target/arm: Update find_last_active for PREDDESC
[qemu/ar7.git] / hw / arm / smmuv3.c
blob3b87324ce2212b0a875245675222ce07718b50aa
1 /*
2 * Copyright (C) 2014-2016 Broadcom Corporation
3 * Copyright (c) 2017 Red Hat, Inc.
4 * Written by Prem Mallappa, Eric Auger
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "hw/irq.h"
22 #include "hw/sysbus.h"
23 #include "migration/vmstate.h"
24 #include "hw/qdev-core.h"
25 #include "hw/pci/pci.h"
26 #include "exec/address-spaces.h"
27 #include "cpu.h"
28 #include "trace.h"
29 #include "qemu/log.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
33 #include "hw/arm/smmuv3.h"
34 #include "smmuv3-internal.h"
35 #include "smmu-internal.h"
37 /**
38 * smmuv3_trigger_irq - pulse @irq if enabled and update
39 * GERROR register in case of GERROR interrupt
41 * @irq: irq type
42 * @gerror_mask: mask of gerrors to toggle (relevant if @irq is GERROR)
44 static void smmuv3_trigger_irq(SMMUv3State *s, SMMUIrq irq,
45 uint32_t gerror_mask)
48 bool pulse = false;
50 switch (irq) {
51 case SMMU_IRQ_EVTQ:
52 pulse = smmuv3_eventq_irq_enabled(s);
53 break;
54 case SMMU_IRQ_PRIQ:
55 qemu_log_mask(LOG_UNIMP, "PRI not yet supported\n");
56 break;
57 case SMMU_IRQ_CMD_SYNC:
58 pulse = true;
59 break;
60 case SMMU_IRQ_GERROR:
62 uint32_t pending = s->gerror ^ s->gerrorn;
63 uint32_t new_gerrors = ~pending & gerror_mask;
65 if (!new_gerrors) {
66 /* only toggle non pending errors */
67 return;
69 s->gerror ^= new_gerrors;
70 trace_smmuv3_write_gerror(new_gerrors, s->gerror);
72 pulse = smmuv3_gerror_irq_enabled(s);
73 break;
76 if (pulse) {
77 trace_smmuv3_trigger_irq(irq);
78 qemu_irq_pulse(s->irq[irq]);
82 static void smmuv3_write_gerrorn(SMMUv3State *s, uint32_t new_gerrorn)
84 uint32_t pending = s->gerror ^ s->gerrorn;
85 uint32_t toggled = s->gerrorn ^ new_gerrorn;
87 if (toggled & ~pending) {
88 qemu_log_mask(LOG_GUEST_ERROR,
89 "guest toggles non pending errors = 0x%x\n",
90 toggled & ~pending);
94 * We do not raise any error in case guest toggles bits corresponding
95 * to not active IRQs (CONSTRAINED UNPREDICTABLE)
97 s->gerrorn = new_gerrorn;
99 trace_smmuv3_write_gerrorn(toggled & pending, s->gerrorn);
102 static inline MemTxResult queue_read(SMMUQueue *q, void *data)
104 dma_addr_t addr = Q_CONS_ENTRY(q);
106 return dma_memory_read(&address_space_memory, addr, data, q->entry_size);
109 static MemTxResult queue_write(SMMUQueue *q, void *data)
111 dma_addr_t addr = Q_PROD_ENTRY(q);
112 MemTxResult ret;
114 ret = dma_memory_write(&address_space_memory, addr, data, q->entry_size);
115 if (ret != MEMTX_OK) {
116 return ret;
119 queue_prod_incr(q);
120 return MEMTX_OK;
123 static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt)
125 SMMUQueue *q = &s->eventq;
126 MemTxResult r;
128 if (!smmuv3_eventq_enabled(s)) {
129 return MEMTX_ERROR;
132 if (smmuv3_q_full(q)) {
133 return MEMTX_ERROR;
136 r = queue_write(q, evt);
137 if (r != MEMTX_OK) {
138 return r;
141 if (!smmuv3_q_empty(q)) {
142 smmuv3_trigger_irq(s, SMMU_IRQ_EVTQ, 0);
144 return MEMTX_OK;
147 void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info)
149 Evt evt = {};
150 MemTxResult r;
152 if (!smmuv3_eventq_enabled(s)) {
153 return;
156 EVT_SET_TYPE(&evt, info->type);
157 EVT_SET_SID(&evt, info->sid);
159 switch (info->type) {
160 case SMMU_EVT_NONE:
161 return;
162 case SMMU_EVT_F_UUT:
163 EVT_SET_SSID(&evt, info->u.f_uut.ssid);
164 EVT_SET_SSV(&evt, info->u.f_uut.ssv);
165 EVT_SET_ADDR(&evt, info->u.f_uut.addr);
166 EVT_SET_RNW(&evt, info->u.f_uut.rnw);
167 EVT_SET_PNU(&evt, info->u.f_uut.pnu);
168 EVT_SET_IND(&evt, info->u.f_uut.ind);
169 break;
170 case SMMU_EVT_C_BAD_STREAMID:
