfd
, addr
, addrlen
));
2010 /* do_connect() Must return target values and target errnos. */
2011 static abi_long
do_connect(int sockfd
, abi_ulong target_addr
,
2017 if ((int)addrlen
< 0) {
2018 return -TARGET_EINVAL
;
2021 addr
= alloca(addrlen
+1);
2023 ret
= target_to_host_sockaddr(addr
, target_addr
, addrlen
);
2027 return get_errno(connect(sockfd
, addr
, addrlen
));
2030 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
2031 static abi_long
do_sendrecvmsg_locked(int fd
, struct target_msghdr
*msgp
,
2032 int flags
, int send
)
2038 abi_ulong target_vec
;
2040 if (msgp
->msg_name
) {
2041 msg
.msg_namelen
= tswap32(msgp
->msg_namelen
);
2042 msg
.msg_name
= alloca(msg
.msg_namelen
+1);
2043 ret
= target_to_host_sockaddr(msg
.msg_name
, tswapal(msgp
->msg_name
),
2049 msg
.msg_name
= NULL
;
2050 msg
.msg_namelen
= 0;
2052 msg
.msg_controllen
= 2 * tswapal(msgp
->msg_controllen
);
2053 msg
.msg_control
= alloca(msg
.msg_controllen
);
2054 msg
.msg_flags
= tswap32(msgp
->msg_flags
);
2056 count
= tswapal(msgp
->msg_iovlen
);
2057 target_vec
= tswapal(msgp
->msg_iov
);
2058 vec
= lock_iovec(send
? VERIFY_READ
: VERIFY_WRITE
,
2059 target_vec
, count
, send
);
2061 ret
= -host_to_target_errno(errno
);
2064 msg
.msg_iovlen
= count
;
2068 ret
= target_to_host_cmsg(&msg
, msgp
);
2070 ret
= get_errno(sendmsg(fd
, &msg
, flags
));
2072 ret
= get_errno(recvmsg(fd
, &msg
, flags
));
2073 if (!is_error(ret
)) {
2075 ret
= host_to_target_cmsg(msgp
, &msg
);
2076 if (!is_error(ret
)) {
2077 msgp
->msg_namelen
= tswap32(msg
.msg_namelen
);
2078 if (msg
.msg_name
!= NULL
) {
2079 ret
= host_to_target_sockaddr(tswapal(msgp
->msg_name
),
2080 msg
.msg_name
, msg
.msg_namelen
);
2092 unlock_iovec(vec
, target_vec
, count
, !send
);
2097 static abi_long
do_sendrecvmsg(int fd
, abi_ulong target_msg
,
2098 int flags
, int send
)
2101 struct target_msghdr
*msgp
;
2103 if (!lock_user_struct(send
? VERIFY_READ
: VERIFY_WRITE
,
2107 return -TARGET_EFAULT
;
2109 ret
= do_sendrecvmsg_locked(fd
, msgp
, flags
, send
);
2110 unlock_user_struct(msgp
, target_msg
, send
? 0 : 1);
2114 #ifdef TARGET_NR_sendmmsg
2115 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
2116 * so it might not have this *mmsg-specific flag either.
2118 #ifndef MSG_WAITFORONE
2119 #define MSG_WAITFORONE 0x10000
2122 static abi_long
do_sendrecvmmsg(int fd
, abi_ulong target_msgvec
,
2123 unsigned int vlen
, unsigned int flags
,
2126 struct target_mmsghdr
*mmsgp
;
2130 if (vlen
> UIO_MAXIOV
) {
2134 mmsgp
= lock_user(VERIFY_WRITE
, target_msgvec
, sizeof(*mmsgp
) * vlen
, 1);
2136 return -TARGET_EFAULT
;
2139 for (i
= 0; i
< vlen
; i
++) {
2140 ret
= do_sendrecvmsg_locked(fd
, &mmsgp
[i
].msg_hdr
, flags
, send
);
2141 if (is_error(ret
)) {
2144 mmsgp
[i
].msg_len
= tswap32(ret
);
2145 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2146 if (flags
& MSG_WAITFORONE
) {
2147 flags
|= MSG_DONTWAIT
;
2151 unlock_user(mmsgp
, target_msgvec
, sizeof(*mmsgp
) * i
);
2153 /* Return number of datagrams sent if we sent any at all;
2154 * otherwise return the error.
2163 /* If we don't have a system accept4() then just call accept.
2164 * The callsites to do_accept4() will ensure that they don't
2165 * pass a non-zero flags argument in this config.
2167 #ifndef CONFIG_ACCEPT4
2168 static inline int accept4(int sockfd
, struct sockaddr
*addr
,
2169 socklen_t
*addrlen
, int flags
)
2172 return accept(sockfd
, addr
, addrlen
);
2176 /* do_accept4() Must return target values and target errnos. */
2177 static abi_long
do_accept4(int fd
, abi_ulong target_addr
,
2178 abi_ulong target_addrlen_addr
, int flags
)
2185 host_flags
= target_to_host_bitmask(flags
, fcntl_flags_tbl
);
2187 if (target_addr
== 0) {
2188 return get_errno(accept4(fd
, NULL
, NULL
, host_flags
));
2191 /* linux returns EINVAL if addrlen pointer is invalid */
2192 if (get_user_u32(addrlen
, target_addrlen_addr
))
2193 return -TARGET_EINVAL
;
2195 if ((int)addrlen
< 0) {
2196 return -TARGET_EINVAL
;
2199 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
2200 return -TARGET_EINVAL
;
2202 addr
= alloca(addrlen
);
2204 ret
= get_errno(accept4(fd
, addr
, &addrlen
, host_flags
));
2205 if (!is_error(ret
)) {
2206 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
2207 if (put_user_u32(addrlen
, target_addrlen_addr
))
2208 ret
= -TARGET_EFAULT
;
2213 /* do_getpeername() Must return target values and target errnos. */
2214 static abi_long
do_getpeername(int fd
, abi_ulong target_addr
,
2215 abi_ulong target_addrlen_addr
)
2221 if (get_user_u32(addrlen
, target_addrlen_addr
))
2222 return -TARGET_EFAULT
;
2224 if ((int)addrlen
< 0) {
2225 return -TARGET_EINVAL
;
2228 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
2229 return -TARGET_EFAULT
;
2231 addr
= alloca(addrlen
);
2233 ret
= get_errno(getpeername(fd
, addr
, &addrlen
));
2234 if (!is_error(ret
)) {
2235 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
2236 if (put_user_u32(addrlen
, target_addrlen_addr
))
2237 ret
= -TARGET_EFAULT
;
2242 /* do_getsockname() Must return target values and target errnos. */
2243 static abi_long
do_getsockname(int fd
, abi_ulong target_addr
,
2244 abi_ulong target_addrlen_addr
)
2250 if (get_user_u32(addrlen
, target_addrlen_addr
))
2251 return -TARGET_EFAULT
;
2253 if ((int)addrlen
< 0) {
2254 return -TARGET_EINVAL
;
2257 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
2258 return -TARGET_EFAULT
;
2260 addr
= alloca(addrlen
);
2262 ret
= get_errno(getsockname(fd
, addr
, &addrlen
));
2263 if (!is_error(ret
)) {
2264 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
2265 if (put_user_u32(addrlen
, target_addrlen_addr
))
2266 ret
= -TARGET_EFAULT
;
2271 /* do_socketpair() Must return target values and target errnos. */
2272 static abi_long
do_socketpair(int domain
, int type
, int protocol
,
2273 abi_ulong target_tab_addr
)
2278 target_to_host_sock_type(&type
);
2280 ret
= get_errno(socketpair(domain
, type
, protocol
, tab
));
2281 if (!is_error(ret
)) {
2282 if (put_user_s32(tab
[0], target_tab_addr
)
2283 || put_user_s32(tab
[1], target_tab_addr
+ sizeof(tab
[0])))
2284 ret
= -TARGET_EFAULT
;
2289 /* do_sendto() Must return target values and target errnos. */
2290 static abi_long
do_sendto(int fd
, abi_ulong msg
, size_t len
, int flags
,
2291 abi_ulong target_addr
, socklen_t addrlen
)
2297 if ((int)addrlen
< 0) {
2298 return -TARGET_EINVAL
;
2301 host_msg
= lock_user(VERIFY_READ
, msg
, len
, 1);
2303 return -TARGET_EFAULT
;
2305 addr
= alloca(addrlen
+1);
2306 ret
= target_to_host_sockaddr(addr
, target_addr
, addrlen
);
2308 unlock_user(host_msg
, msg
, 0);
2311 ret
= get_errno(sendto(fd
, host_msg
, len
, flags
, addr
, addrlen
));
2313 ret
= get_errno(send(fd
, host_msg
, len
, flags
));
2315 unlock_user(host_msg
, msg
, 0);
2319 /* do_recvfrom() Must return target values and target errnos. */
2320 static abi_long
do_recvfrom(int fd
, abi_ulong msg
, size_t len
, int flags
,
2321 abi_ulong target_addr
,
2322 abi_ulong target_addrlen
)
2329 host_msg
= lock_user(VERIFY_WRITE
, msg
, len
, 0);
2331 return -TARGET_EFAULT
;
2333 if (get_user_u32(addrlen
, target_addrlen
)) {
2334 ret
= -TARGET_EFAULT
;
2337 if ((int)addrlen
< 0) {
2338 ret
= -TARGET_EINVAL
;
2341 addr
= alloca(addrlen
);
2342 ret
= get_errno(recvfrom(fd
, host_msg
, len
, flags
, addr
, &addrlen
));
2344 addr
= NULL
; /* To keep compiler quiet. */
2345 ret
= get_errno(qemu_recv(fd
, host_msg
, len
, flags
));
2347 if (!is_error(ret
)) {
2349 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
2350 if (put_user_u32(addrlen
, target_addrlen
)) {
2351 ret
= -TARGET_EFAULT
;
2355 unlock_user(host_msg
, msg
, len
);
2358 unlock_user(host_msg
, msg
, 0);
2363 #ifdef TARGET_NR_socketcall
2364 /* do_socketcall() Must return target values and target errnos. */
2365 static abi_long
do_socketcall(int num
, abi_ulong vptr
)
2367 static const unsigned ac
[] = { /* number of arguments per call */
2368 [SOCKOP_socket
] = 3, /* domain, type, protocol */
2369 [SOCKOP_bind
] = 3, /* sockfd, addr, addrlen */
2370 [SOCKOP_connect
] = 3, /* sockfd, addr, addrlen */
2371 [SOCKOP_listen
] = 2, /* sockfd, backlog */
2372 [SOCKOP_accept
] = 3, /* sockfd, addr, addrlen */
2373 [SOCKOP_accept4
] = 4, /* sockfd, addr, addrlen, flags */
2374 [SOCKOP_getsockname
] = 3, /* sockfd, addr, addrlen */
2375 [SOCKOP_getpeername
] = 3, /* sockfd, addr, addrlen */
2376 [SOCKOP_socketpair
] = 4, /* domain, type, protocol, tab */
2377 [SOCKOP_send
] = 4, /* sockfd, msg, len, flags */
2378 [SOCKOP_recv
] = 4, /* sockfd, msg, len, flags */
2379 [SOCKOP_sendto
] = 6, /* sockfd, msg, len, flags, addr, addrlen */
2380 [SOCKOP_recvfrom
] = 6, /* sockfd, msg, len, flags, addr, addrlen */
2381 [SOCKOP_shutdown
] = 2, /* sockfd, how */
2382 [SOCKOP_sendmsg
] = 3, /* sockfd, msg, flags */
2383 [SOCKOP_recvmsg
] = 3, /* sockfd, msg, flags */
2384 [SOCKOP_setsockopt
] = 5, /* sockfd, level, optname, optval, optlen */
2385 [SOCKOP_getsockopt
] = 5, /* sockfd, level, optname, optval, optlen */
2387 abi_long a
[6]; /* max 6 args */
2389 /* first, collect the arguments in a[] according to ac[] */
2390 if (num
>= 0 && num
< ARRAY_SIZE(ac
)) {
2392 assert(ARRAY_SIZE(a
) >= ac
[num
]); /* ensure we have space for args */
2393 for (i
= 0; i
< ac
[num
]; ++i
) {
2394 if (get_user_ual(a
[i
], vptr
+ i
* sizeof(abi_long
)) != 0) {
2395 return -TARGET_EFAULT
;
2400 /* now when we have the args, actually handle the call */
2402 case SOCKOP_socket
: /* domain, type, protocol */
2403 return do_socket(a
[0], a
[1], a
[2]);
2404 case SOCKOP_bind
: /* sockfd, addr, addrlen */
2405 return do_bind(a
[0], a
[1], a
[2]);
2406 case SOCKOP_connect
: /* sockfd, addr, addrlen */
2407 return do_connect(a
[0], a
[1], a
[2]);
2408 case SOCKOP_listen
: /* sockfd, backlog */
2409 return get_errno(listen(a
[0], a
[1]));
2410 case SOCKOP_accept
: /* sockfd, addr, addrlen */
2411 return do_accept4(a
[0], a
[1], a
[2], 0);
2412 case SOCKOP_accept4
: /* sockfd, addr, addrlen, flags */
2413 return do_accept4(a
[0], a
[1], a
[2], a
[3]);
2414 case SOCKOP_getsockname
: /* sockfd, addr, addrlen */
2415 return do_getsockname(a
[0], a
[1], a
[2]);
2416 case SOCKOP_getpeername
: /* sockfd, addr, addrlen */
2417 return do_getpeername(a
[0], a
[1], a
[2]);
2418 case SOCKOP_socketpair
: /* domain, type, protocol, tab */
2419 return do_socketpair(a
[0], a
[1], a
[2], a
[3]);
2420 case SOCKOP_send
: /* sockfd, msg, len, flags */
2421 return do_sendto(a
[0], a
[1], a
[2], a
[3], 0, 0);
2422 case SOCKOP_recv
: /* sockfd, msg, len, flags */
2423 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], 0, 0);
2424 case SOCKOP_sendto
: /* sockfd, msg, len, flags, addr, addrlen */
2425 return do_sendto(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
2426 case SOCKOP_recvfrom
: /* sockfd, msg, len, flags, addr, addrlen */
2427 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
2428 case SOCKOP_shutdown
: /* sockfd, how */
2429 return get_errno(shutdown(a
[0], a
[1]));
2430 case SOCKOP_sendmsg
: /* sockfd, msg, flags */
2431 return do_sendrecvmsg(a
[0], a
[1], a
[2], 1);
2432 case SOCKOP_recvmsg
: /* sockfd, msg, flags */
2433 return do_sendrecvmsg(a
[0], a
[1], a
[2], 0);
2434 case SOCKOP_setsockopt
: /* sockfd, level, optname, optval, optlen */
2435 return do_setsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
2436 case SOCKOP_getsockopt
: /* sockfd, level, optname, optval, optlen */
2437 return do_getsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
2439 gemu_log("Unsupported socketcall: %d\n", num
);
2440 return -TARGET_ENOSYS
;
2445 #define N_SHM_REGIONS 32
2447 static struct shm_region
{
2450 } shm_regions
[N_SHM_REGIONS
];
2452 struct target_semid_ds
2454 struct target_ipc_perm sem_perm
;
2455 abi_ulong sem_otime
;
2456 #if !defined(TARGET_PPC64)
2457 abi_ulong __unused1
;
2459 abi_ulong sem_ctime
;
2460 #if !defined(TARGET_PPC64)
2461 abi_ulong __unused2
;
2463 abi_ulong sem_nsems
;
2464 abi_ulong __unused3
;
2465 abi_ulong __unused4
;
2468 static inline abi_long
target_to_host_ipc_perm(struct ipc_perm
*host_ip
,
2469 abi_ulong target_addr
)
2471 struct target_ipc_perm
*target_ip
;
2472 struct target_semid_ds
*target_sd
;
2474 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
2475 return -TARGET_EFAULT
;
2476 target_ip
= &(target_sd
->sem_perm
);
2477 host_ip
->__key
= tswap32(target_ip
->__key
);
2478 host_ip
->uid
= tswap32(target_ip
->uid
);
2479 host_ip
->gid
= tswap32(target_ip
->gid
);
2480 host_ip
->cuid
= tswap32(target_ip
->cuid
);
2481 host_ip
->cgid
= tswap32(target_ip
->cgid
);
2482 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
2483 host_ip
->mode
= tswap32(target_ip
->mode
);
2485 host_ip
->mode
= tswap16(target_ip
->mode
);
2487 #if defined(TARGET_PPC)
2488 host_ip
->__seq
= tswap32(target_ip
->__seq
);
2490 host_ip
->__seq
= tswap16(target_ip
->__seq
);
2492 unlock_user_struct(target_sd
, target_addr
, 0);
2496 static inline abi_long
host_to_target_ipc_perm(abi_ulong target_addr
,
2497 struct ipc_perm
*host_ip
)
2499 struct target_ipc_perm
*target_ip
;
2500 struct target_semid_ds
*target_sd
;
2502 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
2503 return -TARGET_EFAULT
;
2504 target_ip
= &(target_sd
->sem_perm
);
2505 target_ip
->__key
= tswap32(host_ip
->__key
);
2506 target_ip
->uid
= tswap32(host_ip
->uid
);
2507 target_ip
->gid
= tswap32(host_ip
->gid
);
2508 target_ip
->cuid
= tswap32(host_ip
->cuid
);
2509 target_ip
->cgid
= tswap32(host_ip
->cgid
);
2510 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
2511 target_ip
->mode
= tswap32(host_ip
->mode
);
2513 target_ip
->mode
= tswap16(host_ip
->mode
);
2515 #if defined(TARGET_PPC)
2516 target_ip
->__seq
= tswap32(host_ip
->__seq
);
2518 target_ip
->__seq
= tswap16(host_ip
->__seq
);
2520 unlock_user_struct(target_sd
, target_addr
, 1);
2524 static inline abi_long
target_to_host_semid_ds(struct semid_ds
*host_sd
,
2525 abi_ulong target_addr
)
2527 struct target_semid_ds
*target_sd
;
2529 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
2530 return -TARGET_EFAULT
;
2531 if (target_to_host_ipc_perm(&(host_sd
->sem_perm
),target_addr
))
2532 return -TARGET_EFAULT
;
2533 host_sd
->sem_nsems
= tswapal(target_sd
->sem_nsems
);
2534 host_sd
->sem_otime
= tswapal(target_sd
->sem_otime
);
2535 host_sd
->sem_ctime
= tswapal(target_sd
->sem_ctime
);
2536 unlock_user_struct(target_sd
, target_addr
, 0);
2540 static inline abi_long
host_to_target_semid_ds(abi_ulong target_addr
,
2541 struct semid_ds
*host_sd
)
2543 struct target_semid_ds
*target_sd
;
2545 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
2546 return -TARGET_EFAULT
;
2547 if (host_to_target_ipc_perm(target_addr
,&(host_sd
->sem_perm
)))
2548 return -TARGET_EFAULT
;
2549 target_sd
->sem_nsems
= tswapal(host_sd
->sem_nsems
);
2550 target_sd
->sem_otime
= tswapal(host_sd
->sem_otime
);
2551 target_sd
->sem_ctime
= tswapal(host_sd
->sem_ctime
);
2552 unlock_user_struct(target_sd
, target_addr
, 1);
2556 struct target_seminfo
{
2569 static inline abi_long
host_to_target_seminfo(abi_ulong target_addr
,
2570 struct seminfo
*host_seminfo
)
2572 struct target_seminfo
*target_seminfo
;
2573 if (!lock_user_struct(VERIFY_WRITE
, target_seminfo
, target_addr
, 0))
2574 return -TARGET_EFAULT
;
2575 __put_user(host_seminfo
->semmap
, &target_seminfo
->semmap
);
2576 __put_user(host_seminfo
->semmni
, &target_seminfo
->semmni
);
2577 __put_user(host_seminfo
->semmns
, &target_seminfo
->semmns
);
2578 __put_user(host_seminfo
->semmnu
, &target_seminfo
->semmnu
);
2579 __put_user(host_seminfo
->semmsl
, &target_seminfo
->semmsl
);
2580 __put_user(host_seminfo
->semopm
, &target_seminfo
->semopm
);
2581 __put_user(host_seminfo
->semume
, &target_seminfo
->semume
);
2582 __put_user(host_seminfo
->semusz
, &target_seminfo
->semusz
);
2583 __put_user(host_seminfo
->semvmx
, &target_seminfo
->semvmx
);
2584 __put_user(host_seminfo
->semaem
, &target_seminfo
->semaem
);
2585 unlock_user_struct(target_seminfo
, target_addr
, 1);
2591 struct semid_ds
*buf
;
2592 unsigned short *array
;
2593 struct seminfo
*__buf
;
2596 union target_semun
{
2603 static inline abi_long
target_to_host_semarray(int semid
, unsigned short **host_array
,
2604 abi_ulong target_addr
)
2607 unsigned short *array
;
2609 struct semid_ds semid_ds
;
2612 semun
.buf
= &semid_ds
;
2614 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
2616 return get_errno(ret
);
2618 nsems
= semid_ds
.sem_nsems
;
2620 *host_array
= malloc(nsems
*sizeof(unsigned short));
2622 return -TARGET_ENOMEM
;
2624 array
= lock_user(VERIFY_READ
, target_addr
,
2625 nsems
*sizeof(unsigned short), 1);
2628 return -TARGET_EFAULT
;
2631 for(i
=0; i
<nsems
; i
++) {
2632 __get_user((*host_array
)[i
], &array
[i
]);
2634 unlock_user(array
, target_addr
, 0);
2639 static inline abi_long
host_to_target_semarray(int semid
, abi_ulong target_addr
,
2640 unsigned short **host_array
)
2643 unsigned short *array
;
2645 struct semid_ds semid_ds
;
2648 semun
.buf
= &semid_ds
;
2650 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
2652 return get_errno(ret
);
2654 nsems
= semid_ds
.sem_nsems
;
2656 array
= lock_user(VERIFY_WRITE
, target_addr
,
2657 nsems
*sizeof(unsigned short), 0);
2659 return -TARGET_EFAULT
;
2661 for(i
=0; i
<nsems
; i
++) {
2662 __put_user((*host_array
)[i
], &array
[i
]);
2665 unlock_user(array
, target_addr
, 1);
2670 static inline abi_long
do_semctl(int semid
, int semnum
, int cmd
,
2671 union target_semun target_su
)
2674 struct semid_ds dsarg
;
2675 unsigned short *array
= NULL
;
2676 struct seminfo seminfo
;
2677 abi_long ret
= -TARGET_EINVAL
;
2684 /* In 64 bit cross-endian situations, we will erroneously pick up
2685 * the wrong half of the union for the "val" element. To rectify
2686 * this, the entire 8-byte structure is byteswapped, followed by
2687 * a swap of the 4 byte val field. In other cases, the data is
2688 * already in proper host byte order. */
2689 if (sizeof(target_su
.val
) != (sizeof(target_su
.buf
))) {
2690 target_su
.buf
= tswapal(target_su
.buf
);
2691 arg
.val
= tswap32(target_su
.val
);
2693 arg
.val
= target_su
.val
;
2695 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
2699 err
= target_to_host_semarray(semid
, &array
, target_su
.array
);
2703 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
2704 err
= host_to_target_semarray(semid
, target_su
.array
, &array
);
2711 err
= target_to_host_semid_ds(&dsarg
, target_su
.buf
);
2715 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
2716 err
= host_to_target_semid_ds(target_su
.buf
, &dsarg
);
2722 arg
.__buf
= &seminfo
;
2723 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
2724 err
= host_to_target_seminfo(target_su
.__buf
, &seminfo
);
2732 ret
= get_errno(semctl(semid
, semnum
, cmd
, NULL
));
2739 struct target_sembuf
{
2740 unsigned short sem_num
;
2745 static inline abi_long
target_to_host_sembuf(struct sembuf
*host_sembuf
,
2746 abi_ulong target_addr
,
2749 struct target_sembuf
*target_sembuf
;
2752 target_sembuf
= lock_user(VERIFY_READ
, target_addr
,
2753 nsops
*sizeof(struct target_sembuf
), 1);
2755 return -TARGET_EFAULT
;
2757 for(i
=0; i
<nsops
; i
++) {
2758 __get_user(host_sembuf
[i
].sem_num
, &target_sembuf
[i
].sem_num
);
2759 __get_user(host_sembuf
[i
].sem_op
, &target_sembuf
[i
].sem_op
);
2760 __get_user(host_sembuf
[i
].sem_flg
, &target_sembuf
[i
].sem_flg
);
2763 unlock_user(target_sembuf
, target_addr
, 0);
2768 static inline abi_long
do_semop(int semid
, abi_long ptr
, unsigned nsops
)
2770 struct sembuf sops
[nsops
];
2772 if (target_to_host_sembuf(sops
, ptr
, nsops
))
2773 return -TARGET_EFAULT
;
2775 return get_errno(semop(semid
, sops
, nsops
));
2778 struct target_msqid_ds
2780 struct target_ipc_perm msg_perm
;
2781 abi_ulong msg_stime
;
2782 #if TARGET_ABI_BITS == 32
2783 abi_ulong __unused1
;
2785 abi_ulong msg_rtime
;
2786 #if TARGET_ABI_BITS == 32
2787 abi_ulong __unused2
;
2789 abi_ulong msg_ctime
;
2790 #if TARGET_ABI_BITS == 32
2791 abi_ulong __unused3
;
2793 abi_ulong __msg_cbytes
;
2795 abi_ulong msg_qbytes
;
2796 abi_ulong msg_lspid
;
2797 abi_ulong msg_lrpid
;
2798 abi_ulong __unused4
;
2799 abi_ulong __unused5
;
2802 static inline abi_long
target_to_host_msqid_ds(struct msqid_ds
*host_md
,
2803 abi_ulong target_addr
)
2805 struct target_msqid_ds
*target_md
;
2807 if (!lock_user_struct(VERIFY_READ
, target_md
, target_addr
, 1))
2808 return -TARGET_EFAULT
;
2809 if (target_to_host_ipc_perm(&(host_md
->msg_perm
),target_addr
))
2810 return -TARGET_EFAULT
;
2811 host_md
->msg_stime
= tswapal(target_md
->msg_stime
);
2812 host_md
->msg_rtime
= tswapal(target_md
->msg_rtime
);
2813 host_md
->msg_ctime
= tswapal(target_md
->msg_ctime
);
2814 host_md
->__msg_cbytes
= tswapal(target_md
->__msg_cbytes
);
2815 host_md
->msg_qnum
= tswapal(target_md
->msg_qnum
);
2816 host_md
->msg_qbytes
= tswapal(target_md
->msg_qbytes
);
2817 host_md
->msg_lspid
= tswapal(target_md
->msg_lspid
);
2818 host_md
->msg_lrpid
= tswapal(target_md
->msg_lrpid
);
2819 unlock_user_struct(target_md
, target_addr
, 0);
2823 static inline abi_long
host_to_target_msqid_ds(abi_ulong target_addr
,
2824 struct msqid_ds
*host_md
)
2826 struct target_msqid_ds
*target_md
;
2828 if (!lock_user_struct(VERIFY_WRITE
, target_md
, target_addr
, 0))
2829 return -TARGET_EFAULT
;
2830 if (host_to_target_ipc_perm(target_addr
,&(host_md
->msg_perm
)))
2831 return -TARGET_EFAULT
;
2832 target_md
->msg_stime
= tswapal(host_md
->msg_stime
);
2833 target_md
->msg_rtime
= tswapal(host_md
->msg_rtime
);
2834 target_md
->msg_ctime
= tswapal(host_md
->msg_ctime
);
2835 target_md
->__msg_cbytes
= tswapal(host_md
->__msg_cbytes
);
2836 target_md
->msg_qnum
= tswapal(host_md
->msg_qnum
);
2837 target_md
->msg_qbytes
= tswapal(host_md
->msg_qbytes
);
2838 target_md
->msg_lspid
= tswapal(host_md
->msg_lspid
);
2839 target_md
->msg_lrpid
= tswapal(host_md
->msg_lrpid
);
2840 unlock_user_struct(target_md
, target_addr
, 1);
2844 struct target_msginfo
{
2852 unsigned short int msgseg
;
2855 static inline abi_long
host_to_target_msginfo(abi_ulong target_addr
,
2856 struct msginfo
*host_msginfo
)
2858 struct target_msginfo
*target_msginfo
;
2859 if (!lock_user_struct(VERIFY_WRITE
, target_msginfo
, target_addr
, 0))
2860 return -TARGET_EFAULT
;
2861 __put_user(host_msginfo
->msgpool
, &target_msginfo
->msgpool
);
2862 __put_user(host_msginfo
->msgmap
, &target_msginfo
->msgmap
);
2863 __put_user(host_msginfo
->msgmax
, &target_msginfo
->msgmax
);
2864 __put_user(host_msginfo
->msgmnb
, &target_msginfo
->msgmnb
);
2865 __put_user(host_msginfo
->msgmni
, &target_msginfo
->msgmni
);
2866 __put_user(host_msginfo
->msgssz
, &target_msginfo
->msgssz
);
2867 __put_user(host_msginfo
->msgtql
, &target_msginfo
->msgtql
);
2868 __put_user(host_msginfo
->msgseg
, &target_msginfo
->msgseg
);
2869 unlock_user_struct(target_msginfo
, target_addr
, 1);
2873 static inline abi_long
do_msgctl(int msgid
, int cmd
, abi_long ptr
)
2875 struct msqid_ds dsarg
;
2876 struct msginfo msginfo
;
2877 abi_long ret
= -TARGET_EINVAL
;
2885 if (target_to_host_msqid_ds(&dsarg
,ptr
))
2886 return -TARGET_EFAULT
;
2887 ret
= get_errno(msgctl(msgid
, cmd
, &dsarg
));
2888 if (host_to_target_msqid_ds(ptr
,&dsarg
))
2889 return -TARGET_EFAULT
;
2892 ret
= get_errno(msgctl(msgid
, cmd
, NULL
));
2896 ret
= get_errno(msgctl(msgid
