2 * NVMe block driver based on vfio
4 * Copyright 2016 - 2018 Red Hat, Inc.
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/vfio-helpers.h"
25 #include "block/block_int.h"
26 #include "sysemu/replay.h"
29 #include "block/nvme.h"
31 #define NVME_SQ_ENTRY_BYTES 64
32 #define NVME_CQ_ENTRY_BYTES 16
33 #define NVME_QUEUE_SIZE 128
34 #define NVME_BAR_SIZE 8192
40 /* Hardware MMIO register */
41 volatile uint32_t *doorbell
;
45 BlockCompletionFunc
*cb
;
49 uint64_t prp_list_iova
;
54 CoQueue free_req_queue
;
57 /* Fields protected by BQL */
59 uint8_t *prp_list_pages
;
61 /* Fields protected by @lock */
64 NVMeRequest reqs
[NVME_QUEUE_SIZE
];
70 /* Memory mapped registers */
71 typedef volatile struct {
85 uint8_t reserved1
[0xec0];
86 uint8_t cmd_set_specfic
[0x100];
90 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs
, doorbells
) != 0x1000);
93 AioContext
*aio_context
;
96 /* The submission/completion queue pairs.
100 NVMeQueuePair
**queues
;
103 /* How many uint32_t elements does each doorbell entry take. */
104 size_t doorbell_scale
;
105 bool write_cache_supported
;
106 EventNotifier irq_notifier
;
108 uint64_t nsze
; /* Namespace size reported by identify command */
109 int nsid
; /* The namespace id to read/write data. */
112 uint64_t max_transfer
;
115 bool supports_write_zeroes
;
116 bool supports_discard
;
118 CoMutex dma_map_lock
;
119 CoQueue dma_flush_queue
;
121 /* Total size of mapped qiov, accessed under dma_map_lock */
124 /* PCI address (required for nvme_refresh_filename()) */
128 #define NVME_BLOCK_OPT_DEVICE "device"
129 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
131 static QemuOptsList runtime_opts
= {
133 .head
= QTAILQ_HEAD_INITIALIZER(runtime_opts
.head
),
136 .name
= NVME_BLOCK_OPT_DEVICE
,
137 .type
= QEMU_OPT_STRING
,
138 .help
= "NVMe PCI device address",
141 .name
= NVME_BLOCK_OPT_NAMESPACE
,
142 .type
= QEMU_OPT_NUMBER
,
143 .help
= "NVMe namespace",
145 { /* end of list */ }
149 static void nvme_init_queue(BlockDriverState
*bs
, NVMeQueue
*q
,
150 int nentries
, int entry_bytes
, Error
**errp
)
152 BDRVNVMeState
*s
= bs
->opaque
;
156 bytes
= ROUND_UP(nentries
* entry_bytes
, s
->page_size
);
157 q
->head
= q
->tail
= 0;
158 q
->queue
= qemu_try_blockalign0(bs
, bytes
);
161 error_setg(errp
, "Cannot allocate queue");
164 r
= qemu_vfio_dma_map(s
->vfio
, q
->queue
, bytes
, false, &q
->iova
);
166 error_setg(errp
, "Cannot map queue");
170 static void nvme_free_queue_pair(BlockDriverState
*bs
, NVMeQueuePair
*q
)
172 qemu_vfree(q
->prp_list_pages
);
173 qemu_vfree(q
->sq
.queue
);
174 qemu_vfree(q
->cq
.queue
);
175 qemu_mutex_destroy(&q
->lock
);
179 static void nvme_free_req_queue_cb(void *opaque
)
181 NVMeQueuePair
*q
= opaque
;
183 qemu_mutex_lock(&q
->lock
);
184 while (qemu_co_enter_next(&q
->free_req_queue
, &q
->lock
)) {
185 /* Retry all pending requests */
187 qemu_mutex_unlock(&q
->lock
);
190 static NVMeQueuePair
*nvme_create_queue_pair(BlockDriverState
*bs
,
195 BDRVNVMeState
*s
= bs
->opaque
;
196 Error
*local_err
= NULL
;
197 NVMeQueuePair
*q
= g_new0(NVMeQueuePair
, 1);
198 uint64_t prp_list_iova
;
200 qemu_mutex_init(&q
->lock
);
202 qemu_co_queue_init(&q
->free_req_queue
);
203 q
->prp_list_pages
= qemu_blockalign0(bs
, s
->page_size
* NVME_QUEUE_SIZE
);
204 r
= qemu_vfio_dma_map(s
->vfio
, q
->prp_list_pages
,
205 s
->page_size
* NVME_QUEUE_SIZE
,
206 false, &prp_list_iova
);
210 for (i
= 0; i
< NVME_QUEUE_SIZE
; i
++) {
211 NVMeRequest
*req
= &q
->reqs
[i
];
213 req
->prp_list_page
= q
->prp_list_pages
+ i
* s
->page_size
;
214 req
->prp_list_iova
= prp_list_iova
+ i
* s
->page_size
;
216 nvme_init_queue(bs
, &q
->sq
, size
, NVME_SQ_ENTRY_BYTES
, &local_err
);
218 error_propagate(errp
