4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
40 #else /* !CONFIG_USER_ONLY */
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "exec/address-spaces.h"
46 #include "sysemu/xen-mapcache.h"
49 #include "exec/cpu-all.h"
50 #include "qemu/rcu_queue.h"
51 #include "qemu/main-loop.h"
52 #include "translate-all.h"
53 #include "sysemu/replay.h"
55 #include "exec/memory-internal.h"
56 #include "exec/ram_addr.h"
59 #include "migration/vmstate.h"
61 #include "qemu/range.h"
63 #include "qemu/mmap-alloc.h"
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
70 * are protected by the ramlist lock.
72 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
74 static MemoryRegion
*system_memory
;
75 static MemoryRegion
*system_io
;
77 AddressSpace address_space_io
;
78 AddressSpace address_space_memory
;
80 MemoryRegion io_mem_rom
, io_mem_notdirty
;
81 static MemoryRegion io_mem_unassigned
;
83 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
84 #define RAM_PREALLOC (1 << 0)
86 /* RAM is mmap-ed with MAP_SHARED */
87 #define RAM_SHARED (1 << 1)
89 /* Only a portion of RAM (used_length) is actually used, and migrated.
90 * This used_length size can change across reboots.
92 #define RAM_RESIZEABLE (1 << 2)
96 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
97 /* current CPU in the current thread. It is only valid inside
99 __thread CPUState
*current_cpu
;
100 /* 0 = Do not count executed instructions.
101 1 = Precise instruction counting.
102 2 = Adaptive rate instruction counting. */
105 #if !defined(CONFIG_USER_ONLY)
107 typedef struct PhysPageEntry PhysPageEntry
;
109 struct PhysPageEntry
{
110 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
112 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
116 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
118 /* Size of the L2 (and L3, etc) page tables. */
119 #define ADDR_SPACE_BITS 64
122 #define P_L2_SIZE (1 << P_L2_BITS)
124 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
126 typedef PhysPageEntry Node
[P_L2_SIZE
];
128 typedef struct PhysPageMap
{
131 unsigned sections_nb
;
132 unsigned sections_nb_alloc
;
134 unsigned nodes_nb_alloc
;
136 MemoryRegionSection
*sections
;
139 struct AddressSpaceDispatch
{
142 MemoryRegionSection
*mru_section
;
143 /* This is a multi-level map on the physical address space.
144 * The bottom level has pointers to MemoryRegionSections.
146 PhysPageEntry phys_map
;
151 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
152 typedef struct subpage_t
{
156 uint16_t sub_section
[TARGET_PAGE_SIZE
];
159 #define PHYS_SECTION_UNASSIGNED 0
160 #define PHYS_SECTION_NOTDIRTY 1
161 #define PHYS_SECTION_ROM 2
162 #define PHYS_SECTION_WATCH 3
164 static void io_mem_init(void);
165 static void memory_map_init(void);
166 static void tcg_commit(MemoryListener
*listener
);
168 static MemoryRegion io_mem_watch
;
171 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
172 * @cpu: the CPU whose AddressSpace this is
173 * @as: the AddressSpace itself
174 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
175 * @tcg_as_listener: listener for tracking changes to the AddressSpace
177 struct CPUAddressSpace
{
180 struct AddressSpaceDispatch
*memory_dispatch
;
181 MemoryListener tcg_as_listener
;
186 #if !defined(CONFIG_USER_ONLY)
188 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
190 static unsigned alloc_hint
= 16;
191 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
192 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
193 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
194 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
195 alloc_hint
= map
->nodes_nb_alloc
;
199 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
206 ret
= map
->nodes_nb
++;
208 assert(ret
!= PHYS_MAP_NODE_NIL
);
209 assert(ret
!= map
->nodes_nb_alloc
);
211 e
.skip
= leaf
? 0 : 1;
212 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
213 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
214 memcpy(&p
[i
], &e
, sizeof(e
));
219 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
220 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
224 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
226 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
227 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
229 p
= map
->nodes
[lp
->ptr
];
230 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
232 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
233 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
239 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
245 static void phys_page_set(AddressSpaceDispatch
*d
,
246 hwaddr index
, hwaddr nb
,
249 /* Wildly overreserve - it doesn't matter much. */
250 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
252 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
255 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
256 * and update our entry so we can skip it and go directly to the destination.
258 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
, unsigned long *compacted
)
260 unsigned valid_ptr
= P_L2_SIZE
;
265 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
270 for (i
= 0; i
< P_L2_SIZE
; i
++) {
271 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
278 phys_page_compact(&p
[i
], nodes
, compacted
);
282 /* We can only compress if there's only one child. */
287 assert(valid_ptr
< P_L2_SIZE
);
289 /* Don't compress if it won't fit in the # of bits we have. */
290 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
294 lp
->ptr
= p
[valid_ptr
].ptr
;
295 if (!p
[valid_ptr
].skip
) {
296 /* If our only child is a leaf, make this a leaf. */
297 /* By design, we should have made this node a leaf to begin with so we
298 * should never reach here.
299 * But since it's so simple to handle this, let's do it just in case we
304 lp
->skip
+= p
[valid_ptr
].skip
;
308 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
310 DECLARE_BITMAP(compacted
, nodes_nb
);
312 if (d
->phys_map
.skip
) {
313 phys_page_compact(&d
->phys_map
, d
->map
.nodes
, compacted
);
317 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
320 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
321 * the section must cover the entire address space.
323 return section
->size
.hi
||
324 range_covers_byte(section
->offset_within_address_space
,
325 section
->size
.lo
, addr
);
328 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
329 Node
*nodes
, MemoryRegionSection
*sections
)
332 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
335 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
336 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
337 return §ions
[PHYS_SECTION_UNASSIGNED
];
340 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
343 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
344 return §ions
[lp
.ptr
];
346 return §ions
[PHYS_SECTION_UNASSIGNED
];
350 bool memory_region_is_unassigned(MemoryRegion
*mr
)
352 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
353 && mr
!= &io_mem_watch
;
356 /* Called from RCU critical section */
357 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
359 bool resolve_subpage
)
361 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
365 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
366 section_covers_addr(section
, addr
)) {
369 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
,
373 if (resolve_subpage
&& section
->mr
->subpage
) {
374 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
375 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
378 atomic_set(&d
->mru_section
, section
);
383 /* Called from RCU critical section */
384 static MemoryRegionSection
*
385 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
386 hwaddr
*plen
, bool resolve_subpage
)
388 MemoryRegionSection
*section
;
392 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
393 /* Compute offset within MemoryRegionSection */
394 addr
-= section
->offset_within_address_space
;
396 /* Compute offset within MemoryRegion */
397 *xlat
= addr
+ section
->offset_within_region
;
401 /* MMIO registers can be expected to perform full-width accesses based only
402 * on their address, without considering adjacent registers that could
403 * decode to completely different MemoryRegions. When such registers
404 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
405 * regions overlap wildly. For this reason we cannot clamp the accesses
408 * If the length is small (as is the case for address_space_ldl/stl),
409 * everything works fine. If the incoming length is large, however,
410 * the caller really has to do the clamping through memory_access_size.