, cmd
, (struct msqid_ds
*)&msginfo
));
2897 if (host_to_target_msginfo(ptr
, &msginfo
))
2898 return -TARGET_EFAULT
;
2905 struct target_msgbuf
{
2910 static inline abi_long
do_msgsnd(int msqid
, abi_long msgp
,
2911 ssize_t msgsz
, int msgflg
)
2913 struct target_msgbuf
*target_mb
;
2914 struct msgbuf
*host_mb
;
2918 return -TARGET_EINVAL
;
2921 if (!lock_user_struct(VERIFY_READ
, target_mb
, msgp
, 0))
2922 return -TARGET_EFAULT
;
2923 host_mb
= malloc(msgsz
+sizeof(long));
2925 unlock_user_struct(target_mb
, msgp
, 0);
2926 return -TARGET_ENOMEM
;
2928 host_mb
->mtype
= (abi_long
) tswapal(target_mb
->mtype
);
2929 memcpy(host_mb
->mtext
, target_mb
->mtext
, msgsz
);
2930 ret
= get_errno(msgsnd(msqid
, host_mb
, msgsz
, msgflg
));
2932 unlock_user_struct(target_mb
, msgp
, 0);
2937 static inline abi_long
do_msgrcv(int msqid
, abi_long msgp
,
2938 unsigned int msgsz
, abi_long msgtyp
,
2941 struct target_msgbuf
*target_mb
;
2943 struct msgbuf
*host_mb
;
2946 if (!lock_user_struct(VERIFY_WRITE
, target_mb
, msgp
, 0))
2947 return -TARGET_EFAULT
;
2949 host_mb
= g_malloc(msgsz
+sizeof(long));
2950 ret
= get_errno(msgrcv(msqid
, host_mb
, msgsz
, msgtyp
, msgflg
));
2953 abi_ulong target_mtext_addr
= msgp
+ sizeof(abi_ulong
);
2954 target_mtext
= lock_user(VERIFY_WRITE
, target_mtext_addr
, ret
, 0);
2955 if (!target_mtext
) {
2956 ret
= -TARGET_EFAULT
;
2959 memcpy(target_mb
->mtext
, host_mb
->mtext
, ret
);
2960 unlock_user(target_mtext
, target_mtext_addr
, ret
);
2963 target_mb
->mtype
= tswapal(host_mb
->mtype
);
2967 unlock_user_struct(target_mb
, msgp
, 1);
2972 static inline abi_long
target_to_host_shmid_ds(struct shmid_ds
*host_sd
,
2973 abi_ulong target_addr
)
2975 struct target_shmid_ds
*target_sd
;
2977 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
2978 return -TARGET_EFAULT
;
2979 if (target_to_host_ipc_perm(&(host_sd
->shm_perm
), target_addr
))
2980 return -TARGET_EFAULT
;
2981 __get_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
2982 __get_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
2983 __get_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
2984 __get_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
2985 __get_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
2986 __get_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
2987 __get_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
2988 unlock_user_struct(target_sd
, target_addr
, 0);
2992 static inline abi_long
host_to_target_shmid_ds(abi_ulong target_addr
,
2993 struct shmid_ds
*host_sd
)
2995 struct target_shmid_ds
*target_sd
;
2997 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
2998 return -TARGET_EFAULT
;
2999 if (host_to_target_ipc_perm(target_addr
, &(host_sd
->shm_perm
)))
3000 return -TARGET_EFAULT
;
3001 __put_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
3002 __put_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
3003 __put_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
3004 __put_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
3005 __put_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
3006 __put_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
3007 __put_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
3008 unlock_user_struct(target_sd
, target_addr
, 1);
3012 struct target_shminfo
{
3020 static inline abi_long
host_to_target_shminfo(abi_ulong target_addr
,
3021 struct shminfo
*host_shminfo
)
3023 struct target_shminfo
*target_shminfo
;
3024 if (!lock_user_struct(VERIFY_WRITE
, target_shminfo
, target_addr
, 0))
3025 return -TARGET_EFAULT
;
3026 __put_user(host_shminfo
->shmmax
, &target_shminfo
->shmmax
);
3027 __put_user(host_shminfo
->shmmin
, &target_shminfo
->shmmin
);
3028 __put_user(host_shminfo
->shmmni
, &target_shminfo
->shmmni
);
3029 __put_user(host_shminfo
->shmseg
, &target_shminfo
->shmseg
);
3030 __put_user(host_shminfo
->shmall
, &target_shminfo
->shmall
);
3031 unlock_user_struct(target_shminfo
, target_addr
, 1);
3035 struct target_shm_info
{
3040 abi_ulong swap_attempts
;
3041 abi_ulong swap_successes
;
3044 static inline abi_long
host_to_target_shm_info(abi_ulong target_addr
,
3045 struct shm_info
*host_shm_info
)
3047 struct target_shm_info
*target_shm_info
;
3048 if (!lock_user_struct(VERIFY_WRITE
, target_shm_info
, target_addr
, 0))
3049 return -TARGET_EFAULT
;
3050 __put_user(host_shm_info
->used_ids
, &target_shm_info
->used_ids
);
3051 __put_user(host_shm_info
->shm_tot
, &target_shm_info
->shm_tot
);
3052 __put_user(host_shm_info
->shm_rss
, &target_shm_info
->shm_rss
);
3053 __put_user(host_shm_info
->shm_swp
, &target_shm_info
->shm_swp
);
3054 __put_user(host_shm_info
->swap_attempts
, &target_shm_info
->swap_attempts
);
3055 __put_user(host_shm_info
->swap_successes
, &target_shm_info
->swap_successes
);
3056 unlock_user_struct(target_shm_info
, target_addr
, 1);
3060 static inline abi_long
do_shmctl(int shmid
, int cmd
, abi_long buf
)
3062 struct shmid_ds dsarg
;
3063 struct shminfo shminfo
;
3064 struct shm_info shm_info
;
3065 abi_long ret
= -TARGET_EINVAL
;
3073 if (target_to_host_shmid_ds(&dsarg
, buf
))
3074 return -TARGET_EFAULT
;
3075 ret
= get_errno(shmctl(shmid
, cmd
, &dsarg
));
3076 if (host_to_target_shmid_ds(buf
, &dsarg
))
3077 return -TARGET_EFAULT
;
3080 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shminfo
));
3081 if (host_to_target_shminfo(buf
, &shminfo
))
3082 return -TARGET_EFAULT
;
3085 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shm_info
));
3086 if (host_to_target_shm_info(buf
, &shm_info
))
3087 return -TARGET_EFAULT
;
3092 ret
= get_errno(shmctl(shmid
, cmd
, NULL
));
3099 static inline abi_ulong
do_shmat(int shmid
, abi_ulong shmaddr
, int shmflg
)
3103 struct shmid_ds shm_info
;
3106 /* find out the length of the shared memory segment */
3107 ret
= get_errno(shmctl(shmid
, IPC_STAT
, &shm_info
));
3108 if (is_error(ret
)) {
3109 /* can't get length, bail out */
3116 host_raddr
= shmat(shmid
, (void *)g2h(shmaddr
), shmflg
);
3118 abi_ulong mmap_start
;
3120 mmap_start
= mmap_find_vma(0, shm_info
.shm_segsz
);
3122 if (mmap_start
== -1) {
3124 host_raddr
= (void *)-1;
3126 host_raddr
= shmat(shmid
, g2h(mmap_start
), shmflg
| SHM_REMAP
);
3129 if (host_raddr
== (void *)-1) {
3131 return get_errno((long)host_raddr
);
3133 raddr
=h2g((unsigned long)host_raddr
);
3135 page_set_flags(raddr
, raddr
+ shm_info
.shm_segsz
,
3136 PAGE_VALID
| PAGE_READ
|
3137 ((shmflg
& SHM_RDONLY
)? 0 : PAGE_WRITE
));
3139 for (i
= 0; i
< N_SHM_REGIONS
; i
++) {
3140 if (shm_regions
[i
].start
== 0) {
3141 shm_regions
[i
].start
= raddr
;
3142 shm_regions
[i
].size
= shm_info
.shm_segsz
;
3152 static inline abi_long
do_shmdt(abi_ulong shmaddr
)
3156 for (i
= 0; i
< N_SHM_REGIONS
; ++i
) {
3157 if (shm_regions
[i
].start
== shmaddr
) {
3158 shm_regions
[i
].start
= 0;
3159 page_set_flags(shmaddr
, shmaddr
+ shm_regions
[i
].size
, 0);
3164 return get_errno(shmdt(g2h(shmaddr
)));
3167 #ifdef TARGET_NR_ipc
3168 /* ??? This only works with linear mappings. */
3169 /* do_ipc() must return target values and target errnos. */
3170 static abi_long
do_ipc(unsigned int call
, abi_long first
,
3171 abi_long second
, abi_long third
,
3172 abi_long ptr
, abi_long fifth
)
3177 version
= call
>> 16;
3182 ret
= do_semop(first
, ptr
, second
);
3186 ret
= get_errno(semget(first
, second
, third
));
3189 case IPCOP_semctl
: {
3190 /* The semun argument to semctl is passed by value, so dereference the
3193 get_user_ual(atptr
, ptr
);
3194 ret
= do_semctl(first
, second
, third
,
3195 (union target_semun
) atptr
);
3200 ret
= get_errno(msgget(first
, second
));
3204 ret
= do_msgsnd(first
, ptr
, second
, third
);
3208 ret
= do_msgctl(first
, second
, ptr
);
3215 struct target_ipc_kludge
{
3220 if (!lock_user_struct(VERIFY_READ
, tmp
, ptr
, 1)) {
3221 ret
= -TARGET_EFAULT
;
3225 ret
= do_msgrcv(first
, tswapal(tmp
->msgp
), second
, tswapal(tmp
->msgtyp
), third
);
3227 unlock_user_struct(tmp
, ptr
, 0);
3231 ret
= do_msgrcv(first
, ptr
, second
, fifth
, third
);
3240 raddr
= do_shmat(first
, ptr
, second
);
3241 if (is_error(raddr
))
3242 return get_errno(raddr
);
3243 if (put_user_ual(raddr
, third
))
3244 return -TARGET_EFAULT
;
3248 ret
= -TARGET_EINVAL
;
3253 ret
= do_shmdt(ptr
);
3257 /* IPC_* flag values are the same on all linux platforms */
3258 ret
= get_errno(shmget(first
, second
, third
));
3261 /* IPC_* and SHM_* command values are the same on all linux platforms */
3263 ret
= do_shmctl(first
, second
, ptr
);
3266 gemu_log("Unsupported ipc call: %d (version %d)\n", call
, version
);
3267 ret
= -TARGET_ENOSYS
;
3274 /* kernel structure types definitions */
3276 #define STRUCT(name, ...) STRUCT_ ## name,
3277 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
3279 #include "syscall_types.h"
3282 #undef STRUCT_SPECIAL
3284 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
3285 #define STRUCT_SPECIAL(name)
3286 #include "syscall_types.h"
3288 #undef STRUCT_SPECIAL
3290 typedef struct IOCTLEntry IOCTLEntry
;
3292 typedef abi_long
do_ioctl_fn(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
3293 int fd
, abi_long cmd
, abi_long arg
);
3297 unsigned int host_cmd
;
3300 do_ioctl_fn
*do_ioctl
;
3301 const argtype arg_type
[5];
3304 #define IOC_R 0x0001
3305 #define IOC_W 0x0002
3306 #define IOC_RW (IOC_R | IOC_W)
3308 #define MAX_STRUCT_SIZE 4096
3310 #ifdef CONFIG_FIEMAP
3311 /* So fiemap access checks don't overflow on 32 bit systems.
3312 * This is very slightly smaller than the limit imposed by
3313 * the underlying kernel.
3315 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
3316 / sizeof(struct fiemap_extent))
3318 static abi_long
do_ioctl_fs_ioc_fiemap(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
3319 int fd
, abi_long cmd
, abi_long arg
)
3321 /* The parameter for this ioctl is a struct fiemap followed
3322 * by an array of struct fiemap_extent whose size is set
3323 * in fiemap->fm_extent_count. The array is filled in by the
3326 int target_size_in
, target_size_out
;
3328 const argtype
*arg_type
= ie
->arg_type
;
3329 const argtype extent_arg_type
[] = { MK_STRUCT(STRUCT_fiemap_extent
) };
3332 int i
, extent_size
= thunk_type_size(extent_arg_type
, 0);
3336 assert(arg_type
[0] == TYPE_PTR
);
3337 assert(ie
->access
== IOC_RW
);
3339 target_size_in
= thunk_type_size(arg_type
, 0);
3340 argptr
= lock_user(VERIFY_READ
, arg
, target_size_in
, 1);
3342 return -TARGET_EFAULT
;
3344 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
3345 unlock_user(argptr
, arg
, 0);
3346 fm
= (struct fiemap
*)buf_temp
;
3347 if (fm
->fm_extent_count
> FIEMAP_MAX_EXTENTS
) {
3348 return -TARGET_EINVAL
;
3351 outbufsz
= sizeof (*fm
) +
3352 (sizeof(struct fiemap_extent
) * fm
->fm_extent_count
);
3354 if (outbufsz
> MAX_STRUCT_SIZE
) {
3355 /* We can't fit all the extents into the fixed size buffer.
3356 * Allocate one that is large enough and use it instead.
3358 fm
= malloc(outbufsz
);
3360 return -TARGET_ENOMEM
;
3362 memcpy(fm
, buf_temp
, sizeof(struct fiemap
));
3365 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, fm
));
3366 if (!is_error(ret
)) {
3367 target_size_out
= target_size_in
;
3368 /* An extent_count of 0 means we were only counting the extents
3369 * so there are no structs to copy
3371 if (fm
->fm_extent_count
!= 0) {
3372 target_size_out
+= fm
->fm_mapped_extents
* extent_size
;
3374 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size_out
, 0);
3376 ret
= -TARGET_EFAULT
;
3378 /* Convert the struct fiemap */
3379 thunk_convert(argptr
, fm
, arg_type
, THUNK_TARGET
);
3380 if (fm
->fm_extent_count
!= 0) {
3381 p
= argptr
+ target_size_in
;
3382 /* ...and then all the struct fiemap_extents */
3383 for (i
= 0; i
< fm
->fm_mapped_extents
; i
++) {
3384 thunk_convert(p
, &fm
->fm_extents
[i
], extent_arg_type
,
3389 unlock_user(argptr
, arg
, target_size_out
);
3399 static abi_long
do_ioctl_ifconf(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
3400 int fd
, abi_long cmd
, abi_long arg
)
3402 const argtype
*arg_type
= ie
->arg_type
;
3406 struct ifconf
*host_ifconf
;
3408 const argtype ifreq_arg_type
[] = { MK_STRUCT(STRUCT_sockaddr_ifreq
) };
3409 int target_ifreq_size
;
3414 abi_long target_ifc_buf
;
3418 assert(arg_type
[0] == TYPE_PTR
);
3419 assert(ie
->access
== IOC_RW
);
3422 target_size
= thunk_type_size(arg_type
, 0);
3424 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3426 return -TARGET_EFAULT
;
3427 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
3428 unlock_user(argptr
, arg
, 0);
3430 host_ifconf
= (struct ifconf
*)(unsigned long)buf_temp
;
3431 target_ifc_len
= host_ifconf
->ifc_len
;
3432 target_ifc_buf
= (abi_long
)(unsigned long)host_ifconf
->ifc_buf
;
3434 target_ifreq_size
= thunk_type_size(ifreq_arg_type
, 0);
3435 nb_ifreq
= target_ifc_len
/ target_ifreq_size
;
3436 host_ifc_len
= nb_ifreq
* sizeof(struct ifreq
);
3438 outbufsz
= sizeof(*host_ifconf
) + host_ifc_len
;
3439 if (outbufsz
> MAX_STRUCT_SIZE
) {
3440 /* We can't fit all the extents into the fixed size buffer.
3441 * Allocate one that is large enough and use it instead.
3443 host_ifconf
= malloc(outbufsz
);
3445 return -TARGET_ENOMEM
;
3447 memcpy(host_ifconf
, buf_temp
, sizeof(*host_ifconf
));
3450 host_ifc_buf
= (char*)host_ifconf
+ sizeof(*host_ifconf
);
3452 host_ifconf
->ifc_len
= host_ifc_len
;
3453 host_ifconf
->ifc_buf
= host_ifc_buf
;
3455 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, host_ifconf
));
3456 if (!is_error(ret
)) {
3457 /* convert host ifc_len to target ifc_len */
3459 nb_ifreq
= host_ifconf
->ifc_len
/ sizeof(struct ifreq
);
3460 target_ifc_len
= nb_ifreq
* target_ifreq_size
;
3461 host_ifconf
->ifc_len
= target_ifc_len
;
3463 /* restore target ifc_buf */
3465 host_ifconf
->ifc_buf
= (char *)(unsigned long)target_ifc_buf
;
3467 /* copy struct ifconf to target user */
3469 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
3471 return -TARGET_EFAULT
;
3472 thunk_convert(argptr
, host_ifconf
, arg_type
, THUNK_TARGET
);
3473 unlock_user(argptr
, arg
, target_size
);
3475 /* copy ifreq[] to target user */
3477 argptr
= lock_user(VERIFY_WRITE
, target_ifc_buf
, target_ifc_len
, 0);
3478 for (i
= 0; i
< nb_ifreq
; i
++) {
3479 thunk_convert(argptr
+ i
* target_ifreq_size
,
3480 host_ifc_buf
+ i
* sizeof(struct ifreq
),
3481 ifreq_arg_type
, THUNK_TARGET
);
3483 unlock_user(argptr
, target_ifc_buf
, target_ifc_len
);
3493 static abi_long
do_ioctl_dm(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
3494 abi_long cmd
, abi_long arg
)
3497 struct dm_ioctl
*host_dm
;
3498 abi_long guest_data
;
3499 uint32_t guest_data_size
;
3501 const argtype
*arg_type
= ie
->arg_type
;
3503 void *big_buf
= NULL
;
3507 target_size
= thunk_type_size(arg_type
, 0);
3508 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3510 ret
= -TARGET_EFAULT
;
3513 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
3514 unlock_user(argptr
, arg
, 0);
3516 /* buf_temp is too small, so fetch things into a bigger buffer */
3517 big_buf
= g_malloc0(((struct dm_ioctl
*)buf_temp
)->data_size
* 2);
3518 memcpy(big_buf
, buf_temp
, target_size
);
3522 guest_data
= arg
+ host_dm
->data_start
;
3523 if ((guest_data
- arg
) < 0) {
3527 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
3528 host_data
= (char*)host_dm
+ host_dm
->data_start
;
3530 argptr
= lock_user(VERIFY_READ
, guest_data
, guest_data_size
, 1);
3531 switch (ie
->host_cmd
) {
3533 case DM_LIST_DEVICES
:
3536 case DM_DEV_SUSPEND
:
3539 case DM_TABLE_STATUS
:
3540 case DM_TABLE_CLEAR
:
3542 case DM_LIST_VERSIONS
:
3546 case DM_DEV_SET_GEOMETRY
:
3547 /* data contains only strings */
3548 memcpy(host_data
, argptr
, guest_data_size
);
3551 memcpy(host_data
, argptr
, guest_data_size
);
3552 *(uint64_t*)host_data
= tswap64(*(uint64_t*)argptr
);
3556 void *gspec
= argptr
;
3557 void *cur_data
= host_data
;
3558 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
3559 int spec_size
= thunk_type_size(arg_type
, 0);
3562 for (i
= 0; i
< host_dm
->target_count
; i
++) {
3563 struct dm_target_spec
*spec
= cur_data
;
3567 thunk_convert(spec
, gspec
, arg_type
, THUNK_HOST
);
3568 slen
= strlen((char*)gspec
+ spec_size
) + 1;
3570 spec
->next
= sizeof(*spec
) + slen
;
3571 strcpy((char*)&spec
[1], gspec
+ spec_size
);
3573 cur_data
+= spec
->next
;
3578 ret
= -TARGET_EINVAL
;
3579 unlock_user(argptr
, guest_data
, 0);
3582 unlock_user(argptr
, guest_data
, 0);
3584 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, buf_temp
));
3585 if (!is_error(ret
)) {
3586 guest_data
= arg
+ host_dm
->data_start
;
3587 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
3588 argptr
= lock_user(VERIFY_WRITE
, guest_data
, guest_data_size
, 0);
3589 switch (ie
->host_cmd
) {
3594 case DM_DEV_SUSPEND
:
3597 case DM_TABLE_CLEAR
:
3599 case DM_DEV_SET_GEOMETRY
:
3600 /* no return data */
3602 case DM_LIST_DEVICES
:
3604 struct dm_name_list
*nl
= (void*)host_dm
+ host_dm
->data_start
;
3605 uint32_t remaining_data
= guest_data_size
;
3606 void *cur_data
= argptr
;
3607 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_name_list
) };
3608 int nl_size
= 12; /* can't use thunk_size due to alignment */
3611 uint32_t next
= nl
->next
;
3613 nl
->next
= nl_size
+ (strlen(nl
->name
) + 1);
3615 if (remaining_data
< nl
->next
) {
3616 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
3619 thunk_convert(cur_data
, nl
, arg_type
, THUNK_TARGET
);
3620 strcpy(cur_data
+ nl_size
, nl
->name
);
3621 cur_data
+= nl
->next
;
3622 remaining_data
-= nl
->next
;
3626 nl
= (void*)nl
+ next
;
3631 case DM_TABLE_STATUS
:
3633 struct dm_target_spec
*spec
= (void*)host_dm
+ host_dm
->data_start
;
3634 void *cur_data
= argptr
;
3635 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
3636 int spec_size
= thunk_type_size(arg_type
, 0);
3639 for (i
= 0; i
< host_dm
->target_count
; i
++) {
3640 uint32_t next
= spec
->next
;
3641 int slen
= strlen((char*)&spec
[1]) + 1;
3642 spec
->next
= (cur_data
- argptr
) + spec_size
+ slen
;
3643 if (guest_data_size
< spec
->next
) {
3644 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
3647 thunk_convert(cur_data
, spec
, arg_type
, THUNK_TARGET
);
3648 strcpy(cur_data
+ spec_size
, (char*)&spec
[1]);
3649 cur_data
= argptr
+ spec
->next
;
3650 spec
= (void*)host_dm
+ host_dm
->data_start
+ next
;
3656 void *hdata
= (void*)host_dm
+ host_dm
->data_start
;
3657 int count
= *(uint32_t*)hdata
;
3658 uint64_t *hdev
= hdata
+ 8;
3659 uint64_t *gdev
= argptr
+ 8;
3662 *(uint32_t*)argptr
= tswap32(count
);
3663 for (i
= 0; i
< count
; i
++) {
3664 *gdev
= tswap64(*hdev
);
3670 case DM_LIST_VERSIONS
:
3672 struct dm_target_versions
*vers
= (void*)host_dm
+ host_dm
->data_start
;
3673 uint32_t remaining_data
= guest_data_size
;
3674 void *cur_data
= argptr
;
3675 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_versions
) };
3676 int vers_size
= thunk_type_size(arg_type
, 0);
3679 uint32_t next
= vers
->next
;
3681 vers
->next
= vers_size
+ (strlen(vers
->name
) + 1);
3683 if (remaining_data
< vers
->next
) {
3684 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
3687 thunk_convert(cur_data
, vers
, arg_type
, THUNK_TARGET
);
3688 strcpy(cur_data
+ vers_size
, vers
->name
);
3689 cur_data
+= vers
->next
;
3690 remaining_data
-= vers
->next
;
3694 vers
= (void*)vers
+ next
;
3699 unlock_user(argptr
, guest_data
, 0);
3700 ret
= -TARGET_EINVAL
;
3703 unlock_user(argptr
, guest_data
, guest_data_size
);
3705 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
3707 ret
= -TARGET_EFAULT
;
3710 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
3711 unlock_user(argptr
, arg
, target_size
);
3718 static abi_long
do_ioctl_blkpg(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
3719 abi_long cmd
, abi_long arg
)
3723 const argtype
*arg_type
= ie
->arg_type
;
3724 const argtype part_arg_type
[] = { MK_STRUCT(STRUCT_blkpg_partition
) };
3727 struct blkpg_ioctl_arg
*host_blkpg
= (void*)buf_temp
;
3728 struct blkpg_partition host_part
;
3730 /* Read and convert blkpg */
3732 target_size
= thunk_type_size(arg_type
, 0);
3733 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3735 ret
= -TARGET_EFAULT
;
3738 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
3739 unlock_user(argptr
, arg
, 0);
3741 switch (host_blkpg
->op
) {
3742 case BLKPG_ADD_PARTITION
:
3743 case BLKPG_DEL_PARTITION
:
3744 /* payload is struct blkpg_partition */
3747 /* Unknown opcode */
3748 ret
= -TARGET_EINVAL
;
3752 /* Read and convert blkpg->data */
3753 arg
= (abi_long
)(uintptr_t)host_blkpg
->data
;
3754 target_size
= thunk_type_size(part_arg_type
, 0);
3755 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3757 ret
= -TARGET_EFAULT
;
3760 thunk_convert(&host_part
, argptr
, part_arg_type
, THUNK_HOST
);
3761 unlock_user(argptr
, arg
, 0);
3763 /* Swizzle the data pointer to our local copy and call! */
3764 host_blkpg
->data
= &host_part
;
3765 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, host_blkpg
));
3771 static abi_long
do_ioctl_rt(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
3772 int fd
, abi_long cmd
, abi_long arg
)
3774 const argtype
*arg_type
= ie
->arg_type
;
3775 const StructEntry
*se
;
3776 const argtype
*field_types
;
3777 const int *dst_offsets
, *src_offsets
;
3780 abi_ulong
*target_rt_dev_ptr
;
3781 unsigned long *host_rt_dev_ptr
;
3785 assert(ie
->access
== IOC_W
);
3786 assert(*arg_type
== TYPE_PTR
);
3788 assert(*arg_type
== TYPE_STRUCT
);
3789 target_size
= thunk_type_size(arg_type
, 0);
3790 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3792 return -TARGET_EFAULT
;
3795 assert(*arg_type
== (int)STRUCT_rtentry
);
3796 se
= struct_entries
+ *arg_type
++;
3797 assert(se
->convert
[0] == NULL
);
3798 /* convert struct here to be able to catch rt_dev string */
3799 field_types
= se
->field_types
;
3800 dst_offsets
= se
->field_offsets
[THUNK_HOST
];
3801 src_offsets
= se
->field_offsets
[THUNK_TARGET
];
3802 for (i
= 0; i
< se
->nb_fields
; i
++) {
3803 if (dst_offsets
[i
] == offsetof(struct rtentry
, rt_dev
)) {
3804 assert(*field_types
== TYPE_PTRVOID
);
3805 target_rt_dev_ptr
= (abi_ulong
*)(argptr
+ src_offsets
[i
]);
3806 host_rt_dev_ptr
= (unsigned long *)(buf_temp
+ dst_offsets
[i
]);
3807 if (*target_rt_dev_ptr
!= 0) {
3808 *host_rt_dev_ptr
= (unsigned long)lock_user_string(
3809 tswapal(*target_rt_dev_ptr
));
3810 if (!*host_rt_dev_ptr
) {
3811 unlock_user(argptr
, arg
, 0);
3812 return -TARGET_EFAULT
;
3815 *host_rt_dev_ptr
= 0;
3820 field_types
= thunk_convert(buf_temp
+ dst_offsets
[i
],
3821 argptr
+ src_offsets
[i
],
3822 field_types
, THUNK_HOST
);
3824 unlock_user(argptr
, arg
, 0);
3826 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, buf_temp
));
3827 if (*host_rt_dev_ptr
!= 0) {
3828 unlock_user((void *)*host_rt_dev_ptr
,
3829 *target_rt_dev_ptr
, 0);
3834 static abi_long
do_ioctl_kdsigaccept(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
3835 int fd
, abi_long cmd
, abi_long arg
)
3837 int sig
= target_to_host_signal(arg
);
3838 return get_errno(ioctl(fd
, ie
->host_cmd
, sig
));
3841 static IOCTLEntry ioctl_entries
[] = {
3842 #define IOCTL(cmd, access, ...) \
3843 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
3844 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
3845 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
3850 /* ??? Implement proper locking for ioctls. */