171 EVT_SET_SSID(&evt, info->u.c_bad_streamid.ssid);
172 EVT_SET_SSV(&evt, info->u.c_bad_streamid.ssv);
173 break;
174 case SMMU_EVT_F_STE_FETCH:
175 EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid);
176 EVT_SET_SSV(&evt, info->u.f_ste_fetch.ssv);
177 EVT_SET_ADDR2(&evt, info->u.f_ste_fetch.addr);
178 break;
179 case SMMU_EVT_C_BAD_STE:
180 EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid);
181 EVT_SET_SSV(&evt, info->u.c_bad_ste.ssv);
182 break;
183 case SMMU_EVT_F_STREAM_DISABLED:
184 break;
185 case SMMU_EVT_F_TRANS_FORBIDDEN:
186 EVT_SET_ADDR(&evt, info->u.f_transl_forbidden.addr);
187 EVT_SET_RNW(&evt, info->u.f_transl_forbidden.rnw);
188 break;
189 case SMMU_EVT_C_BAD_SUBSTREAMID:
190 EVT_SET_SSID(&evt, info->u.c_bad_substream.ssid);
191 break;
192 case SMMU_EVT_F_CD_FETCH:
193 EVT_SET_SSID(&evt, info->u.f_cd_fetch.ssid);
194 EVT_SET_SSV(&evt, info->u.f_cd_fetch.ssv);
195 EVT_SET_ADDR(&evt, info->u.f_cd_fetch.addr);
196 break;
197 case SMMU_EVT_C_BAD_CD:
198 EVT_SET_SSID(&evt, info->u.c_bad_cd.ssid);
199 EVT_SET_SSV(&evt, info->u.c_bad_cd.ssv);
200 break;
201 case SMMU_EVT_F_WALK_EABT:
202 case SMMU_EVT_F_TRANSLATION:
203 case SMMU_EVT_F_ADDR_SIZE:
204 case SMMU_EVT_F_ACCESS:
205 case SMMU_EVT_F_PERMISSION:
206 EVT_SET_STALL(&evt, info->u.f_walk_eabt.stall);
207 EVT_SET_STAG(&evt, info->u.f_walk_eabt.stag);
208 EVT_SET_SSID(&evt, info->u.f_walk_eabt.ssid);
209 EVT_SET_SSV(&evt, info->u.f_walk_eabt.ssv);
210 EVT_SET_S2(&evt, info->u.f_walk_eabt.s2);
211 EVT_SET_ADDR(&evt, info->u.f_walk_eabt.addr);
212 EVT_SET_RNW(&evt, info->u.f_walk_eabt.rnw);
213 EVT_SET_PNU(&evt, info->u.f_walk_eabt.pnu);
214 EVT_SET_IND(&evt, info->u.f_walk_eabt.ind);
215 EVT_SET_CLASS(&evt, info->u.f_walk_eabt.class);
216 EVT_SET_ADDR2(&evt, info->u.f_walk_eabt.addr2);
217 break;
218 case SMMU_EVT_F_CFG_CONFLICT:
219 EVT_SET_SSID(&evt, info->u.f_cfg_conflict.ssid);
220 EVT_SET_SSV(&evt, info->u.f_cfg_conflict.ssv);
221 break;
222 /* rest is not implemented */
223 case SMMU_EVT_F_BAD_ATS_TREQ:
224 case SMMU_EVT_F_TLB_CONFLICT:
225 case SMMU_EVT_E_PAGE_REQ:
226 default:
227 g_assert_not_reached();
230 trace_smmuv3_record_event(smmu_event_string(info->type), info->sid);
231 r = smmuv3_write_eventq(s, &evt);
232 if (r != MEMTX_OK) {
233 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_EVENTQ_ABT_ERR_MASK);
235 info->recorded = true;
238 static void smmuv3_init_regs(SMMUv3State *s)
241 * IDR0: stage1 only, AArch64 only, coherent access, 16b ASID,
242 * multi-level stream table
244 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1); /* stage 1 supported */
245 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTF, 2); /* AArch64 PTW only */
246 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, COHACC, 1); /* IO coherent */
247 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, ASID16, 1); /* 16-bit ASID */
248 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTENDIAN, 2); /* little endian */
249 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STALL_MODEL, 1); /* No stall */
250 /* terminated transaction will always be aborted/error returned */
251 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TERM_MODEL, 1);
252 /* 2-level stream table supported */
253 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STLEVEL, 1);
255 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, SIDSIZE, SMMU_IDR1_SIDSIZE);
256 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, EVENTQS, SMMU_EVENTQS);
257 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, CMDQS, SMMU_CMDQS);
259 s->idr[3] = FIELD_DP32(s->idr[3], IDR3, RIL, 1);
260 s->idr[3] = FIELD_DP32(s->idr[3], IDR3, HAD, 1);