412 if (memory_region_is_ram(mr
)) {
413 diff
= int128_sub(section
->size
, int128_make64(addr
));
414 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
419 /* Called from RCU critical section */
420 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
421 hwaddr
*xlat
, hwaddr
*plen
,
425 MemoryRegionSection
*section
;
429 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
430 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, true);
433 if (!mr
->iommu_ops
) {
437 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
438 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
439 | (addr
& iotlb
.addr_mask
));
440 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
441 if (!(iotlb
.perm
& (1 << is_write
))) {
442 mr
= &io_mem_unassigned
;
446 as
= iotlb
.target_as
;
449 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
450 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
451 *plen
= MIN(page
, *plen
);
458 /* Called from RCU critical section */
459 MemoryRegionSection
*
460 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
461 hwaddr
*xlat
, hwaddr
*plen
)
463 MemoryRegionSection
*section
;
464 AddressSpaceDispatch
*d
= cpu
->cpu_ases
[asidx
].memory_dispatch
;
466 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
468 assert(!section
->mr
->iommu_ops
);
473 #if !defined(CONFIG_USER_ONLY)
475 static int cpu_common_post_load(void *opaque
, int version_id
)
477 CPUState
*cpu
= opaque
;
479 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
480 version_id is increased. */
481 cpu
->interrupt_request
&= ~0x01;
487 static int cpu_common_pre_load(void *opaque
)
489 CPUState
*cpu
= opaque
;
491 cpu
->exception_index
= -1;
496 static bool cpu_common_exception_index_needed(void *opaque
)
498 CPUState
*cpu
= opaque
;
500 return tcg_enabled() && cpu
->exception_index
!= -1;
503 static const VMStateDescription vmstate_cpu_common_exception_index
= {
504 .name
= "cpu_common/exception_index",
506 .minimum_version_id
= 1,
507 .needed
= cpu_common_exception_index_needed
,
508 .fields
= (VMStateField
[]) {
509 VMSTATE_INT32(exception_index
, CPUState
),
510 VMSTATE_END_OF_LIST()
514 static bool cpu_common_crash_occurred_needed(void *opaque
)
516 CPUState
*cpu
= opaque
;
518 return cpu
->crash_occurred
;
521 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
522 .name
= "cpu_common/crash_occurred",
524 .minimum_version_id
= 1,
525 .needed
= cpu_common_crash_occurred_needed
,
526 .fields
= (VMStateField
[]) {
527 VMSTATE_BOOL(crash_occurred
, CPUState
),
528 VMSTATE_END_OF_LIST()
532 const VMStateDescription vmstate_cpu_common
= {
533 .name
= "cpu_common",
535 .minimum_version_id
= 1,
536 .pre_load
= cpu_common_pre_load
,
537 .post_load
= cpu_common_post_load
,
538 .fields
= (VMStateField
[]) {
539 VMSTATE_UINT32(halted
, CPUState
),
540 VMSTATE_UINT32(interrupt_request
, CPUState
),
541 VMSTATE_END_OF_LIST()
543 .subsections
= (const VMStateDescription
*[]) {
544 &vmstate_cpu_common_exception_index
,
545 &vmstate_cpu_common_crash_occurred
,
552 CPUState
*qemu_get_cpu(int index
)
557 if (cpu
->cpu_index
== index
) {
565 #if !defined(CONFIG_USER_ONLY)
566 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
568 CPUAddressSpace
*newas
;
570 /* Target code should have set num_ases before calling us */
571 assert(asidx
< cpu
->num_ases
);
574 /* address space 0 gets the convenience alias */
578 /* KVM cannot currently support multiple address spaces. */
579 assert(asidx
== 0 || !kvm_enabled());
581 if (!cpu
->cpu_ases
) {
582 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
585 newas
= &cpu
->cpu_ases
[asidx
];
589 newas
->tcg_as_listener
.commit
= tcg_commit
;
590 memory_listener_register(&newas
->tcg_as_listener
, as
);
594 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
596 /* Return the AddressSpace corresponding to the specified index */
597 return cpu
->cpu_ases
[asidx
].as
;
601 #ifndef CONFIG_USER_ONLY
602 static DECLARE_BITMAP(cpu_index_map
, MAX_CPUMASK_BITS
);
604 static int cpu_get_free_index(Error
**errp
)
606 int cpu
= find_first_zero_bit(cpu_index_map
, MAX_CPUMASK_BITS
);
608 if (cpu
>= MAX_CPUMASK_BITS
) {
609 error_setg(errp
, "Trying to use more CPUs than max of %d",
614 bitmap_set(cpu_index_map
, cpu
, 1);
618 static void cpu_release_index(CPUState
*cpu
)
620 bitmap_clear(cpu_index_map
, cpu
->cpu_index
, 1);
624 static int cpu_get_free_index(Error
**errp
)
629 CPU_FOREACH(some_cpu
) {
635 static void cpu_release_index(CPUState
*cpu
)
641 void cpu_exec_exit(CPUState
*cpu
)
643 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
645 #if defined(CONFIG_USER_ONLY)
648 if (cpu
->cpu_index
== -1) {
649 /* cpu_index was never allocated by this @cpu or was already freed. */
650 #if defined(CONFIG_USER_ONLY)
656 QTAILQ_REMOVE(&cpus
, cpu
, node
);
657 cpu_release_index(cpu
);
659 #if defined(CONFIG_USER_ONLY)
663 if (cc
->vmsd
!= NULL
) {
664 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
666 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
667 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
671 void cpu_exec_init(CPUState
*cpu
, Error
**errp
)
673 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
674 Error
*local_err
= NULL
;
679 #ifndef CONFIG_USER_ONLY
680 cpu
->thread_id
= qemu_get_thread_id();
682 /* This is a softmmu CPU object, so create a property for it
683 * so users can wire up its memory. (This can't go in qom/cpu.c
684 * because that file is compiled only once for both user-mode
685 * and system builds.) The default if no link is set up is to use
686 * the system address space.
688 object_property_add_link(OBJECT(cpu
), "memory", TYPE_MEMORY_REGION
,
689 (Object
**)&cpu
->memory
,
690 qdev_prop_allow_set_link_before_realize
,
691 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
693 cpu
->memory
= system_memory
;
694 object_ref(OBJECT(cpu
->memory
));
697 #if defined(CONFIG_USER_ONLY)
700 cpu
->cpu_index
= cpu_get_free_index(&local_err
);
702 error_propagate(errp
, local_err
);
703 #if defined(CONFIG_USER_ONLY)
708 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
709 #if defined(CONFIG_USER_ONLY)
713 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
714 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
716 if (cc
->vmsd
!= NULL
) {
717 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
722 #if defined(CONFIG_USER_ONLY)
723 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
725 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
728 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
731 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
732 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
734 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
735 phys
| (pc
& ~TARGET_PAGE_MASK
));
740 #if defined(CONFIG_USER_ONLY)
741 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
746 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
752 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
756 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
757 int flags
, CPUWatchpoint
**watchpoint
)
762 /* Add a watchpoint. */
763 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
764 int flags
, CPUWatchpoint
**watchpoint
)
768 /* forbid ranges which are empty or run off the end of the address space */
769 if (len
== 0 || (addr
+ len
- 1) < addr
) {
770 error_report("tried to set invalid watchpoint at %"
771 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
774 wp
= g_malloc(sizeof(*wp
));
780 /* keep all GDB-injected watchpoints in front */
781 if (flags
& BP_GDB
) {
782 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
784 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
787 tlb_flush_page(cpu
, addr
);
794 /* Remove a specific watchpoint. */
795 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
800 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
801 if (addr
== wp
->vaddr
&& len
== wp
->len
802 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
803 cpu_watchpoint_remove_by_ref(cpu
, wp
);
810 /* Remove a specific watchpoint by reference. */
811 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
813 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
815 tlb_flush_page(cpu
, watchpoint
->vaddr
);
820 /* Remove all matching watchpoints. */
821 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
823 CPUWatchpoint
*wp
, *next
;
825 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
826 if (wp
->flags
& mask
) {
827 cpu_watchpoint_remove_by_ref(cpu
, wp
);
832 /* Return true if this watchpoint address matches the specified
833 * access (ie the address range covered by the watchpoint overlaps
834 * partially or completely with the address range covered by the
837 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
841 /* We know the lengths are non-zero, but a little caution is
842 * required to avoid errors in the case where the range ends
843 * exactly at the top of the address space and so addr + len
844 * wraps round to zero.