3851 /* do_ioctl() Must return target values and target errnos. */
3852 static abi_long
do_ioctl(int fd
, abi_long cmd
, abi_long arg
)
3854 const IOCTLEntry
*ie
;
3855 const argtype
*arg_type
;
3857 uint8_t buf_temp
[MAX_STRUCT_SIZE
];
3863 if (ie
->target_cmd
== 0) {
3864 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd
);
3865 return -TARGET_ENOSYS
;
3867 if (ie
->target_cmd
== cmd
)
3871 arg_type
= ie
->arg_type
;
3873 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd
, ie
->name
);
3876 return ie
->do_ioctl(ie
, buf_temp
, fd
, cmd
, arg
);
3879 switch(arg_type
[0]) {
3882 ret
= get_errno(ioctl(fd
, ie
->host_cmd
));
3887 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, arg
));
3891 target_size
= thunk_type_size(arg_type
, 0);
3892 switch(ie
->access
) {
3894 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, buf_temp
));
3895 if (!is_error(ret
)) {
3896 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
3898 return -TARGET_EFAULT
;
3899 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
3900 unlock_user(argptr
, arg
, target_size
);
3904 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3906 return -TARGET_EFAULT
;
3907 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
3908 unlock_user(argptr
, arg
, 0);
3909 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, buf_temp
));
3913 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3915 return -TARGET_EFAULT
;
3916 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
3917 unlock_user(argptr
, arg
, 0);
3918 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, buf_temp
));
3919 if (!is_error(ret
)) {
3920 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
3922 return -TARGET_EFAULT
;
3923 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
3924 unlock_user(argptr
, arg
, target_size
);
3930 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n",
3931 (long)cmd
, arg_type
[0]);
3932 ret
= -TARGET_ENOSYS
;
3938 static const bitmask_transtbl iflag_tbl
[] = {
3939 { TARGET_IGNBRK
, TARGET_IGNBRK
, IGNBRK
, IGNBRK
},
3940 { TARGET_BRKINT
, TARGET_BRKINT
, BRKINT
, BRKINT
},
3941 { TARGET_IGNPAR
, TARGET_IGNPAR
, IGNPAR
, IGNPAR
},
3942 { TARGET_PARMRK
, TARGET_PARMRK
, PARMRK
, PARMRK
},
3943 { TARGET_INPCK
, TARGET_INPCK
, INPCK
, INPCK
},
3944 { TARGET_ISTRIP
, TARGET_ISTRIP
, ISTRIP
, ISTRIP
},
3945 { TARGET_INLCR
, TARGET_INLCR
, INLCR
, INLCR
},
3946 { TARGET_IGNCR
, TARGET_IGNCR
, IGNCR
, IGNCR
},
3947 { TARGET_ICRNL
, TARGET_ICRNL
, ICRNL
, ICRNL
},
3948 { TARGET_IUCLC
, TARGET_IUCLC
, IUCLC
, IUCLC
},
3949 { TARGET_IXON
, TARGET_IXON
, IXON
, IXON
},
3950 { TARGET_IXANY
, TARGET_IXANY
, IXANY
, IXANY
},
3951 { TARGET_IXOFF
, TARGET_IXOFF
, IXOFF
, IXOFF
},
3952 { TARGET_IMAXBEL
, TARGET_IMAXBEL
, IMAXBEL
, IMAXBEL
},
3956 static const bitmask_transtbl oflag_tbl
[] = {
3957 { TARGET_OPOST
, TARGET_OPOST
, OPOST
, OPOST
},
3958 { TARGET_OLCUC
, TARGET_OLCUC
, OLCUC
, OLCUC
},
3959 { TARGET_ONLCR
, TARGET_ONLCR
, ONLCR
, ONLCR
},
3960 { TARGET_OCRNL
, TARGET_OCRNL
, OCRNL
, OCRNL
},
3961 { TARGET_ONOCR
, TARGET_ONOCR
, ONOCR
, ONOCR
},
3962 { TARGET_ONLRET
, TARGET_ONLRET
, ONLRET
, ONLRET
},
3963 { TARGET_OFILL
, TARGET_OFILL
, OFILL
, OFILL
},
3964 { TARGET_OFDEL
, TARGET_OFDEL
, OFDEL
, OFDEL
},
3965 { TARGET_NLDLY
, TARGET_NL0
, NLDLY
, NL0
},
3966 { TARGET_NLDLY
, TARGET_NL1
, NLDLY
, NL1
},
3967 { TARGET_CRDLY
, TARGET_CR0
, CRDLY
, CR0
},
3968 { TARGET_CRDLY
, TARGET_CR1
, CRDLY
, CR1
},
3969 { TARGET_CRDLY
, TARGET_CR2
, CRDLY
, CR2
},
3970 { TARGET_CRDLY
, TARGET_CR3
, CRDLY
, CR3
},
3971 { TARGET_TABDLY
, TARGET_TAB0
, TABDLY
, TAB0
},
3972 { TARGET_TABDLY
, TARGET_TAB1
, TABDLY
, TAB1
},
3973 { TARGET_TABDLY
, TARGET_TAB2
, TABDLY
, TAB2
},
3974 { TARGET_TABDLY
, TARGET_TAB3
, TABDLY
, TAB3
},
3975 { TARGET_BSDLY
, TARGET_BS0
, BSDLY
, BS0
},
3976 { TARGET_BSDLY
, TARGET_BS1
, BSDLY
, BS1
},
3977 { TARGET_VTDLY
, TARGET_VT0
, VTDLY
, VT0
},
3978 { TARGET_VTDLY
, TARGET_VT1
, VTDLY
, VT1
},
3979 { TARGET_FFDLY
, TARGET_FF0
, FFDLY
, FF0
},
3980 { TARGET_FFDLY
, TARGET_FF1
, FFDLY
, FF1
},
3984 static const bitmask_transtbl cflag_tbl
[] = {
3985 { TARGET_CBAUD
, TARGET_B0
, CBAUD
, B0
},
3986 { TARGET_CBAUD
, TARGET_B50
, CBAUD
, B50
},
3987 { TARGET_CBAUD
, TARGET_B75
, CBAUD
, B75
},
3988 { TARGET_CBAUD
, TARGET_B110
, CBAUD
, B110
},
3989 { TARGET_CBAUD
, TARGET_B134
, CBAUD
, B134
},
3990 { TARGET_CBAUD
, TARGET_B150
, CBAUD
, B150
},
3991 { TARGET_CBAUD
, TARGET_B200
, CBAUD
, B200
},
3992 { TARGET_CBAUD
, TARGET_B300
, CBAUD
, B300
},
3993 { TARGET_CBAUD
, TARGET_B600
, CBAUD
, B600
},
3994 { TARGET_CBAUD
, TARGET_B1200
, CBAUD
, B1200
},
3995 { TARGET_CBAUD
, TARGET_B1800
, CBAUD
, B1800
},
3996 { TARGET_CBAUD
, TARGET_B2400
, CBAUD
, B2400
},
3997 { TARGET_CBAUD
, TARGET_B4800
, CBAUD
, B4800
},
3998 { TARGET_CBAUD
, TARGET_B9600
, CBAUD
, B9600
},
3999 { TARGET_CBAUD
, TARGET_B19200
, CBAUD
, B19200
},
4000 { TARGET_CBAUD
, TARGET_B38400
, CBAUD
, B38400
},
4001 { TARGET_CBAUD
, TARGET_B57600
, CBAUD
, B57600
},
4002 { TARGET_CBAUD
, TARGET_B115200
, CBAUD
, B115200
},
4003 { TARGET_CBAUD
, TARGET_B230400
, CBAUD
, B230400
},
4004 { TARGET_CBAUD
, TARGET_B460800
, CBAUD
, B460800
},
4005 { TARGET_CSIZE
, TARGET_CS5
, CSIZE
, CS5
},
4006 { TARGET_CSIZE
, TARGET_CS6
, CSIZE
, CS6
},
4007 { TARGET_CSIZE
, TARGET_CS7
, CSIZE
, CS7
},
4008 { TARGET_CSIZE
, TARGET_CS8
, CSIZE
, CS8
},
4009 { TARGET_CSTOPB
, TARGET_CSTOPB
, CSTOPB
, CSTOPB
},
4010 { TARGET_CREAD
, TARGET_CREAD
, CREAD
, CREAD
},
4011 { TARGET_PARENB
, TARGET_PARENB
, PARENB
, PARENB
},
4012 { TARGET_PARODD
, TARGET_PARODD
, PARODD
, PARODD
},
4013 { TARGET_HUPCL
, TARGET_HUPCL
, HUPCL
, HUPCL
},
4014 { TARGET_CLOCAL
, TARGET_CLOCAL
, CLOCAL
, CLOCAL
},
4015 { TARGET_CRTSCTS
, TARGET_CRTSCTS
, CRTSCTS
, CRTSCTS
},
4019 static const bitmask_transtbl lflag_tbl
[] = {
4020 { TARGET_ISIG
, TARGET_ISIG
, ISIG
, ISIG
},
4021 { TARGET_ICANON
, TARGET_ICANON
, ICANON
, ICANON
},
4022 { TARGET_XCASE
, TARGET_XCASE
, XCASE
, XCASE
},
4023 { TARGET_ECHO
, TARGET_ECHO
, ECHO
, ECHO
},
4024 { TARGET_ECHOE
, TARGET_ECHOE
, ECHOE
, ECHOE
},
4025 { TARGET_ECHOK
, TARGET_ECHOK
, ECHOK
, ECHOK
},
4026 { TARGET_ECHONL
, TARGET_ECHONL
, ECHONL
, ECHONL
},
4027 { TARGET_NOFLSH
, TARGET_NOFLSH
, NOFLSH
, NOFLSH
},
4028 { TARGET_TOSTOP
, TARGET_TOSTOP
, TOSTOP
, TOSTOP
},
4029 { TARGET_ECHOCTL
, TARGET_ECHOCTL
, ECHOCTL
, ECHOCTL
},
4030 { TARGET_ECHOPRT
, TARGET_ECHOPRT
, ECHOPRT
, ECHOPRT
},
4031 { TARGET_ECHOKE
, TARGET_ECHOKE
, ECHOKE
, ECHOKE
},
4032 { TARGET_FLUSHO
, TARGET_FLUSHO
, FLUSHO
, FLUSHO
},
4033 { TARGET_PENDIN
, TARGET_PENDIN
, PENDIN
, PENDIN
},
4034 { TARGET_IEXTEN
, TARGET_IEXTEN
, IEXTEN
, IEXTEN
},
4038 static void target_to_host_termios (void *dst
, const void *src
)
4040 struct host_termios
*host
= dst
;
4041 const struct target_termios
*target
= src
;
4044 target_to_host_bitmask(tswap32(target
->c_iflag
), iflag_tbl
);
4046 target_to_host_bitmask(tswap32(target
->c_oflag
), oflag_tbl
);
4048 target_to_host_bitmask(tswap32(target
->c_cflag
), cflag_tbl
);
4050 target_to_host_bitmask(tswap32(target
->c_lflag
), lflag_tbl
);
4051 host
->c_line
= target
->c_line
;
4053 memset(host
->c_cc
, 0, sizeof(host
->c_cc
));
4054 host
->c_cc
[VINTR
] = target
->c_cc
[TARGET_VINTR
];
4055 host
->c_cc
[VQUIT
] = target
->c_cc
[TARGET_VQUIT
];
4056 host
->c_cc
[VERASE
] = target
->c_cc
[TARGET_VERASE
];
4057 host
->c_cc
[VKILL
] = target
->c_cc
[TARGET_VKILL
];
4058 host
->c_cc
[VEOF
] = target
->c_cc
[TARGET_VEOF
];
4059 host
->c_cc
[VTIME
] = target
->c_cc
[TARGET_VTIME
];
4060 host
->c_cc
[VMIN
] = target
->c_cc
[TARGET_VMIN
];
4061 host
->c_cc
[VSWTC
] = target
->c_cc
[TARGET_VSWTC
];
4062 host
->c_cc
[VSTART
] = target
->c_cc
[TARGET_VSTART
];
4063 host
->c_cc
[VSTOP
] = target
->c_cc
[TARGET_VSTOP
];
4064 host
->c_cc
[VSUSP
] = target
->c_cc
[TARGET_VSUSP
];
4065 host
->c_cc
[VEOL
] = target
->c_cc
[TARGET_VEOL
];
4066 host
->c_cc
[VREPRINT
] = target
->c_cc
[TARGET_VREPRINT
];
4067 host
->c_cc
[VDISCARD
] = target
->c_cc
[TARGET_VDISCARD
];
4068 host
->c_cc
[VWERASE
] = target
->c_cc
[TARGET_VWERASE
];
4069 host
->c_cc
[VLNEXT
] = target
->c_cc
[TARGET_VLNEXT
];
4070 host
->c_cc
[VEOL2
] = target
->c_cc
[TARGET_VEOL2
];
4073 static void host_to_target_termios (void *dst
, const void *src
)
4075 struct target_termios
*target
= dst
;
4076 const struct host_termios
*host
= src
;
4079 tswap32(host_to_target_bitmask(host
->c_iflag
, iflag_tbl
));
4081 tswap32(host_to_target_bitmask(host
->c_oflag
, oflag_tbl
));
4083 tswap32(host_to_target_bitmask(host
->c_cflag
, cflag_tbl
));
4085 tswap32(host_to_target_bitmask(host
->c_lflag
, lflag_tbl
));
4086 target
->c_line
= host
->c_line
;
4088 memset(target
->c_cc
, 0, sizeof(target
->c_cc
));
4089 target
->c_cc
[TARGET_VINTR
] = host
->c_cc
[VINTR
];
4090 target
->c_cc
[TARGET_VQUIT
] = host
->c_cc
[VQUIT
];
4091 target
->c_cc
[TARGET_VERASE
] = host
->c_cc
[VERASE
];
4092 target
->c_cc
[TARGET_VKILL
] = host
->c_cc
[VKILL
];
4093 target
->c_cc
[TARGET_VEOF
] = host
->c_cc
[VEOF
];
4094 target
->c_cc
[TARGET_VTIME
] = host
->c_cc
[VTIME
];
4095 target
->c_cc
[TARGET_VMIN
] = host
->c_cc
[VMIN
];
4096 target
->c_cc
[TARGET_VSWTC
] = host
->c_cc
[VSWTC
];
4097 target
->c_cc
[TARGET_VSTART
] = host
->c_cc
[VSTART
];
4098 target
->c_cc
[TARGET_VSTOP
] = host
->c_cc
[VSTOP
];
4099 target
->c_cc
[TARGET_VSUSP
] = host
->c_cc
[VSUSP
];
4100 target
->c_cc
[TARGET_VEOL
] = host
->c_cc
[VEOL
];
4101 target
->c_cc
[TARGET_VREPRINT
] = host
->c_cc
[VREPRINT
];
4102 target
->c_cc
[TARGET_VDISCARD
] = host
->c_cc
[VDISCARD
];
4103 target
->c_cc
[TARGET_VWERASE
] = host
->c_cc
[VWERASE
];
4104 target
->c_cc
[TARGET_VLNEXT
] = host
->c_cc
[VLNEXT
];
4105 target
->c_cc
[TARGET_VEOL2
] = host
->c_cc
[VEOL2
];
4108 static const StructEntry struct_termios_def
= {
4109 .convert
= { host_to_target_termios
, target_to_host_termios
},
4110 .size
= { sizeof(struct target_termios
), sizeof(struct host_termios
) },
4111 .align
= { __alignof__(struct target_termios
), __alignof__(struct host_termios
) },
4114 static bitmask_transtbl mmap_flags_tbl
[] = {
4115 { TARGET_MAP_SHARED
, TARGET_MAP_SHARED
, MAP_SHARED
, MAP_SHARED
},
4116 { TARGET_MAP_PRIVATE
, TARGET_MAP_PRIVATE
, MAP_PRIVATE
, MAP_PRIVATE
},
4117 { TARGET_MAP_FIXED
, TARGET_MAP_FIXED
, MAP_FIXED
, MAP_FIXED
},
4118 { TARGET_MAP_ANONYMOUS
, TARGET_MAP_ANONYMOUS
, MAP_ANONYMOUS
, MAP_ANONYMOUS
},
4119 { TARGET_MAP_GROWSDOWN
, TARGET_MAP_GROWSDOWN
, MAP_GROWSDOWN
, MAP_GROWSDOWN
},
4120 { TARGET_MAP_DENYWRITE
, TARGET_MAP_DENYWRITE
, MAP_DENYWRITE
, MAP_DENYWRITE
},
4121 { TARGET_MAP_EXECUTABLE
, TARGET_MAP_EXECUTABLE
, MAP_EXECUTABLE
, MAP_EXECUTABLE
},
4122 { TARGET_MAP_LOCKED
, TARGET_MAP_LOCKED
, MAP_LOCKED
, MAP_LOCKED
},
4123 { TARGET_MAP_NORESERVE
, TARGET_MAP_NORESERVE
, MAP_NORESERVE
,
4128 #if defined(TARGET_I386)
4130 /* NOTE: there is really one LDT for all the threads */
4131 static uint8_t *ldt_table
;
4133 static abi_long
read_ldt(abi_ulong ptr
, unsigned long bytecount
)
4140 size
= TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
;
4141 if (size
> bytecount
)
4143 p
= lock_user(VERIFY_WRITE
, ptr
, size
, 0);
4145 return -TARGET_EFAULT
;
4146 /* ??? Should this by byteswapped? */
4147 memcpy(p
, ldt_table
, size
);
4148 unlock_user(p
, ptr
, size
);
4152 /* XXX: add locking support */
4153 static abi_long
write_ldt(CPUX86State
*env
,
4154 abi_ulong ptr
, unsigned long bytecount
, int oldmode
)
4156 struct target_modify_ldt_ldt_s ldt_info
;
4157 struct target_modify_ldt_ldt_s
*target_ldt_info
;
4158 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
4159 int seg_not_present
, useable
, lm
;
4160 uint32_t *lp
, entry_1
, entry_2
;
4162 if (bytecount
!= sizeof(ldt_info
))
4163 return -TARGET_EINVAL
;
4164 if (!lock_user_struct(VERIFY_READ
, target_ldt_info
, ptr
, 1))
4165 return -TARGET_EFAULT
;
4166 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
4167 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
4168 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
4169 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
4170 unlock_user_struct(target_ldt_info
, ptr
, 0);
4172 if (ldt_info
.entry_number
>= TARGET_LDT_ENTRIES
)
4173 return -TARGET_EINVAL
;
4174 seg_32bit
= ldt_info
.flags
& 1;
4175 contents
= (ldt_info
.flags
>> 1) & 3;
4176 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
4177 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
4178 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
4179 useable
= (ldt_info
.flags
>> 6) & 1;
4183 lm
= (ldt_info
.flags
>> 7) & 1;
4185 if (contents
== 3) {
4187 return -TARGET_EINVAL
;
4188 if (seg_not_present
== 0)
4189 return -TARGET_EINVAL
;
4191 /* allocate the LDT */
4193 env
->ldt
.base
= target_mmap(0,
4194 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
,
4195 PROT_READ
|PROT_WRITE
,
4196 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4197 if (env
->ldt
.base
== -1)
4198 return -TARGET_ENOMEM
;
4199 memset(g2h(env
->ldt
.base
), 0,
4200 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
);
4201 env
->ldt
.limit
= 0xffff;
4202 ldt_table
= g2h(env
->ldt
.base
);
4205 /* NOTE: same code as Linux kernel */
4206 /* Allow LDTs to be cleared by the user. */
4207 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
4210 read_exec_only
== 1 &&
4212 limit_in_pages
== 0 &&
4213 seg_not_present
== 1 &&
4221 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
4222 (ldt_info
.limit
& 0x0ffff);
4223 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
4224 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
4225 (ldt_info
.limit
& 0xf0000) |
4226 ((read_exec_only
^ 1) << 9) |
4228 ((seg_not_present
^ 1) << 15) |
4230 (limit_in_pages
<< 23) |
4234 entry_2
|= (useable
<< 20);
4236 /* Install the new entry ... */
4238 lp
= (uint32_t *)(ldt_table
+ (ldt_info
.entry_number
<< 3));
4239 lp
[0] = tswap32(entry_1
);
4240 lp
[1] = tswap32(entry_2
);
4244 /* specific and weird i386 syscalls */
4245 static abi_long
do_modify_ldt(CPUX86State
*env
, int func
, abi_ulong ptr
,
4246 unsigned long bytecount
)
4252 ret
= read_ldt(ptr
, bytecount
);
4255 ret
= write_ldt(env
, ptr
, bytecount
, 1);
4258 ret
= write_ldt(env
, ptr
, bytecount
, 0);
4261 ret
= -TARGET_ENOSYS
;
4267 #if defined(TARGET_I386) && defined(TARGET_ABI32)
4268 abi_long
do_set_thread_area(CPUX86State
*env
, abi_ulong ptr
)
4270 uint64_t *gdt_table
= g2h(env
->gdt
.base
);
4271 struct target_modify_ldt_ldt_s ldt_info
;
4272 struct target_modify_ldt_ldt_s
*target_ldt_info
;
4273 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
4274 int seg_not_present
, useable
, lm
;
4275 uint32_t *lp
, entry_1
, entry_2
;
4278 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
4279 if (!target_ldt_info
)
4280 return -TARGET_EFAULT
;
4281 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
4282 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
4283 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
4284 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
4285 if (ldt_info
.entry_number
== -1) {
4286 for (i
=TARGET_GDT_ENTRY_TLS_MIN
; i
<=TARGET_GDT_ENTRY_TLS_MAX
; i
++) {
4287 if (gdt_table
[i
] == 0) {
4288 ldt_info
.entry_number
= i
;
4289 target_ldt_info
->entry_number
= tswap32(i
);
4294 unlock_user_struct(target_ldt_info
, ptr
, 1);
4296 if (ldt_info
.entry_number
< TARGET_GDT_ENTRY_TLS_MIN
||
4297 ldt_info
.entry_number
> TARGET_GDT_ENTRY_TLS_MAX
)
4298 return -TARGET_EINVAL
;
4299 seg_32bit
= ldt_info
.flags
& 1;
4300 contents
= (ldt_info
.flags
>> 1) & 3;
4301 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
4302 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
4303 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
4304 useable
= (ldt_info
.flags
>> 6) & 1;
4308 lm
= (ldt_info
.flags
>> 7) & 1;
4311 if (contents
== 3) {
4312 if (seg_not_present
== 0)
4313 return -TARGET_EINVAL
;
4316 /* NOTE: same code as Linux kernel */
4317 /* Allow LDTs to be cleared by the user. */
4318 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
4319 if ((contents
== 0 &&
4320 read_exec_only
== 1 &&
4322 limit_in_pages
== 0 &&
4323 seg_not_present
== 1 &&
4331 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
4332 (ldt_info
.limit
& 0x0ffff);
4333 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
4334 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
4335 (ldt_info
.limit
& 0xf0000) |
4336 ((read_exec_only
^ 1) << 9) |
4338 ((seg_not_present
^ 1) << 15) |
4340 (limit_in_pages
<< 23) |
4345 /* Install the new entry ... */
4347 lp
= (uint32_t *)(gdt_table
+ ldt_info
.entry_number
);
4348 lp
[0] = tswap32(entry_1
);
4349 lp
[1] = tswap32(entry_2
);
4353 static abi_long
do_get_thread_area(CPUX86State
*env
, abi_ulong ptr
)
4355 struct target_modify_ldt_ldt_s
*target_ldt_info
;
4356 uint64_t *gdt_table
= g2h(env
->gdt
.base
);
4357 uint32_t base_addr
, limit
, flags
;
4358 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
, idx
;
4359 int seg_not_present
, useable
, lm
;
4360 uint32_t *lp
, entry_1
, entry_2
;
4362 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
4363 if (!target_ldt_info
)
4364 return -TARGET_EFAULT
;
4365 idx
= tswap32(target_ldt_info
->entry_number
);
4366 if (idx
< TARGET_GDT_ENTRY_TLS_MIN
||
4367 idx
> TARGET_GDT_ENTRY_TLS_MAX
) {
4368 unlock_user_struct(target_ldt_info
, ptr
, 1);
4369 return -TARGET_EINVAL
;
4371 lp
= (uint32_t *)(gdt_table
+ idx
);
4372 entry_1
= tswap32(lp
[0]);
4373 entry_2
= tswap32(lp
[1]);
4375 read_exec_only
= ((entry_2
>> 9) & 1) ^ 1;
4376 contents
= (entry_2
>> 10) & 3;
4377 seg_not_present
= ((entry_2
>> 15) & 1) ^ 1;
4378 seg_32bit
= (entry_2
>> 22) & 1;
4379 limit_in_pages
= (entry_2
>> 23) & 1;
4380 useable
= (entry_2
>> 20) & 1;
4384 lm
= (entry_2
>> 21) & 1;
4386 flags
= (seg_32bit
<< 0) | (contents
<< 1) |
4387 (read_exec_only
<< 3) | (limit_in_pages
<< 4) |
4388 (seg_not_present
<< 5) | (useable
<< 6) | (lm
<< 7);
4389 limit
= (entry_1
& 0xffff) | (entry_2
& 0xf0000);
4390 base_addr
= (entry_1
>> 16) |
4391 (entry_2
& 0xff000000) |
4392 ((entry_2
& 0xff) << 16);
4393 target_ldt_info
->base_addr
= tswapal(base_addr
);
4394 target_ldt_info
->limit
= tswap32(limit
);
4395 target_ldt_info
->flags
= tswap32(flags
);
4396 unlock_user_struct(target_ldt_info
, ptr
, 1);
4399 #endif /* TARGET_I386 && TARGET_ABI32 */
4401 #ifndef TARGET_ABI32
4402 abi_long
do_arch_prctl(CPUX86State
*env
, int code
, abi_ulong addr
)
4409 case TARGET_ARCH_SET_GS
:
4410 case TARGET_ARCH_SET_FS
:
4411 if (code
== TARGET_ARCH_SET_GS
)
4415 cpu_x86_load_seg(env
, idx
, 0);
4416 env
->segs
[idx
].base
= addr
;
4418 case TARGET_ARCH_GET_GS
:
4419 case TARGET_ARCH_GET_FS
:
4420 if (code
== TARGET_ARCH_GET_GS
)
4424 val
= env
->segs
[idx
].base
;
4425 if (put_user(val
, addr
, abi_ulong
))
4426 ret
= -TARGET_EFAULT
;
4429 ret
= -TARGET_EINVAL
;
4436 #endif /* defined(TARGET_I386) */
4438 #define NEW_STACK_SIZE 0x40000
4441 static pthread_mutex_t clone_lock
= PTHREAD_MUTEX_INITIALIZER
;
4444 pthread_mutex_t mutex
;
4445 pthread_cond_t cond
;
4448 abi_ulong child_tidptr
;
4449 abi_ulong parent_tidptr
;
4453 static void *clone_func(void *arg
)
4455 new_thread_info
*info
= arg
;
4461 cpu
= ENV_GET_CPU(env
);
4463 ts
= (TaskState
*)cpu
->opaque
;
4464 info
->tid
= gettid();
4465 cpu
->host_tid
= info
->tid
;
4467 if (info
->child_tidptr
)
4468 put_user_u32(info
->tid
, info
->child_tidptr
);
4469 if (info
->parent_tidptr
)
4470 put_user_u32(info
->tid
, info
->parent_tidptr
);
4471 /* Enable signals. */
4472 sigprocmask(SIG_SETMASK
, &info
->sigmask
, NULL
);
4473 /* Signal to the parent that we're ready. */
4474 pthread_mutex_lock(&info
->mutex
);
4475 pthread_cond_broadcast(&info
->cond
);
4476 pthread_mutex_unlock(&info
->mutex
);
4477 /* Wait until the parent has finshed initializing the tls state. */
4478 pthread_mutex_lock(&clone_lock
);
4479 pthread_mutex_unlock(&clone_lock
);
4485 /* do_fork() Must return host values and target errnos (unlike most
4486 do_*() functions). */
4487 static int do_fork(CPUArchState
*env
, unsigned int flags
, abi_ulong newsp
,
4488 abi_ulong parent_tidptr
, target_ulong newtls
,
4489 abi_ulong child_tidptr
)
4491 CPUState
*cpu
= ENV_GET_CPU(env
);
4495 CPUArchState
*new_env
;
4496 unsigned int nptl_flags
;
4499 /* Emulate vfork() with fork() */
4500 if (flags
& CLONE_VFORK
)
4501 flags
&= ~(CLONE_VFORK
| CLONE_VM
);
4503 if (flags
& CLONE_VM
) {
4504 TaskState
*parent_ts
= (TaskState
*)cpu
->opaque
;
4505 new_thread_info info
;
4506 pthread_attr_t attr
;
4508 ts
= g_malloc0(sizeof(TaskState
));
4509 init_task_state(ts
);
4510 /* we create a new CPU instance. */
4511 new_env
= cpu_copy(env
);
4512 /* Init regs that differ from the parent. */
4513 cpu_clone_regs(new_env
, newsp
);
4514 new_cpu
= ENV_GET_CPU(new_env
);
4515 new_cpu
->opaque
= ts
;
4516 ts
->bprm
= parent_ts
->bprm
;
4517 ts
->info
= parent_ts
->info
;
4519 flags
&= ~CLONE_NPTL_FLAGS2
;
4521 if (nptl_flags
& CLONE_CHILD_CLEARTID
) {
4522 ts
->child_tidptr
= child_tidptr
;
4525 if (nptl_flags
& CLONE_SETTLS
)
4526 cpu_set_tls (new_env
, newtls
);
4528 /* Grab a mutex so that thread setup appears atomic. */
4529 pthread_mutex_lock(&clone_lock
);
4531 memset(&info
, 0, sizeof(info
));
4532 pthread_mutex_init(&info
.mutex
, NULL
);
4533 pthread_mutex_lock(&info
.mutex
);
4534 pthread_cond_init(&info
.cond
, NULL
);
4536 if (nptl_flags
& CLONE_CHILD_SETTID
)
4537 info
.child_tidptr
= child_tidptr
;
4538 if (nptl_flags
& CLONE_PARENT_SETTID
)
4539 info
.parent_tidptr
= parent_tidptr
;
4541 ret
= pthread_attr_init(&attr
);
4542 ret
= pthread_attr_setstacksize(&attr
, NEW_STACK_SIZE
);
4543 ret
= pthread_attr_setdetachstate(&attr
, PTHREAD_CREATE_DETACHED
);
4544 /* It is not safe to deliver signals until the child has finished
4545 initializing, so temporarily block all signals. */
4546 sigfillset(&sigmask
);
4547 sigprocmask(SIG_BLOCK
, &sigmask
, &info
.sigmask
);
4549 ret
= pthread_create(&info
.thread
, &attr
, clone_func
, &info
);
4550 /* TODO: Free new CPU state if thread creation failed. */
4552 sigprocmask(SIG_SETMASK
, &info
.sigmask
, NULL
);
4553 pthread_attr_destroy(&attr
);
4555 /* Wait for the child to initialize. */
4556 pthread_cond_wait(&info
.cond
, &info
.mutex
);
4558 if (flags
& CLONE_PARENT_SETTID
)
4559 put_user_u32(ret
, parent_tidptr
);
4563 pthread_mutex_unlock(&info
.mutex
);
4564 pthread_cond_destroy(&info
.cond
);
4565 pthread_mutex_destroy(&info
.mutex
);
4566 pthread_mutex_unlock(&clone_lock
);
4568 /* if no CLONE_VM, we consider it is a fork */
4569 if ((flags
& ~(CSIGNAL
| CLONE_NPTL_FLAGS2
)) != 0)
4574 /* Child Process. */
4576 cpu_clone_regs(env
, newsp
);
4578 /* There is a race condition here. The parent process could
4579 theoretically read the TID in the child process before the child
4580 tid is set. This would require using either ptrace
4581 (not implemented) or having *_tidptr to point at a shared memory
4582 mapping. We can't repeat the spinlock hack used above because
4583 the child process gets its own copy of the lock. */
4584 if (flags
& CLONE_CHILD_SETTID
)
4585 put_user_u32(gettid(), child_tidptr
);
4586 if (flags
& CLONE_PARENT_SETTID
)
4587 put_user_u32(gettid(), parent_tidptr
);
4588 ts
= (TaskState
*)cpu
->opaque
;
4589 if (flags
& CLONE_SETTLS
)
4590 cpu_set_tls (env