, local_err
);
221 q
->sq
.doorbell
= &s
->regs
->doorbells
[idx
* 2 * s
->doorbell_scale
];
223 nvme_init_queue(bs
, &q
->cq
, size
, NVME_CQ_ENTRY_BYTES
, &local_err
);
225 error_propagate(errp
, local_err
);
228 q
->cq
.doorbell
= &s
->regs
->doorbells
[(idx
* 2 + 1) * s
->doorbell_scale
];
232 nvme_free_queue_pair(bs
, q
);
237 static void nvme_kick(BDRVNVMeState
*s
, NVMeQueuePair
*q
)
239 if (s
->plugged
|| !q
->need_kick
) {
242 trace_nvme_kick(s
, q
->index
);
243 assert(!(q
->sq
.tail
& 0xFF00));
244 /* Fence the write to submission queue entry before notifying the device. */
246 *q
->sq
.doorbell
= cpu_to_le32(q
->sq
.tail
);
247 q
->inflight
+= q
->need_kick
;
251 /* Find a free request element if any, otherwise:
252 * a) if in coroutine context, try to wait for one to become available;
253 * b) if not in coroutine, return NULL;
255 static NVMeRequest
*nvme_get_free_req(NVMeQueuePair
*q
)
258 NVMeRequest
*req
= NULL
;
260 qemu_mutex_lock(&q
->lock
);
261 while (q
->inflight
+ q
->need_kick
> NVME_QUEUE_SIZE
- 2) {
262 /* We have to leave one slot empty as that is the full queue case (head
264 if (qemu_in_coroutine()) {
265 trace_nvme_free_req_queue_wait(q
);
266 qemu_co_queue_wait(&q
->free_req_queue
, &q
->lock
);
268 qemu_mutex_unlock(&q
->lock
);
272 for (i
= 0; i
< NVME_QUEUE_SIZE
; i
++) {
273 if (!q
->reqs
[i
].busy
) {
274 q
->reqs
[i
].busy
= true;
279 /* We have checked inflight and need_kick while holding q->lock, so one
280 * free req must be available. */
282 qemu_mutex_unlock(&q
->lock
);
286 static inline int nvme_translate_error(const NvmeCqe
*c
)
288 uint16_t status
= (le16_to_cpu(c
->status
) >> 1) & 0xFF;
290 trace_nvme_error(le32_to_cpu(c
->result
),
291 le16_to_cpu(c
->sq_head
),
292 le16_to_cpu(c
->sq_id
),
294 le16_to_cpu(status
));
309 static bool nvme_process_completion(BDRVNVMeState
*s
, NVMeQueuePair
*q
)
311 bool progress
= false;
316 trace_nvme_process_completion(s
, q
->index
, q
->inflight
);
317 if (q
->busy
|| s
->plugged
) {
318 trace_nvme_process_completion_queue_busy(s
, q
->index
);
322 assert(q
->inflight
>= 0);
323 while (q
->inflight
) {
325 c
= (NvmeCqe
*)&q
->cq
.queue
[q
->cq
.head
* NVME_CQ_ENTRY_BYTES
];
326 if ((le16_to_cpu(c
->status
) & 0x1) == q
->cq_phase
) {
329 q
->cq
.head
= (q
->cq
.head
+ 1) % NVME_QUEUE_SIZE
;
331 q
->cq_phase
= !q
->cq_phase
;
333 cid
= le16_to_cpu(c
->cid
);
334 if (cid
== 0 || cid
> NVME_QUEUE_SIZE
) {
335 fprintf(stderr
, "Unexpected CID in completion queue: %" PRIu32
"\n",
339 assert(cid
<= NVME_QUEUE_SIZE
);
340 trace_nvme_complete_command(s
, q
->index
, cid
);
341 preq
= &q
->reqs
[cid
- 1];
343 assert(req
.cid
== cid
);
346 preq
->cb
= preq
->opaque
= NULL
;
347 qemu_mutex_unlock(&q
->lock
);
348 req
.cb(req
.opaque
, nvme_translate_error(c
));
349 qemu_mutex_lock(&q
->lock
);
354 /* Notify the device so it can post more completions. */
356 *q
->cq
.doorbell
= cpu_to_le32(q
->cq
.head
);
357 if (!qemu_co_queue_empty(&q
->free_req_queue
)) {
358 replay_bh_schedule_oneshot_event(s
->aio_context
,
359 nvme_free_req_queue_cb
, q
);
366 static void nvme_trace_command(const NvmeCmd
*cmd
)
370 for (i
= 0; i
< 8; ++i
) {
371 uint8_t *cmdp
= (uint8_t *)cmd
+ i
* 8;
372 trace_nvme_submit_command_raw(cmdp
[0], cmdp
[1], cmdp
[2], cmdp
[3],
373 cmdp
[4], cmdp
[5], cmdp
[6], cmdp
[7]);
377 static void nvme_submit_command(BDRVNVMeState
*s
, NVMeQueuePair
*q
,
379 NvmeCmd
*cmd
, BlockCompletionFunc cb
,
384 req
->opaque
= opaque
;
385 cmd
->cid
= cpu_to_le32(req
->cid
);
387 trace_nvme_submit_command(s
, q
->index
, req
->cid
);
388 nvme_trace_command(cmd
);
389 qemu_mutex_lock(&q
->lock
);
390 memcpy((uint8_t *)q
->sq
.queue
+
391 q
->sq
.tail
* NVME_SQ_ENTRY_BYTES
, cmd
, sizeof(*cmd