846 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
847 vaddr addrend
= addr
+ len
- 1;
849 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
854 /* Add a breakpoint. */
855 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
856 CPUBreakpoint
**breakpoint
)
860 bp
= g_malloc(sizeof(*bp
));
865 /* keep all GDB-injected breakpoints in front */
866 if (flags
& BP_GDB
) {
867 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
869 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
872 breakpoint_invalidate(cpu
, pc
);
880 /* Remove a specific breakpoint. */
881 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
885 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
886 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
887 cpu_breakpoint_remove_by_ref(cpu
, bp
);
894 /* Remove a specific breakpoint by reference. */
895 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
897 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
899 breakpoint_invalidate(cpu
, breakpoint
->pc
);
904 /* Remove all matching breakpoints. */
905 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
907 CPUBreakpoint
*bp
, *next
;
909 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
910 if (bp
->flags
& mask
) {
911 cpu_breakpoint_remove_by_ref(cpu
, bp
);
916 /* enable or disable single step mode. EXCP_DEBUG is returned by the
917 CPU loop after each instruction */
918 void cpu_single_step(CPUState
*cpu
, int enabled
)
920 if (cpu
->singlestep_enabled
!= enabled
) {
921 cpu
->singlestep_enabled
= enabled
;
923 kvm_update_guest_debug(cpu
, 0);
925 /* must flush all the translated code to avoid inconsistencies */
926 /* XXX: only flush what is necessary */
932 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
939 fprintf(stderr
, "qemu: fatal: ");
940 vfprintf(stderr
, fmt
, ap
);
941 fprintf(stderr
, "\n");
942 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
943 if (qemu_log_separate()) {
944 qemu_log("qemu: fatal: ");
945 qemu_log_vprintf(fmt
, ap2
);
947 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
954 #if defined(CONFIG_USER_ONLY)
956 struct sigaction act
;
957 sigfillset(&act
.sa_mask
);
958 act
.sa_handler
= SIG_DFL
;
959 sigaction(SIGABRT
, &act
, NULL
);
965 #if !defined(CONFIG_USER_ONLY)
966 /* Called from RCU critical section */
967 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
971 block
= atomic_rcu_read(&ram_list
.mru_block
);
972 if (block
&& addr
- block
->offset
< block
->max_length
) {
975 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
976 if (addr
- block
->offset
< block
->max_length
) {
981 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
985 /* It is safe to write mru_block outside the iothread lock. This
990 * xxx removed from list
994 * call_rcu(reclaim_ramblock, xxx);
997 * atomic_rcu_set is not needed here. The block was already published
998 * when it was placed into the list. Here we're just making an extra
999 * copy of the pointer.
1001 ram_list
.mru_block
= block
;
1005 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1012 end
= TARGET_PAGE_ALIGN(start
+ length
);
1013 start
&= TARGET_PAGE_MASK
;
1016 block
= qemu_get_ram_block(start
);
1017 assert(block
== qemu_get_ram_block(end
- 1));
1018 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1020 tlb_reset_dirty(cpu
, start1
, length
);
1025 /* Note: start and end must be within the same ram block. */
1026 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1030 DirtyMemoryBlocks
*blocks
;
1031 unsigned long end
, page
;
1038 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1039 page
= start
>> TARGET_PAGE_BITS
;
1043 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1045 while (page
< end
) {
1046 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1047 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1048 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1050 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1057 if (dirty
&& tcg_enabled()) {
1058 tlb_reset_dirty_range_all(start
, length
);
1064 /* Called from RCU critical section */
1065 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1066 MemoryRegionSection
*section
,
1068 hwaddr paddr
, hwaddr xlat
,
1070 target_ulong
*address
)
1075 if (memory_region_is_ram(section
->mr
)) {
1077 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1078 if (!section
->readonly
) {
1079 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1081 iotlb
|= PHYS_SECTION_ROM
;
1084 AddressSpaceDispatch
*d
;
1086 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1087 iotlb
= section
- d
->map
.sections
;
1091 /* Make accesses to pages with watchpoints go via the
1092 watchpoint trap routines. */
1093 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1094 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1095 /* Avoid trapping reads of pages with a write breakpoint. */
1096 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1097 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1098 *address
|= TLB_MMIO
;
1106 #endif /* defined(CONFIG_USER_ONLY) */
1108 #if !defined(CONFIG_USER_ONLY)
1110 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1112 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1114 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1115 qemu_anon_ram_alloc
;
1118 * Set a custom physical guest memory alloator.
1119 * Accelerators with unusual needs may need this. Hopefully, we can
1120 * get rid of it eventually.
1122 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1124 phys_mem_alloc
= alloc
;
1127 static uint16_t phys_section_add(PhysPageMap
*map
,
1128 MemoryRegionSection
*section
)
1130 /* The physical section number is ORed with a page-aligned
1131 * pointer to produce the iotlb entries. Thus it should
1132 * never overflow into the page-aligned value.
1134 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1136 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1137 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1138 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1139 map
->sections_nb_alloc
);
1141 map
->sections
[map
->sections_nb
] = *section
;
1142 memory_region_ref(section
->mr
);
1143 return map
->sections_nb
++;
1146 static void phys_section_destroy(MemoryRegion
*mr
)
1148 bool have_sub_page
= mr
->subpage
;
1150 memory_region_unref(mr
);
1152 if (have_sub_page
) {
1153 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1154 object_unref(OBJECT(&subpage
->iomem
));
1159 static void phys_sections_free(PhysPageMap
*map
)
1161 while (map
->sections_nb
> 0) {
1162 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1163 phys_section_destroy(section
->mr
);
1165 g_free(map
->sections
);
1169 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1172 hwaddr base
= section
->offset_within_address_space
1174 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1175 d
->map
.nodes
, d
->map
.sections
);
1176 MemoryRegionSection subsection
= {
1177 .offset_within_address_space
= base
,
1178 .size
= int128_make64(TARGET_PAGE_SIZE
),
1182 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1184 if (!(existing
->mr
->subpage
)) {
1185 subpage
= subpage_init(d
->as
, base
);
1186 subsection
.address_space
= d
->as
;
1187 subsection
.mr
= &subpage
->iomem
;
1188 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1189 phys_section_add(&d
->map
, &subsection
));
1191 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1193 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1194 end
= start
+ int128_get64(section
->size
) - 1;
1195 subpage_register(subpage
, start
, end
,
1196 phys_section_add(&d
->map
, section
));
1200 static void register_multipage(AddressSpaceDispatch
*d
,
1201 MemoryRegionSection
*section
)
1203 hwaddr start_addr
= section
->offset_within_address_space
;
1204 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1205 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1209 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1212 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1214 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1215 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1216 MemoryRegionSection now
= *section
, remain
= *section
;
1217 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1219 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1220 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1221 - now
.offset_within_address_space
;
1223 now
.size
= int128_min(int128_make64(left
), now
.size
);
1224 register_subpage(d
, &now
);
1226 now
.size
= int128_zero();
1228 while (int128_ne(remain
.size
, now
.size
)) {
1229 remain
.size
= int128_sub(remain
.size
, now
.size
);
1230 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1231 remain
.offset_within_region
+= int128_get64(now
.size
);
1233 if (int128_lt(remain
.size
, page_size
)) {
1234 register_subpage(d
, &now
);
1235 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1236 now
.size
= page_size
;
1237 register_subpage(d
, &now
);
1239 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1240 register_multipage(d
, &now
);
1245 void qemu_flush_coalesced_mmio_buffer(void)
1248 kvm_flush_coalesced_mmio_buffer();
1251 void qemu_mutex_lock_ramlist(void)
1253 qemu_mutex_lock(&ram_list
.mutex
);
1256 void qemu_mutex_unlock_ramlist(void)
1258 qemu_mutex_unlock(&ram_list
.mutex
);
1262 static void *file_ram_alloc(RAMBlock
*block
,
1267 bool unlink_on_error
= false;
1269 char *sanitized_name
;
1275 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1277 "host lacks kvm mmu notifiers, -mem-path unsupported");
1282 fd
= open(path
, O_RDWR
);
1284 /* @path names an existing file, use it */
1287 if (errno
== ENOENT
) {
1288 /* @path names a file that doesn't exist, create it */
1289 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1291 unlink_on_error
= true;
1294 } else if (errno
== EISDIR
) {
1295 /* @path names a directory, create a file there */
1296 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1297 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1298 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1304 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1306 g_free(sanitized_name
);
1308 fd
= mkstemp(filename
);
1316 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1317 error_setg_errno(errp
, errno
,
1318 "can't open backing store %s for guest RAM",
1323 * Try again on EINTR and EEXIST. The latter happens when
1324 * something else creates the file between our two open().