, newtls
);
4591 if (flags
& CLONE_CHILD_CLEARTID
)
4592 ts
->child_tidptr
= child_tidptr
;
4600 /* warning : doesn't handle linux specific flags... */
4601 static int target_to_host_fcntl_cmd(int cmd
)
4604 case TARGET_F_DUPFD
:
4605 case TARGET_F_GETFD
:
4606 case TARGET_F_SETFD
:
4607 case TARGET_F_GETFL
:
4608 case TARGET_F_SETFL
:
4610 case TARGET_F_GETLK
:
4612 case TARGET_F_SETLK
:
4614 case TARGET_F_SETLKW
:
4616 case TARGET_F_GETOWN
:
4618 case TARGET_F_SETOWN
:
4620 case TARGET_F_GETSIG
:
4622 case TARGET_F_SETSIG
:
4624 #if TARGET_ABI_BITS == 32
4625 case TARGET_F_GETLK64
:
4627 case TARGET_F_SETLK64
:
4629 case TARGET_F_SETLKW64
:
4632 case TARGET_F_SETLEASE
:
4634 case TARGET_F_GETLEASE
:
4636 #ifdef F_DUPFD_CLOEXEC
4637 case TARGET_F_DUPFD_CLOEXEC
:
4638 return F_DUPFD_CLOEXEC
;
4640 case TARGET_F_NOTIFY
:
4643 case TARGET_F_GETOWN_EX
:
4647 case TARGET_F_SETOWN_EX
:
4651 return -TARGET_EINVAL
;
4653 return -TARGET_EINVAL
;
4656 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a }
4657 static const bitmask_transtbl flock_tbl
[] = {
4658 TRANSTBL_CONVERT(F_RDLCK
),
4659 TRANSTBL_CONVERT(F_WRLCK
),
4660 TRANSTBL_CONVERT(F_UNLCK
),
4661 TRANSTBL_CONVERT(F_EXLCK
),
4662 TRANSTBL_CONVERT(F_SHLCK
),
4666 static abi_long
do_fcntl(int fd
, int cmd
, abi_ulong arg
)
4669 struct target_flock
*target_fl
;
4670 struct flock64 fl64
;
4671 struct target_flock64
*target_fl64
;
4673 struct f_owner_ex fox
;
4674 struct target_f_owner_ex
*target_fox
;
4677 int host_cmd
= target_to_host_fcntl_cmd(cmd
);
4679 if (host_cmd
== -TARGET_EINVAL
)
4683 case TARGET_F_GETLK
:
4684 if (!lock_user_struct(VERIFY_READ
, target_fl
, arg
, 1))
4685 return -TARGET_EFAULT
;
4687 target_to_host_bitmask(tswap16(target_fl
->l_type
), flock_tbl
);
4688 fl
.l_whence
= tswap16(target_fl
->l_whence
);
4689 fl
.l_start
= tswapal(target_fl
->l_start
);
4690 fl
.l_len
= tswapal(target_fl
->l_len
);
4691 fl
.l_pid
= tswap32(target_fl
->l_pid
);
4692 unlock_user_struct(target_fl
, arg
, 0);
4693 ret
= get_errno(fcntl(fd
, host_cmd
, &fl
));
4695 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, arg
, 0))
4696 return -TARGET_EFAULT
;
4698 host_to_target_bitmask(tswap16(fl
.l_type
), flock_tbl
);
4699 target_fl
->l_whence
= tswap16(fl
.l_whence
);
4700 target_fl
->l_start
= tswapal(fl
.l_start
);
4701 target_fl
->l_len
= tswapal(fl
.l_len
);
4702 target_fl
->l_pid
= tswap32(fl
.l_pid
);
4703 unlock_user_struct(target_fl
, arg
, 1);
4707 case TARGET_F_SETLK
:
4708 case TARGET_F_SETLKW
:
4709 if (!lock_user_struct(VERIFY_READ
, target_fl
, arg
, 1))
4710 return -TARGET_EFAULT
;
4712 target_to_host_bitmask(tswap16(target_fl
->l_type
), flock_tbl
);
4713 fl
.l_whence
= tswap16(target_fl
->l_whence
);
4714 fl
.l_start
= tswapal(target_fl
->l_start
);
4715 fl
.l_len
= tswapal(target_fl
->l_len
);
4716 fl
.l_pid
= tswap32(target_fl
->l_pid
);
4717 unlock_user_struct(target_fl
, arg
, 0);
4718 ret
= get_errno(fcntl(fd
, host_cmd
, &fl
));
4721 case TARGET_F_GETLK64
:
4722 if (!lock_user_struct(VERIFY_READ
, target_fl64
, arg
, 1))
4723 return -TARGET_EFAULT
;
4725 target_to_host_bitmask(tswap16(target_fl64
->l_type
), flock_tbl
) >> 1;
4726 fl64
.l_whence
= tswap16(target_fl64
->l_whence
);
4727 fl64
.l_start
= tswap64(target_fl64
->l_start
);
4728 fl64
.l_len
= tswap64(target_fl64
->l_len
);
4729 fl64
.l_pid
= tswap32(target_fl64
->l_pid
);
4730 unlock_user_struct(target_fl64
, arg
, 0);
4731 ret
= get_errno(fcntl(fd
, host_cmd
, &fl64
));
4733 if (!lock_user_struct(VERIFY_WRITE
, target_fl64
, arg
, 0))
4734 return -TARGET_EFAULT
;
4735 target_fl64
->l_type
=
4736 host_to_target_bitmask(tswap16(fl64
.l_type
), flock_tbl
) >> 1;
4737 target_fl64
->l_whence
= tswap16(fl64
.l_whence
);
4738 target_fl64
->l_start
= tswap64(fl64
.l_start
);
4739 target_fl64
->l_len
= tswap64(fl64
.l_len
);
4740 target_fl64
->l_pid
= tswap32(fl64
.l_pid
);
4741 unlock_user_struct(target_fl64
, arg
, 1);
4744 case TARGET_F_SETLK64
:
4745 case TARGET_F_SETLKW64
:
4746 if (!lock_user_struct(VERIFY_READ
, target_fl64
, arg
, 1))
4747 return -TARGET_EFAULT
;
4749 target_to_host_bitmask(tswap16(target_fl64
->l_type
), flock_tbl
) >> 1;
4750 fl64
.l_whence
= tswap16(target_fl64
->l_whence
);
4751 fl64
.l_start
= tswap64(target_fl64
->l_start
);
4752 fl64
.l_len
= tswap64(target_fl64
->l_len
);
4753 fl64
.l_pid
= tswap32(target_fl64
->l_pid
);
4754 unlock_user_struct(target_fl64
, arg
, 0);
4755 ret
= get_errno(fcntl(fd
, host_cmd
, &fl64
));
4758 case TARGET_F_GETFL
:
4759 ret
= get_errno(fcntl(fd
, host_cmd
, arg
));
4761 ret
= host_to_target_bitmask(ret
, fcntl_flags_tbl
);
4765 case TARGET_F_SETFL
:
4766 ret
= get_errno(fcntl(fd
, host_cmd
, target_to_host_bitmask(arg
, fcntl_flags_tbl
)));
4770 case TARGET_F_GETOWN_EX
:
4771 ret
= get_errno(fcntl(fd
, host_cmd
, &fox
));
4773 if (!lock_user_struct(VERIFY_WRITE
, target_fox
, arg
, 0))
4774 return -TARGET_EFAULT
;
4775 target_fox
->type
= tswap32(fox
.type
);
4776 target_fox
->pid
= tswap32(fox
.pid
);
4777 unlock_user_struct(target_fox
, arg
, 1);
4783 case TARGET_F_SETOWN_EX
:
4784 if (!lock_user_struct(VERIFY_READ
, target_fox
, arg
, 1))
4785 return -TARGET_EFAULT
;
4786 fox
.type
= tswap32(target_fox
->type
);
4787 fox
.pid
= tswap32(target_fox
->pid
);
4788 unlock_user_struct(target_fox
, arg
, 0);
4789 ret
= get_errno(fcntl(fd
, host_cmd
, &fox
));
4793 case TARGET_F_SETOWN
:
4794 case TARGET_F_GETOWN
:
4795 case TARGET_F_SETSIG
:
4796 case TARGET_F_GETSIG
:
4797 case TARGET_F_SETLEASE
:
4798 case TARGET_F_GETLEASE
:
4799 ret
= get_errno(fcntl(fd
, host_cmd
, arg
));
4803 ret
= get_errno(fcntl(fd
, cmd
, arg
));
4811 static inline int high2lowuid(int uid
)
4819 static inline int high2lowgid(int gid
)
4827 static inline int low2highuid(int uid
)
4829 if ((int16_t)uid
== -1)
4835 static inline int low2highgid(int gid
)
4837 if ((int16_t)gid
== -1)
4842 static inline int tswapid(int id
)
4847 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
4849 #else /* !USE_UID16 */
4850 static inline int high2lowuid(int uid
)
4854 static inline int high2lowgid(int gid
)
4858 static inline int low2highuid(int uid
)
4862 static inline int low2highgid(int gid
)
4866 static inline int tswapid(int id
)
4871 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
4873 #endif /* USE_UID16 */
4875 void syscall_init(void)
4878 const argtype
*arg_type
;
4882 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
4883 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
4884 #include "syscall_types.h"
4886 #undef STRUCT_SPECIAL
4888 /* Build target_to_host_errno_table[] table from
4889 * host_to_target_errno_table[]. */
4890 for (i
= 0; i
< ERRNO_TABLE_SIZE
; i
++) {
4891 target_to_host_errno_table
[host_to_target_errno_table
[i
]] = i
;
4894 /* we patch the ioctl size if necessary. We rely on the fact that
4895 no ioctl has all the bits at '1' in the size field */
4897 while (ie
->target_cmd
!= 0) {
4898 if (((ie
->target_cmd
>> TARGET_IOC_SIZESHIFT
) & TARGET_IOC_SIZEMASK
) ==
4899 TARGET_IOC_SIZEMASK
) {
4900 arg_type
= ie
->arg_type
;
4901 if (arg_type
[0] != TYPE_PTR
) {
4902 fprintf(stderr
, "cannot patch size for ioctl 0x%x\n",
4907 size
= thunk_type_size(arg_type
, 0);
4908 ie
->target_cmd
= (ie
->target_cmd
&
4909 ~(TARGET_IOC_SIZEMASK
<< TARGET_IOC_SIZESHIFT
)) |
4910 (size
<< TARGET_IOC_SIZESHIFT
);
4913 /* automatic consistency check if same arch */
4914 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
4915 (defined(__x86_64__) && defined(TARGET_X86_64))
4916 if (unlikely(ie
->target_cmd
!= ie
->host_cmd
)) {
4917 fprintf(stderr
, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
4918 ie
->name
, ie
->target_cmd
, ie
->host_cmd
);
4925 #if TARGET_ABI_BITS == 32
4926 static inline uint64_t target_offset64(uint32_t word0
, uint32_t word1
)
4928 #ifdef TARGET_WORDS_BIGENDIAN
4929 return ((uint64_t)word0
<< 32) | word1
;
4931 return ((uint64_t)word1
<< 32) | word0
;
4934 #else /* TARGET_ABI_BITS == 32 */
4935 static inline uint64_t target_offset64(uint64_t word0
, uint64_t word1
)
4939 #endif /* TARGET_ABI_BITS != 32 */
4941 #ifdef TARGET_NR_truncate64
4942 static inline abi_long
target_truncate64(void *cpu_env
, const char *arg1
,
4947 if (regpairs_aligned(cpu_env
)) {
4951 return get_errno(truncate64(arg1
, target_offset64(arg2
, arg3
)));
4955 #ifdef TARGET_NR_ftruncate64
4956 static inline abi_long
target_ftruncate64(void *cpu_env
, abi_long arg1
,
4961 if (regpairs_aligned(cpu_env
)) {
4965 return get_errno(ftruncate64(arg1
, target_offset64(arg2
, arg3
)));
4969 static inline abi_long
target_to_host_timespec(struct timespec
*host_ts
,
4970 abi_ulong target_addr
)
4972 struct target_timespec
*target_ts
;
4974 if (!lock_user_struct(VERIFY_READ
, target_ts
, target_addr
, 1))
4975 return -TARGET_EFAULT
;
4976 host_ts
->tv_sec
= tswapal(target_ts
->tv_sec
);
4977 host_ts
->tv_nsec
= tswapal(target_ts
->tv_nsec
);
4978 unlock_user_struct(target_ts
, target_addr
, 0);
4982 static inline abi_long
host_to_target_timespec(abi_ulong target_addr
,
4983 struct timespec
*host_ts
)
4985 struct target_timespec
*target_ts
;
4987 if (!lock_user_struct(VERIFY_WRITE
, target_ts
, target_addr
, 0))
4988 return -TARGET_EFAULT
;
4989 target_ts
->tv_sec
= tswapal(host_ts
->tv_sec
);
4990 target_ts
->tv_nsec
= tswapal(host_ts
->tv_nsec
);
4991 unlock_user_struct(target_ts
, target_addr
, 1);
4995 static inline abi_long
target_to_host_itimerspec(struct itimerspec
*host_itspec
,
4996 abi_ulong target_addr
)
4998 struct target_itimerspec
*target_itspec
;
5000 if (!lock_user_struct(VERIFY_READ
, target_itspec
, target_addr
, 1)) {
5001 return -TARGET_EFAULT
;
5004 host_itspec
->it_interval
.tv_sec
=
5005 tswapal(target_itspec
->it_interval
.tv_sec
);
5006 host_itspec
->it_interval
.tv_nsec
=
5007 tswapal(target_itspec
->it_interval
.tv_nsec
);
5008 host_itspec
->it_value
.tv_sec
= tswapal(target_itspec
->it_value
.tv_sec
);
5009 host_itspec
->it_value
.tv_nsec
= tswapal(target_itspec
->it_value
.tv_nsec
);
5011 unlock_user_struct(target_itspec
, target_addr
, 1);
5015 static inline abi_long
host_to_target_itimerspec(abi_ulong target_addr
,
5016 struct itimerspec
*host_its
)
5018 struct target_itimerspec
*target_itspec
;
5020 if (!lock_user_struct(VERIFY_WRITE
, target_itspec
, target_addr
, 0)) {
5021 return -TARGET_EFAULT
;
5024 target_itspec
->it_interval
.tv_sec
= tswapal(host_its
->it_interval
.tv_sec
);
5025 target_itspec
->it_interval
.tv_nsec
= tswapal(host_its
->it_interval
.tv_nsec
);
5027 target_itspec
->it_value
.tv_sec
= tswapal(host_its
->it_value
.tv_sec
);
5028 target_itspec
->it_value
.tv_nsec
= tswapal(host_its
->it_value
.tv_nsec
);
5030 unlock_user_struct(target_itspec
, target_addr
, 0);
5034 static inline abi_long
target_to_host_sigevent(struct sigevent
*host_sevp
,
5035 abi_ulong target_addr
)
5037 struct target_sigevent
*target_sevp
;
5039 if (!lock_user_struct(VERIFY_READ
, target_sevp
, target_addr
, 1)) {
5040 return -TARGET_EFAULT
;
5043 /* This union is awkward on 64 bit systems because it has a 32 bit
5044 * integer and a pointer in it; we follow the conversion approach
5045 * used for handling sigval types in signal.c so the guest should get
5046 * the correct value back even if we did a 64 bit byteswap and it's
5047 * using the 32 bit integer.
5049 host_sevp
->sigev_value
.sival_ptr
=
5050 (void *)(uintptr_t)tswapal(target_sevp
->sigev_value
.sival_ptr
);
5051 host_sevp
->sigev_signo
=
5052 target_to_host_signal(tswap32(target_sevp
->sigev_signo
));
5053 host_sevp
->sigev_notify
= tswap32(target_sevp
->sigev_notify
);
5054 host_sevp
->_sigev_un
._tid
= tswap32(target_sevp
->_sigev_un
._tid
);
5056 unlock_user_struct(target_sevp
, target_addr
, 1);
5060 #if defined(TARGET_NR_mlockall)
5061 static inline int target_to_host_mlockall_arg(int arg
)
5065 if (arg
& TARGET_MLOCKALL_MCL_CURRENT
) {
5066 result
|= MCL_CURRENT
;
5068 if (arg
& TARGET_MLOCKALL_MCL_FUTURE
) {
5069 result
|= MCL_FUTURE
;
5075 #if defined(TARGET_NR_stat64) || defined(TARGET_NR_newfstatat)
5076 static inline abi_long
host_to_target_stat64(void *cpu_env
,
5077 abi_ulong target_addr
,
5078 struct stat
*host_st
)
5080 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
5081 if (((CPUARMState
*)cpu_env
)->eabi
) {
5082 struct target_eabi_stat64
*target_st
;
5084 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
5085 return -TARGET_EFAULT
;
5086 memset(target_st
, 0, sizeof(struct target_eabi_stat64
));
5087 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
5088 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
5089 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
5090 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
5092 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
5093 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
5094 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
5095 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
5096 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
5097 __put_user(host_st
->st_size
, &target_st
->st_size
);
5098 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
5099 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
5100 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
5101 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
5102 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
5103 unlock_user_struct(target_st
, target_addr
, 1);
5107 #if defined(TARGET_HAS_STRUCT_STAT64)
5108 struct target_stat64
*target_st
;
5110 struct target_stat
*target_st
;
5113 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
5114 return -TARGET_EFAULT
;
5115 memset(target_st
, 0, sizeof(*target_st
));
5116 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
5117 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
5118 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
5119 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
5121 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
5122 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
5123 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
5124 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
5125 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
5126 /* XXX: better use of kernel struct */
5127 __put_user(host_st
->st_size
, &target_st
->st_size
);
5128 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
5129 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
5130 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
5131 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
5132 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
5133 unlock_user_struct(target_st
, target_addr
, 1);
5140 /* ??? Using host futex calls even when target atomic operations
5141 are not really atomic probably breaks things. However implementing
5142 futexes locally would make futexes shared between multiple processes
5143 tricky. However they're probably useless because guest atomic
5144 operations won't work either. */
5145 static int do_futex(target_ulong uaddr
, int op
, int val
, target_ulong timeout
,
5146 target_ulong uaddr2
, int val3
)
5148 struct timespec ts
, *pts
;
5151 /* ??? We assume FUTEX_* constants are the same on both host
5153 #ifdef FUTEX_CMD_MASK
5154 base_op
= op
& FUTEX_CMD_MASK
;
5160 case FUTEX_WAIT_BITSET
:
5163 target_to_host_timespec(pts
, timeout
);
5167 return get_errno(sys_futex(g2h(uaddr
), op
, tswap32(val
),
5170 return get_errno(sys_futex(g2h(uaddr
), op
, val
, NULL
, NULL
, 0));
5172 return get_errno(sys_futex(g2h(uaddr
), op
, val
, NULL
, NULL
, 0));
5174 case FUTEX_CMP_REQUEUE
:
5176 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
5177 TIMEOUT parameter is interpreted as a uint32_t by the kernel.
5178 But the prototype takes a `struct timespec *'; insert casts
5179 to satisfy the compiler. We do not need to tswap TIMEOUT
5180 since it's not compared to guest memory. */
5181 pts
= (struct timespec
*)(uintptr_t) timeout
;
5182 return get_errno(sys_futex(g2h(uaddr
), op
, val
, pts
,
5184 (base_op
== FUTEX_CMP_REQUEUE
5188 return -TARGET_ENOSYS
;
5192 /* Map host to target signal numbers for the wait family of syscalls.
5193 Assume all other status bits are the same. */
5194 int host_to_target_waitstatus(int status
)
5196 if (WIFSIGNALED(status
)) {
5197 return host_to_target_signal(WTERMSIG(status
)) | (status
& ~0x7f);
5199 if (WIFSTOPPED(status
)) {
5200 return (host_to_target_signal(WSTOPSIG(status
)) << 8)
5206 static int open_self_cmdline(void *cpu_env
, int fd
)
5209 bool word_skipped
= false;
5211 fd_orig
= open("/proc/self/cmdline", O_RDONLY
);
5221 nb_read
= read(fd_orig
, buf
, sizeof(buf
));
5223 fd_orig
= close(fd_orig
);
5225 } else if (nb_read
== 0) {
5229 if (!word_skipped
) {
5230 /* Skip the first string, which is the path to qemu-*-static
5231 instead of the actual command. */
5232 cp_buf
= memchr(buf
, 0, sizeof(buf
));
5234 /* Null byte found, skip one string */
5236 nb_read
-= cp_buf
- buf
;
5237 word_skipped
= true;
5242 if (write(fd
, cp_buf
, nb_read
) != nb_read
) {
5249 return close(fd_orig
);
5252 static int open_self_maps(void *cpu_env
, int fd
)
5254 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)cpu_env
);
5255 TaskState
*ts
= cpu
->opaque
;
5261 fp
= fopen("/proc/self/maps", "r");
5266 while ((read
= getline(&line
, &len
, fp
)) != -1) {
5267 int fields
, dev_maj
, dev_min
, inode
;
5268 uint64_t min
, max
, offset
;
5269 char flag_r
, flag_w
, flag_x
, flag_p
;
5270 char path
[512] = "";
5271 fields
= sscanf(line
, "%"PRIx64
"-%"PRIx64
" %c%c%c%c %"PRIx64
" %x:%x %d"
5272 " %512s", &min
, &max
, &flag_r
, &flag_w
, &flag_x
,
5273 &flag_p
, &offset
, &dev_maj
, &dev_min
, &inode
, path
);
5275 if ((fields
< 10) || (fields
> 11)) {
5278 if (h2g_valid(min
)) {
5279 int flags
= page_get_flags(h2g(min
));
5280 max
= h2g_valid(max
- 1) ? max
: (uintptr_t)g2h(GUEST_ADDR_MAX
);
5281 if (page_check_range(h2g(min
), max
- min
, flags
) == -1) {
5284 if (h2g(min
) == ts
->info
->stack_limit
) {
5285 pstrcpy(path
, sizeof(path
), " [stack]");
5287 dprintf(fd
, TARGET_ABI_FMT_lx
"-" TARGET_ABI_FMT_lx
5288 " %c%c%c%c %08" PRIx64
" %02x:%02x %d %s%s\n",
5289 h2g(min
), h2g(max
- 1) + 1, flag_r
, flag_w
,
5290 flag_x
, flag_p
, offset
, dev_maj
, dev_min
, inode
,
5291 path
[0] ? " " : "", path
);
5301 static int open_self_stat(void *cpu_env
, int fd
)
5303 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)cpu_env
);
5304 TaskState
*ts
= cpu
->opaque
;
5305 abi_ulong start_stack
= ts
->info
->start_stack
;
5308 for (i
= 0; i
< 44; i
++) {
5316 snprintf(buf
, sizeof(buf
), "%"PRId64
" ", val
);
5317 } else if (i
== 1) {
5319 snprintf(buf
, sizeof(buf
), "(%s) ", ts
->bprm
->argv
[0]);
5320 } else if (i
== 27) {
5323 snprintf(buf
, sizeof(buf
), "%"PRId64
" ", val
);
5325 /* for the rest, there is MasterCard */
5326 snprintf(buf
, sizeof(buf
), "0%c", i
== 43 ? '\n' : ' ');
5330 if (write(fd
, buf
, len
) != len
) {
5338 static int open_self_auxv(void *cpu_env
, int fd
)
5340 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)cpu_env
);
5341 TaskState
*ts
= cpu
->opaque
;
5342 abi_ulong auxv
= ts
->info
->saved_auxv
;
5343 abi_ulong len
= ts
->info
->auxv_len
;
5347 * Auxiliary vector is stored in target process stack.
5348 * read in whole auxv vector and copy it to file
5350 ptr
= lock_user(VERIFY_READ
, auxv
, len
, 0);
5354 r
= write(fd
, ptr
, len
);
5361 lseek(fd
, 0, SEEK_SET
);
5362 unlock_user(ptr
, auxv
, len
);
5368 static int is_proc_myself(const char *filename
, const char *entry
)
5370 if (!strncmp(filename
, "/proc/", strlen("/proc/"))) {
5371 filename
+= strlen("/proc/");
5372 if (!strncmp(filename
, "self/", strlen("self/"))) {
5373 filename
+= strlen("self/");
5374 } else if (*filename
>= '1' && *filename
<= '9') {
5376 snprintf(myself
, sizeof(myself
), "%d/", getpid());
5377 if (!strncmp(filename
, myself
, strlen(myself
))) {
5378 filename
+= strlen(myself
);
5385 if (!strcmp(filename
, entry
)) {
5392 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
5393 static int is_proc(const char *filename
, const char *entry
)
5395 return strcmp(filename
, entry
) == 0;
5398 static int open_net_route(void *cpu_env
, int fd
)
5405 fp
= fopen("/proc/net/route", "r");
5412 read
= getline(&line
, &len
, fp
);
5413 dprintf(fd
, "%s", line
);
5417 while ((read
= getline(&line
, &len
, fp
)) != -1) {
5419 uint32_t dest
, gw
, mask
;
5420 unsigned int flags
, refcnt
, use
, metric
, mtu
, window
, irtt
;
5421 sscanf(line
, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
5422 iface
, &dest
, &gw
, &flags
, &refcnt
, &use
, &metric
,
5423 &mask
, &mtu
, &window
, &irtt
);
5424 dprintf(fd
, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
5425 iface
, tswap32(dest
), tswap32(gw
), flags
, refcnt
, use
,
5426 metric
, tswap32(mask
), mtu
, window
, irtt
);
5436 static int do_openat(void *cpu_env
, int dirfd
, const char *pathname
, int flags
, mode_t mode
)
5439 const char *filename
;
5440 int (*fill
)(void *cpu_env
, int fd
);
5441 int (*cmp
)(const char *s1
, const char *s2
);
5443 const struct fake_open
*fake_open
;
5444 static const struct fake_open fakes
[] = {
5445 { "maps", open_self_maps
, is_proc_myself
},
5446 { "stat", open_self_stat
, is_proc_myself
},
5447 { "auxv", open_self_auxv
, is_proc_myself
},
5448 { "cmdline", open_self_cmdline
, is_proc_myself
},
5449 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
5450 { "/proc/net/route", open_net_route
, is_proc
},
5452 { NULL
, NULL
, NULL
}
5455 if (is_proc_myself(pathname
, "exe")) {
5456 int execfd
= qemu_getauxval(AT_EXECFD
);
5457 return execfd
? execfd
: get_errno(sys_openat(dirfd
, exec_path
, flags
, mode
));
5460 for (fake_open
= fakes
; fake_open
->filename
; fake_open
++) {
5461 if (fake_open
->cmp(pathname
, fake_open
->filename
)) {
5466 if (fake_open
->filename
) {
5468 char filename
[PATH_MAX
];
5471 /* create temporary file to map stat to */
5472 tmpdir
= getenv("TMPDIR");
5475 snprintf(filename
, sizeof(filename
), "%s/qemu-open.XXXXXX", tmpdir
);
5476 fd
= mkstemp(filename
);
5482 if ((r
= fake_open
->fill(cpu_env
, fd
))) {
5486 lseek(fd
, 0, SEEK_SET
);
5491 return get_errno(sys_openat(dirfd
, path(pathname
), flags
, mode
));
5494 #define TIMER_MAGIC 0x0caf0000
5495 #define TIMER_MAGIC_MASK 0xffff0000
5497 /* Convert QEMU provided timer ID back to internal 16bit index format */
5498 static target_timer_t
get_timer_id(abi_long arg
)
5500 target_timer_t timerid
= arg
;
5502 if ((timerid
& TIMER_MAGIC_MASK
) != TIMER_MAGIC
) {
5503 return -TARGET_EINVAL
;
5508 if (timerid
>= ARRAY_SIZE(g_posix_timers
)) {
5509 return -TARGET_EINVAL
;
5515 /* do_syscall() should always have a single exit point at the end so
5516 that actions, such as logging of syscall results, can be performed.
5517 All errnos that do_syscall() returns must be -TARGET_<errcode>. */
5518 abi_long
do_syscall(void *cpu_env
, int num
, abi_long arg1
,
5519 abi_long arg2
, abi_long arg3
, abi_long arg4
,
5520 abi_long arg5
, abi_long arg6
, abi_long arg7
,
5523 CPUState
*cpu
= ENV_GET_CPU(cpu_env
);
5530 gemu_log("syscall %d", num
);
5533 print_syscall(num
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
5536 case TARGET_NR_exit
:
5537 /* In old applications this may be used to implement _exit(2).
5538 However in threaded applictions it is used for thread termination,
5539 and _exit_group is used for application termination.