));
392 q
->sq
.tail
= (q
->sq
.tail
+ 1) % NVME_QUEUE_SIZE
;
395 nvme_process_completion(s
, q
);
396 qemu_mutex_unlock(&q
->lock
);
399 static void nvme_cmd_sync_cb(void *opaque
, int ret
)
406 static int nvme_cmd_sync(BlockDriverState
*bs
, NVMeQueuePair
*q
,
410 BDRVNVMeState
*s
= bs
->opaque
;
411 int ret
= -EINPROGRESS
;
412 req
= nvme_get_free_req(q
);
416 nvme_submit_command(s
, q
, req
, cmd
, nvme_cmd_sync_cb
, &ret
);
418 BDRV_POLL_WHILE(bs
, ret
== -EINPROGRESS
);
422 static void nvme_identify(BlockDriverState
*bs
, int namespace, Error
**errp
)
424 BDRVNVMeState
*s
= bs
->opaque
;
433 .opcode
= NVME_ADM_CMD_IDENTIFY
,
434 .cdw10
= cpu_to_le32(0x1),
437 resp
= qemu_try_blockalign0(bs
, sizeof(NvmeIdCtrl
));
439 error_setg(errp
, "Cannot allocate buffer for identify response");
442 idctrl
= (NvmeIdCtrl
*)resp
;
443 idns
= (NvmeIdNs
*)resp
;
444 r
= qemu_vfio_dma_map(s
->vfio
, resp
, sizeof(NvmeIdCtrl
), true, &iova
);
446 error_setg(errp
, "Cannot map buffer for DMA");
449 cmd
.prp1
= cpu_to_le64(iova
);
451 if (nvme_cmd_sync(bs
, s
->queues
[0], &cmd
)) {
452 error_setg(errp
, "Failed to identify controller");
456 if (le32_to_cpu(idctrl
->nn
) < namespace) {
457 error_setg(errp
, "Invalid namespace");
460 s
->write_cache_supported
= le32_to_cpu(idctrl
->vwc
) & 0x1;
461 s
->max_transfer
= (idctrl
->mdts
? 1 << idctrl
->mdts
: 0) * s
->page_size
;
462 /* For now the page list buffer per command is one page, to hold at most
463 * s->page_size / sizeof(uint64_t) entries. */
464 s
->max_transfer
= MIN_NON_ZERO(s
->max_transfer
,
465 s
->page_size
/ sizeof(uint64_t) * s
->page_size
);
467 oncs
= le16_to_cpu(idctrl
->oncs
);
468 s
->supports_write_zeroes
= !!(oncs
& NVME_ONCS_WRITE_ZEROS
);
469 s
->supports_discard
= !!(oncs
& NVME_ONCS_DSM
);
471 memset(resp
, 0, 4096);
474 cmd
.nsid
= cpu_to_le32(namespace);
475 if (nvme_cmd_sync(bs
, s
->queues
[0], &cmd
)) {
476 error_setg(errp
, "Failed to identify namespace");
480 s
->nsze
= le64_to_cpu(idns
->nsze
);
481 lbaf
= &idns
->lbaf
[NVME_ID_NS_FLBAS_INDEX(idns
->flbas
)];
483 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(idns
->dlfeat
) &&
484 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(idns
->dlfeat
) ==
485 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES
) {
486 bs
->supported_write_flags
|= BDRV_REQ_MAY_UNMAP
;
490 error_setg(errp
, "Namespaces with metadata are not yet supported");
494 if (lbaf
->ds
< BDRV_SECTOR_BITS
|| lbaf
->ds
> 12 ||
495 (1 << lbaf
->ds
) > s
->page_size
)
497 error_setg(errp
, "Namespace has unsupported block size (2^%d)",
502 s
->blkshift
= lbaf
->ds
;
504 qemu_vfio_dma_unmap(s
->vfio
, resp
);
508 static bool nvme_poll_queues(BDRVNVMeState
*s
)
510 bool progress
= false;
513 for (i
= 0; i
< s
->nr_queues
; i
++) {
514 NVMeQueuePair
*q
= s
->queues
[i
];
515 qemu_mutex_lock(&q
->lock
);
516 while (nvme_process_completion(s
, q
)) {
520 qemu_mutex_unlock(&q
->lock
);
525 static void nvme_handle_event(EventNotifier
*n
)
527 BDRVNVMeState
*s
= container_of(n
, BDRVNVMeState
, irq_notifier
);
529 trace_nvme_handle_event(s
);
530 event_notifier_test_and_clear(n
);
534 static bool nvme_add_io_queue(BlockDriverState
*bs
, Error
**errp
)
536 BDRVNVMeState
*s
= bs
->opaque
;
537 int n
= s
->nr_queues
;
540 int queue_size
= NVME_QUEUE_SIZE
;
542 q
= nvme_create_queue_pair(bs
, n
, queue_size
, errp
);
547 .opcode
= NVME_ADM_CMD_CREATE_CQ
,
548 .prp1
= cpu_to_le64(q
->cq
.iova
),
549 .cdw10
= cpu_to_le32(((queue_size
- 1) << 16) | (n
& 0xFFFF)),
550 .cdw11
= cpu_to_le32(0x3),
552 if (nvme_cmd_sync(bs
, s
->queues
[0], &cmd
)) {
553 error_setg(errp
, "Failed to create io queue [%d]", n
);
554 nvme_free_queue_pair(bs
, q
);
558 .opcode
= NVME_ADM_CMD_CREATE_SQ