1328 page_size
= qemu_fd_getpagesize(fd
);
1329 block
->mr
->align
= MAX(page_size
, QEMU_VMALLOC_ALIGN
);
1331 if (memory
< page_size
) {
1332 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1333 "or larger than page size 0x%" PRIx64
,
1338 memory
= ROUND_UP(memory
, page_size
);
1341 * ftruncate is not supported by hugetlbfs in older
1342 * hosts, so don't bother bailing out on errors.
1343 * If anything goes wrong with it under other filesystems,
1346 if (ftruncate(fd
, memory
)) {
1347 perror("ftruncate");
1350 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1351 block
->flags
& RAM_SHARED
);
1352 if (area
== MAP_FAILED
) {
1353 error_setg_errno(errp
, errno
,
1354 "unable to map backing store for guest RAM");
1359 os_mem_prealloc(fd
, area
, memory
);
1366 if (unlink_on_error
) {
1376 /* Called with the ramlist lock held. */
1377 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1379 RAMBlock
*block
, *next_block
;
1380 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1382 assert(size
!= 0); /* it would hand out same offset multiple times */
1384 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1388 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1389 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1391 end
= block
->offset
+ block
->max_length
;
1393 QLIST_FOREACH_RCU(next_block
, &ram_list
.blocks
, next
) {
1394 if (next_block
->offset
>= end
) {
1395 next
= MIN(next
, next_block
->offset
);
1398 if (next
- end
>= size
&& next
- end
< mingap
) {
1400 mingap
= next
- end
;
1404 if (offset
== RAM_ADDR_MAX
) {
1405 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1413 ram_addr_t
last_ram_offset(void)
1416 ram_addr_t last
= 0;
1419 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1420 last
= MAX(last
, block
->offset
+ block
->max_length
);
1426 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1430 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1431 if (!machine_dump_guest_core(current_machine
)) {
1432 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1434 perror("qemu_madvise");
1435 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1436 "but dump_guest_core=off specified\n");
1441 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1446 /* Called with iothread lock held. */
1447 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1452 assert(!new_block
->idstr
[0]);
1455 char *id
= qdev_get_dev_path(dev
);
1457 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1461 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1464 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1465 if (block
!= new_block
&&
1466 !strcmp(block
->idstr
, new_block
->idstr
)) {
1467 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1475 /* Called with iothread lock held. */
1476 void qemu_ram_unset_idstr(RAMBlock
*block
)
1478 /* FIXME: arch_init.c assumes that this is not called throughout
1479 * migration. Ignore the problem since hot-unplug during migration
1480 * does not work anyway.
1483 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1487 static int memory_try_enable_merging(void *addr
, size_t len
)
1489 if (!machine_mem_merge(current_machine
)) {
1490 /* disabled by the user */
1494 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1497 /* Only legal before guest might have detected the memory size: e.g. on
1498 * incoming migration, or right after reset.
1500 * As memory core doesn't know how is memory accessed, it is up to
1501 * resize callback to update device state and/or add assertions to detect
1502 * misuse, if necessary.
1504 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1508 newsize
= HOST_PAGE_ALIGN(newsize
);
1510 if (block
->used_length
== newsize
) {
1514 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1515 error_setg_errno(errp
, EINVAL
,
1516 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1517 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1518 newsize
, block
->used_length
);
1522 if (block
->max_length
< newsize
) {
1523 error_setg_errno(errp
, EINVAL
,
1524 "Length too large: %s: 0x" RAM_ADDR_FMT
1525 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1526 newsize
, block
->max_length
);
1530 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1531 block
->used_length
= newsize
;
1532 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1534 memory_region_set_size(block
->mr
, newsize
);
1535 if (block
->resized
) {
1536 block
->resized(block
->idstr
, newsize
, block
->host
);
1541 /* Called with ram_list.mutex held */
1542 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1543 ram_addr_t new_ram_size
)
1545 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1546 DIRTY_MEMORY_BLOCK_SIZE
);
1547 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1548 DIRTY_MEMORY_BLOCK_SIZE
);
1551 /* Only need to extend if block count increased */
1552 if (new_num_blocks
<= old_num_blocks
) {
1556 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1557 DirtyMemoryBlocks
*old_blocks
;
1558 DirtyMemoryBlocks
*new_blocks
;
1561 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1562 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1563 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1565 if (old_num_blocks
) {
1566 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1567 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1570 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1571 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1574 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1577 g_free_rcu(old_blocks
, rcu
);
1582 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1585 RAMBlock
*last_block
= NULL
;
1586 ram_addr_t old_ram_size
, new_ram_size
;
1589 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1591 qemu_mutex_lock_ramlist();
1592 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1594 if (!new_block
->host
) {
1595 if (xen_enabled()) {
1596 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1597 new_block
->mr
, &err
);
1599 error_propagate(errp
, err
);
1600 qemu_mutex_unlock_ramlist();
1604 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1605 &new_block
->mr
->align
);
1606 if (!new_block
->host
) {
1607 error_setg_errno(errp
, errno
,
1608 "cannot set up guest memory '%s'",
1609 memory_region_name(new_block
->mr
));
1610 qemu_mutex_unlock_ramlist();
1613 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1617 new_ram_size
= MAX(old_ram_size
,
1618 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1619 if (new_ram_size
> old_ram_size
) {
1620 migration_bitmap_extend(old_ram_size
, new_ram_size
);
1621 dirty_memory_extend(old_ram_size
, new_ram_size
);
1623 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1624 * QLIST (which has an RCU-friendly variant) does not have insertion at
1625 * tail, so save the last element in last_block.
1627 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1629 if (block
->max_length
< new_block
->max_length
) {
1634 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1635 } else if (last_block
) {
1636 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1637 } else { /* list is empty */
1638 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1640 ram_list
.mru_block
= NULL
;
1642 /* Write list before version */
1645 qemu_mutex_unlock_ramlist();
1647 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1648 new_block
->used_length
,
1651 if (new_block
->host
) {
1652 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1653 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1654 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1655 if (kvm_enabled()) {
1656 kvm_setup_guest_memory(new_block
->host
, new_block
->max_length
);
1662 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1663 bool share
, const char *mem_path
,
1666 RAMBlock
*new_block
;
1667 Error
*local_err
= NULL
;
1669 if (xen_enabled()) {
1670 error_setg(errp
, "-mem-path not supported with Xen");
1674 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1676 * file_ram_alloc() needs to allocate just like
1677 * phys_mem_alloc, but we haven't bothered to provide
1681 "-mem-path not supported with this accelerator");
1685 size
= HOST_PAGE_ALIGN(size
);
1686 new_block
= g_malloc0(sizeof(*new_block
));
1688 new_block
->used_length
= size
;
1689 new_block
->max_length
= size
;
1690 new_block
->flags
= share
? RAM_SHARED
: 0;
1691 new_block
->host
= file_ram_alloc(new_block
, size
,
1693 if (!new_block
->host
) {
1698 ram_block_add(new_block
, &local_err
);
1701 error_propagate(errp
, local_err
);
1709 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1710 void (*resized
)(const char*,
1713 void *host
, bool resizeable
,
1714 MemoryRegion
*mr
, Error
**errp
)
1716 RAMBlock
*new_block
;
1717 Error
*local_err
= NULL
;
1719 size
= HOST_PAGE_ALIGN(size
);
1720 max_size
= HOST_PAGE_ALIGN(max_size
);
1721 new_block
= g_malloc0(sizeof(*new_block
));
1723 new_block
->resized
= resized
;
1724 new_block
->used_length
= size
;
1725 new_block
->max_length
= max_size
;
1726 assert(max_size
>= size
);
1728 new_block
->host
= host
;
1730 new_block
->flags
|= RAM_PREALLOC
;
1733 new_block
->flags
|= RAM_RESIZEABLE
;
1735 ram_block_add(new_block
, &local_err
);
1738 error_propagate(errp
, local_err
);
1744 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1745 MemoryRegion
*mr
, Error
**errp
)
1747 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
1750 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1752 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
1755 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
1756 void (*resized
)(const char*,
1759 MemoryRegion
*mr
, Error
**errp
)
1761 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
1764 static void reclaim_ramblock(RAMBlock
*block
)
1766 if (block
->flags
& RAM_PREALLOC
) {
1768 } else if (xen_enabled()) {
1769 xen_invalidate_map_cache_entry(block
->host
);
1771 } else if (block
->fd
>= 0) {
1772 qemu_ram_munmap(block
->host
, block
->max_length
);
1776 qemu_anon_ram_free(block
->host
, block
->max_length
);
1781 void qemu_ram_free(RAMBlock
*block
)
1787 qemu_mutex_lock_ramlist();
1788 QLIST_REMOVE_RCU(block
, next
);
1789 ram_list
.mru_block
= NULL
;
1790 /* Write list before version */
1793 call_rcu(block
, reclaim_ramblock
, rcu
);
1794 qemu_mutex_unlock_ramlist();
1798 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1805 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1806 offset
= addr
- block
->offset
;
1807 if (offset
< block
->max_length
) {
1808 vaddr
= ramblock_ptr(block
, offset
);
1809 if (block
->flags
& RAM_PREALLOC
) {
1811 } else if (xen_enabled()) {
1815 if (block
->fd
>= 0) {
1816 flags
|= (block
->flags
& RAM_SHARED
?