5540 Do thread termination if we have more then one thread. */
5541 /* FIXME: This probably breaks if a signal arrives. We should probably
5542 be disabling signals. */
5543 if (CPU_NEXT(first_cpu
)) {
5547 /* Remove the CPU from the list. */
5548 QTAILQ_REMOVE(&cpus
, cpu
, node
);
5551 if (ts
->child_tidptr
) {
5552 put_user_u32(0, ts
->child_tidptr
);
5553 sys_futex(g2h(ts
->child_tidptr
), FUTEX_WAKE
, INT_MAX
,
5557 object_unref(OBJECT(cpu
));
5564 gdb_exit(cpu_env
, arg1
);
5566 ret
= 0; /* avoid warning */
5568 case TARGET_NR_read
:
5572 if (!(p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0)))
5574 ret
= get_errno(read(arg1
, p
, arg3
));
5575 unlock_user(p
, arg2
, ret
);
5578 case TARGET_NR_write
:
5579 if (!(p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1)))
5581 ret
= get_errno(write(arg1
, p
, arg3
));
5582 unlock_user(p
, arg2
, 0);
5584 case TARGET_NR_open
:
5585 if (!(p
= lock_user_string(arg1
)))
5587 ret
= get_errno(do_openat(cpu_env
, AT_FDCWD
, p
,
5588 target_to_host_bitmask(arg2
, fcntl_flags_tbl
),
5590 unlock_user(p
, arg1
, 0);
5592 case TARGET_NR_openat
:
5593 if (!(p
= lock_user_string(arg2
)))
5595 ret
= get_errno(do_openat(cpu_env
, arg1
, p
,
5596 target_to_host_bitmask(arg3
, fcntl_flags_tbl
),
5598 unlock_user(p
, arg2
, 0);
5600 case TARGET_NR_close
:
5601 ret
= get_errno(close(arg1
));
5606 case TARGET_NR_fork
:
5607 ret
= get_errno(do_fork(cpu_env
, SIGCHLD
, 0, 0, 0, 0));
5609 #ifdef TARGET_NR_waitpid
5610 case TARGET_NR_waitpid
:
5613 ret
= get_errno(waitpid(arg1
, &status
, arg3
));
5614 if (!is_error(ret
) && arg2
&& ret
5615 && put_user_s32(host_to_target_waitstatus(status
), arg2
))
5620 #ifdef TARGET_NR_waitid
5621 case TARGET_NR_waitid
:
5625 ret
= get_errno(waitid(arg1
, arg2
, &info
, arg4
));
5626 if (!is_error(ret
) && arg3
&& info
.si_pid
!= 0) {
5627 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_siginfo_t
), 0)))
5629 host_to_target_siginfo(p
, &info
);
5630 unlock_user(p
, arg3
, sizeof(target_siginfo_t
));
5635 #ifdef TARGET_NR_creat /* not on alpha */
5636 case TARGET_NR_creat
:
5637 if (!(p
= lock_user_string(arg1
)))
5639 ret
= get_errno(creat(p
, arg2
));
5640 unlock_user(p
, arg1
, 0);
5643 case TARGET_NR_link
:
5646 p
= lock_user_string(arg1
);
5647 p2
= lock_user_string(arg2
);
5649 ret
= -TARGET_EFAULT
;
5651 ret
= get_errno(link(p
, p2
));
5652 unlock_user(p2
, arg2
, 0);
5653 unlock_user(p
, arg1
, 0);
5656 #if defined(TARGET_NR_linkat)
5657 case TARGET_NR_linkat
:
5662 p
= lock_user_string(arg2
);
5663 p2
= lock_user_string(arg4
);
5665 ret
= -TARGET_EFAULT
;
5667 ret
= get_errno(linkat(arg1
, p
, arg3
, p2
, arg5
));
5668 unlock_user(p
, arg2
, 0);
5669 unlock_user(p2
, arg4
, 0);
5673 case TARGET_NR_unlink
:
5674 if (!(p
= lock_user_string(arg1
)))
5676 ret
= get_errno(unlink(p
));
5677 unlock_user(p
, arg1
, 0);
5679 #if defined(TARGET_NR_unlinkat)
5680 case TARGET_NR_unlinkat
:
5681 if (!(p
= lock_user_string(arg2
)))
5683 ret
= get_errno(unlinkat(arg1
, p
, arg3
));
5684 unlock_user(p
, arg2
, 0);
5687 case TARGET_NR_execve
:
5689 char **argp
, **envp
;
5692 abi_ulong guest_argp
;
5693 abi_ulong guest_envp
;
5700 for (gp
= guest_argp
; gp
; gp
+= sizeof(abi_ulong
)) {
5701 if (get_user_ual(addr
, gp
))
5709 for (gp
= guest_envp
; gp
; gp
+= sizeof(abi_ulong
)) {
5710 if (get_user_ual(addr
, gp
))
5717 argp
= alloca((argc
+ 1) * sizeof(void *));
5718 envp
= alloca((envc
+ 1) * sizeof(void *));
5720 for (gp
= guest_argp
, q
= argp
; gp
;
5721 gp
+= sizeof(abi_ulong
), q
++) {
5722 if (get_user_ual(addr
, gp
))
5726 if (!(*q
= lock_user_string(addr
)))
5728 total_size
+= strlen(*q
) + 1;
5732 for (gp
= guest_envp
, q
= envp
; gp
;
5733 gp
+= sizeof(abi_ulong
), q
++) {
5734 if (get_user_ual(addr
, gp
))
5738 if (!(*q
= lock_user_string(addr
)))
5740 total_size
+= strlen(*q
) + 1;
5744 /* This case will not be caught by the host's execve() if its
5745 page size is bigger than the target's. */
5746 if (total_size
> MAX_ARG_PAGES
* TARGET_PAGE_SIZE
) {
5747 ret
= -TARGET_E2BIG
;
5750 if (!(p
= lock_user_string(arg1
)))
5752 ret
= get_errno(execve(p
, argp
, envp
));
5753 unlock_user(p
, arg1
, 0);
5758 ret
= -TARGET_EFAULT
;
5761 for (gp
= guest_argp
, q
= argp
; *q
;
5762 gp
+= sizeof(abi_ulong
), q
++) {
5763 if (get_user_ual(addr
, gp
)
5766 unlock_user(*q
, addr
, 0);
5768 for (gp
= guest_envp
, q
= envp
; *q
;
5769 gp
+= sizeof(abi_ulong
), q
++) {
5770 if (get_user_ual(addr
, gp
)
5773 unlock_user(*q
, addr
, 0);
5777 case TARGET_NR_chdir
:
5778 if (!(p
= lock_user_string(arg1
)))
5780 ret
= get_errno(chdir(p
));
5781 unlock_user(p
, arg1
, 0);
5783 #ifdef TARGET_NR_time
5784 case TARGET_NR_time
:
5787 ret
= get_errno(time(&host_time
));
5790 && put_user_sal(host_time
, arg1
))
5795 case TARGET_NR_mknod
:
5796 if (!(p
= lock_user_string(arg1
)))
5798 ret
= get_errno(mknod(p
, arg2
, arg3
));
5799 unlock_user(p
, arg1
, 0);
5801 #if defined(TARGET_NR_mknodat)
5802 case TARGET_NR_mknodat
:
5803 if (!(p
= lock_user_string(arg2
)))
5805 ret
= get_errno(mknodat(arg1
, p
, arg3
, arg4
));
5806 unlock_user(p
, arg2
, 0);
5809 case TARGET_NR_chmod
:
5810 if (!(p
= lock_user_string(arg1
)))
5812 ret
= get_errno(chmod(p
, arg2
));
5813 unlock_user(p
, arg1
, 0);
5815 #ifdef TARGET_NR_break
5816 case TARGET_NR_break
:
5819 #ifdef TARGET_NR_oldstat
5820 case TARGET_NR_oldstat
:
5823 case TARGET_NR_lseek
:
5824 ret
= get_errno(lseek(arg1
, arg2
, arg3
));
5826 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
5827 /* Alpha specific */
5828 case TARGET_NR_getxpid
:
5829 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
] = getppid();
5830 ret
= get_errno(getpid());
5833 #ifdef TARGET_NR_getpid
5834 case TARGET_NR_getpid
:
5835 ret
= get_errno(getpid());
5838 case TARGET_NR_mount
:
5840 /* need to look at the data field */
5844 p
= lock_user_string(arg1
);
5852 p2
= lock_user_string(arg2
);
5855 unlock_user(p
, arg1
, 0);
5861 p3
= lock_user_string(arg3
);
5864 unlock_user(p
, arg1
, 0);
5866 unlock_user(p2
, arg2
, 0);
5873 /* FIXME - arg5 should be locked, but it isn't clear how to
5874 * do that since it's not guaranteed to be a NULL-terminated
5878 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, NULL
);
5880 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, g2h(arg5
));
5882 ret
= get_errno(ret
);
5885 unlock_user(p
, arg1
, 0);
5887 unlock_user(p2
, arg2
, 0);
5889 unlock_user(p3
, arg3
, 0);
5893 #ifdef TARGET_NR_umount
5894 case TARGET_NR_umount
:
5895 if (!(p
= lock_user_string(arg1
)))
5897 ret
= get_errno(umount(p
));
5898 unlock_user(p
, arg1
, 0);
5901 #ifdef TARGET_NR_stime /* not on alpha */
5902 case TARGET_NR_stime
:
5905 if (get_user_sal(host_time
, arg1
))
5907 ret
= get_errno(stime(&host_time
));
5911 case TARGET_NR_ptrace
:
5913 #ifdef TARGET_NR_alarm /* not on alpha */
5914 case TARGET_NR_alarm
:
5918 #ifdef TARGET_NR_oldfstat
5919 case TARGET_NR_oldfstat
:
5922 #ifdef TARGET_NR_pause /* not on alpha */
5923 case TARGET_NR_pause
:
5924 ret
= get_errno(pause());
5927 #ifdef TARGET_NR_utime
5928 case TARGET_NR_utime
:
5930 struct utimbuf tbuf
, *host_tbuf
;
5931 struct target_utimbuf
*target_tbuf
;
5933 if (!lock_user_struct(VERIFY_READ
, target_tbuf
, arg2
, 1))
5935 tbuf
.actime
= tswapal(target_tbuf
->actime
);
5936 tbuf
.modtime
= tswapal(target_tbuf
->modtime
);
5937 unlock_user_struct(target_tbuf
, arg2
, 0);
5942 if (!(p
= lock_user_string(arg1
)))
5944 ret
= get_errno(utime(p
, host_tbuf
));
5945 unlock_user(p
, arg1
, 0);
5949 case TARGET_NR_utimes
:
5951 struct timeval
*tvp
, tv
[2];
5953 if (copy_from_user_timeval(&tv
[0], arg2
)
5954 || copy_from_user_timeval(&tv
[1],
5955 arg2
+ sizeof(struct target_timeval
)))
5961 if (!(p
= lock_user_string(arg1
)))
5963 ret
= get_errno(utimes(p
, tvp
));
5964 unlock_user(p
, arg1
, 0);
5967 #if defined(TARGET_NR_futimesat)
5968 case TARGET_NR_futimesat
:
5970 struct timeval
*tvp
, tv
[2];
5972 if (copy_from_user_timeval(&tv
[0], arg3
)
5973 || copy_from_user_timeval(&tv
[1],
5974 arg3
+ sizeof(struct target_timeval
)))
5980 if (!(p
= lock_user_string(arg2
)))
5982 ret
= get_errno(futimesat(arg1
, path(p
), tvp
));
5983 unlock_user(p
, arg2
, 0);
5987 #ifdef TARGET_NR_stty
5988 case TARGET_NR_stty
:
5991 #ifdef TARGET_NR_gtty
5992 case TARGET_NR_gtty
:
5995 case TARGET_NR_access
:
5996 if (!(p
= lock_user_string(arg1
)))
5998 ret
= get_errno(access(path(p
), arg2
));
5999 unlock_user(p
, arg1
, 0);
6001 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
6002 case TARGET_NR_faccessat
:
6003 if (!(p
= lock_user_string(arg2
)))
6005 ret
= get_errno(faccessat(arg1
, p
, arg3
, 0));
6006 unlock_user(p
, arg2
, 0);
6009 #ifdef TARGET_NR_nice /* not on alpha */
6010 case TARGET_NR_nice
:
6011 ret
= get_errno(nice(arg1
));
6014 #ifdef TARGET_NR_ftime
6015 case TARGET_NR_ftime
:
6018 case TARGET_NR_sync
:
6022 case TARGET_NR_kill
:
6023 ret
= get_errno(kill(arg1
, target_to_host_signal(arg2
)));
6025 case TARGET_NR_rename
:
6028 p
= lock_user_string(arg1
);
6029 p2
= lock_user_string(arg2
);
6031 ret
= -TARGET_EFAULT
;
6033 ret
= get_errno(rename(p
, p2
));
6034 unlock_user(p2
, arg2
, 0);
6035 unlock_user(p
, arg1
, 0);
6038 #if defined(TARGET_NR_renameat)
6039 case TARGET_NR_renameat
:
6042 p
= lock_user_string(arg2
);
6043 p2
= lock_user_string(arg4
);
6045 ret
= -TARGET_EFAULT
;
6047 ret
= get_errno(renameat(arg1
, p
, arg3
, p2
));
6048 unlock_user(p2
, arg4
, 0);
6049 unlock_user(p
, arg2
, 0);
6053 case TARGET_NR_mkdir
:
6054 if (!(p
= lock_user_string(arg1
)))
6056 ret
= get_errno(mkdir(p
, arg2
));
6057 unlock_user(p
, arg1
, 0);
6059 #if defined(TARGET_NR_mkdirat)
6060 case TARGET_NR_mkdirat
:
6061 if (!(p
= lock_user_string(arg2
)))
6063 ret
= get_errno(mkdirat(arg1
, p
, arg3
));
6064 unlock_user(p
, arg2
, 0);
6067 case TARGET_NR_rmdir
:
6068 if (!(p
= lock_user_string(arg1
)))
6070 ret
= get_errno(rmdir(p
));
6071 unlock_user(p
, arg1
, 0);
6074 ret
= get_errno(dup(arg1
));
6076 case TARGET_NR_pipe
:
6077 ret
= do_pipe(cpu_env
, arg1
, 0, 0);
6079 #ifdef TARGET_NR_pipe2
6080 case TARGET_NR_pipe2
:
6081 ret
= do_pipe(cpu_env
, arg1
,
6082 target_to_host_bitmask(arg2
, fcntl_flags_tbl
), 1);
6085 case TARGET_NR_times
:
6087 struct target_tms
*tmsp
;
6089 ret
= get_errno(times(&tms
));
6091 tmsp
= lock_user(VERIFY_WRITE
, arg1
, sizeof(struct target_tms
), 0);
6094 tmsp
->tms_utime
= tswapal(host_to_target_clock_t(tms
.tms_utime
));
6095 tmsp
->tms_stime
= tswapal(host_to_target_clock_t(tms
.tms_stime
));
6096 tmsp
->tms_cutime
= tswapal(host_to_target_clock_t(tms
.tms_cutime
));
6097 tmsp
->tms_cstime
= tswapal(host_to_target_clock_t(tms
.tms_cstime
));
6100 ret
= host_to_target_clock_t(ret
);
6103 #ifdef TARGET_NR_prof
6104 case TARGET_NR_prof
:
6107 #ifdef TARGET_NR_signal
6108 case TARGET_NR_signal
:
6111 case TARGET_NR_acct
:
6113 ret
= get_errno(acct(NULL
));
6115 if (!(p
= lock_user_string(arg1
)))
6117 ret
= get_errno(acct(path(p
)));
6118 unlock_user(p
, arg1
, 0);
6121 #ifdef TARGET_NR_umount2
6122 case TARGET_NR_umount2
:
6123 if (!(p
= lock_user_string(arg1
)))
6125 ret
= get_errno(umount2(p
, arg2
));
6126 unlock_user(p
, arg1
, 0);
6129 #ifdef TARGET_NR_lock
6130 case TARGET_NR_lock
:
6133 case TARGET_NR_ioctl
:
6134 ret
= do_ioctl(arg1
, arg2
, arg3
);
6136 case TARGET_NR_fcntl
:
6137 ret
= do_fcntl(arg1
, arg2
, arg3
);
6139 #ifdef TARGET_NR_mpx
6143 case TARGET_NR_setpgid
:
6144 ret
= get_errno(setpgid(arg1
, arg2
));
6146 #ifdef TARGET_NR_ulimit
6147 case TARGET_NR_ulimit
:
6150 #ifdef TARGET_NR_oldolduname
6151 case TARGET_NR_oldolduname
:
6154 case TARGET_NR_umask
:
6155 ret
= get_errno(umask(arg1
));
6157 case TARGET_NR_chroot
:
6158 if (!(p
= lock_user_string(arg1
)))
6160 ret
= get_errno(chroot(p
));
6161 unlock_user(p
, arg1
, 0);
6163 case TARGET_NR_ustat
:
6165 case TARGET_NR_dup2
:
6166 ret
= get_errno(dup2(arg1
, arg2
));
6168 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
6169 case TARGET_NR_dup3
:
6170 ret
= get_errno(dup3(arg1
, arg2
, arg3
));
6173 #ifdef TARGET_NR_getppid /* not on alpha */
6174 case TARGET_NR_getppid
:
6175 ret
= get_errno(getppid());
6178 case TARGET_NR_getpgrp
:
6179 ret
= get_errno(getpgrp());
6181 case TARGET_NR_setsid
:
6182 ret
= get_errno(setsid());
6184 #ifdef TARGET_NR_sigaction
6185 case TARGET_NR_sigaction
:
6187 #if defined(TARGET_ALPHA)
6188 struct target_sigaction act
, oact
, *pact
= 0;
6189 struct target_old_sigaction
*old_act
;
6191 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
6193 act
._sa_handler
= old_act
->_sa_handler
;
6194 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
);
6195 act
.sa_flags
= old_act
->sa_flags
;
6196 act
.sa_restorer
= 0;
6197 unlock_user_struct(old_act
, arg2
, 0);
6200 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
6201 if (!is_error(ret
) && arg3
) {
6202 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
6204 old_act
->_sa_handler
= oact
._sa_handler
;
6205 old_act
->sa_mask
= oact
.sa_mask
.sig
[0];
6206 old_act
->sa_flags
= oact
.sa_flags
;
6207 unlock_user_struct(old_act
, arg3
, 1);
6209 #elif defined(TARGET_MIPS)
6210 struct target_sigaction act
, oact
, *pact
, *old_act
;
6213 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
6215 act
._sa_handler
= old_act
->_sa_handler
;
6216 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
.sig
[0]);
6217 act
.sa_flags
= old_act
->sa_flags
;
6218 unlock_user_struct(old_act
, arg2
, 0);
6224 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
6226 if (!is_error(ret
) && arg3
) {
6227 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
6229 old_act
->_sa_handler
= oact
._sa_handler
;
6230 old_act
->sa_flags
= oact
.sa_flags
;
6231 old_act
->sa_mask
.sig
[0] = oact
.sa_mask
.sig
[0];
6232 old_act
->sa_mask
.sig
[1] = 0;
6233 old_act
->sa_mask
.sig
[2] = 0;
6234 old_act
->sa_mask
.sig
[3] = 0;
6235 unlock_user_struct(old_act
, arg3
, 1);
6238 struct target_old_sigaction
*old_act
;
6239 struct target_sigaction act
, oact
, *pact
;
6241 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
6243 act
._sa_handler
= old_act
->_sa_handler
;
6244 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
);
6245 act
.sa_flags
= old_act
->sa_flags
;
6246 act
.sa_restorer
= old_act
->sa_restorer
;
6247 unlock_user_struct(old_act
, arg2
, 0);
6252 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
6253 if (!is_error(ret
) && arg3
) {
6254 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
6256 old_act
->_sa_handler
= oact
._sa_handler
;
6257 old_act
->sa_mask
= oact
.sa_mask
.sig
[0];
6258 old_act
->sa_flags
= oact
.sa_flags
;
6259 old_act
->sa_restorer
= oact
.sa_restorer
;
6260 unlock_user_struct(old_act
, arg3
, 1);
6266 case TARGET_NR_rt_sigaction
:
6268 #if defined(TARGET_ALPHA)
6269 struct target_sigaction act
, oact
, *pact
= 0;
6270 struct target_rt_sigaction
*rt_act
;
6271 /* ??? arg4 == sizeof(sigset_t). */
6273 if (!lock_user_struct(VERIFY_READ
, rt_act
, arg2
, 1))
6275 act
._sa_handler
= rt_act
->_sa_handler
;
6276 act
.sa_mask
= rt_act
->sa_mask
;
6277 act
.sa_flags
= rt_act
->sa_flags
;
6278 act
.sa_restorer
= arg5
;
6279 unlock_user_struct(rt_act
, arg2
, 0);
6282 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
6283 if (!is_error(ret
) && arg3
) {
6284 if (!lock_user_struct(VERIFY_WRITE
, rt_act
, arg3
, 0))
6286 rt_act
->_sa_handler
= oact
._sa_handler
;
6287 rt_act
->sa_mask
= oact
.sa_mask
;
6288 rt_act
->sa_flags
= oact
.sa_flags
;
6289 unlock_user_struct(rt_act
, arg3
, 1);
6292 struct target_sigaction
*act
;
6293 struct target_sigaction
*oact
;
6296 if (!lock_user_struct(VERIFY_READ
, act
, arg2
, 1))
6301 if (!lock_user_struct(VERIFY_WRITE
, oact
, arg3
, 0)) {
6302 ret
= -TARGET_EFAULT
;
6303 goto rt_sigaction_fail
;
6307 ret
= get_errno(do_sigaction(arg1
, act
, oact
));
6310 unlock_user_struct(act
, arg2
, 0);
6312 unlock_user_struct(oact
, arg3
, 1);
6316 #ifdef TARGET_NR_sgetmask /* not on alpha */
6317 case TARGET_NR_sgetmask
:
6320 abi_ulong target_set
;
6321 do_sigprocmask(0, NULL
, &cur_set
);
6322 host_to_target_old_sigset(&target_set
, &cur_set
);
6327 #ifdef TARGET_NR_ssetmask /* not on alpha */
6328 case TARGET_NR_ssetmask
:
6330 sigset_t set
, oset
, cur_set
;
6331 abi_ulong target_set
= arg1
;
6332 do_sigprocmask(0, NULL
, &cur_set
);
6333 target_to_host_old_sigset(&set
, &target_set
);
6334 sigorset(&set
, &set
, &cur_set
);
6335 do_sigprocmask(SIG_SETMASK
, &set
, &oset
);
6336 host_to_target_old_sigset(&target_set
, &oset
);
6341 #ifdef TARGET_NR_sigprocmask
6342 case TARGET_NR_sigprocmask
:
6344 #if defined(TARGET_ALPHA)
6345 sigset_t set
, oldset
;
6350 case TARGET_SIG_BLOCK
:
6353 case TARGET_SIG_UNBLOCK
:
6356 case TARGET_SIG_SETMASK
:
6360 ret
= -TARGET_EINVAL
;
6364 target_to_host_old_sigset(&set
, &mask
);
6366 ret
= get_errno(do_sigprocmask(how
, &set
, &oldset
));
6367 if (!is_error(ret
)) {
6368 host_to_target_old_sigset(&mask
, &oldset
);
6370 ((CPUAlphaState
*)cpu_env
)->ir
[IR_V0
] = 0; /* force no error */
6373 sigset_t set
, oldset
, *set_ptr
;
6378 case TARGET_SIG_BLOCK
:
6381 case TARGET_SIG_UNBLOCK
:
6384 case TARGET_SIG_SETMASK
:
6388 ret
= -TARGET_EINVAL
;
6391 if (!(p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1)))
6393 target_to_host_old_sigset(&set
, p
);
6394 unlock_user(p
, arg2
, 0);
6400 ret
= get_errno(do_sigprocmask(how
, set_ptr
, &oldset
));
6401 if (!is_error(ret
) && arg3
) {
6402 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
6404 host_to_target_old_sigset(p
, &oldset
);
6405 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
6411 case TARGET_NR_rt_sigprocmask
:
6414 sigset_t set
, oldset
, *set_ptr
;
6418 case TARGET_SIG_BLOCK
:
6421 case TARGET_SIG_UNBLOCK
:
6424 case TARGET_SIG_SETMASK
:
6428 ret
= -TARGET_EINVAL
;
6431 if (!(p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1)))
6433 target_to_host_sigset(&set
, p
);
6434 unlock_user(p
, arg2
, 0);
6440 ret
= get_errno(do_sigprocmask(how
, set_ptr
, &oldset
));
6441 if (!is_error(ret
) && arg3
) {
6442 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
6444 host_to_target_sigset(p
, &oldset
);
6445 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
6449 #ifdef TARGET_NR_sigpending
6450 case TARGET_NR_sigpending
:
6453 ret
= get_errno(sigpending(&set
));
6454 if (!is_error(ret
)) {
6455 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
6457 host_to_target_old_sigset(p
, &set
);
6458 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
6463 case TARGET_NR_rt_sigpending
:
6466 ret
= get_errno(sigpending(&set
));
6467 if (!is_error(ret
)) {
6468 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
6470 host_to_target_sigset(p
, &set
);
6471 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
6475 #ifdef TARGET_NR_sigsuspend
6476 case TARGET_NR_sigsuspend
:
6479 #if defined(TARGET_ALPHA)
6480 abi_ulong mask
= arg1
;
6481 target_to_host_old_sigset(&set
, &mask
);
6483 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
6485 target_to_host_old_sigset(&set
, p
);
6486 unlock_user(p
, arg1
, 0);
6488 ret
= get_errno(sigsuspend(&set
));
6492 case TARGET_NR_rt_sigsuspend
:
6495 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
6497 target_to_host_sigset(&set
, p
);
6498 unlock_user(p
, arg1
, 0);
6499 ret
= get_errno(sigsuspend(&set
));
6502 case TARGET_NR_rt_sigtimedwait
:
6505 struct timespec uts
, *puts
;
6508 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
6510 target_to_host_sigset(&set
, p
);
6511 unlock_user(p
, arg1
, 0);
6514 target_to_host_timespec(puts
, arg3
);
6518 ret
= get_errno(sigtimedwait(&set
, &uinfo
, puts
));
6519 if (!is_error(ret
)) {
6521 p
= lock_user(VERIFY_WRITE
, arg2
, sizeof(target_siginfo_t
),
6526 host_to_target_siginfo(p
, &uinfo
);
6527 unlock_user(p
, arg2
, sizeof(target_siginfo_t
));
6529 ret
= host_to_target_signal(ret
);
6533 case TARGET_NR_rt_sigqueueinfo
:
6536 if (!(p
= lock_user(VERIFY_READ
, arg3
, sizeof(target_sigset_t
), 1)))
6538 target_to_host_siginfo(&uinfo
, p
);
6539 unlock_user(p
, arg1
, 0);
6540 ret
= get_errno(sys_rt_sigqueueinfo(arg1
, arg2
, &uinfo
));
6543 #ifdef TARGET_NR_sigreturn
6544 case TARGET_NR_sigreturn
:
6545 /* NOTE: ret is eax, so not transcoding must be done */
6546 ret
= do_sigreturn(cpu_env
);
6549 case TARGET_NR_rt_sigreturn
:
6550 /* NOTE: ret is eax, so not transcoding must be done */
6551 ret
= do_rt_sigreturn(cpu_env
);
6553 case TARGET_NR_sethostname
:
6554 if (!(p
= lock_user_string(arg1
)))
6556 ret
= get_errno(sethostname(p
, arg2
));
6557 unlock_user(p
, arg1
, 0);
6559 case TARGET_NR_setrlimit
:
6561 int resource
= target_to_host_resource(arg1
);
6562 struct target_rlimit
*target_rlim
;
6564 if (!lock_user_struct(VERIFY_READ
, target_rlim
, arg2
, 1))
6566 rlim
.rlim_cur
= target_to_host_rlim(target_rlim
->rlim_cur
);
6567 rlim
.rlim_max
= target_to_host_rlim(target_rlim
->rlim_max
);
6568 unlock_user_struct(target_rlim
, arg2
, 0);
6569 ret
= get_errno(setrlimit(resource
, &rlim
));
6572 case TARGET_NR_getrlimit
:
6574 int resource
= target_to_host_resource(arg1
);
6575 struct target_rlimit
*target_rlim
;
6578 ret
= get_errno(getrlimit(resource
, &rlim
));
6579 if (!is_error(ret
)) {
6580 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
6582 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
6583 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
6584 unlock_user_struct(target_rlim
, arg2
, 1);
6588 case TARGET_NR_getrusage
:
6590 struct rusage rusage
;
6591 ret
= get_errno(getrusage(arg1
, &rusage
));
6592 if (!is_error(ret
)) {
6593 ret
= host_to_target_rusage(arg2
, &rusage
);
6597 case TARGET_NR_gettimeofday
:
6600 ret
= get_errno(gettimeofday(&tv
, NULL
));
6601 if (!is_error(ret
)) {
6602 if (copy_to_user_timeval(arg1
, &tv
))
6607 case TARGET_NR_settimeofday
:
6609 struct timeval tv
, *ptv
= NULL
;
6610 struct timezone tz
, *ptz
= NULL
;
6613 if (copy_from_user_timeval(&tv
, arg1
)) {
6620 if (copy_from_user_timezone(&tz
, arg2
)) {
6626 ret
= get_errno(settimeofday(ptv
, ptz
));
6629 #if defined(TARGET_NR_select)
6630 case TARGET_NR_select
:
6631 #if defined(TARGET_S390X) || defined(TARGET_ALPHA)
6632 ret
= do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
6635 struct target_sel_arg_struct
*sel
;
6636 abi_ulong inp
, outp
, exp
, tvp
;
6639 if (!lock_user_struct(VERIFY_READ
, sel
, arg1
, 1))
6641 nsel
= tswapal(sel
->n
);
6642 inp
= tswapal(sel
->inp
);
6643 outp
= tswapal(sel
->outp
);
6644 exp
= tswapal(sel
->exp
);
6645 tvp
= tswapal(sel
->tvp
);
6646 unlock_user_struct(sel
, arg1
, 0);
6647 ret
= do_select(nsel
, inp
, outp
, exp
, tvp
);
6652 #ifdef TARGET_NR_pselect6
6653 case TARGET_NR_pselect6
:
6655 abi_long rfd_addr
, wfd_addr
, efd_addr
, n
, ts_addr
;
6656 fd_set rfds
, wfds
, efds
;
6657 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
6658 struct timespec ts
, *ts_ptr
;
6661 * The 6th arg is actually two args smashed together,
6662 * so we cannot use the C library.
6670 abi_ulong arg_sigset
, arg_sigsize
, *arg7
;
6671 target_sigset_t
*target_sigset
;
6679 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
6683 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
6687 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
6693 * This takes a timespec, and not a timeval, so we cannot
6694 * use the do_select() helper ...