,
559 .prp1
= cpu_to_le64(q
->sq
.iova
),
560 .cdw10
= cpu_to_le32(((queue_size
- 1) << 16) | (n
& 0xFFFF)),
561 .cdw11
= cpu_to_le32(0x1 | (n
<< 16)),
563 if (nvme_cmd_sync(bs
, s
->queues
[0], &cmd
)) {
564 error_setg(errp
, "Failed to create io queue [%d]", n
);
565 nvme_free_queue_pair(bs
, q
);
568 s
->queues
= g_renew(NVMeQueuePair
*, s
->queues
, n
+ 1);
574 static bool nvme_poll_cb(void *opaque
)
576 EventNotifier
*e
= opaque
;
577 BDRVNVMeState
*s
= container_of(e
, BDRVNVMeState
, irq_notifier
);
579 trace_nvme_poll_cb(s
);
580 return nvme_poll_queues(s
);
583 static int nvme_init(BlockDriverState
*bs
, const char *device
, int namespace,
586 BDRVNVMeState
*s
= bs
->opaque
;
590 uint64_t deadline
, now
;
591 Error
*local_err
= NULL
;
593 qemu_co_mutex_init(&s
->dma_map_lock
);
594 qemu_co_queue_init(&s
->dma_flush_queue
);
595 s
->device
= g_strdup(device
);
597 s
->aio_context
= bdrv_get_aio_context(bs
);
598 ret
= event_notifier_init(&s
->irq_notifier
, 0);
600 error_setg(errp
, "Failed to init event notifier");
604 s
->vfio
= qemu_vfio_open_pci(device
, errp
);
610 s
->regs
= qemu_vfio_pci_map_bar(s
->vfio
, 0, 0, NVME_BAR_SIZE
, errp
);
616 /* Perform initialize sequence as described in NVMe spec "7.6.1
617 * Initialization". */
619 cap
= le64_to_cpu(s
->regs
->cap
);
620 if (!(cap
& (1ULL << 37))) {
621 error_setg(errp
, "Device doesn't support NVMe command set");
626 s
->page_size
= MAX(4096, 1 << (12 + ((cap
>> 48) & 0xF)));
627 s
->doorbell_scale
= (4 << (((cap
>> 32) & 0xF))) / sizeof(uint32_t);
628 bs
->bl
.opt_mem_alignment
= s
->page_size
;
629 timeout_ms
= MIN(500 * ((cap
>> 24) & 0xFF), 30000);
631 /* Reset device to get a clean state. */
632 s
->regs
->cc
= cpu_to_le32(le32_to_cpu(s
->regs
->cc
) & 0xFE);
633 /* Wait for CSTS.RDY = 0. */
634 deadline
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) + timeout_ms
* 1000000ULL;
635 while (le32_to_cpu(s
->regs
->csts
) & 0x1) {
636 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) > deadline
) {
637 error_setg(errp
, "Timeout while waiting for device to reset (%"
645 /* Set up admin queue. */
646 s
->queues
= g_new(NVMeQueuePair
*, 1);
647 s
->queues
[0] = nvme_create_queue_pair(bs
, 0, NVME_QUEUE_SIZE
, errp
);
653 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE
& 0xF000);
654 s
->regs
->aqa
= cpu_to_le32((NVME_QUEUE_SIZE
<< 16) | NVME_QUEUE_SIZE
);
655 s
->regs
->asq
= cpu_to_le64(s
->queues
[0]->sq
.iova
);
656 s
->regs
->acq
= cpu_to_le64(s
->queues
[0]->cq
.iova
);
658 /* After setting up all control registers we can enable device now. */
659 s
->regs
->cc
= cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES
) << 20) |
660 (ctz32(NVME_SQ_ENTRY_BYTES
) << 16) |
662 /* Wait for CSTS.RDY = 1. */
663 now
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
664 deadline
= now
+ timeout_ms
* 1000000;
665 while (!(le32_to_cpu(s
->regs
->csts
) & 0x1)) {
666 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) > deadline
) {
667 error_setg(errp
, "Timeout while waiting for device to start (%"
675 ret
= qemu_vfio_pci_init_irq(s
->vfio
, &s
->irq_notifier
,
676 VFIO_PCI_MSIX_IRQ_INDEX
, errp
);
680 aio_set_event_notifier(bdrv_get_aio_context(bs
), &s
->irq_notifier
,
681 false, nvme_handle_event
, nvme_poll_cb
);
683 nvme_identify(bs
, namespace, &local_err
);
685 error_propagate(errp
, local_err
);
690 /* Set up command queues. */
691 if (!nvme_add_io_queue(bs
, errp
)) {
695 /* Cleaning up is done in nvme_file_open() upon error. */
699 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
701 * nvme://0000:44:00.0/1
703 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
704 * is the PCI address, and the last part is the namespace number starting from