1817 MAP_SHARED
: MAP_PRIVATE
);
1818 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1819 flags
, block
->fd
, offset
);
1822 * Remap needs to match alloc. Accelerators that
1823 * set phys_mem_alloc never remap. If they did,
1824 * we'd need a remap hook here.
1826 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1828 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1829 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1832 if (area
!= vaddr
) {
1833 fprintf(stderr
, "Could not remap addr: "
1834 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1838 memory_try_enable_merging(vaddr
, length
);
1839 qemu_ram_setup_dump(vaddr
, length
);
1844 #endif /* !_WIN32 */
1846 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1847 * This should not be used for general purpose DMA. Use address_space_map
1848 * or address_space_rw instead. For local memory (e.g. video ram) that the
1849 * device owns, use memory_region_get_ram_ptr.
1851 * Called within RCU critical section.
1853 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
1855 RAMBlock
*block
= ram_block
;
1857 if (block
== NULL
) {
1858 block
= qemu_get_ram_block(addr
);
1859 addr
-= block
->offset
;
1862 if (xen_enabled() && block
->host
== NULL
) {
1863 /* We need to check if the requested address is in the RAM
1864 * because we don't want to map the entire memory in QEMU.
1865 * In that case just map until the end of the page.
1867 if (block
->offset
== 0) {
1868 return xen_map_cache(addr
, 0, 0);
1871 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1873 return ramblock_ptr(block
, addr
);
1876 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
1877 * but takes a size argument.
1879 * Called within RCU critical section.
1881 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
1884 RAMBlock
*block
= ram_block
;
1889 if (block
== NULL
) {
1890 block
= qemu_get_ram_block(addr
);
1891 addr
-= block
->offset
;
1893 *size
= MIN(*size
, block
->max_length
- addr
);
1895 if (xen_enabled() && block
->host
== NULL
) {
1896 /* We need to check if the requested address is in the RAM
1897 * because we don't want to map the entire memory in QEMU.
1898 * In that case just map the requested area.
1900 if (block
->offset
== 0) {
1901 return xen_map_cache(addr
, *size
, 1);
1904 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1907 return ramblock_ptr(block
, addr
);
1911 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1914 * ptr: Host pointer to look up
1915 * round_offset: If true round the result offset down to a page boundary
1916 * *ram_addr: set to result ram_addr
1917 * *offset: set to result offset within the RAMBlock
1919 * Returns: RAMBlock (or NULL if not found)
1921 * By the time this function returns, the returned pointer is not protected
1922 * by RCU anymore. If the caller is not within an RCU critical section and
1923 * does not hold the iothread lock, it must have other means of protecting the
1924 * pointer, such as a reference to the region that includes the incoming
1927 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
1931 uint8_t *host
= ptr
;
1933 if (xen_enabled()) {
1934 ram_addr_t ram_addr
;
1936 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1937 block
= qemu_get_ram_block(ram_addr
);
1939 *offset
= ram_addr
- block
->offset
;
1946 block
= atomic_rcu_read(&ram_list
.mru_block
);
1947 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
1951 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1952 /* This case append when the block is not mapped. */
1953 if (block
->host
== NULL
) {
1956 if (host
- block
->host
< block
->max_length
) {
1965 *offset
= (host
- block
->host
);
1967 *offset
&= TARGET_PAGE_MASK
;
1974 * Finds the named RAMBlock
1976 * name: The name of RAMBlock to find
1978 * Returns: RAMBlock (or NULL if not found)
1980 RAMBlock
*qemu_ram_block_by_name(const char *name
)
1984 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1985 if (!strcmp(name
, block
->idstr
)) {
1993 /* Some of the softmmu routines need to translate from a host pointer
1994 (typically a TLB entry) back to a ram offset. */
1995 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2000 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2002 return RAM_ADDR_INVALID
;
2005 return block
->offset
+ offset
;
2008 /* Called within RCU critical section. */
2009 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2010 uint64_t val
, unsigned size
)
2012 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2013 tb_invalidate_phys_page_fast(ram_addr
, size
);
2017 stb_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2020 stw_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2023 stl_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2028 /* Set both VGA and migration bits for simplicity and to remove
2029 * the notdirty callback faster.
2031 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2032 DIRTY_CLIENTS_NOCODE
);
2033 /* we remove the notdirty callback only if the code has been
2035 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2036 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2040 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2041 unsigned size
, bool is_write
)
2046 static const MemoryRegionOps notdirty_mem_ops
= {
2047 .write
= notdirty_mem_write
,
2048 .valid
.accepts
= notdirty_mem_accepts
,
2049 .endianness
= DEVICE_NATIVE_ENDIAN
,
2052 /* Generate a debug exception if a watchpoint has been hit. */
2053 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2055 CPUState
*cpu
= current_cpu
;
2056 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2057 CPUArchState
*env
= cpu
->env_ptr
;
2058 target_ulong pc
, cs_base
;
2063 if (cpu
->watchpoint_hit
) {
2064 /* We re-entered the check after replacing the TB. Now raise
2065 * the debug interrupt so that is will trigger after the
2066 * current instruction. */
2067 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2070 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2071 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2072 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2073 && (wp
->flags
& flags
)) {
2074 if (flags
== BP_MEM_READ
) {
2075 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2077 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2079 wp
->hitaddr
= vaddr
;
2080 wp
->hitattrs
= attrs
;
2081 if (!cpu
->watchpoint_hit
) {
2082 if (wp
->flags
& BP_CPU
&&
2083 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2084 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2087 cpu
->watchpoint_hit
= wp
;
2088 tb_check_watchpoint(cpu
);
2089 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2090 cpu
->exception_index
= EXCP_DEBUG
;
2093 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2094 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2095 cpu_loop_exit_noexc(cpu
);
2099 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2104 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2105 so these check for a hit then pass through to the normal out-of-line
2107 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2108 unsigned size
, MemTxAttrs attrs
)
2112 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2113 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2115 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2118 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2121 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2124 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2132 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2133 uint64_t val
, unsigned size
,
2137 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2138 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2140 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2143 address_space_stb(as
, addr
, val
, attrs
, &res
);
2146 address_space_stw(as
, addr
, val
, attrs
, &res
);
2149 address_space_stl(as
, addr
, val
, attrs
, &res
);
2156 static const MemoryRegionOps watch_mem_ops
= {
2157 .read_with_attrs
= watch_mem_read
,
2158 .write_with_attrs
= watch_mem_write
,
2159 .endianness
= DEVICE_NATIVE_ENDIAN
,
2162 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2163 unsigned len
, MemTxAttrs attrs
)
2165 subpage_t
*subpage
= opaque
;
2169 #if defined(DEBUG_SUBPAGE)
2170 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2171 subpage
, len
, addr
);
2173 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2180 *data
= ldub_p(buf
);
2183 *data
= lduw_p(buf
);
2196 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2197 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2199 subpage_t
*subpage
= opaque
;
2202 #if defined(DEBUG_SUBPAGE)
2203 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2204 " value %"PRIx64
"\n",
2205 __func__
, subpage
, len
, addr
, value
);
2223 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2227 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2228 unsigned len
, bool is_write
)
2230 subpage_t
*subpage
= opaque
;
2231 #if defined(DEBUG_SUBPAGE)
2232 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2233 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2236 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2240 static const MemoryRegionOps subpage_ops
= {
2241 .read_with_attrs
= subpage_read
,
2242 .write_with_attrs
= subpage_write
,
2243 .impl
.min_access_size
= 1,
2244 .impl
.max_access_size
= 8,
2245 .valid
.min_access_size
= 1,
2246 .valid
.max_access_size
= 8,
2247 .valid
.accepts
= subpage_accepts
,
2248 .endianness
= DEVICE_NATIVE_ENDIAN
,
2251 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2256 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2258 idx
= SUBPAGE_IDX(start
);
2259 eidx
= SUBPAGE_IDX(end
);
2260 #if defined(DEBUG_SUBPAGE)
2261 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2262 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2264 for (; idx
<= eidx
; idx
++) {
2265 mmio
->sub_section
[idx
] = section
;
2271 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2275 mmio
= g_malloc0(sizeof(subpage_t
));
2279 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2280 NULL
, TARGET_PAGE_SIZE
);
2281 mmio
->iomem
.subpage
= true;
2282 #if defined(DEBUG_SUBPAGE)
2283 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2284 mmio