6697 if (target_to_host_timespec(&ts
, ts_addr
)) {
6705 /* Extract the two packed args for the sigset */
6708 sig
.size
= _NSIG
/ 8;
6710 arg7
= lock_user(VERIFY_READ
, arg6
, sizeof(*arg7
) * 2, 1);
6714 arg_sigset
= tswapal(arg7
[0]);
6715 arg_sigsize
= tswapal(arg7
[1]);
6716 unlock_user(arg7
, arg6
, 0);
6720 if (arg_sigsize
!= sizeof(*target_sigset
)) {
6721 /* Like the kernel, we enforce correct size sigsets */
6722 ret
= -TARGET_EINVAL
;
6725 target_sigset
= lock_user(VERIFY_READ
, arg_sigset
,
6726 sizeof(*target_sigset
), 1);
6727 if (!target_sigset
) {
6730 target_to_host_sigset(&set
, target_sigset
);
6731 unlock_user(target_sigset
, arg_sigset
, 0);
6739 ret
= get_errno(sys_pselect6(n
, rfds_ptr
, wfds_ptr
, efds_ptr
,
6742 if (!is_error(ret
)) {
6743 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
))
6745 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
))
6747 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
))
6750 if (ts_addr
&& host_to_target_timespec(ts_addr
, &ts
))
6756 case TARGET_NR_symlink
:
6759 p
= lock_user_string(arg1
);
6760 p2
= lock_user_string(arg2
);
6762 ret
= -TARGET_EFAULT
;
6764 ret
= get_errno(symlink(p
, p2
));
6765 unlock_user(p2
, arg2
, 0);
6766 unlock_user(p
, arg1
, 0);
6769 #if defined(TARGET_NR_symlinkat)
6770 case TARGET_NR_symlinkat
:
6773 p
= lock_user_string(arg1
);
6774 p2
= lock_user_string(arg3
);
6776 ret
= -TARGET_EFAULT
;
6778 ret
= get_errno(symlinkat(p
, arg2
, p2
));
6779 unlock_user(p2
, arg3
, 0);
6780 unlock_user(p
, arg1
, 0);
6784 #ifdef TARGET_NR_oldlstat
6785 case TARGET_NR_oldlstat
:
6788 case TARGET_NR_readlink
:
6791 p
= lock_user_string(arg1
);
6792 p2
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
6794 ret
= -TARGET_EFAULT
;
6796 /* Short circuit this for the magic exe check. */
6797 ret
= -TARGET_EINVAL
;
6798 } else if (is_proc_myself((const char *)p
, "exe")) {
6799 char real
[PATH_MAX
], *temp
;
6800 temp
= realpath(exec_path
, real
);
6801 /* Return value is # of bytes that we wrote to the buffer. */
6803 ret
= get_errno(-1);
6805 /* Don't worry about sign mismatch as earlier mapping
6806 * logic would have thrown a bad address error. */
6807 ret
= MIN(strlen(real
), arg3
);
6808 /* We cannot NUL terminate the string. */
6809 memcpy(p2
, real
, ret
);
6812 ret
= get_errno(readlink(path(p
), p2
, arg3
));
6814 unlock_user(p2
, arg2
, ret
);
6815 unlock_user(p
, arg1
, 0);
6818 #if defined(TARGET_NR_readlinkat)
6819 case TARGET_NR_readlinkat
:
6822 p
= lock_user_string(arg2
);
6823 p2
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
6825 ret
= -TARGET_EFAULT
;
6826 } else if (is_proc_myself((const char *)p
, "exe")) {
6827 char real
[PATH_MAX
], *temp
;
6828 temp
= realpath(exec_path
, real
);
6829 ret
= temp
== NULL
? get_errno(-1) : strlen(real
) ;
6830 snprintf((char *)p2
, arg4
, "%s", real
);
6832 ret
= get_errno(readlinkat(arg1
, path(p
), p2
, arg4
));
6834 unlock_user(p2
, arg3
, ret
);
6835 unlock_user(p
, arg2
, 0);
6839 #ifdef TARGET_NR_uselib
6840 case TARGET_NR_uselib
:
6843 #ifdef TARGET_NR_swapon
6844 case TARGET_NR_swapon
:
6845 if (!(p
= lock_user_string(arg1
)))
6847 ret
= get_errno(swapon(p
, arg2
));
6848 unlock_user(p
, arg1
, 0);
6851 case TARGET_NR_reboot
:
6852 if (arg3
== LINUX_REBOOT_CMD_RESTART2
) {
6853 /* arg4 must be ignored in all other cases */
6854 p
= lock_user_string(arg4
);
6858 ret
= get_errno(reboot(arg1
, arg2
, arg3
, p
));
6859 unlock_user(p
, arg4
, 0);
6861 ret
= get_errno(reboot(arg1
, arg2
, arg3
, NULL
));
6864 #ifdef TARGET_NR_readdir
6865 case TARGET_NR_readdir
:
6868 #ifdef TARGET_NR_mmap
6869 case TARGET_NR_mmap
:
6870 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
6871 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
6872 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
6873 || defined(TARGET_S390X)
6876 abi_ulong v1
, v2
, v3
, v4
, v5
, v6
;
6877 if (!(v
= lock_user(VERIFY_READ
, arg1
, 6 * sizeof(abi_ulong
), 1)))
6885 unlock_user(v
, arg1
, 0);
6886 ret
= get_errno(target_mmap(v1
, v2
, v3
,
6887 target_to_host_bitmask(v4
, mmap_flags_tbl
),
6891 ret
= get_errno(target_mmap(arg1
, arg2
, arg3
,
6892 target_to_host_bitmask(arg4
, mmap_flags_tbl
),
6898 #ifdef TARGET_NR_mmap2
6899 case TARGET_NR_mmap2
:
6901 #define MMAP_SHIFT 12
6903 ret
= get_errno(target_mmap(arg1
, arg2
, arg3
,
6904 target_to_host_bitmask(arg4
, mmap_flags_tbl
),
6906 arg6
<< MMAP_SHIFT
));
6909 case TARGET_NR_munmap
:
6910 ret
= get_errno(target_munmap(arg1
, arg2
));
6912 case TARGET_NR_mprotect
:
6914 TaskState
*ts
= cpu
->opaque
;
6915 /* Special hack to detect libc making the stack executable. */
6916 if ((arg3
& PROT_GROWSDOWN
)
6917 && arg1
>= ts
->info
->stack_limit
6918 && arg1
<= ts
->info
->start_stack
) {
6919 arg3
&= ~PROT_GROWSDOWN
;
6920 arg2
= arg2
+ arg1
- ts
->info
->stack_limit
;
6921 arg1
= ts
->info
->stack_limit
;
6924 ret
= get_errno(target_mprotect(arg1
, arg2
, arg3
));
6926 #ifdef TARGET_NR_mremap
6927 case TARGET_NR_mremap
:
6928 ret
= get_errno(target_mremap(arg1
, arg2
, arg3
, arg4
, arg5
));
6931 /* ??? msync/mlock/munlock are broken for softmmu. */
6932 #ifdef TARGET_NR_msync
6933 case TARGET_NR_msync
:
6934 ret
= get_errno(msync(g2h(arg1
), arg2
, arg3
));
6937 #ifdef TARGET_NR_mlock
6938 case TARGET_NR_mlock
:
6939 ret
= get_errno(mlock(g2h(arg1
), arg2
));
6942 #ifdef TARGET_NR_munlock
6943 case TARGET_NR_munlock
:
6944 ret
= get_errno(munlock(g2h(arg1
), arg2
));
6947 #ifdef TARGET_NR_mlockall
6948 case TARGET_NR_mlockall
:
6949 ret
= get_errno(mlockall(target_to_host_mlockall_arg(arg1
)));
6952 #ifdef TARGET_NR_munlockall
6953 case TARGET_NR_munlockall
:
6954 ret
= get_errno(munlockall());
6957 case TARGET_NR_truncate
:
6958 if (!(p
= lock_user_string(arg1
)))
6960 ret
= get_errno(truncate(p
, arg2
));
6961 unlock_user(p
, arg1
, 0);
6963 case TARGET_NR_ftruncate
:
6964 ret
= get_errno(ftruncate(arg1
, arg2
));
6966 case TARGET_NR_fchmod
:
6967 ret
= get_errno(fchmod(arg1
, arg2
));
6969 #if defined(TARGET_NR_fchmodat)
6970 case TARGET_NR_fchmodat
:
6971 if (!(p
= lock_user_string(arg2
)))
6973 ret
= get_errno(fchmodat(arg1
, p
, arg3
, 0));
6974 unlock_user(p
, arg2
, 0);
6977 case TARGET_NR_getpriority
:
6978 /* Note that negative values are valid for getpriority, so we must
6979 differentiate based on errno settings. */
6981 ret
= getpriority(arg1
, arg2
);
6982 if (ret
== -1 && errno
!= 0) {
6983 ret
= -host_to_target_errno(errno
);
6987 /* Return value is the unbiased priority. Signal no error. */
6988 ((CPUAlphaState
*)cpu_env
)->ir
[IR_V0
] = 0;
6990 /* Return value is a biased priority to avoid negative numbers. */
6994 case TARGET_NR_setpriority
:
6995 ret
= get_errno(setpriority(arg1
, arg2
, arg3
));
6997 #ifdef TARGET_NR_profil
6998 case TARGET_NR_profil
:
7001 case TARGET_NR_statfs
:
7002 if (!(p
= lock_user_string(arg1
)))
7004 ret
= get_errno(statfs(path(p
), &stfs
));
7005 unlock_user(p
, arg1
, 0);
7007 if (!is_error(ret
)) {
7008 struct target_statfs
*target_stfs
;
7010 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg2
, 0))
7012 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
7013 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
7014 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
7015 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
7016 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
7017 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
7018 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
7019 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
7020 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
7021 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
7022 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
7023 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
7024 unlock_user_struct(target_stfs
, arg2
, 1);
7027 case TARGET_NR_fstatfs
:
7028 ret
= get_errno(fstatfs(arg1
, &stfs
));
7029 goto convert_statfs
;
7030 #ifdef TARGET_NR_statfs64
7031 case TARGET_NR_statfs64
:
7032 if (!(p
= lock_user_string(arg1
)))
7034 ret
= get_errno(statfs(path(p
), &stfs
));
7035 unlock_user(p
, arg1
, 0);
7037 if (!is_error(ret
)) {
7038 struct target_statfs64
*target_stfs
;
7040 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg3
, 0))
7042 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
7043 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
7044 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
7045 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
7046 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
7047 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
7048 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
7049 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
7050 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
7051 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
7052 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
7053 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
7054 unlock_user_struct(target_stfs
, arg3
, 1);
7057 case TARGET_NR_fstatfs64
:
7058 ret
= get_errno(fstatfs(arg1
, &stfs
));
7059 goto convert_statfs64
;
7061 #ifdef TARGET_NR_ioperm
7062 case TARGET_NR_ioperm
:
7065 #ifdef TARGET_NR_socketcall
7066 case TARGET_NR_socketcall
:
7067 ret
= do_socketcall(arg1
, arg2
);
7070 #ifdef TARGET_NR_accept
7071 case TARGET_NR_accept
:
7072 ret
= do_accept4(arg1
, arg2
, arg3
, 0);
7075 #ifdef TARGET_NR_accept4
7076 case TARGET_NR_accept4
:
7077 #ifdef CONFIG_ACCEPT4
7078 ret
= do_accept4(arg1
, arg2
, arg3
, arg4
);
7084 #ifdef TARGET_NR_bind
7085 case TARGET_NR_bind
:
7086 ret
= do_bind(arg1
, arg2
, arg3
);
7089 #ifdef TARGET_NR_connect
7090 case TARGET_NR_connect
:
7091 ret
= do_connect(arg1
, arg2
, arg3
);
7094 #ifdef TARGET_NR_getpeername
7095 case TARGET_NR_getpeername
:
7096 ret
= do_getpeername(arg1
, arg2
, arg3
);
7099 #ifdef TARGET_NR_getsockname
7100 case TARGET_NR_getsockname
:
7101 ret
= do_getsockname(arg1
, arg2
, arg3
);
7104 #ifdef TARGET_NR_getsockopt
7105 case TARGET_NR_getsockopt
:
7106 ret
= do_getsockopt(arg1
, arg2
, arg3
, arg4
, arg5
);
7109 #ifdef TARGET_NR_listen
7110 case TARGET_NR_listen
:
7111 ret
= get_errno(listen(arg1
, arg2
));
7114 #ifdef TARGET_NR_recv
7115 case TARGET_NR_recv
:
7116 ret
= do_recvfrom(arg1
, arg2
, arg3
, arg4
, 0, 0);
7119 #ifdef TARGET_NR_recvfrom
7120 case TARGET_NR_recvfrom
:
7121 ret
= do_recvfrom(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
7124 #ifdef TARGET_NR_recvmsg
7125 case TARGET_NR_recvmsg
:
7126 ret
= do_sendrecvmsg(arg1
, arg2
, arg3
, 0);
7129 #ifdef TARGET_NR_send
7130 case TARGET_NR_send
:
7131 ret
= do_sendto(arg1
, arg2
, arg3
, arg4
, 0, 0);
7134 #ifdef TARGET_NR_sendmsg
7135 case TARGET_NR_sendmsg
:
7136 ret
= do_sendrecvmsg(arg1
, arg2
, arg3
, 1);
7139 #ifdef TARGET_NR_sendmmsg
7140 case TARGET_NR_sendmmsg
:
7141 ret
= do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 1);
7143 case TARGET_NR_recvmmsg
:
7144 ret
= do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 0);
7147 #ifdef TARGET_NR_sendto
7148 case TARGET_NR_sendto
:
7149 ret
= do_sendto(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
7152 #ifdef TARGET_NR_shutdown
7153 case TARGET_NR_shutdown
:
7154 ret
= get_errno(shutdown(arg1
, arg2
));
7157 #ifdef TARGET_NR_socket
7158 case TARGET_NR_socket
:
7159 ret
= do_socket(arg1
, arg2
, arg3
);
7162 #ifdef TARGET_NR_socketpair
7163 case TARGET_NR_socketpair
:
7164 ret
= do_socketpair(arg1
, arg2
, arg3
, arg4
);
7167 #ifdef TARGET_NR_setsockopt
7168 case TARGET_NR_setsockopt
:
7169 ret
= do_setsockopt(arg1
, arg2
, arg3
, arg4
, (socklen_t
) arg5
);
7173 case TARGET_NR_syslog
:
7174 if (!(p
= lock_user_string(arg2
)))
7176 ret
= get_errno(sys_syslog((int)arg1
, p
, (int)arg3
));
7177 unlock_user(p
, arg2
, 0);
7180 case TARGET_NR_setitimer
:
7182 struct itimerval value
, ovalue
, *pvalue
;
7186 if (copy_from_user_timeval(&pvalue
->it_interval
, arg2
)
7187 || copy_from_user_timeval(&pvalue
->it_value
,
7188 arg2
+ sizeof(struct target_timeval
)))
7193 ret
= get_errno(setitimer(arg1
, pvalue
, &ovalue
));
7194 if (!is_error(ret
) && arg3
) {
7195 if (copy_to_user_timeval(arg3
,
7196 &ovalue
.it_interval
)
7197 || copy_to_user_timeval(arg3
+ sizeof(struct target_timeval
),
7203 case TARGET_NR_getitimer
:
7205 struct itimerval value
;
7207 ret
= get_errno(getitimer(arg1
, &value
));
7208 if (!is_error(ret
) && arg2
) {
7209 if (copy_to_user_timeval(arg2
,
7211 || copy_to_user_timeval(arg2
+ sizeof(struct target_timeval
),
7217 case TARGET_NR_stat
:
7218 if (!(p
= lock_user_string(arg1
)))
7220 ret
= get_errno(stat(path(p
), &st
));
7221 unlock_user(p
, arg1
, 0);
7223 case TARGET_NR_lstat
:
7224 if (!(p
= lock_user_string(arg1
)))
7226 ret
= get_errno(lstat(path(p
), &st
));
7227 unlock_user(p
, arg1
, 0);
7229 case TARGET_NR_fstat
:
7231 ret
= get_errno(fstat(arg1
, &st
));
7233 if (!is_error(ret
)) {
7234 struct target_stat
*target_st
;
7236 if (!lock_user_struct(VERIFY_WRITE
, target_st
, arg2
, 0))
7238 memset(target_st
, 0, sizeof(*target_st
));
7239 __put_user(st
.st_dev
, &target_st
->st_dev
);
7240 __put_user(st
.st_ino
, &target_st
->st_ino
);
7241 __put_user(st
.st_mode
, &target_st
->st_mode
);
7242 __put_user(st
.st_uid
, &target_st
->st_uid
);
7243 __put_user(st
.st_gid
, &target_st
->st_gid
);
7244 __put_user(st
.st_nlink
, &target_st
->st_nlink
);
7245 __put_user(st
.st_rdev
, &target_st
->st_rdev
);
7246 __put_user(st
.st_size
, &target_st
->st_size
);
7247 __put_user(st
.st_blksize
, &target_st
->st_blksize
);
7248 __put_user(st
.st_blocks
, &target_st
->st_blocks
);
7249 __put_user(st
.st_atime
, &target_st
->target_st_atime
);
7250 __put_user(st
.st_mtime
, &target_st
->target_st_mtime
);
7251 __put_user(st
.st_ctime
, &target_st
->target_st_ctime
);
7252 unlock_user_struct(target_st
, arg2
, 1);
7256 #ifdef TARGET_NR_olduname
7257 case TARGET_NR_olduname
:
7260 #ifdef TARGET_NR_iopl
7261 case TARGET_NR_iopl
:
7264 case TARGET_NR_vhangup
:
7265 ret
= get_errno(vhangup());
7267 #ifdef TARGET_NR_idle
7268 case TARGET_NR_idle
:
7271 #ifdef TARGET_NR_syscall
7272 case TARGET_NR_syscall
:
7273 ret
= do_syscall(cpu_env
, arg1
& 0xffff, arg2
, arg3
, arg4
, arg5
,
7274 arg6
, arg7
, arg8
, 0);
7277 case TARGET_NR_wait4
:
7280 abi_long status_ptr
= arg2
;
7281 struct rusage rusage
, *rusage_ptr
;
7282 abi_ulong target_rusage
= arg4
;
7283 abi_long rusage_err
;
7285 rusage_ptr
= &rusage
;
7288 ret
= get_errno(wait4(arg1
, &status
, arg3
, rusage_ptr
));
7289 if (!is_error(ret
)) {
7290 if (status_ptr
&& ret
) {
7291 status
= host_to_target_waitstatus(status
);
7292 if (put_user_s32(status
, status_ptr
))
7295 if (target_rusage
) {
7296 rusage_err
= host_to_target_rusage(target_rusage
, &rusage
);
7304 #ifdef TARGET_NR_swapoff
7305 case TARGET_NR_swapoff
:
7306 if (!(p
= lock_user_string(arg1
)))
7308 ret
= get_errno(swapoff(p
));
7309 unlock_user(p
, arg1
, 0);
7312 case TARGET_NR_sysinfo
:
7314 struct target_sysinfo
*target_value
;
7315 struct sysinfo value
;
7316 ret
= get_errno(sysinfo(&value
));
7317 if (!is_error(ret
) && arg1
)
7319 if (!lock_user_struct(VERIFY_WRITE
, target_value
, arg1
, 0))
7321 __put_user(value
.uptime
, &target_value
->uptime
);
7322 __put_user(value
.loads
[0], &target_value
->loads
[0]);
7323 __put_user(value
.loads
[1], &target_value
->loads
[1]);
7324 __put_user(value
.loads
[2], &target_value
->loads
[2]);
7325 __put_user(value
.totalram
, &target_value
->totalram
);
7326 __put_user(value
.freeram
, &target_value
->freeram
);
7327 __put_user(value
.sharedram
, &target_value
->sharedram
);
7328 __put_user(value
.bufferram
, &target_value
->bufferram
);
7329 __put_user(value
.totalswap
, &target_value
->totalswap
);
7330 __put_user(value
.freeswap
, &target_value
->freeswap
);
7331 __put_user(value
.procs
, &target_value
->procs
);
7332 __put_user(value
.totalhigh
, &target_value
->totalhigh
);
7333 __put_user(value
.freehigh
, &target_value
->freehigh
);
7334 __put_user(value
.mem_unit
, &target_value
->mem_unit
);
7335 unlock_user_struct(target_value
, arg1
, 1);
7339 #ifdef TARGET_NR_ipc
7341 ret
= do_ipc(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
7344 #ifdef TARGET_NR_semget
7345 case TARGET_NR_semget
:
7346 ret
= get_errno(semget(arg1
, arg2
, arg3
));
7349 #ifdef TARGET_NR_semop
7350 case TARGET_NR_semop
:
7351 ret
= do_semop(arg1
, arg2
, arg3
);
7354 #ifdef TARGET_NR_semctl
7355 case TARGET_NR_semctl
:
7356 ret
= do_semctl(arg1
, arg2
, arg3
, (union target_semun
)(abi_ulong
)arg4
);
7359 #ifdef TARGET_NR_msgctl
7360 case TARGET_NR_msgctl
:
7361 ret
= do_msgctl(arg1
, arg2
, arg3
);
7364 #ifdef TARGET_NR_msgget
7365 case TARGET_NR_msgget
:
7366 ret
= get_errno(msgget(arg1
, arg2
));
7369 #ifdef TARGET_NR_msgrcv
7370 case TARGET_NR_msgrcv
:
7371 ret
= do_msgrcv(arg1
, arg2
, arg3
, arg4
, arg5
);
7374 #ifdef TARGET_NR_msgsnd
7375 case TARGET_NR_msgsnd
:
7376 ret
= do_msgsnd(arg1
, arg2
, arg3
, arg4
);
7379 #ifdef TARGET_NR_shmget
7380 case TARGET_NR_shmget
:
7381 ret
= get_errno(shmget(arg1
, arg2
, arg3
));
7384 #ifdef TARGET_NR_shmctl
7385 case TARGET_NR_shmctl
:
7386 ret
= do_shmctl(arg1
, arg2
, arg3
);
7389 #ifdef TARGET_NR_shmat
7390 case TARGET_NR_shmat
:
7391 ret
= do_shmat(arg1
, arg2
, arg3
);
7394 #ifdef TARGET_NR_shmdt
7395 case TARGET_NR_shmdt
:
7396 ret
= do_shmdt(arg1
);
7399 case TARGET_NR_fsync
:
7400 ret
= get_errno(fsync(arg1
));
7402 case TARGET_NR_clone
:
7403 /* Linux manages to have three different orderings for its
7404 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
7405 * match the kernel's CONFIG_CLONE_* settings.
7406 * Microblaze is further special in that it uses a sixth
7407 * implicit argument to clone for the TLS pointer.
7409 #if defined(TARGET_MICROBLAZE)
7410 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg4
, arg6
, arg5
));
7411 #elif defined(TARGET_CLONE_BACKWARDS)
7412 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
));
7413 #elif defined(TARGET_CLONE_BACKWARDS2)
7414 ret
= get_errno(do_fork(cpu_env
, arg2
, arg1
, arg3
, arg5
, arg4
));
7416 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg5
, arg4
));
7419 #ifdef __NR_exit_group
7420 /* new thread calls */
7421 case TARGET_NR_exit_group
:
7425 gdb_exit(cpu_env
, arg1
);
7426 ret
= get_errno(exit_group(arg1
));
7429 case TARGET_NR_setdomainname
:
7430 if (!(p
= lock_user_string(arg1
)))
7432 ret
= get_errno(setdomainname(p
, arg2
));
7433 unlock_user(p
, arg1
, 0);
7435 case TARGET_NR_uname
:
7436 /* no need to transcode because we use the linux syscall */
7438 struct new_utsname
* buf
;
7440 if (!lock_user_struct(VERIFY_WRITE
, buf
, arg1
, 0))
7442 ret
= get_errno(sys_uname(buf
));
7443 if (!is_error(ret
)) {
7444 /* Overrite the native machine name with whatever is being
7446 strcpy (buf
->machine
, cpu_to_uname_machine(cpu_env
));
7447 /* Allow the user to override the reported release. */
7448 if (qemu_uname_release
&& *qemu_uname_release
)
7449 strcpy (buf
->release
, qemu_uname_release
);
7451 unlock_user_struct(buf
, arg1
, 1);
7455 case TARGET_NR_modify_ldt
:
7456 ret
= do_modify_ldt(cpu_env
, arg1
, arg2
, arg3
);
7458 #if !defined(TARGET_X86_64)
7459 case TARGET_NR_vm86old
:
7461 case TARGET_NR_vm86
:
7462 ret
= do_vm86(cpu_env
, arg1
, arg2
);
7466 case TARGET_NR_adjtimex
:
7468 #ifdef TARGET_NR_create_module
7469 case TARGET_NR_create_module
:
7471 case TARGET_NR_init_module
:
7472 case TARGET_NR_delete_module
:
7473 #ifdef TARGET_NR_get_kernel_syms
7474 case TARGET_NR_get_kernel_syms
:
7477 case TARGET_NR_quotactl
:
7479 case TARGET_NR_getpgid
:
7480 ret
= get_errno(getpgid(arg1
));
7482 case TARGET_NR_fchdir
:
7483 ret
= get_errno(fchdir(arg1
));
7485 #ifdef TARGET_NR_bdflush /* not on x86_64 */
7486 case TARGET_NR_bdflush
:
7489 #ifdef TARGET_NR_sysfs
7490 case TARGET_NR_sysfs
:
7493 case TARGET_NR_personality
:
7494 ret
= get_errno(personality(arg1
));
7496 #ifdef TARGET_NR_afs_syscall
7497 case TARGET_NR_afs_syscall
:
7500 #ifdef TARGET_NR__llseek /* Not on alpha */
7501 case TARGET_NR__llseek
:
7504 #if !defined(__NR_llseek)
7505 res
= lseek(arg1
, ((uint64_t)arg2
<< 32) | arg3
, arg5
);
7507 ret
= get_errno(res
);
7512 ret
= get_errno(_llseek(arg1
, arg2
, arg3
, &res
, arg5
));
7514 if ((ret
== 0) && put_user_s64(res
, arg4
)) {
7520 case TARGET_NR_getdents
:
7521 #ifdef __NR_getdents
7522 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
7524 struct target_dirent
*target_dirp
;
7525 struct linux_dirent
*dirp
;
7526 abi_long count
= arg3
;
7528 dirp
= malloc(count
);
7530 ret
= -TARGET_ENOMEM
;
7534 ret
= get_errno(sys_getdents(arg1
, dirp
, count
));
7535 if (!is_error(ret
)) {
7536 struct linux_dirent
*de
;
7537 struct target_dirent
*tde
;
7539 int reclen
, treclen
;
7540 int count1
, tnamelen
;
7544 if (!(target_dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
7548 reclen
= de
->d_reclen
;
7549 tnamelen
= reclen
- offsetof(struct linux_dirent
, d_name
);
7550 assert(tnamelen
>= 0);
7551 treclen
= tnamelen
+ offsetof(struct target_dirent
, d_name
);
7552 assert(count1
+ treclen
<= count
);
7553 tde
->d_reclen
= tswap16(treclen
);
7554 tde
->d_ino
= tswapal(de
->d_ino
);
7555 tde
->d_off
= tswapal(de
->d_off
);
7556 memcpy(tde
->d_name
, de
->d_name
, tnamelen
);
7557 de
= (struct linux_dirent
*)((char *)de
+ reclen
);
7559 tde
= (struct target_dirent
*)((char *)tde
+ treclen
);
7563 unlock_user(target_dirp
, arg2
, ret
);
7569 struct linux_dirent
*dirp
;
7570 abi_long count
= arg3
;
7572 if (!(dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
7574 ret
= get_errno(sys_getdents(arg1
, dirp
, count
));
7575 if (!is_error(ret
)) {
7576 struct linux_dirent
*de
;
7581 reclen
= de
->d_reclen
;
7584 de
->d_reclen
= tswap16(reclen
);
7585 tswapls(&de
->d_ino
);
7586 tswapls(&de
->d_off
);
7587 de
= (struct linux_dirent
*)((char *)de
+ reclen
);
7591 unlock_user(dirp
, arg2
, ret
);
7595 /* Implement getdents in terms of getdents64 */
7597 struct linux_dirent64
*dirp
;
7598 abi_long count
= arg3
;
7600 dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0);
7604 ret
= get_errno(sys_getdents64(arg1
, dirp
, count
));
7605 if (!is_error(ret
)) {
7606 /* Convert the dirent64 structs to target dirent. We do this
7607 * in-place, since we can guarantee that a target_dirent is no
7608 * larger than a dirent64; however this means we have to be
7609 * careful to read everything before writing in the new format.
7611 struct linux_dirent64
*de
;
7612 struct target_dirent
*tde
;
7617 tde
= (struct target_dirent
*)dirp
;
7619 int namelen
, treclen
;
7620 int reclen
= de
->d_reclen
;
7621 uint64_t ino
= de
->d_ino
;
7622 int64_t off
= de
->d_off
;
7623 uint8_t type
= de
->d_type
;
7625 namelen
= strlen(de
->d_name
);
7626 treclen
= offsetof(struct target_dirent
, d_name
)
7628 treclen
= QEMU_ALIGN_UP(treclen
, sizeof(abi_long
));
7630 memmove(tde
->d_name
, de
->d_name
, namelen
+ 1);
7631 tde
->d_ino
= tswapal(ino
);
7632 tde
->d_off
= tswapal(off
);
7633 tde
->d_reclen
= tswap16(treclen
);
7634 /* The target_dirent type is in what was formerly a padding
7635 * byte at the end of the structure:
7637 *(((char *)tde
) + treclen
- 1) = type
;
7639 de
= (struct linux_dirent64
*)((char *)de
+ reclen
);
7640 tde
= (struct target_dirent
*)((char *)tde
+ treclen
);
7646 unlock_user(dirp
, arg2
, ret
);
7650 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
7651 case TARGET_NR_getdents64
:
7653 struct linux_dirent64
*dirp
;
7654 abi_long count
= arg3
;
7655 if (!(dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
7657 ret
= get_errno(sys_getdents64(arg1
, dirp
, count
));
7658 if (!is_error(ret
)) {
7659 struct linux_dirent64
*de
;
7664 reclen
= de
->d_reclen
;
7667 de
->d_reclen
= tswap16(reclen
);
7668 tswap64s((uint64_t *)&de
->d_ino
);
7669 tswap64s((uint64_t *)&de
->d_off
);
7670 de
= (struct linux_dirent64
*)((char *)de
+ reclen
);
7674 unlock_user(dirp
, arg2
, ret
);
7677 #endif /* TARGET_NR_getdents64 */
7678 #if defined(TARGET_NR__newselect)
7679 case TARGET_NR__newselect
:
7680 ret
= do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
7683 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
7684 # ifdef TARGET_NR_poll
7685 case TARGET_NR_poll
:
7687 # ifdef TARGET_NR_ppoll
7688 case TARGET_NR_ppoll
:
7691 struct target_pollfd
*target_pfd
;
7692 unsigned int nfds
= arg2
;
7697 target_pfd
= lock_user(VERIFY_WRITE
, arg1
, sizeof(struct target_pollfd
) * nfds
, 1);
7701 pfd
= alloca(sizeof(struct pollfd
) * nfds
);
7702 for(i
= 0; i
< nfds
; i
++) {
7703 pfd
[i
].fd
= tswap32(target_pfd
[i
].fd
);
7704 pfd
[i
].events
= tswap16(target_pfd
[i
].events
);
7707 # ifdef TARGET_NR_ppoll
7708 if (num
== TARGET_NR_ppoll
) {
7709 struct timespec _timeout_ts
, *timeout_ts
= &_timeout_ts
;
7710 target_sigset_t
*target_set
;
7711 sigset_t _set
, *set
= &_set
;
7714 if (target_to_host_timespec(timeout_ts
, arg3
)) {
7715 unlock_user(target_pfd
, arg1
, 0);
7723 target_set
= lock_user(VERIFY_READ
, arg4
, sizeof(target_sigset_t
), 1);
7725 unlock_user(target_pfd
, arg1
, 0);
7728 target_to_host_sigset(set
, target_set
);
7733 ret
= get_errno(sys_ppoll(pfd
, nfds
, timeout_ts
, set
, _NSIG
/8));
7735 if (!is_error(ret
) && arg3
) {
7736 host_to_target_timespec(arg3
, timeout_ts
);
7739 unlock_user(target_set
, arg4
, 0);
7743 ret
= get_errno(poll(pfd
, nfds
, timeout
));
7745 if (!is_error(ret
)) {
7746 for(i
= 0; i
< nfds
; i
++) {
7747 target_pfd
[i
].revents
= tswap16(pfd
[i
].revents
);
7750 unlock_user(target_pfd
, arg1
, sizeof(struct target_pollfd
) * nfds
);
7754 case TARGET_NR_flock
:
7755 /* NOTE: the flock constant seems to be the same for every
7757 ret
= get_errno(flock(arg1
, arg2
));
7759 case TARGET_NR_readv
:
7761 struct iovec
*vec
= lock_iovec(VERIFY_WRITE
, arg2
, arg3
, 0);
7763 ret
= get_errno(readv(arg1
, vec
, arg3
));
7764 unlock_iovec(vec
, arg2
, arg3
, 1);
7766 ret
= -host_to_target_errno(errno
);
7770 case TARGET_NR_writev
:
7772 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
7774 ret
= get_errno(writev(arg1
, vec
, arg3
));
7775 unlock_iovec(vec
, arg2
, arg3
, 0);
7777 ret
= -host_to_target_errno(errno
);
7781 case TARGET_NR_getsid
:
7782 ret
= get_errno(getsid(arg1
));
7784 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
7785 case TARGET_NR_fdatasync
:
7786 ret
= get_errno(fdatasync(arg1
));
7789 case TARGET_NR__sysctl
:
7790 /* We don't implement this, but ENOTDIR is always a safe
7792 ret
= -TARGET_ENOTDIR
;
7794 case TARGET_NR_sched_getaffinity
:
7796 unsigned int mask_size
;
7797 unsigned long *mask
;
7800 * sched_getaffinity needs multiples of ulong, so need to take
7801 * care of mismatches between target ulong and host ulong sizes.