705 * 1 according to the NVMe spec. */
706 static void nvme_parse_filename(const char *filename
, QDict
*options
,
709 int pref
= strlen("nvme://");
711 if (strlen(filename
) > pref
&& !strncmp(filename
, "nvme://", pref
)) {
712 const char *tmp
= filename
+ pref
;
714 const char *namespace;
716 const char *slash
= strchr(tmp
, '/');
718 qdict_put_str(options
, NVME_BLOCK_OPT_DEVICE
, tmp
);
721 device
= g_strndup(tmp
, slash
- tmp
);
722 qdict_put_str(options
, NVME_BLOCK_OPT_DEVICE
, device
);
724 namespace = slash
+ 1;
725 if (*namespace && qemu_strtoul(namespace, NULL
, 10, &ns
)) {
726 error_setg(errp
, "Invalid namespace '%s', positive number expected",
730 qdict_put_str(options
, NVME_BLOCK_OPT_NAMESPACE
,
731 *namespace ? namespace : "1");
735 static int nvme_enable_disable_write_cache(BlockDriverState
*bs
, bool enable
,
739 BDRVNVMeState
*s
= bs
->opaque
;
741 .opcode
= NVME_ADM_CMD_SET_FEATURES
,
742 .nsid
= cpu_to_le32(s
->nsid
),
743 .cdw10
= cpu_to_le32(0x06),
744 .cdw11
= cpu_to_le32(enable
? 0x01 : 0x00),
747 ret
= nvme_cmd_sync(bs
, s
->queues
[0], &cmd
);
749 error_setg(errp
, "Failed to configure NVMe write cache");
754 static void nvme_close(BlockDriverState
*bs
)
757 BDRVNVMeState
*s
= bs
->opaque
;
759 for (i
= 0; i
< s
->nr_queues
; ++i
) {
760 nvme_free_queue_pair(bs
, s
->queues
[i
]);
763 aio_set_event_notifier(bdrv_get_aio_context(bs
), &s
->irq_notifier
,
765 event_notifier_cleanup(&s
->irq_notifier
);
766 qemu_vfio_pci_unmap_bar(s
->vfio
, 0, (void *)s
->regs
, 0, NVME_BAR_SIZE
);
767 qemu_vfio_close(s
->vfio
);
772 static int nvme_file_open(BlockDriverState
*bs
, QDict
*options
, int flags
,
779 BDRVNVMeState
*s
= bs
->opaque
;
781 bs
->supported_write_flags
= BDRV_REQ_FUA
;
783 opts
= qemu_opts_create(&runtime_opts
, NULL
, 0, &error_abort
);
784 qemu_opts_absorb_qdict(opts
, options
, &error_abort
);
785 device
= qemu_opt_get(opts
, NVME_BLOCK_OPT_DEVICE
);
787 error_setg(errp
, "'" NVME_BLOCK_OPT_DEVICE
"' option is required");
792 namespace = qemu_opt_get_number(opts
, NVME_BLOCK_OPT_NAMESPACE
, 1);
793 ret
= nvme_init(bs
, device
, namespace, errp
);
798 if (flags
& BDRV_O_NOCACHE
) {
799 if (!s
->write_cache_supported
) {
801 "NVMe controller doesn't support write cache configuration");
804 ret
= nvme_enable_disable_write_cache(bs
, !(flags
& BDRV_O_NOCACHE
),
817 static int64_t nvme_getlength(BlockDriverState
*bs
)
819 BDRVNVMeState
*s
= bs
->opaque
;
820 return s
->nsze
<< s
->blkshift
;
823 static uint32_t nvme_get_blocksize(BlockDriverState
*bs
)
825 BDRVNVMeState
*s
= bs
->opaque
;
826 assert(s
->blkshift
>= BDRV_SECTOR_BITS
&& s
->blkshift
<= 12);
827 return UINT32_C(1) << s
->blkshift
;
830 static int nvme_probe_blocksizes(BlockDriverState
*bs
, BlockSizes
*bsz
)
832 uint32_t blocksize
= nvme_get_blocksize(bs
);
833 bsz
->phys
= blocksize
;
834 bsz
->log
= blocksize
;
838 /* Called with s->dma_map_lock */
839 static coroutine_fn
int nvme_cmd_unmap_qiov(BlockDriverState
*bs
,
843 BDRVNVMeState
*s
= bs
->opaque
;
845 s
->dma_map_count
-= qiov
->size
;
846 if (!s
->dma_map_count
&& !qemu_co_queue_empty(&s
->dma_flush_queue
)) {
847 r
= qemu_vfio_dma_reset_temporary(s
->vfio
);
849 qemu_co_queue_restart_all(&s
->dma_flush_queue
);
855 /* Called with s->dma_map_lock */
856 static coroutine_fn
int nvme_cmd_map_qiov(BlockDriverState
*bs
, NvmeCmd
*cmd
,
857 NVMeRequest
*req
, QEMUIOVector
*qiov
)
859 BDRVNVMeState
*s
= bs
->opaque
;
860 uint64_t *pagelist
= req
->prp_list_page
;
865 assert(QEMU_IS_ALIGNED(qiov
->size
, s
->page_size
));
866 assert(qiov
->size
/ s
->page_size
<= s
->page_size
/ sizeof(uint64_t));
867 for (i
= 0; i
< qiov
->niov
; ++i
) {
871 r
= qemu_vfio_dma_map(s
->vfio
,
872 qiov
->iov
[i
].iov_base
,
873 qiov