, base
, TARGET_PAGE_SIZE
);
2286 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2291 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2295 MemoryRegionSection section
= {
2296 .address_space
= as
,
2298 .offset_within_address_space
= 0,
2299 .offset_within_region
= 0,
2300 .size
= int128_2_64(),
2303 return phys_section_add(map
, §ion
);
2306 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2308 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2309 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2310 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2311 MemoryRegionSection
*sections
= d
->map
.sections
;
2313 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2316 static void io_mem_init(void)
2318 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2319 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2321 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2323 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2327 static void mem_begin(MemoryListener
*listener
)
2329 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2330 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2333 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2334 assert(n
== PHYS_SECTION_UNASSIGNED
);
2335 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2336 assert(n
== PHYS_SECTION_NOTDIRTY
);
2337 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2338 assert(n
== PHYS_SECTION_ROM
);
2339 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2340 assert(n
== PHYS_SECTION_WATCH
);
2342 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2344 as
->next_dispatch
= d
;
2347 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2349 phys_sections_free(&d
->map
);
2353 static void mem_commit(MemoryListener
*listener
)
2355 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2356 AddressSpaceDispatch
*cur
= as
->dispatch
;
2357 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2359 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2361 atomic_rcu_set(&as
->dispatch
, next
);
2363 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2367 static void tcg_commit(MemoryListener
*listener
)
2369 CPUAddressSpace
*cpuas
;
2370 AddressSpaceDispatch
*d
;
2372 /* since each CPU stores ram addresses in its TLB cache, we must
2373 reset the modified entries */
2374 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2375 cpu_reloading_memory_map();
2376 /* The CPU and TLB are protected by the iothread lock.
2377 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2378 * may have split the RCU critical section.
2380 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2381 cpuas
->memory_dispatch
= d
;
2382 tlb_flush(cpuas
->cpu
, 1);
2385 void address_space_init_dispatch(AddressSpace
*as
)
2387 as
->dispatch
= NULL
;
2388 as
->dispatch_listener
= (MemoryListener
) {
2390 .commit
= mem_commit
,
2391 .region_add
= mem_add
,
2392 .region_nop
= mem_add
,
2395 memory_listener_register(&as
->dispatch_listener
, as
);
2398 void address_space_unregister(AddressSpace
*as
)
2400 memory_listener_unregister(&as
->dispatch_listener
);
2403 void address_space_destroy_dispatch(AddressSpace
*as
)
2405 AddressSpaceDispatch
*d
= as
->dispatch
;
2407 atomic_rcu_set(&as
->dispatch
, NULL
);
2409 call_rcu(d
, address_space_dispatch_free
, rcu
);
2413 static void memory_map_init(void)
2415 system_memory
= g_malloc(sizeof(*system_memory
));
2417 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2418 address_space_init(&address_space_memory
, system_memory
, "memory");
2420 system_io
= g_malloc(sizeof(*system_io
));
2421 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2423 address_space_init(&address_space_io
, system_io
, "I/O");
2426 MemoryRegion
*get_system_memory(void)
2428 return system_memory
;
2431 MemoryRegion
*get_system_io(void)
2436 #endif /* !defined(CONFIG_USER_ONLY) */
2438 /* physical memory access (slow version, mainly for debug) */
2439 #if defined(CONFIG_USER_ONLY)
2440 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2441 uint8_t *buf
, int len
, int is_write
)
2448 page
= addr
& TARGET_PAGE_MASK
;
2449 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2452 flags
= page_get_flags(page
);
2453 if (!(flags
& PAGE_VALID
))
2456 if (!(flags
& PAGE_WRITE
))
2458 /* XXX: this code should not depend on lock_user */
2459 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2462 unlock_user(p
, addr
, l
);
2464 if (!(flags
& PAGE_READ
))
2466 /* XXX: this code should not depend on lock_user */
2467 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2470 unlock_user(p
, addr
, 0);
2481 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2484 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2485 addr
+= memory_region_get_ram_addr(mr
);
2487 /* No early return if dirty_log_mask is or becomes 0, because
2488 * cpu_physical_memory_set_dirty_range will still call
2489 * xen_modified_memory.
2491 if (dirty_log_mask
) {
2493 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2495 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2496 tb_invalidate_phys_range(addr
, addr
+ length
);
2497 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2499 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2502 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2504 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2506 /* Regions are assumed to support 1-4 byte accesses unless
2507 otherwise specified. */
2508 if (access_size_max
== 0) {
2509 access_size_max
= 4;
2512 /* Bound the maximum access by the alignment of the address. */
2513 if (!mr
->ops
->impl
.unaligned
) {
2514 unsigned align_size_max
= addr
& -addr
;
2515 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2516 access_size_max
= align_size_max
;
2520 /* Don't attempt accesses larger than the maximum. */
2521 if (l
> access_size_max
) {
2522 l
= access_size_max
;
2529 static bool prepare_mmio_access(MemoryRegion
*mr
)
2531 bool unlocked
= !qemu_mutex_iothread_locked();
2532 bool release_lock
= false;
2534 if (unlocked
&& mr
->global_locking
) {
2535 qemu_mutex_lock_iothread();
2537 release_lock
= true;
2539 if (mr
->flush_coalesced_mmio
) {
2541 qemu_mutex_lock_iothread();
2543 qemu_flush_coalesced_mmio_buffer();
2545 qemu_mutex_unlock_iothread();
2549 return release_lock
;
2552 /* Called within RCU critical section. */
2553 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2556 int len
, hwaddr addr1
,
2557 hwaddr l
, MemoryRegion
*mr
)
2561 MemTxResult result
= MEMTX_OK
;
2562 bool release_lock
= false;
2565 if (!memory_access_is_direct(mr
, true)) {
2566 release_lock
|= prepare_mmio_access(mr
);
2567 l
= memory_access_size(mr
, l
, addr1
);
2568 /* XXX: could force current_cpu to NULL to avoid
2572 /* 64 bit write access */
2574 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2578 /* 32 bit write access */
2580 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2584 /* 16 bit write access */
2586 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2590 /* 8 bit write access */
2592 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2600 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2601 memcpy(ptr
, buf
, l
);
2602 invalidate_and_set_dirty(mr
, addr1
, l
);
2606 qemu_mutex_unlock_iothread();
2607 release_lock
= false;
2619 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2625 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2626 const uint8_t *buf
, int len
)
2631 MemTxResult result
= MEMTX_OK
;
2636 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2637 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2645 /* Called within RCU critical section. */
2646 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2647 MemTxAttrs attrs
, uint8_t *buf
,
2648 int len
, hwaddr addr1
, hwaddr l
,
2653 MemTxResult result
= MEMTX_OK
;
2654 bool release_lock
= false;
2657 if (!memory_access_is_direct(mr
, false)) {
2659 release_lock
|= prepare_mmio_access(mr
);
2660 l
= memory_access_size(mr
, l
, addr1
);
2663 /* 64 bit read access */
2664 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2669 /* 32 bit read access */
2670 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2675 /* 16 bit read access */
2676 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2681 /* 8 bit read access */
2682 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2691 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2692 memcpy(buf
, ptr
, l
);
2696 qemu_mutex_unlock_iothread();
2697 release_lock
= false;
2709 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2715 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
2716 MemTxAttrs attrs
, uint8_t *buf
, int len
)
2721 MemTxResult result
= MEMTX_OK
;
2726 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2727 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
2735 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2736 uint8_t *buf
, int len
, bool is_write
)
2739 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2741 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2745 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2746 int len
, int is_write
)
2748 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2749 buf
, len
, is_write
);
2752 enum write_rom_type
{
2757 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2758 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2768 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2770 if (!(memory_region_is_ram(mr
) ||
2771 memory_region_is_romd(mr
))) {
2772 l
= memory_access_size(mr
, l
, addr1
);
2775 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2778 memcpy(ptr
, buf
, l
);
2779 invalidate_and_set_dirty(mr
, addr1
, l
);
2782 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2793 /* used for ROM loading : can write in RAM and ROM */
2794 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2795 const uint8_t *buf
, int len
)
2797 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2800 void cpu_flush_icache_range(hwaddr start
, int len
)
2803 * This function should do the same thing as an icache flush that was
2804 * triggered from within the guest. For TCG we are always cache coherent,
2805 * so there is no need to flush anything. For KVM / Xen we need to flush
2806 * the host's instruction cache at least.