7803 if (arg2
& (sizeof(abi_ulong
) - 1)) {
7804 ret
= -TARGET_EINVAL
;
7807 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
7809 mask
= alloca(mask_size
);
7810 ret
= get_errno(sys_sched_getaffinity(arg1
, mask_size
, mask
));
7812 if (!is_error(ret
)) {
7814 /* More data returned than the caller's buffer will fit.
7815 * This only happens if sizeof(abi_long) < sizeof(long)
7816 * and the caller passed us a buffer holding an odd number
7817 * of abi_longs. If the host kernel is actually using the
7818 * extra 4 bytes then fail EINVAL; otherwise we can just
7819 * ignore them and only copy the interesting part.
7821 int numcpus
= sysconf(_SC_NPROCESSORS_CONF
);
7822 if (numcpus
> arg2
* 8) {
7823 ret
= -TARGET_EINVAL
;
7829 if (copy_to_user(arg3
, mask
, ret
)) {
7835 case TARGET_NR_sched_setaffinity
:
7837 unsigned int mask_size
;
7838 unsigned long *mask
;
7841 * sched_setaffinity needs multiples of ulong, so need to take
7842 * care of mismatches between target ulong and host ulong sizes.
7844 if (arg2
& (sizeof(abi_ulong
) - 1)) {
7845 ret
= -TARGET_EINVAL
;
7848 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
7850 mask
= alloca(mask_size
);
7851 if (!lock_user_struct(VERIFY_READ
, p
, arg3
, 1)) {
7854 memcpy(mask
, p
, arg2
);
7855 unlock_user_struct(p
, arg2
, 0);
7857 ret
= get_errno(sys_sched_setaffinity(arg1
, mask_size
, mask
));
7860 case TARGET_NR_sched_setparam
:
7862 struct sched_param
*target_schp
;
7863 struct sched_param schp
;
7866 return -TARGET_EINVAL
;
7868 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg2
, 1))
7870 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
7871 unlock_user_struct(target_schp
, arg2
, 0);
7872 ret
= get_errno(sched_setparam(arg1
, &schp
));
7875 case TARGET_NR_sched_getparam
:
7877 struct sched_param
*target_schp
;
7878 struct sched_param schp
;
7881 return -TARGET_EINVAL
;
7883 ret
= get_errno(sched_getparam(arg1
, &schp
));
7884 if (!is_error(ret
)) {
7885 if (!lock_user_struct(VERIFY_WRITE
, target_schp
, arg2
, 0))
7887 target_schp
->sched_priority
= tswap32(schp
.sched_priority
);
7888 unlock_user_struct(target_schp
, arg2
, 1);
7892 case TARGET_NR_sched_setscheduler
:
7894 struct sched_param
*target_schp
;
7895 struct sched_param schp
;
7897 return -TARGET_EINVAL
;
7899 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg3
, 1))
7901 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
7902 unlock_user_struct(target_schp
, arg3
, 0);
7903 ret
= get_errno(sched_setscheduler(arg1
, arg2
, &schp
));
7906 case TARGET_NR_sched_getscheduler
:
7907 ret
= get_errno(sched_getscheduler(arg1
));
7909 case TARGET_NR_sched_yield
:
7910 ret
= get_errno(sched_yield());
7912 case TARGET_NR_sched_get_priority_max
:
7913 ret
= get_errno(sched_get_priority_max(arg1
));
7915 case TARGET_NR_sched_get_priority_min
:
7916 ret
= get_errno(sched_get_priority_min(arg1
));
7918 case TARGET_NR_sched_rr_get_interval
:
7921 ret
= get_errno(sched_rr_get_interval(arg1
, &ts
));
7922 if (!is_error(ret
)) {
7923 ret
= host_to_target_timespec(arg2
, &ts
);
7927 case TARGET_NR_nanosleep
:
7929 struct timespec req
, rem
;
7930 target_to_host_timespec(&req
, arg1
);
7931 ret
= get_errno(nanosleep(&req
, &rem
));
7932 if (is_error(ret
) && arg2
) {
7933 host_to_target_timespec(arg2
, &rem
);
7937 #ifdef TARGET_NR_query_module
7938 case TARGET_NR_query_module
:
7941 #ifdef TARGET_NR_nfsservctl
7942 case TARGET_NR_nfsservctl
:
7945 case TARGET_NR_prctl
:
7947 case PR_GET_PDEATHSIG
:
7950 ret
= get_errno(prctl(arg1
, &deathsig
, arg3
, arg4
, arg5
));
7951 if (!is_error(ret
) && arg2
7952 && put_user_ual(deathsig
, arg2
)) {
7960 void *name
= lock_user(VERIFY_WRITE
, arg2
, 16, 1);
7964 ret
= get_errno(prctl(arg1
, (unsigned long)name
,
7966 unlock_user(name
, arg2
, 16);
7971 void *name
= lock_user(VERIFY_READ
, arg2
, 16, 1);
7975 ret
= get_errno(prctl(arg1
, (unsigned long)name
,
7977 unlock_user(name
, arg2
, 0);
7982 /* Most prctl options have no pointer arguments */
7983 ret
= get_errno(prctl(arg1
, arg2
, arg3
, arg4
, arg5
));
7987 #ifdef TARGET_NR_arch_prctl
7988 case TARGET_NR_arch_prctl
:
7989 #if defined(TARGET_I386) && !defined(TARGET_ABI32)
7990 ret
= do_arch_prctl(cpu_env
, arg1
, arg2
);
7996 #ifdef TARGET_NR_pread64
7997 case TARGET_NR_pread64
:
7998 if (regpairs_aligned(cpu_env
)) {
8002 if (!(p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0)))
8004 ret
= get_errno(pread64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
8005 unlock_user(p
, arg2
, ret
);
8007 case TARGET_NR_pwrite64
:
8008 if (regpairs_aligned(cpu_env
)) {
8012 if (!(p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1)))
8014 ret
= get_errno(pwrite64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
8015 unlock_user(p
, arg2
, 0);
8018 case TARGET_NR_getcwd
:
8019 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0)))
8021 ret
= get_errno(sys_getcwd1(p
, arg2
));
8022 unlock_user(p
, arg1
, ret
);
8024 case TARGET_NR_capget
:
8025 case TARGET_NR_capset
:
8027 struct target_user_cap_header
*target_header
;
8028 struct target_user_cap_data
*target_data
= NULL
;
8029 struct __user_cap_header_struct header
;
8030 struct __user_cap_data_struct data
[2];
8031 struct __user_cap_data_struct
*dataptr
= NULL
;
8032 int i
, target_datalen
;
8035 if (!lock_user_struct(VERIFY_WRITE
, target_header
, arg1
, 1)) {
8038 header
.version
= tswap32(target_header
->version
);
8039 header
.pid
= tswap32(target_header
->pid
);
8041 if (header
.version
!= _LINUX_CAPABILITY_VERSION
) {
8042 /* Version 2 and up takes pointer to two user_data structs */
8046 target_datalen
= sizeof(*target_data
) * data_items
;
8049 if (num
== TARGET_NR_capget
) {
8050 target_data
= lock_user(VERIFY_WRITE
, arg2
, target_datalen
, 0);
8052 target_data
= lock_user(VERIFY_READ
, arg2
, target_datalen
, 1);
8055 unlock_user_struct(target_header
, arg1
, 0);
8059 if (num
== TARGET_NR_capset
) {
8060 for (i
= 0; i
< data_items
; i
++) {
8061 data
[i
].effective
= tswap32(target_data
[i
].effective
);
8062 data
[i
].permitted
= tswap32(target_data
[i
].permitted
);
8063 data
[i
].inheritable
= tswap32(target_data
[i
].inheritable
);
8070 if (num
== TARGET_NR_capget
) {
8071 ret
= get_errno(capget(&header
, dataptr
));
8073 ret
= get_errno(capset(&header
, dataptr
));
8076 /* The kernel always updates version for both capget and capset */
8077 target_header
->version
= tswap32(header
.version
);
8078 unlock_user_struct(target_header
, arg1
, 1);
8081 if (num
== TARGET_NR_capget
) {
8082 for (i
= 0; i
< data_items
; i
++) {
8083 target_data
[i
].effective
= tswap32(data
[i
].effective
);
8084 target_data
[i
].permitted
= tswap32(data
[i
].permitted
);
8085 target_data
[i
].inheritable
= tswap32(data
[i
].inheritable
);
8087 unlock_user(target_data
, arg2
, target_datalen
);
8089 unlock_user(target_data
, arg2
, 0);
8094 case TARGET_NR_sigaltstack
:
8095 #if defined(TARGET_I386) || defined(TARGET_ARM) || defined(TARGET_MIPS) || \
8096 defined(TARGET_SPARC) || defined(TARGET_PPC) || defined(TARGET_ALPHA) || \
8097 defined(TARGET_M68K) || defined(TARGET_S390X) || defined(TARGET_OPENRISC)
8098 ret
= do_sigaltstack(arg1
, arg2
, get_sp_from_cpustate((CPUArchState
*)cpu_env
));
8104 #ifdef CONFIG_SENDFILE
8105 case TARGET_NR_sendfile
:
8110 ret
= get_user_sal(off
, arg3
);
8111 if (is_error(ret
)) {
8116 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
8117 if (!is_error(ret
) && arg3
) {
8118 abi_long ret2
= put_user_sal(off
, arg3
);
8119 if (is_error(ret2
)) {
8125 #ifdef TARGET_NR_sendfile64
8126 case TARGET_NR_sendfile64
:
8131 ret
= get_user_s64(off
, arg3
);
8132 if (is_error(ret
)) {
8137 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
8138 if (!is_error(ret
) && arg3
) {
8139 abi_long ret2
= put_user_s64(off
, arg3
);
8140 if (is_error(ret2
)) {
8148 case TARGET_NR_sendfile
:
8149 #ifdef TARGET_NR_sendfile64
8150 case TARGET_NR_sendfile64
:
8155 #ifdef TARGET_NR_getpmsg
8156 case TARGET_NR_getpmsg
:
8159 #ifdef TARGET_NR_putpmsg
8160 case TARGET_NR_putpmsg
:
8163 #ifdef TARGET_NR_vfork
8164 case TARGET_NR_vfork
:
8165 ret
= get_errno(do_fork(cpu_env
, CLONE_VFORK
| CLONE_VM
| SIGCHLD
,
8169 #ifdef TARGET_NR_ugetrlimit
8170 case TARGET_NR_ugetrlimit
:
8173 int resource
= target_to_host_resource(arg1
);
8174 ret
= get_errno(getrlimit(resource
, &rlim
));
8175 if (!is_error(ret
)) {
8176 struct target_rlimit
*target_rlim
;
8177 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
8179 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
8180 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
8181 unlock_user_struct(target_rlim
, arg2
, 1);
8186 #ifdef TARGET_NR_truncate64
8187 case TARGET_NR_truncate64
:
8188 if (!(p
= lock_user_string(arg1
)))
8190 ret
= target_truncate64(cpu_env
, p
, arg2
, arg3
, arg4
);
8191 unlock_user(p
, arg1
, 0);
8194 #ifdef TARGET_NR_ftruncate64
8195 case TARGET_NR_ftruncate64
:
8196 ret
= target_ftruncate64(cpu_env
, arg1
, arg2
, arg3
, arg4
);
8199 #ifdef TARGET_NR_stat64
8200 case TARGET_NR_stat64
:
8201 if (!(p
= lock_user_string(arg1
)))
8203 ret
= get_errno(stat(path(p
), &st
));
8204 unlock_user(p
, arg1
, 0);
8206 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
8209 #ifdef TARGET_NR_lstat64
8210 case TARGET_NR_lstat64
:
8211 if (!(p
= lock_user_string(arg1
)))
8213 ret
= get_errno(lstat(path(p
), &st
));
8214 unlock_user(p
, arg1
, 0);
8216 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
8219 #ifdef TARGET_NR_fstat64
8220 case TARGET_NR_fstat64
:
8221 ret
= get_errno(fstat(arg1
, &st
));
8223 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
8226 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
8227 #ifdef TARGET_NR_fstatat64
8228 case TARGET_NR_fstatat64
:
8230 #ifdef TARGET_NR_newfstatat
8231 case TARGET_NR_newfstatat
:
8233 if (!(p
= lock_user_string(arg2
)))
8235 ret
= get_errno(fstatat(arg1
, path(p
), &st
, arg4
));
8237 ret
= host_to_target_stat64(cpu_env
, arg3
, &st
);
8240 case TARGET_NR_lchown
:
8241 if (!(p
= lock_user_string(arg1
)))
8243 ret
= get_errno(lchown(p
, low2highuid(arg2
), low2highgid(arg3
)));
8244 unlock_user(p
, arg1
, 0);
8246 #ifdef TARGET_NR_getuid
8247 case TARGET_NR_getuid
:
8248 ret
= get_errno(high2lowuid(getuid()));
8251 #ifdef TARGET_NR_getgid
8252 case TARGET_NR_getgid
:
8253 ret
= get_errno(high2lowgid(getgid()));
8256 #ifdef TARGET_NR_geteuid
8257 case TARGET_NR_geteuid
:
8258 ret
= get_errno(high2lowuid(geteuid()));
8261 #ifdef TARGET_NR_getegid
8262 case TARGET_NR_getegid
:
8263 ret
= get_errno(high2lowgid(getegid()));
8266 case TARGET_NR_setreuid
:
8267 ret
= get_errno(setreuid(low2highuid(arg1
), low2highuid(arg2
)));
8269 case TARGET_NR_setregid
:
8270 ret
= get_errno(setregid(low2highgid(arg1
), low2highgid(arg2
)));
8272 case TARGET_NR_getgroups
:
8274 int gidsetsize
= arg1
;
8275 target_id
*target_grouplist
;
8279 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
8280 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
8281 if (gidsetsize
== 0)
8283 if (!is_error(ret
)) {
8284 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
, gidsetsize
* sizeof(target_id
), 0);
8285 if (!target_grouplist
)
8287 for(i
= 0;i
< ret
; i
++)
8288 target_grouplist
[i
] = tswapid(high2lowgid(grouplist
[i
]));
8289 unlock_user(target_grouplist
, arg2
, gidsetsize
* sizeof(target_id
));
8293 case TARGET_NR_setgroups
:
8295 int gidsetsize
= arg1
;
8296 target_id
*target_grouplist
;
8297 gid_t
*grouplist
= NULL
;
8300 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
8301 target_grouplist
= lock_user(VERIFY_READ
, arg2
, gidsetsize
* sizeof(target_id
), 1);
8302 if (!target_grouplist
) {
8303 ret
= -TARGET_EFAULT
;
8306 for (i
= 0; i
< gidsetsize
; i
++) {
8307 grouplist
[i
] = low2highgid(tswapid(target_grouplist
[i
]));
8309 unlock_user(target_grouplist
, arg2
, 0);
8311 ret
= get_errno(setgroups(gidsetsize
, grouplist
));
8314 case TARGET_NR_fchown
:
8315 ret
= get_errno(fchown(arg1
, low2highuid(arg2
), low2highgid(arg3
)));
8317 #if defined(TARGET_NR_fchownat)
8318 case TARGET_NR_fchownat
:
8319 if (!(p
= lock_user_string(arg2
)))
8321 ret
= get_errno(fchownat(arg1
, p
, low2highuid(arg3
),
8322 low2highgid(arg4
), arg5
));
8323 unlock_user(p
, arg2
, 0);
8326 #ifdef TARGET_NR_setresuid
8327 case TARGET_NR_setresuid
:
8328 ret
= get_errno(setresuid(low2highuid(arg1
),
8330 low2highuid(arg3
)));
8333 #ifdef TARGET_NR_getresuid
8334 case TARGET_NR_getresuid
:
8336 uid_t ruid
, euid
, suid
;
8337 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
8338 if (!is_error(ret
)) {
8339 if (put_user_id(high2lowuid(ruid
), arg1
)
8340 || put_user_id(high2lowuid(euid
), arg2
)
8341 || put_user_id(high2lowuid(suid
), arg3
))
8347 #ifdef TARGET_NR_getresgid
8348 case TARGET_NR_setresgid
:
8349 ret
= get_errno(setresgid(low2highgid(arg1
),
8351 low2highgid(arg3
)));
8354 #ifdef TARGET_NR_getresgid
8355 case TARGET_NR_getresgid
:
8357 gid_t rgid
, egid
, sgid
;
8358 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
8359 if (!is_error(ret
)) {
8360 if (put_user_id(high2lowgid(rgid
), arg1
)
8361 || put_user_id(high2lowgid(egid
), arg2
)
8362 || put_user_id(high2lowgid(sgid
), arg3
))
8368 case TARGET_NR_chown
:
8369 if (!(p
= lock_user_string(arg1
)))
8371 ret
= get_errno(chown(p
, low2highuid(arg2
), low2highgid(arg3
)));
8372 unlock_user(p
, arg1
, 0);
8374 case TARGET_NR_setuid
:
8375 ret
= get_errno(setuid(low2highuid(arg1
)));
8377 case TARGET_NR_setgid
:
8378 ret
= get_errno(setgid(low2highgid(arg1
)));
8380 case TARGET_NR_setfsuid
:
8381 ret
= get_errno(setfsuid(arg1
));
8383 case TARGET_NR_setfsgid
:
8384 ret
= get_errno(setfsgid(arg1
));
8387 #ifdef TARGET_NR_lchown32
8388 case TARGET_NR_lchown32
:
8389 if (!(p
= lock_user_string(arg1
)))
8391 ret
= get_errno(lchown(p
, arg2
, arg3
));
8392 unlock_user(p
, arg1
, 0);
8395 #ifdef TARGET_NR_getuid32
8396 case TARGET_NR_getuid32
:
8397 ret
= get_errno(getuid());
8401 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
8402 /* Alpha specific */
8403 case TARGET_NR_getxuid
:
8407 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
]=euid
;
8409 ret
= get_errno(getuid());
8412 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
8413 /* Alpha specific */
8414 case TARGET_NR_getxgid
:
8418 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
]=egid
;
8420 ret
= get_errno(getgid());
8423 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
8424 /* Alpha specific */
8425 case TARGET_NR_osf_getsysinfo
:
8426 ret
= -TARGET_EOPNOTSUPP
;
8428 case TARGET_GSI_IEEE_FP_CONTROL
:
8430 uint64_t swcr
, fpcr
= cpu_alpha_load_fpcr (cpu_env
);
8432 /* Copied from linux ieee_fpcr_to_swcr. */
8433 swcr
= (fpcr
>> 35) & SWCR_STATUS_MASK
;
8434 swcr
|= (fpcr
>> 36) & SWCR_MAP_DMZ
;
8435 swcr
|= (~fpcr
>> 48) & (SWCR_TRAP_ENABLE_INV
8436 | SWCR_TRAP_ENABLE_DZE
8437 | SWCR_TRAP_ENABLE_OVF
);
8438 swcr
|= (~fpcr
>> 57) & (SWCR_TRAP_ENABLE_UNF
8439 | SWCR_TRAP_ENABLE_INE
);
8440 swcr
|= (fpcr
>> 47) & SWCR_MAP_UMZ
;
8441 swcr
|= (~fpcr
>> 41) & SWCR_TRAP_ENABLE_DNO
;
8443 if (put_user_u64 (swcr
, arg2
))
8449 /* case GSI_IEEE_STATE_AT_SIGNAL:
8450 -- Not implemented in linux kernel.
8452 -- Retrieves current unaligned access state; not much used.
8454 -- Retrieves implver information; surely not used.
8456 -- Grabs a copy of the HWRPB; surely not used.
8461 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
8462 /* Alpha specific */
8463 case TARGET_NR_osf_setsysinfo
:
8464 ret
= -TARGET_EOPNOTSUPP
;
8466 case TARGET_SSI_IEEE_FP_CONTROL
:
8468 uint64_t swcr
, fpcr
, orig_fpcr
;
8470 if (get_user_u64 (swcr
, arg2
)) {
8473 orig_fpcr
= cpu_alpha_load_fpcr(cpu_env
);
8474 fpcr
= orig_fpcr
& FPCR_DYN_MASK
;
8476 /* Copied from linux ieee_swcr_to_fpcr. */
8477 fpcr
|= (swcr
& SWCR_STATUS_MASK
) << 35;
8478 fpcr
|= (swcr
& SWCR_MAP_DMZ
) << 36;
8479 fpcr
|= (~swcr
& (SWCR_TRAP_ENABLE_INV
8480 | SWCR_TRAP_ENABLE_DZE
8481 | SWCR_TRAP_ENABLE_OVF
)) << 48;
8482 fpcr
|= (~swcr
& (SWCR_TRAP_ENABLE_UNF
8483 | SWCR_TRAP_ENABLE_INE
)) << 57;
8484 fpcr
|= (swcr
& SWCR_MAP_UMZ
? FPCR_UNDZ
| FPCR_UNFD
: 0);
8485 fpcr
|= (~swcr
& SWCR_TRAP_ENABLE_DNO
) << 41;
8487 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
8492 case TARGET_SSI_IEEE_RAISE_EXCEPTION
:
8494 uint64_t exc
, fpcr
, orig_fpcr
;
8497 if (get_user_u64(exc
, arg2
)) {
8501 orig_fpcr
= cpu_alpha_load_fpcr(cpu_env
);
8503 /* We only add to the exception status here. */
8504 fpcr
= orig_fpcr
| ((exc
& SWCR_STATUS_MASK
) << 35);
8506 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
8509 /* Old exceptions are not signaled. */
8510 fpcr
&= ~(orig_fpcr
& FPCR_STATUS_MASK
);
8512 /* If any exceptions set by this call,
8513 and are unmasked, send a signal. */
8515 if ((fpcr
& (FPCR_INE
| FPCR_INED
)) == FPCR_INE
) {
8516 si_code
= TARGET_FPE_FLTRES
;
8518 if ((fpcr
& (FPCR_UNF
| FPCR_UNFD
)) == FPCR_UNF
) {
8519 si_code
= TARGET_FPE_FLTUND
;
8521 if ((fpcr
& (FPCR_OVF
| FPCR_OVFD
)) == FPCR_OVF
) {
8522 si_code
= TARGET_FPE_FLTOVF
;
8524 if ((fpcr
& (FPCR_DZE
| FPCR_DZED
)) == FPCR_DZE
) {
8525 si_code
= TARGET_FPE_FLTDIV
;
8527 if ((fpcr
& (FPCR_INV
| FPCR_INVD
)) == FPCR_INV
) {
8528 si_code
= TARGET_FPE_FLTINV
;
8531 target_siginfo_t info
;
8532 info
.si_signo
= SIGFPE
;
8534 info
.si_code
= si_code
;
8535 info
._sifields
._sigfault
._addr
8536 = ((CPUArchState
*)cpu_env
)->pc
;
8537 queue_signal((CPUArchState
*)cpu_env
, info
.si_signo
, &info
);
8542 /* case SSI_NVPAIRS:
8543 -- Used with SSIN_UACPROC to enable unaligned accesses.
8544 case SSI_IEEE_STATE_AT_SIGNAL:
8545 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
8546 -- Not implemented in linux kernel
8551 #ifdef TARGET_NR_osf_sigprocmask
8552 /* Alpha specific. */
8553 case TARGET_NR_osf_sigprocmask
:
8557 sigset_t set
, oldset
;
8560 case TARGET_SIG_BLOCK
:
8563 case TARGET_SIG_UNBLOCK
:
8566 case TARGET_SIG_SETMASK
:
8570 ret
= -TARGET_EINVAL
;
8574 target_to_host_old_sigset(&set
, &mask
);
8575 do_sigprocmask(how
, &set
, &oldset
);
8576 host_to_target_old_sigset(&mask
, &oldset
);
8582 #ifdef TARGET_NR_getgid32
8583 case TARGET_NR_getgid32
:
8584 ret
= get_errno(getgid());
8587 #ifdef TARGET_NR_geteuid32
8588 case TARGET_NR_geteuid32
:
8589 ret
= get_errno(geteuid());
8592 #ifdef TARGET_NR_getegid32
8593 case TARGET_NR_getegid32
:
8594 ret
= get_errno(getegid());
8597 #ifdef TARGET_NR_setreuid32
8598 case TARGET_NR_setreuid32
:
8599 ret
= get_errno(setreuid(arg1
, arg2
));
8602 #ifdef TARGET_NR_setregid32
8603 case TARGET_NR_setregid32
:
8604 ret
= get_errno(setregid(arg1
, arg2
));
8607 #ifdef TARGET_NR_getgroups32
8608 case TARGET_NR_getgroups32
:
8610 int gidsetsize
= arg1
;
8611 uint32_t *target_grouplist
;
8615 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
8616 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
8617 if (gidsetsize
== 0)
8619 if (!is_error(ret
)) {
8620 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
, gidsetsize
* 4, 0);
8621 if (!target_grouplist
) {
8622 ret
= -TARGET_EFAULT
;
8625 for(i
= 0;i
< ret
; i
++)
8626 target_grouplist
[i
] = tswap32(grouplist
[i
]);
8627 unlock_user(target_grouplist
, arg2
, gidsetsize
* 4);
8632 #ifdef TARGET_NR_setgroups32
8633 case TARGET_NR_setgroups32
:
8635 int gidsetsize
= arg1
;
8636 uint32_t *target_grouplist
;
8640 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
8641 target_grouplist
= lock_user(VERIFY_READ
, arg2
, gidsetsize
* 4, 1);
8642 if (!target_grouplist
) {
8643 ret
= -TARGET_EFAULT
;
8646 for(i
= 0;i
< gidsetsize
; i
++)
8647 grouplist
[i
] = tswap32(target_grouplist
[i
]);
8648 unlock_user(target_grouplist
, arg2
, 0);
8649 ret
= get_errno(setgroups(gidsetsize
, grouplist
));
8653 #ifdef TARGET_NR_fchown32
8654 case TARGET_NR_fchown32
:
8655 ret
= get_errno(fchown(arg1
, arg2
, arg3
));
8658 #ifdef TARGET_NR_setresuid32
8659 case TARGET_NR_setresuid32
:
8660 ret
= get_errno(setresuid(arg1
, arg2
, arg3
));
8663 #ifdef TARGET_NR_getresuid32
8664 case TARGET_NR_getresuid32
:
8666 uid_t ruid
, euid
, suid
;
8667 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
8668 if (!is_error(ret
)) {
8669 if (put_user_u32(ruid
, arg1
)
8670 || put_user_u32(euid
, arg2
)
8671 || put_user_u32(suid
, arg3
))
8677 #ifdef TARGET_NR_setresgid32
8678 case TARGET_NR_setresgid32
:
8679 ret
= get_errno(setresgid(arg1
, arg2
, arg3
));
8682 #ifdef TARGET_NR_getresgid32
8683 case TARGET_NR_getresgid32
:
8685 gid_t rgid
, egid
, sgid
;
8686 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
8687 if (!is_error(ret
)) {
8688 if (put_user_u32(rgid
, arg1
)
8689 || put_user_u32(egid
, arg2
)
8690 || put_user_u32(sgid
, arg3
))
8696 #ifdef TARGET_NR_chown32
8697 case TARGET_NR_chown32
:
8698 if (!(p
= lock_user_string(arg1
)))
8700 ret
= get_errno(chown(p
, arg2
, arg3
));
8701 unlock_user(p
, arg1
, 0);
8704 #ifdef TARGET_NR_setuid32
8705 case TARGET_NR_setuid32
:
8706 ret
= get_errno(setuid(arg1
));
8709 #ifdef TARGET_NR_setgid32
8710 case TARGET_NR_setgid32
:
8711 ret
= get_errno(setgid(arg1
));
8714 #ifdef TARGET_NR_setfsuid32
8715 case TARGET_NR_setfsuid32
:
8716 ret
= get_errno(setfsuid(arg1
));
8719 #ifdef TARGET_NR_setfsgid32
8720 case TARGET_NR_setfsgid32
:
8721 ret
= get_errno(setfsgid(arg1
));
8725 case TARGET_NR_pivot_root
:
8727 #ifdef TARGET_NR_mincore
8728 case TARGET_NR_mincore
:
8731 ret
= -TARGET_EFAULT
;
8732 if (!(a
= lock_user(VERIFY_READ
, arg1
,arg2
, 0)))
8734 if (!(p
= lock_user_string(arg3
)))
8736 ret
= get_errno(mincore(a
, arg2
, p
));
8737 unlock_user(p
, arg3
, ret
);
8739 unlock_user(a
, arg1
, 0);
8743 #ifdef TARGET_NR_arm_fadvise64_64
8744 case TARGET_NR_arm_fadvise64_64
:
8747 * arm_fadvise64_64 looks like fadvise64_64 but
8748 * with different argument order
8756 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_arm_fadvise64_64) || defined(TARGET_NR_fadvise64)
8757 #ifdef TARGET_NR_fadvise64_64
8758 case TARGET_NR_fadvise64_64
:
8760 #ifdef TARGET_NR_fadvise64
8761 case TARGET_NR_fadvise64
:
8765 case 4: arg4
= POSIX_FADV_NOREUSE
+ 1; break; /* make sure it's an invalid value */
8766 case 5: arg4
= POSIX_FADV_NOREUSE
+ 2; break; /* ditto */
8767 case 6: arg4
= POSIX_FADV_DONTNEED
; break;
8768 case 7: arg4
= POSIX_FADV_NOREUSE
; break;
8772 ret
= -posix_fadvise(arg1
, arg2
, arg3
, arg4
);
8775 #ifdef TARGET_NR_madvise
8776 case TARGET_NR_madvise
:
8777 /* A straight passthrough may not be safe because qemu sometimes
8778 turns private file-backed mappings into anonymous mappings.