->iov
[i
].iov_len
,
875 if (r
== -ENOMEM
&& retry
) {
877 trace_nvme_dma_flush_queue_wait(s
);
878 if (s
->dma_map_count
) {
879 trace_nvme_dma_map_flush(s
);
880 qemu_co_queue_wait(&s
->dma_flush_queue
, &s
->dma_map_lock
);
882 r
= qemu_vfio_dma_reset_temporary(s
->vfio
);
893 for (j
= 0; j
< qiov
->iov
[i
].iov_len
/ s
->page_size
; j
++) {
894 pagelist
[entries
++] = cpu_to_le64(iova
+ j
* s
->page_size
);
896 trace_nvme_cmd_map_qiov_iov(s
, i
, qiov
->iov
[i
].iov_base
,
897 qiov
->iov
[i
].iov_len
/ s
->page_size
);
900 s
->dma_map_count
+= qiov
->size
;
902 assert(entries
<= s
->page_size
/ sizeof(uint64_t));
907 cmd
->prp1
= pagelist
[0];
911 cmd
->prp1
= pagelist
[0];
912 cmd
->prp2
= pagelist
[1];
915 cmd
->prp1
= pagelist
[0];
916 cmd
->prp2
= cpu_to_le64(req
->prp_list_iova
+ sizeof(uint64_t));
919 trace_nvme_cmd_map_qiov(s
, cmd
, req
, qiov
, entries
);
920 for (i
= 0; i
< entries
; ++i
) {
921 trace_nvme_cmd_map_qiov_pages(s
, i
, pagelist
[i
]);
925 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
926 * increment s->dma_map_count. This is okay for fixed mapping memory areas
927 * because they are already mapped before calling this function; for
928 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
929 * calling qemu_vfio_dma_reset_temporary when necessary. */
939 static void nvme_rw_cb_bh(void *opaque
)
941 NVMeCoData
*data
= opaque
;
942 qemu_coroutine_enter(data
->co
);
945 static void nvme_rw_cb(void *opaque
, int ret
)
947 NVMeCoData
*data
= opaque
;
950 /* The rw coroutine hasn't yielded, don't try to enter. */
953 replay_bh_schedule_oneshot_event(data
->ctx
, nvme_rw_cb_bh
, data
);
956 static coroutine_fn
int nvme_co_prw_aligned(BlockDriverState
*bs
,
957 uint64_t offset
, uint64_t bytes
,
963 BDRVNVMeState
*s
= bs
->opaque
;
964 NVMeQueuePair
*ioq
= s
->queues
[1];
967 uint32_t cdw12
= (((bytes
>> s
->blkshift
) - 1) & 0xFFFF) |
968 (flags
& BDRV_REQ_FUA
? 1 << 30 : 0);
970 .opcode
= is_write
? NVME_CMD_WRITE
: NVME_CMD_READ
,
971 .nsid
= cpu_to_le32(s
->nsid
),
972 .cdw10
= cpu_to_le32((offset
>> s
->blkshift
) & 0xFFFFFFFF),
973 .cdw11
= cpu_to_le32(((offset
>> s
->blkshift
) >> 32) & 0xFFFFFFFF),
974 .cdw12
= cpu_to_le32(cdw12
),
977 .ctx
= bdrv_get_aio_context(bs
),
981 trace_nvme_prw_aligned(s
, is_write
, offset
, bytes
, flags
, qiov
->niov
);
982 assert(s
->nr_queues
> 1);
983 req
= nvme_get_free_req(ioq
);
986 qemu_co_mutex_lock(&s
->dma_map_lock
);
987 r
= nvme_cmd_map_qiov(bs
, &cmd
, req
, qiov
);
988 qemu_co_mutex_unlock(&s
->dma_map_lock
);
993 nvme_submit_command(s
, ioq
, req
, &cmd
, nvme_rw_cb
, &data
);
995 data
.co
= qemu_coroutine_self();
996 while (data
.ret
== -EINPROGRESS
) {
997 qemu_coroutine_yield();
1000 qemu_co_mutex_lock(&s
->dma_map_lock
);
1001 r
= nvme_cmd_unmap_qiov(bs
, qiov
);
1002 qemu_co_mutex_unlock(&s
->dma_map_lock
);
1007 trace_nvme_rw_done(s
, is_write
, offset
, bytes
, data
.ret
);
1011 static inline bool nvme_qiov_aligned(BlockDriverState
*bs
,
1012 const QEMUIOVector
*qiov
)
1015 BDRVNVMeState
*s
= bs
->opaque
;
1017 for (i
= 0; i
< qiov
->niov
; ++i
) {
1018 if (!QEMU_PTR_IS_ALIGNED(qiov
->iov
[i
].iov_base
, s
->page_size
) ||
1019 !QEMU_IS_ALIGNED(qiov
->iov
[i
].iov_len
, s
->page_size
)) {
1020 trace_nvme_qiov_unaligned(qiov
, i
, qiov
->iov
[i
].iov_base
,
1021 qiov
->iov
[i
].iov_len
, s
->page_size
);
1028 static int nvme_co_prw(BlockDriverState
*bs
, uint64_t offset
, uint64_t bytes
,
1029 QEMUIOVector
*qiov
, bool is_write
, int flags
)
1031 BDRVNVMeState
*s
= bs
->opaque
;
1033 uint8_t *buf
= NULL
;
1034 QEMUIOVector local_qiov
;
1036 assert(QEMU_IS_ALIGNED(offset
, s
->page_size
));
1037 assert(QEMU_IS_ALIGNED(bytes
, s
->page_size
));
1038 assert(bytes
<= s
->max_transfer