2808 if (tcg_enabled()) {
2812 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2813 start
, NULL
, len
, FLUSH_CACHE
);
2824 static BounceBuffer bounce
;
2826 typedef struct MapClient
{
2828 QLIST_ENTRY(MapClient
) link
;
2831 QemuMutex map_client_list_lock
;
2832 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2833 = QLIST_HEAD_INITIALIZER(map_client_list
);
2835 static void cpu_unregister_map_client_do(MapClient
*client
)
2837 QLIST_REMOVE(client
, link
);
2841 static void cpu_notify_map_clients_locked(void)
2845 while (!QLIST_EMPTY(&map_client_list
)) {
2846 client
= QLIST_FIRST(&map_client_list
);
2847 qemu_bh_schedule(client
->bh
);
2848 cpu_unregister_map_client_do(client
);
2852 void cpu_register_map_client(QEMUBH
*bh
)
2854 MapClient
*client
= g_malloc(sizeof(*client
));
2856 qemu_mutex_lock(&map_client_list_lock
);
2858 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2859 if (!atomic_read(&bounce
.in_use
)) {
2860 cpu_notify_map_clients_locked();
2862 qemu_mutex_unlock(&map_client_list_lock
);
2865 void cpu_exec_init_all(void)
2867 qemu_mutex_init(&ram_list
.mutex
);
2870 qemu_mutex_init(&map_client_list_lock
);
2873 void cpu_unregister_map_client(QEMUBH
*bh
)
2877 qemu_mutex_lock(&map_client_list_lock
);
2878 QLIST_FOREACH(client
, &map_client_list
, link
) {
2879 if (client
->bh
== bh
) {
2880 cpu_unregister_map_client_do(client
);
2884 qemu_mutex_unlock(&map_client_list_lock
);
2887 static void cpu_notify_map_clients(void)
2889 qemu_mutex_lock(&map_client_list_lock
);
2890 cpu_notify_map_clients_locked();
2891 qemu_mutex_unlock(&map_client_list_lock
);
2894 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2902 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2903 if (!memory_access_is_direct(mr
, is_write
)) {
2904 l
= memory_access_size(mr
, l
, addr
);
2905 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2917 /* Map a physical memory region into a host virtual address.
2918 * May map a subset of the requested range, given by and returned in *plen.
2919 * May return NULL if resources needed to perform the mapping are exhausted.
2920 * Use only for reads OR writes - not for read-modify-write operations.
2921 * Use cpu_register_map_client() to know when retrying the map operation is
2922 * likely to succeed.
2924 void *address_space_map(AddressSpace
*as
,
2931 hwaddr l
, xlat
, base
;
2932 MemoryRegion
*mr
, *this_mr
;
2941 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2943 if (!memory_access_is_direct(mr
, is_write
)) {
2944 if (atomic_xchg(&bounce
.in_use
, true)) {
2948 /* Avoid unbounded allocations */
2949 l
= MIN(l
, TARGET_PAGE_SIZE
);
2950 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2954 memory_region_ref(mr
);
2957 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
2963 return bounce
.buffer
;
2977 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2978 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2983 memory_region_ref(mr
);
2985 ptr
= qemu_ram_ptr_length(mr
->ram_block
, base
, plen
);
2991 /* Unmaps a memory region previously mapped by address_space_map().
2992 * Will also mark the memory as dirty if is_write == 1. access_len gives
2993 * the amount of memory that was actually read or written by the caller.
2995 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2996 int is_write
, hwaddr access_len
)
2998 if (buffer
!= bounce
.buffer
) {
3002 mr
= memory_region_from_host(buffer
, &addr1
);
3005 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3007 if (xen_enabled()) {
3008 xen_invalidate_map_cache_entry(buffer
);
3010 memory_region_unref(mr
);
3014 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3015 bounce
.buffer
, access_len
);
3017 qemu_vfree(bounce
.buffer
);
3018 bounce
.buffer
= NULL
;
3019 memory_region_unref(bounce
.mr
);
3020 atomic_mb_set(&bounce
.in_use
, false);
3021 cpu_notify_map_clients();
3024 void *cpu_physical_memory_map(hwaddr addr
,
3028 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3031 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3032 int is_write
, hwaddr access_len
)
3034 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3037 /* warning: addr must be aligned */
3038 static inline uint32_t address_space_ldl_internal(AddressSpace
*as
, hwaddr addr
,
3040 MemTxResult
*result
,
3041 enum device_endian endian
)
3049 bool release_lock
= false;
3052 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3053 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
3054 release_lock
|= prepare_mmio_access(mr
);
3057 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 4, attrs
);
3058 #if defined(TARGET_WORDS_BIGENDIAN)
3059 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3063 if (endian
== DEVICE_BIG_ENDIAN
) {
3069 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3071 case DEVICE_LITTLE_ENDIAN
:
3072 val
= ldl_le_p(ptr
);
3074 case DEVICE_BIG_ENDIAN
:
3075 val
= ldl_be_p(ptr
);
3087 qemu_mutex_unlock_iothread();
3093 uint32_t address_space_ldl(AddressSpace
*as
, hwaddr addr
,
3094 MemTxAttrs attrs
, MemTxResult
*result
)
3096 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3097 DEVICE_NATIVE_ENDIAN
);
3100 uint32_t address_space_ldl_le(AddressSpace
*as
, hwaddr addr
,
3101 MemTxAttrs attrs
, MemTxResult
*result
)
3103 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3104 DEVICE_LITTLE_ENDIAN
);
3107 uint32_t address_space_ldl_be(AddressSpace
*as
, hwaddr addr
,
3108 MemTxAttrs attrs
, MemTxResult
*result
)
3110 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3114 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
3116 return address_space_ldl(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3119 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
3121 return address_space_ldl_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3124 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
3126 return address_space_ldl_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3129 /* warning: addr must be aligned */
3130 static inline uint64_t address_space_ldq_internal(AddressSpace
*as
, hwaddr addr
,
3132 MemTxResult
*result
,
3133 enum device_endian endian
)
3141 bool release_lock
= false;
3144 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3146 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
3147 release_lock
|= prepare_mmio_access(mr
);
3150 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 8, attrs
);
3151 #if defined(TARGET_WORDS_BIGENDIAN)
3152 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3156 if (endian
== DEVICE_BIG_ENDIAN
) {
3162 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3164 case DEVICE_LITTLE_ENDIAN
:
3165 val
= ldq_le_p(ptr
);
3167 case DEVICE_BIG_ENDIAN
:
3168 val
= ldq_be_p(ptr
);
3180 qemu_mutex_unlock_iothread();
3186 uint64_t address_space_ldq(AddressSpace
*as
, hwaddr addr
,
3187 MemTxAttrs attrs
, MemTxResult
*result
)
3189 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3190 DEVICE_NATIVE_ENDIAN
);
3193 uint64_t address_space_ldq_le(AddressSpace
*as
, hwaddr addr
,
3194 MemTxAttrs attrs
, MemTxResult
*result
)
3196 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3197 DEVICE_LITTLE_ENDIAN
);
3200 uint64_t address_space_ldq_be(AddressSpace
*as
, hwaddr addr
,
3201 MemTxAttrs attrs
, MemTxResult
*result
)
3203 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3207 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
3209 return address_space_ldq(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3212 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
3214 return address_space_ldq_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3217 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
3219 return address_space_ldq_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3223 uint32_t address_space_ldub(AddressSpace
*as
, hwaddr addr
,
3224 MemTxAttrs attrs
, MemTxResult
*result
)
3229 r
= address_space_rw(as
, addr
, attrs
, &val
, 1, 0);
3236 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
3238 return address_space_ldub(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3241 /* warning: addr must be aligned */
3242 static inline uint32_t address_space_lduw_internal(AddressSpace
*as
,
3245 MemTxResult
*result
,
3246 enum device_endian endian
)
3254 bool release_lock
= false;
3257 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3259 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
3260 release_lock
|= prepare_mmio_access(mr
);
3263 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 2, attrs
);
3264 #if defined(TARGET_WORDS_BIGENDIAN)
3265 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3269 if (endian
== DEVICE_BIG_ENDIAN
) {
3275 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3277 case DEVICE_LITTLE_ENDIAN