8779 This will break MADV_DONTNEED.
8780 This is a hint, so ignoring and returning success is ok. */
8784 #if TARGET_ABI_BITS == 32
8785 case TARGET_NR_fcntl64
:
8789 struct target_flock64
*target_fl
;
8791 struct target_eabi_flock64
*target_efl
;
8794 cmd
= target_to_host_fcntl_cmd(arg2
);
8795 if (cmd
== -TARGET_EINVAL
) {
8801 case TARGET_F_GETLK64
:
8803 if (((CPUARMState
*)cpu_env
)->eabi
) {
8804 if (!lock_user_struct(VERIFY_READ
, target_efl
, arg3
, 1))
8806 fl
.l_type
= tswap16(target_efl
->l_type
);
8807 fl
.l_whence
= tswap16(target_efl
->l_whence
);
8808 fl
.l_start
= tswap64(target_efl
->l_start
);
8809 fl
.l_len
= tswap64(target_efl
->l_len
);
8810 fl
.l_pid
= tswap32(target_efl
->l_pid
);
8811 unlock_user_struct(target_efl
, arg3
, 0);
8815 if (!lock_user_struct(VERIFY_READ
, target_fl
, arg3
, 1))
8817 fl
.l_type
= tswap16(target_fl
->l_type
);
8818 fl
.l_whence
= tswap16(target_fl
->l_whence
);
8819 fl
.l_start
= tswap64(target_fl
->l_start
);
8820 fl
.l_len
= tswap64(target_fl
->l_len
);
8821 fl
.l_pid
= tswap32(target_fl
->l_pid
);
8822 unlock_user_struct(target_fl
, arg3
, 0);
8824 ret
= get_errno(fcntl(arg1
, cmd
, &fl
));
8827 if (((CPUARMState
*)cpu_env
)->eabi
) {
8828 if (!lock_user_struct(VERIFY_WRITE
, target_efl
, arg3
, 0))
8830 target_efl
->l_type
= tswap16(fl
.l_type
);
8831 target_efl
->l_whence
= tswap16(fl
.l_whence
);
8832 target_efl
->l_start
= tswap64(fl
.l_start
);
8833 target_efl
->l_len
= tswap64(fl
.l_len
);
8834 target_efl
->l_pid
= tswap32(fl
.l_pid
);
8835 unlock_user_struct(target_efl
, arg3
, 1);
8839 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, arg3
, 0))
8841 target_fl
->l_type
= tswap16(fl
.l_type
);
8842 target_fl
->l_whence
= tswap16(fl
.l_whence
);
8843 target_fl
->l_start
= tswap64(fl
.l_start
);
8844 target_fl
->l_len
= tswap64(fl
.l_len
);
8845 target_fl
->l_pid
= tswap32(fl
.l_pid
);
8846 unlock_user_struct(target_fl
, arg3
, 1);
8851 case TARGET_F_SETLK64
:
8852 case TARGET_F_SETLKW64
:
8854 if (((CPUARMState
*)cpu_env
)->eabi
) {
8855 if (!lock_user_struct(VERIFY_READ
, target_efl
, arg3
, 1))
8857 fl
.l_type
= tswap16(target_efl
->l_type
);
8858 fl
.l_whence
= tswap16(target_efl
->l_whence
);
8859 fl
.l_start
= tswap64(target_efl
->l_start
);
8860 fl
.l_len
= tswap64(target_efl
->l_len
);
8861 fl
.l_pid
= tswap32(target_efl
->l_pid
);
8862 unlock_user_struct(target_efl
, arg3
, 0);
8866 if (!lock_user_struct(VERIFY_READ
, target_fl
, arg3
, 1))
8868 fl
.l_type
= tswap16(target_fl
->l_type
);
8869 fl
.l_whence
= tswap16(target_fl
->l_whence
);
8870 fl
.l_start
= tswap64(target_fl
->l_start
);
8871 fl
.l_len
= tswap64(target_fl
->l_len
);
8872 fl
.l_pid
= tswap32(target_fl
->l_pid
);
8873 unlock_user_struct(target_fl
, arg3
, 0);
8875 ret
= get_errno(fcntl(arg1
, cmd
, &fl
));
8878 ret
= do_fcntl(arg1
, arg2
, arg3
);
8884 #ifdef TARGET_NR_cacheflush
8885 case TARGET_NR_cacheflush
:
8886 /* self-modifying code is handled automatically, so nothing needed */
8890 #ifdef TARGET_NR_security
8891 case TARGET_NR_security
:
8894 #ifdef TARGET_NR_getpagesize
8895 case TARGET_NR_getpagesize
:
8896 ret
= TARGET_PAGE_SIZE
;
8899 case TARGET_NR_gettid
:
8900 ret
= get_errno(gettid());
8902 #ifdef TARGET_NR_readahead
8903 case TARGET_NR_readahead
:
8904 #if TARGET_ABI_BITS == 32
8905 if (regpairs_aligned(cpu_env
)) {
8910 ret
= get_errno(readahead(arg1
, ((off64_t
)arg3
<< 32) | arg2
, arg4
));
8912 ret
= get_errno(readahead(arg1
, arg2
, arg3
));
8917 #ifdef TARGET_NR_setxattr
8918 case TARGET_NR_listxattr
:
8919 case TARGET_NR_llistxattr
:
8923 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
8925 ret
= -TARGET_EFAULT
;
8929 p
= lock_user_string(arg1
);
8931 if (num
== TARGET_NR_listxattr
) {
8932 ret
= get_errno(listxattr(p
, b
, arg3
));
8934 ret
= get_errno(llistxattr(p
, b
, arg3
));
8937 ret
= -TARGET_EFAULT
;
8939 unlock_user(p
, arg1
, 0);
8940 unlock_user(b
, arg2
, arg3
);
8943 case TARGET_NR_flistxattr
:
8947 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
8949 ret
= -TARGET_EFAULT
;
8953 ret
= get_errno(flistxattr(arg1
, b
, arg3
));
8954 unlock_user(b
, arg2
, arg3
);
8957 case TARGET_NR_setxattr
:
8958 case TARGET_NR_lsetxattr
:
8960 void *p
, *n
, *v
= 0;
8962 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
8964 ret
= -TARGET_EFAULT
;
8968 p
= lock_user_string(arg1
);
8969 n
= lock_user_string(arg2
);
8971 if (num
== TARGET_NR_setxattr
) {
8972 ret
= get_errno(setxattr(p
, n
, v
, arg4
, arg5
));
8974 ret
= get_errno(lsetxattr(p
, n
, v
, arg4
, arg5
));
8977 ret
= -TARGET_EFAULT
;
8979 unlock_user(p
, arg1
, 0);
8980 unlock_user(n
, arg2
, 0);
8981 unlock_user(v
, arg3
, 0);
8984 case TARGET_NR_fsetxattr
:
8988 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
8990 ret
= -TARGET_EFAULT
;
8994 n
= lock_user_string(arg2
);
8996 ret
= get_errno(fsetxattr(arg1
, n
, v
, arg4
, arg5
));
8998 ret
= -TARGET_EFAULT
;
9000 unlock_user(n
, arg2
, 0);
9001 unlock_user(v
, arg3
, 0);
9004 case TARGET_NR_getxattr
:
9005 case TARGET_NR_lgetxattr
:
9007 void *p
, *n
, *v
= 0;
9009 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
9011 ret
= -TARGET_EFAULT
;
9015 p
= lock_user_string(arg1
);
9016 n
= lock_user_string(arg2
);
9018 if (num
== TARGET_NR_getxattr
) {
9019 ret
= get_errno(getxattr(p
, n
, v
, arg4
));
9021 ret
= get_errno(lgetxattr(p
, n
, v
, arg4
));
9024 ret
= -TARGET_EFAULT
;
9026 unlock_user(p
, arg1
, 0);
9027 unlock_user(n
, arg2
, 0);
9028 unlock_user(v
, arg3
, arg4
);
9031 case TARGET_NR_fgetxattr
:
9035 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
9037 ret
= -TARGET_EFAULT
;
9041 n
= lock_user_string(arg2
);
9043 ret
= get_errno(fgetxattr(arg1
, n
, v
, arg4
));
9045 ret
= -TARGET_EFAULT
;
9047 unlock_user(n
, arg2
, 0);
9048 unlock_user(v
, arg3
, arg4
);
9051 case TARGET_NR_removexattr
:
9052 case TARGET_NR_lremovexattr
:
9055 p
= lock_user_string(arg1
);
9056 n
= lock_user_string(arg2
);
9058 if (num
== TARGET_NR_removexattr
) {
9059 ret
= get_errno(removexattr(p
, n
));
9061 ret
= get_errno(lremovexattr(p
, n
));
9064 ret
= -TARGET_EFAULT
;
9066 unlock_user(p
, arg1
, 0);
9067 unlock_user(n
, arg2
, 0);
9070 case TARGET_NR_fremovexattr
:
9073 n
= lock_user_string(arg2
);
9075 ret
= get_errno(fremovexattr(arg1
, n
));
9077 ret
= -TARGET_EFAULT
;
9079 unlock_user(n
, arg2
, 0);
9083 #endif /* CONFIG_ATTR */
9084 #ifdef TARGET_NR_set_thread_area
9085 case TARGET_NR_set_thread_area
:
9086 #if defined(TARGET_MIPS)
9087 ((CPUMIPSState
*) cpu_env
)->active_tc
.CP0_UserLocal
= arg1
;
9090 #elif defined(TARGET_CRIS)
9092 ret
= -TARGET_EINVAL
;
9094 ((CPUCRISState
*) cpu_env
)->pregs
[PR_PID
] = arg1
;
9098 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
9099 ret
= do_set_thread_area(cpu_env
, arg1
);
9101 #elif defined(TARGET_M68K)
9103 TaskState
*ts
= cpu
->opaque
;
9104 ts
->tp_value
= arg1
;
9109 goto unimplemented_nowarn
;
9112 #ifdef TARGET_NR_get_thread_area
9113 case TARGET_NR_get_thread_area
:
9114 #if defined(TARGET_I386) && defined(TARGET_ABI32)
9115 ret
= do_get_thread_area(cpu_env
, arg1
);
9117 #elif defined(TARGET_M68K)
9119 TaskState
*ts
= cpu
->opaque
;
9124 goto unimplemented_nowarn
;
9127 #ifdef TARGET_NR_getdomainname
9128 case TARGET_NR_getdomainname
:
9129 goto unimplemented_nowarn
;
9132 #ifdef TARGET_NR_clock_gettime
9133 case TARGET_NR_clock_gettime
:
9136 ret
= get_errno(clock_gettime(arg1
, &ts
));
9137 if (!is_error(ret
)) {
9138 host_to_target_timespec(arg2
, &ts
);
9143 #ifdef TARGET_NR_clock_getres
9144 case TARGET_NR_clock_getres
:
9147 ret
= get_errno(clock_getres(arg1
, &ts
));
9148 if (!is_error(ret
)) {
9149 host_to_target_timespec(arg2
, &ts
);
9154 #ifdef TARGET_NR_clock_nanosleep
9155 case TARGET_NR_clock_nanosleep
:
9158 target_to_host_timespec(&ts
, arg3
);
9159 ret
= get_errno(clock_nanosleep(arg1
, arg2
, &ts
, arg4
? &ts
: NULL
));
9161 host_to_target_timespec(arg4
, &ts
);
9163 #if defined(TARGET_PPC)
9164 /* clock_nanosleep is odd in that it returns positive errno values.
9165 * On PPC, CR0 bit 3 should be set in such a situation. */
9167 ((CPUPPCState
*)cpu_env
)->crf
[0] |= 1;
9174 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
9175 case TARGET_NR_set_tid_address
:
9176 ret
= get_errno(set_tid_address((int *)g2h(arg1
)));
9180 #if defined(TARGET_NR_tkill) && defined(__NR_tkill)
9181 case TARGET_NR_tkill
:
9182 ret
= get_errno(sys_tkill((int)arg1
, target_to_host_signal(arg2
)));
9186 #if defined(TARGET_NR_tgkill) && defined(__NR_tgkill)
9187 case TARGET_NR_tgkill
:
9188 ret
= get_errno(sys_tgkill((int)arg1
, (int)arg2
,
9189 target_to_host_signal(arg3
)));
9193 #ifdef TARGET_NR_set_robust_list
9194 case TARGET_NR_set_robust_list
:
9195 case TARGET_NR_get_robust_list
:
9196 /* The ABI for supporting robust futexes has userspace pass
9197 * the kernel a pointer to a linked list which is updated by
9198 * userspace after the syscall; the list is walked by the kernel
9199 * when the thread exits. Since the linked list in QEMU guest
9200 * memory isn't a valid linked list for the host and we have
9201 * no way to reliably intercept the thread-death event, we can't
9202 * support these. Silently return ENOSYS so that guest userspace
9203 * falls back to a non-robust futex implementation (which should
9204 * be OK except in the corner case of the guest crashing while
9205 * holding a mutex that is shared with another process via
9208 goto unimplemented_nowarn
;
9211 #if defined(TARGET_NR_utimensat)
9212 case TARGET_NR_utimensat
:
9214 struct timespec
*tsp
, ts
[2];
9218 target_to_host_timespec(ts
, arg3
);
9219 target_to_host_timespec(ts
+1, arg3
+sizeof(struct target_timespec
));
9223 ret
= get_errno(sys_utimensat(arg1
, NULL
, tsp
, arg4
));
9225 if (!(p
= lock_user_string(arg2
))) {
9226 ret
= -TARGET_EFAULT
;
9229 ret
= get_errno(sys_utimensat(arg1
, path(p
), tsp
, arg4
));
9230 unlock_user(p
, arg2
, 0);
9235 case TARGET_NR_futex
:
9236 ret
= do_futex(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
9238 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
9239 case TARGET_NR_inotify_init
:
9240 ret
= get_errno(sys_inotify_init());
9243 #ifdef CONFIG_INOTIFY1
9244 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
9245 case TARGET_NR_inotify_init1
:
9246 ret
= get_errno(sys_inotify_init1(arg1
));
9250 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
9251 case TARGET_NR_inotify_add_watch
:
9252 p
= lock_user_string(arg2
);
9253 ret
= get_errno(sys_inotify_add_watch(arg1
, path(p
), arg3
));
9254 unlock_user(p
, arg2
, 0);
9257 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
9258 case TARGET_NR_inotify_rm_watch
:
9259 ret
= get_errno(sys_inotify_rm_watch(arg1
, arg2
));
9263 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
9264 case TARGET_NR_mq_open
:
9266 struct mq_attr posix_mq_attr
, *attrp
;
9268 p
= lock_user_string(arg1
- 1);
9270 copy_from_user_mq_attr (&posix_mq_attr
, arg4
);
9271 attrp
= &posix_mq_attr
;
9275 ret
= get_errno(mq_open(p
, arg2
, arg3
, attrp
));
9276 unlock_user (p
, arg1
, 0);
9280 case TARGET_NR_mq_unlink
:
9281 p
= lock_user_string(arg1
- 1);
9282 ret
= get_errno(mq_unlink(p
));
9283 unlock_user (p
, arg1
, 0);
9286 case TARGET_NR_mq_timedsend
:
9290 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
9292 target_to_host_timespec(&ts
, arg5
);
9293 ret
= get_errno(mq_timedsend(arg1
, p
, arg3
, arg4
, &ts
));
9294 host_to_target_timespec(arg5
, &ts
);
9297 ret
= get_errno(mq_send(arg1
, p
, arg3
, arg4
));
9298 unlock_user (p
, arg2
, arg3
);
9302 case TARGET_NR_mq_timedreceive
:
9307 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
9309 target_to_host_timespec(&ts
, arg5
);
9310 ret
= get_errno(mq_timedreceive(arg1
, p
, arg3
, &prio
, &ts
));
9311 host_to_target_timespec(arg5
, &ts
);
9314 ret
= get_errno(mq_receive(arg1
, p
, arg3
, &prio
));
9315 unlock_user (p
, arg2
, arg3
);
9317 put_user_u32(prio
, arg4
);
9321 /* Not implemented for now... */
9322 /* case TARGET_NR_mq_notify: */
9325 case TARGET_NR_mq_getsetattr
:
9327 struct mq_attr posix_mq_attr_in
, posix_mq_attr_out
;
9330 ret
= mq_getattr(arg1
, &posix_mq_attr_out
);
9331 copy_to_user_mq_attr(arg3
, &posix_mq_attr_out
);
9334 copy_from_user_mq_attr(&posix_mq_attr_in
, arg2
);
9335 ret
|= mq_setattr(arg1
, &posix_mq_attr_in
, &posix_mq_attr_out
);
9342 #ifdef CONFIG_SPLICE
9343 #ifdef TARGET_NR_tee
9346 ret
= get_errno(tee(arg1
,arg2
,arg3
,arg4
));
9350 #ifdef TARGET_NR_splice
9351 case TARGET_NR_splice
:
9353 loff_t loff_in
, loff_out
;
9354 loff_t
*ploff_in
= NULL
, *ploff_out
= NULL
;
9356 if (get_user_u64(loff_in
, arg2
)) {
9359 ploff_in
= &loff_in
;
9362 if (get_user_u64(loff_out
, arg4
)) {
9365 ploff_out
= &loff_out
;
9367 ret
= get_errno(splice(arg1
, ploff_in
, arg3
, ploff_out
, arg5
, arg6
));
9369 if (put_user_u64(loff_in
, arg2
)) {
9374 if (put_user_u64(loff_out
, arg4
)) {
9381 #ifdef TARGET_NR_vmsplice
9382 case TARGET_NR_vmsplice
:
9384 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
9386 ret
= get_errno(vmsplice(arg1
, vec
, arg3
, arg4
));
9387 unlock_iovec(vec
, arg2
, arg3
, 0);
9389 ret
= -host_to_target_errno(errno
);
9394 #endif /* CONFIG_SPLICE */
9395 #ifdef CONFIG_EVENTFD
9396 #if defined(TARGET_NR_eventfd)
9397 case TARGET_NR_eventfd
:
9398 ret
= get_errno(eventfd(arg1
, 0));
9401 #if defined(TARGET_NR_eventfd2)
9402 case TARGET_NR_eventfd2
:
9404 int host_flags
= arg2
& (~(TARGET_O_NONBLOCK
| TARGET_O_CLOEXEC
));
9405 if (arg2
& TARGET_O_NONBLOCK
) {
9406 host_flags
|= O_NONBLOCK
;
9408 if (arg2
& TARGET_O_CLOEXEC
) {
9409 host_flags
|= O_CLOEXEC
;
9411 ret
= get_errno(eventfd(arg1
, host_flags
));
9415 #endif /* CONFIG_EVENTFD */
9416 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
9417 case TARGET_NR_fallocate
:
9418 #if TARGET_ABI_BITS == 32
9419 ret
= get_errno(fallocate(arg1
, arg2
, target_offset64(arg3
, arg4
),
9420 target_offset64(arg5
, arg6
)));
9422 ret
= get_errno(fallocate(arg1
, arg2
, arg3
, arg4
));
9426 #if defined(CONFIG_SYNC_FILE_RANGE)
9427 #if defined(TARGET_NR_sync_file_range)
9428 case TARGET_NR_sync_file_range
:
9429 #if TARGET_ABI_BITS == 32
9430 #if defined(TARGET_MIPS)
9431 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
9432 target_offset64(arg5
, arg6
), arg7
));
9434 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg2
, arg3
),
9435 target_offset64(arg4
, arg5
), arg6
));
9436 #endif /* !TARGET_MIPS */
9438 ret
= get_errno(sync_file_range(arg1
, arg2
, arg3
, arg4
));
9442 #if defined(TARGET_NR_sync_file_range2)
9443 case TARGET_NR_sync_file_range2
:
9444 /* This is like sync_file_range but the arguments are reordered */
9445 #if TARGET_ABI_BITS == 32
9446 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
9447 target_offset64(arg5
, arg6
), arg2
));
9449 ret
= get_errno(sync_file_range(arg1
, arg3
, arg4
, arg2
));
9454 #if defined(CONFIG_EPOLL)
9455 #if defined(TARGET_NR_epoll_create)
9456 case TARGET_NR_epoll_create
:
9457 ret
= get_errno(epoll_create(arg1
));
9460 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
9461 case TARGET_NR_epoll_create1
:
9462 ret
= get_errno(epoll_create1(arg1
));
9465 #if defined(TARGET_NR_epoll_ctl)
9466 case TARGET_NR_epoll_ctl
:
9468 struct epoll_event ep
;
9469 struct epoll_event
*epp
= 0;
9471 struct target_epoll_event
*target_ep
;
9472 if (!lock_user_struct(VERIFY_READ
, target_ep
, arg4
, 1)) {
9475 ep
.events
= tswap32(target_ep
->events
);
9476 /* The epoll_data_t union is just opaque data to the kernel,
9477 * so we transfer all 64 bits across and need not worry what
9478 * actual data type it is.
9480 ep
.data
.u64
= tswap64(target_ep
->data
.u64
);
9481 unlock_user_struct(target_ep
, arg4
, 0);
9484 ret
= get_errno(epoll_ctl(arg1
, arg2
, arg3
, epp
));
9489 #if defined(TARGET_NR_epoll_pwait) && defined(CONFIG_EPOLL_PWAIT)
9490 #define IMPLEMENT_EPOLL_PWAIT
9492 #if defined(TARGET_NR_epoll_wait) || defined(IMPLEMENT_EPOLL_PWAIT)
9493 #if defined(TARGET_NR_epoll_wait)
9494 case TARGET_NR_epoll_wait
:
9496 #if defined(IMPLEMENT_EPOLL_PWAIT)
9497 case TARGET_NR_epoll_pwait
:
9500 struct target_epoll_event
*target_ep
;
9501 struct epoll_event
*ep
;
9503 int maxevents
= arg3
;
9506 target_ep
= lock_user(VERIFY_WRITE
, arg2
,
9507 maxevents
* sizeof(struct target_epoll_event
), 1);
9512 ep
= alloca(maxevents
* sizeof(struct epoll_event
));
9515 #if defined(IMPLEMENT_EPOLL_PWAIT)
9516 case TARGET_NR_epoll_pwait
:
9518 target_sigset_t
*target_set
;
9519 sigset_t _set
, *set
= &_set
;
9522 target_set
= lock_user(VERIFY_READ
, arg5
,
9523 sizeof(target_sigset_t
), 1);
9525 unlock_user(target_ep
, arg2
, 0);
9528 target_to_host_sigset(set
, target_set
);
9529 unlock_user(target_set
, arg5
, 0);
9534 ret
= get_errno(epoll_pwait(epfd
, ep
, maxevents
, timeout
, set
));
9538 #if defined(TARGET_NR_epoll_wait)
9539 case TARGET_NR_epoll_wait
:
9540 ret
= get_errno(epoll_wait(epfd
, ep
, maxevents
, timeout
));
9544 ret
= -TARGET_ENOSYS
;
9546 if (!is_error(ret
)) {
9548 for (i
= 0; i
< ret
; i
++) {
9549 target_ep
[i
].events
= tswap32(ep
[i
].events
);
9550 target_ep
[i
].data
.u64
= tswap64(ep
[i
].data
.u64
);
9553 unlock_user(target_ep
, arg2
, ret
* sizeof(struct target_epoll_event
));
9558 #ifdef TARGET_NR_prlimit64
9559 case TARGET_NR_prlimit64
:
9561 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
9562 struct target_rlimit64
*target_rnew
, *target_rold
;
9563 struct host_rlimit64 rnew
, rold
, *rnewp
= 0;
9564 int resource
= target_to_host_resource(arg2
);
9566 if (!lock_user_struct(VERIFY_READ
, target_rnew
, arg3
, 1)) {
9569 rnew
.rlim_cur
= tswap64(target_rnew
->rlim_cur
);
9570 rnew
.rlim_max
= tswap64(target_rnew
->rlim_max
);
9571 unlock_user_struct(target_rnew
, arg3
, 0);
9575 ret
= get_errno(sys_prlimit64(arg1
, resource
, rnewp
, arg4
? &rold
: 0));
9576 if (!is_error(ret
) && arg4
) {
9577 if (!lock_user_struct(VERIFY_WRITE
, target_rold
, arg4
, 1)) {
9580 target_rold
->rlim_cur
= tswap64(rold
.rlim_cur
);
9581 target_rold
->rlim_max
= tswap64(rold
.rlim_max
);
9582 unlock_user_struct(target_rold
, arg4
, 1);
9587 #ifdef TARGET_NR_gethostname
9588 case TARGET_NR_gethostname
:
9590 char *name
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0);
9592 ret
= get_errno(gethostname(name
, arg2
));
9593 unlock_user(name
, arg1
, arg2
);
9595 ret
= -TARGET_EFAULT
;
9600 #ifdef TARGET_NR_atomic_cmpxchg_32
9601 case TARGET_NR_atomic_cmpxchg_32
:
9603 /* should use start_exclusive from main.c */
9604 abi_ulong mem_value
;
9605 if (get_user_u32(mem_value
, arg6
)) {
9606 target_siginfo_t info
;
9607 info
.si_signo
= SIGSEGV
;
9609 info
.si_code
= TARGET_SEGV_MAPERR
;
9610 info
._sifields
._sigfault
._addr
= arg6
;
9611 queue_signal((CPUArchState
*)cpu_env
, info
.si_signo
, &info
);
9615 if (mem_value
== arg2
)
9616 put_user_u32(arg1
, arg6
);
9621 #ifdef TARGET_NR_atomic_barrier
9622 case TARGET_NR_atomic_barrier
:
9624 /* Like the kernel implementation and the qemu arm barrier, no-op this? */
9630 #ifdef TARGET_NR_timer_create
9631 case TARGET_NR_timer_create
:
9633 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
9635 struct sigevent host_sevp
= { {0}, }, *phost_sevp
= NULL
;
9638 int timer_index
= next_free_host_timer();
9640 if (timer_index
< 0) {
9641 ret
= -TARGET_EAGAIN
;
9643 timer_t
*phtimer
= g_posix_timers
+ timer_index
;
9646 phost_sevp
= &host_sevp
;
9647 ret
= target_to_host_sigevent(phost_sevp
, arg2
);
9653 ret
= get_errno(timer_create(clkid
, phost_sevp
, phtimer
));
9657 if (put_user(TIMER_MAGIC
| timer_index
, arg3
, target_timer_t
)) {
9666 #ifdef TARGET_NR_timer_settime
9667 case TARGET_NR_timer_settime
:
9669 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
9670 * struct itimerspec * old_value */
9671 target_timer_t timerid
= get_timer_id(arg1
);
9675 } else if (arg3
== 0) {
9676 ret
= -TARGET_EINVAL
;
9678 timer_t htimer
= g_posix_timers
[timerid
];
9679 struct itimerspec hspec_new
= {{0},}, hspec_old
= {{0},};
9681 target_to_host_itimerspec(&hspec_new
, arg3
);
9683 timer_settime(htimer
, arg2
, &hspec_new
, &hspec_old
));
9684 host_to_target_itimerspec(arg2
, &hspec_old
);
9690 #ifdef TARGET_NR_timer_gettime
9691 case TARGET_NR_timer_gettime
:
9693 /* args: timer_t timerid, struct itimerspec *curr_value */
9694 target_timer_t timerid
= get_timer_id(arg1
);
9699 ret
= -TARGET_EFAULT
;
9701 timer_t htimer
= g_posix_timers
[timerid
];
9702 struct itimerspec hspec
;
9703 ret
= get_errno(timer_gettime(htimer
, &hspec
));
9705 if (host_to_target_itimerspec(arg2
, &hspec
)) {
9706 ret
= -TARGET_EFAULT
;
9713 #ifdef TARGET_NR_timer_getoverrun
9714 case TARGET_NR_timer_getoverrun
:
9716 /* args: timer_t timerid */
9717 target_timer_t timerid
= get_timer_id(arg1
);
9722 timer_t htimer
= g_posix_timers
[timerid
];
9723 ret
= get_errno(timer_getoverrun(htimer
));
9729 #ifdef TARGET_NR_timer_delete
9730 case TARGET_NR_timer_delete
:
9732 /* args: timer_t timerid */
9733 target_timer_t timerid
= get_timer_id(arg1
);
9738 timer_t htimer
= g_posix_timers
[timerid
];
9739 ret
= get_errno(timer_delete(htimer
));
9740 g_posix_timers
[timerid
] = 0;
9746 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
9747 case TARGET_NR_timerfd_create
:
9748 ret
= get_errno(timerfd_create(arg1
,
9749 target_to_host_bitmask(arg2
, fcntl_flags_tbl
)));
9753 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
9754 case TARGET_NR_timerfd_gettime
:
9756 struct itimerspec its_curr
;
9758 ret
= get_errno(timerfd_gettime(arg1
, &its_curr
));
9760 if (arg2
&& host_to_target_itimerspec(arg2
, &its_curr
)) {
9767 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
9768 case TARGET_NR_timerfd_settime
:
9770 struct itimerspec its_new
, its_old
, *p_new
;
9773 if (target_to_host_itimerspec(&its_new
, arg3
)) {
9781 ret
= get_errno(timerfd_settime(arg1
, arg2
, p_new
, &its_old
));
9783 if (arg4
&& host_to_target_itimerspec(arg4
, &its_old
)) {
9790 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
9791 case TARGET_NR_ioprio_get
:
9792 ret
= get_errno(ioprio_get(arg1
, arg2
));
9796 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
9797 case TARGET_NR_ioprio_set
:
9798 ret
= get_errno(ioprio_set(arg1
, arg2
, arg3
));
9802 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
9803 case TARGET_NR_setns
:
9804 ret
= get_errno(setns(arg1
, arg2
));
9807 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
9808 case TARGET_NR_unshare
:
9809 ret
= get_errno(unshare(arg1
));
9815 gemu_log("qemu: Unsupported syscall: %d\n", num
);
9816 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list)
9817 unimplemented_nowarn
:
9819 ret
= -TARGET_ENOSYS
;
9824 gemu_log(" = " TARGET_ABI_FMT_ld
"\n", ret
);
9827 print_syscall_ret(num
, ret
);
9830 ret
= -TARGET_EFAULT
;