);
1039 if (nvme_qiov_aligned(bs
, qiov
)) {
1040 return nvme_co_prw_aligned(bs
, offset
, bytes
, qiov
, is_write
, flags
);
1042 trace_nvme_prw_buffered(s
, offset
, bytes
, qiov
->niov
, is_write
);
1043 buf
= qemu_try_blockalign(bs
, bytes
);
1048 qemu_iovec_init(&local_qiov
, 1);
1050 qemu_iovec_to_buf(qiov
, 0, buf
, bytes
);
1052 qemu_iovec_add(&local_qiov
, buf
, bytes
);
1053 r
= nvme_co_prw_aligned(bs
, offset
, bytes
, &local_qiov
, is_write
, flags
);
1054 qemu_iovec_destroy(&local_qiov
);
1055 if (!r
&& !is_write
) {
1056 qemu_iovec_from_buf(qiov
, 0, buf
, bytes
);
1062 static coroutine_fn
int nvme_co_preadv(BlockDriverState
*bs
,
1063 uint64_t offset
, uint64_t bytes
,
1064 QEMUIOVector
*qiov
, int flags
)
1066 return nvme_co_prw(bs
, offset
, bytes
, qiov
, false, flags
);
1069 static coroutine_fn
int nvme_co_pwritev(BlockDriverState
*bs
,
1070 uint64_t offset
, uint64_t bytes
,
1071 QEMUIOVector
*qiov
, int flags
)
1073 return nvme_co_prw(bs
, offset
, bytes
, qiov
, true, flags
);
1076 static coroutine_fn
int nvme_co_flush(BlockDriverState
*bs
)
1078 BDRVNVMeState
*s
= bs
->opaque
;
1079 NVMeQueuePair
*ioq
= s
->queues
[1];
1082 .opcode
= NVME_CMD_FLUSH
,
1083 .nsid
= cpu_to_le32(s
->nsid
),
1086 .ctx
= bdrv_get_aio_context(bs
),
1087 .ret
= -EINPROGRESS
,
1090 assert(s
->nr_queues
> 1);
1091 req
= nvme_get_free_req(ioq
);
1093 nvme_submit_command(s
, ioq
, req
, &cmd
, nvme_rw_cb
, &data
);
1095 data
.co
= qemu_coroutine_self();
1096 if (data
.ret
== -EINPROGRESS
) {
1097 qemu_coroutine_yield();
1104 static coroutine_fn
int nvme_co_pwrite_zeroes(BlockDriverState
*bs
,
1107 BdrvRequestFlags flags
)
1109 BDRVNVMeState
*s
= bs
->opaque
;
1110 NVMeQueuePair
*ioq
= s
->queues
[1];
1113 uint32_t cdw12
= ((bytes
>> s
->blkshift
) - 1) & 0xFFFF;
1115 if (!s
->supports_write_zeroes
) {
1120 .opcode
= NVME_CMD_WRITE_ZEROS
,
1121 .nsid
= cpu_to_le32(s
->nsid
),
1122 .cdw10
= cpu_to_le32((offset
>> s
->blkshift
) & 0xFFFFFFFF),
1123 .cdw11
= cpu_to_le32(((offset
>> s
->blkshift
) >> 32) & 0xFFFFFFFF),
1127 .ctx
= bdrv_get_aio_context(bs
),
1128 .ret
= -EINPROGRESS
,
1131 if (flags
& BDRV_REQ_MAY_UNMAP
) {
1135 if (flags
& BDRV_REQ_FUA
) {
1139 cmd
.cdw12
= cpu_to_le32(cdw12
);
1141 trace_nvme_write_zeroes(s
, offset
, bytes
, flags
);
1142 assert(s
->nr_queues
> 1);
1143 req
= nvme_get_free_req(ioq
);
1146 nvme_submit_command(s
, ioq
, req
, &cmd
, nvme_rw_cb
, &data
);
1148 data
.co
= qemu_coroutine_self();
1149 while (data
.ret
== -EINPROGRESS
) {
1150 qemu_coroutine_yield();
1153 trace_nvme_rw_done(s
, true, offset
, bytes
, data
.ret
);
1158 static int coroutine_fn
nvme_co_pdiscard(BlockDriverState
*bs
,
1162 BDRVNVMeState
*s
= bs
->opaque
;
1163 NVMeQueuePair
*ioq
= s
->queues
[1];
1166 QEMUIOVector local_qiov
;
1170 .opcode
= NVME_CMD_DSM
,
1171 .nsid
= cpu_to_le32(s
->nsid
),
1172 .cdw10
= cpu_to_le32(0), /*number of ranges - 0 based*/
1173 .cdw11
= cpu_to_le32(1 << 2), /*deallocate bit*/
1177 .ctx
= bdrv_get_aio_context(bs
),
1178 .ret
= -EINPROGRESS
,
1181 if (!s
->supports_discard
) {
1185 assert(s
->nr_queues
> 1);
1187 buf
= qemu_try_blockalign0(bs
, s
->page_size
);
1192 buf
->nlb
= cpu_to_le32(bytes
>> s
->blkshift
);
1193 buf
->slba
= cpu_to_le64(offset
>> s
->blkshift
);
1196 qemu_iovec_init(&local_qiov
, 1);
1197 qemu_iovec_add(&local_qiov
, buf
, 4096);
1199 req
= nvme_get_free_req(ioq
);
1202 qemu_co_mutex_lock(&s
->dma_map_lock
);
1203 ret
= nvme_cmd_map_qiov(bs
, &cmd
, req
, &local_qiov
);
1204 qemu_co_mutex_unlock(&s
->dma_map_lock
);
1211 trace_nvme_dsm(s
, offset
, bytes
);
1213 nvme_submit_command(s
, ioq
, req
, &cmd
, nvme_rw_cb
, &data
);
1215 data
.co
= qemu_coroutine_self();
1216 while (data
.ret
== -EINPROGRESS