:
3278 val
= lduw_le_p(ptr
);
3280 case DEVICE_BIG_ENDIAN
:
3281 val
= lduw_be_p(ptr
);
3293 qemu_mutex_unlock_iothread();
3299 uint32_t address_space_lduw(AddressSpace
*as
, hwaddr addr
,
3300 MemTxAttrs attrs
, MemTxResult
*result
)
3302 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3303 DEVICE_NATIVE_ENDIAN
);
3306 uint32_t address_space_lduw_le(AddressSpace
*as
, hwaddr addr
,
3307 MemTxAttrs attrs
, MemTxResult
*result
)
3309 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3310 DEVICE_LITTLE_ENDIAN
);
3313 uint32_t address_space_lduw_be(AddressSpace
*as
, hwaddr addr
,
3314 MemTxAttrs attrs
, MemTxResult
*result
)
3316 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3320 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
3322 return address_space_lduw(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3325 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
3327 return address_space_lduw_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3330 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
3332 return address_space_lduw_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3335 /* warning: addr must be aligned. The ram page is not masked as dirty
3336 and the code inside is not invalidated. It is useful if the dirty
3337 bits are used to track modified PTEs */
3338 void address_space_stl_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3339 MemTxAttrs attrs
, MemTxResult
*result
)
3346 uint8_t dirty_log_mask
;
3347 bool release_lock
= false;
3350 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3352 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3353 release_lock
|= prepare_mmio_access(mr
);
3355 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3357 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3360 dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3361 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3362 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
3370 qemu_mutex_unlock_iothread();
3375 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3377 address_space_stl_notdirty(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3380 /* warning: addr must be aligned */
3381 static inline void address_space_stl_internal(AddressSpace
*as
,
3382 hwaddr addr
, uint32_t val
,
3384 MemTxResult
*result
,
3385 enum device_endian endian
)
3392 bool release_lock
= false;
3395 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3397 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3398 release_lock
|= prepare_mmio_access(mr
);
3400 #if defined(TARGET_WORDS_BIGENDIAN)
3401 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3405 if (endian
== DEVICE_BIG_ENDIAN
) {
3409 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3412 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3414 case DEVICE_LITTLE_ENDIAN
:
3417 case DEVICE_BIG_ENDIAN
:
3424 invalidate_and_set_dirty(mr
, addr1
, 4);
3431 qemu_mutex_unlock_iothread();
3436 void address_space_stl(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3437 MemTxAttrs attrs
, MemTxResult
*result
)
3439 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3440 DEVICE_NATIVE_ENDIAN
);
3443 void address_space_stl_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3444 MemTxAttrs attrs
, MemTxResult
*result
)
3446 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3447 DEVICE_LITTLE_ENDIAN
);
3450 void address_space_stl_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3451 MemTxAttrs attrs
, MemTxResult
*result
)
3453 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3457 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3459 address_space_stl(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3462 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3464 address_space_stl_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3467 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3469 address_space_stl_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3473 void address_space_stb(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3474 MemTxAttrs attrs
, MemTxResult
*result
)
3479 r
= address_space_rw(as
, addr
, attrs
, &v
, 1, 1);
3485 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3487 address_space_stb(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3490 /* warning: addr must be aligned */
3491 static inline void address_space_stw_internal(AddressSpace
*as
,
3492 hwaddr addr
, uint32_t val
,
3494 MemTxResult
*result
,
3495 enum device_endian endian
)
3502 bool release_lock
= false;
3505 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3506 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
3507 release_lock
|= prepare_mmio_access(mr
);
3509 #if defined(TARGET_WORDS_BIGENDIAN)
3510 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3514 if (endian
== DEVICE_BIG_ENDIAN
) {
3518 r
= memory_region_dispatch_write(mr
, addr1
, val
, 2, attrs
);
3521 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3523 case DEVICE_LITTLE_ENDIAN
:
3526 case DEVICE_BIG_ENDIAN
:
3533 invalidate_and_set_dirty(mr
, addr1
, 2);
3540 qemu_mutex_unlock_iothread();
3545 void address_space_stw(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3546 MemTxAttrs attrs
, MemTxResult
*result
)
3548 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3549 DEVICE_NATIVE_ENDIAN
);
3552 void address_space_stw_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3553 MemTxAttrs attrs
, MemTxResult
*result
)
3555 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3556 DEVICE_LITTLE_ENDIAN
);
3559 void address_space_stw_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3560 MemTxAttrs attrs
, MemTxResult
*result
)
3562 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3566 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3568 address_space_stw(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3571 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3573 address_space_stw_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3576 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3578 address_space_stw_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3582 void address_space_stq(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3583 MemTxAttrs attrs
, MemTxResult
*result
)
3587 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3593 void address_space_stq_le(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3594 MemTxAttrs attrs
, MemTxResult
*result
)
3597 val
= cpu_to_le64(val
);
3598 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3603 void address_space_stq_be(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3604 MemTxAttrs attrs
, MemTxResult
*result
)
3607 val
= cpu_to_be64(val
);
3608 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3614 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3616 address_space_stq(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3619 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3621 address_space_stq_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3624 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3626 address_space_stq_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3629 /* virtual memory access for debug (includes writing to ROM) */
3630 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3631 uint8_t *buf
, int len
, int is_write
)
3641 page
= addr
& TARGET_PAGE_MASK
;
3642 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3643 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3644 /* if no physical page mapped, return an error */
3645 if (phys_addr
== -1)
3647 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3650 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3652 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3655 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3656 MEMTXATTRS_UNSPECIFIED
,
3667 * Allows code that needs to deal with migration bitmaps etc to still be built
3668 * target independent.
3670 size_t qemu_target_page_bits(void)
3672 return TARGET_PAGE_BITS
;
3678 * A helper function for the _utterly broken_ virtio device model to find out if
3679 * it's running on a big endian machine. Don't do this at home kids!
3681 bool target_words_bigendian(void);
3682 bool target_words_bigendian(void)
3684 #if defined(TARGET_WORDS_BIGENDIAN)
3691 #ifndef CONFIG_USER_ONLY
3692 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3699 mr
= address_space_translate(&address_space_memory
,
3700 phys_addr
, &phys_addr
, &l
, false);
3702 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3707 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3713 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
3714 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3715 block
->used_length
, opaque
);