) {
1217 qemu_coroutine_yield();
1220 qemu_co_mutex_lock(&s
->dma_map_lock
);
1221 ret
= nvme_cmd_unmap_qiov(bs
, &local_qiov
);
1222 qemu_co_mutex_unlock(&s
->dma_map_lock
);
1229 trace_nvme_dsm_done(s
, offset
, bytes
, ret
);
1231 qemu_iovec_destroy(&local_qiov
);
1238 static int nvme_reopen_prepare(BDRVReopenState
*reopen_state
,
1239 BlockReopenQueue
*queue
, Error
**errp
)
1244 static void nvme_refresh_filename(BlockDriverState
*bs
)
1246 BDRVNVMeState
*s
= bs
->opaque
;
1248 snprintf(bs
->exact_filename
, sizeof(bs
->exact_filename
), "nvme://%s/%i",
1249 s
->device
, s
->nsid
);
1252 static void nvme_refresh_limits(BlockDriverState
*bs
, Error
**errp
)
1254 BDRVNVMeState
*s
= bs
->opaque
;
1256 bs
->bl
.opt_mem_alignment
= s
->page_size
;
1257 bs
->bl
.request_alignment
= s
->page_size
;
1258 bs
->bl
.max_transfer
= s
->max_transfer
;
1261 static void nvme_detach_aio_context(BlockDriverState
*bs
)
1263 BDRVNVMeState
*s
= bs
->opaque
;
1265 aio_set_event_notifier(bdrv_get_aio_context(bs
), &s
->irq_notifier
,
1269 static void nvme_attach_aio_context(BlockDriverState
*bs
,
1270 AioContext
*new_context
)
1272 BDRVNVMeState
*s
= bs
->opaque
;
1274 s
->aio_context
= new_context
;
1275 aio_set_event_notifier(new_context
, &s
->irq_notifier
,
1276 false, nvme_handle_event
, nvme_poll_cb
);
1279 static void nvme_aio_plug(BlockDriverState
*bs
)
1281 BDRVNVMeState
*s
= bs
->opaque
;
1282 assert(!s
->plugged
);
1286 static void nvme_aio_unplug(BlockDriverState
*bs
)
1289 BDRVNVMeState
*s
= bs
->opaque
;
1292 for (i
= 1; i
< s
->nr_queues
; i
++) {
1293 NVMeQueuePair
*q
= s
->queues
[i
];
1294 qemu_mutex_lock(&q
->lock
);
1296 nvme_process_completion(s
, q
);
1297 qemu_mutex_unlock(&q
->lock
);
1301 static void nvme_register_buf(BlockDriverState
*bs
, void *host
, size_t size
)
1304 BDRVNVMeState
*s
= bs
->opaque
;
1306 ret
= qemu_vfio_dma_map(s
->vfio
, host
, size
, false, NULL
);
1308 /* FIXME: we may run out of IOVA addresses after repeated
1309 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1310 * doesn't reclaim addresses for fixed mappings. */
1311 error_report("nvme_register_buf failed: %s", strerror(-ret
));
1315 static void nvme_unregister_buf(BlockDriverState
*bs
, void *host
)
1317 BDRVNVMeState
*s
= bs
->opaque
;
1319 qemu_vfio_dma_unmap(s
->vfio
, host
);
1322 static const char *const nvme_strong_runtime_opts
[] = {
1323 NVME_BLOCK_OPT_DEVICE
,
1324 NVME_BLOCK_OPT_NAMESPACE
,
1329 static BlockDriver bdrv_nvme
= {
1330 .format_name
= "nvme",
1331 .protocol_name
= "nvme",
1332 .instance_size
= sizeof(BDRVNVMeState
),
1334 .bdrv_co_create_opts
= bdrv_co_create_opts_simple
,
1335 .create_opts
= &bdrv_create_opts_simple
,
1337 .bdrv_parse_filename
= nvme_parse_filename
,
1338 .bdrv_file_open
= nvme_file_open
,
1339 .bdrv_close
= nvme_close
,
1340 .bdrv_getlength
= nvme_getlength
,
1341 .bdrv_probe_blocksizes
= nvme_probe_blocksizes
,
1343 .bdrv_co_preadv
= nvme_co_preadv
,
1344 .bdrv_co_pwritev
= nvme_co_pwritev
,
1346 .bdrv_co_pwrite_zeroes
= nvme_co_pwrite_zeroes
,
1347 .bdrv_co_pdiscard
= nvme_co_pdiscard
,
1349 .bdrv_co_flush_to_disk
= nvme_co_flush
,
1350 .bdrv_reopen_prepare
= nvme_reopen_prepare
,
1352 .bdrv_refresh_filename
= nvme_refresh_filename
,
1353 .bdrv_refresh_limits
= nvme_refresh_limits
,
1354 .strong_runtime_opts
= nvme_strong_runtime_opts
,
1356 .bdrv_detach_aio_context
= nvme_detach_aio_context
,
1357 .bdrv_attach_aio_context
= nvme_attach_aio_context
,
1359 .bdrv_io_plug
= nvme_aio_plug
,
1360 .bdrv_io_unplug
= nvme_aio_unplug
,
1362 .bdrv_register_buf
= nvme_register_buf
,
1363 .bdrv_unregister_buf
= nvme_unregister_buf
,
1366 static void bdrv_nvme_init(void)
1368 bdrv_register(&bdrv_nvme
);
1371 block_init(bdrv_nvme_init
);