262 /* 4K and 64K granule support */
263 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN4K, 1);
264 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN64K, 1);
265 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, OAS, SMMU_IDR5_OAS); /* 44 bits */
267 s->cmdq.base = deposit64(s->cmdq.base, 0, 5, SMMU_CMDQS);
268 s->cmdq.prod = 0;
269 s->cmdq.cons = 0;
270 s->cmdq.entry_size = sizeof(struct Cmd);
271 s->eventq.base = deposit64(s->eventq.base, 0, 5, SMMU_EVENTQS);
272 s->eventq.prod = 0;
273 s->eventq.cons = 0;
274 s->eventq.entry_size = sizeof(struct Evt);
276 s->features = 0;
277 s->sid_split = 0;
278 s->aidr = 0x1;
281 static int smmu_get_ste(SMMUv3State *s, dma_addr_t addr, STE *buf,
282 SMMUEventInfo *event)
284 int ret;
286 trace_smmuv3_get_ste(addr);
287 /* TODO: guarantee 64-bit single-copy atomicity */
288 ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf));
289 if (ret != MEMTX_OK) {
290 qemu_log_mask(LOG_GUEST_ERROR,
291 "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
292 event->type = SMMU_EVT_F_STE_FETCH;
293 event->u.f_ste_fetch.addr = addr;
294 return -EINVAL;
296 return 0;
300 /* @ssid > 0 not supported yet */
301 static int smmu_get_cd(SMMUv3State *s, STE *ste, uint32_t ssid,
302 CD *buf, SMMUEventInfo *event)
304 dma_addr_t addr = STE_CTXPTR(ste);
305 int ret;
307 trace_smmuv3_get_cd(addr);
308 /* TODO: guarantee 64-bit single-copy atomicity */
309 ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf));
310 if (ret != MEMTX_OK) {
311 qemu_log_mask(LOG_GUEST_ERROR,
312 "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
313 event->type = SMMU_EVT_F_CD_FETCH;
314 event->u.f_ste_fetch.addr = addr;
315 return -EINVAL;
317 return 0;
320 /* Returns < 0 in case of invalid STE, 0 otherwise */
321 static int decode_ste(SMMUv3State *s, SMMUTransCfg *cfg,
322 STE *ste, SMMUEventInfo *event)
324 uint32_t config;
326 if (!STE_VALID(ste)) {
327 if (!event->inval_ste_allowed) {
328 qemu_log_mask(LOG_GUEST_ERROR, "invalid STE\n");
330 goto bad_ste;
333 config = STE_CONFIG(ste);
335 if (STE_CFG_ABORT(config)) {
336 cfg->aborted = true;
337 return 0;
340 if (STE_CFG_BYPASS(config)) {
341 cfg->bypassed = true;
342 return 0;
345 if (STE_CFG_S2_ENABLED(config)) {
346 qemu_log_mask(LOG_UNIMP, "SMMUv3 does not support stage 2 yet\n");
347 goto bad_ste;
350 if (STE_S1CDMAX(ste) != 0) {
351 qemu_log_mask(LOG_UNIMP,
352 "SMMUv3 does not support multiple context descriptors yet\n");
353 goto bad_ste;
356 if (STE_S1STALLD(ste)) {
357 qemu_log_mask(LOG_UNIMP,
358 "SMMUv3 S1 stalling fault model not allowed yet\n");
359 goto bad_ste;
361 return 0;
363 bad_ste:
364 event->type = SMMU_EVT_C_BAD_STE;
365 return -EINVAL;
369 * smmu_find_ste - Return the stream table entry associated
370 * to the sid
372 * @s: smmuv3 handle
373 * @sid: stream ID
374 * @ste: returned stream table entry
375 * @event: handle to an event info
377 * Supports linear and 2-level stream table
378 * Return 0 on success, -EINVAL otherwise
380 static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
381 SMMUEventInfo *event)
383 dma_addr_t addr, strtab_base;
384 uint32_t log2size;
385 int strtab_size_shift;
386 int ret;
388 trace_smmuv3_find_ste(sid, s->features, s->sid_split);
389 log2size = FIELD_EX32(s->strtab_base_cfg, STRTAB_BASE_CFG, LOG2SIZE);
391 * Check SID range against both guest-configured and implementation limits
393 if (sid >= (1 << MIN(log2size, SMMU_IDR1_SIDSIZE))) {
394 event->type = SMMU_EVT_C_BAD_STREAMID;
395 return -EINVAL;
397 if (s->features & SMMU_FEATURE_2LVL_STE) {
398 int l1_ste_offset, l2_ste_offset, max_l2_ste, span;
399 dma_addr_t l1ptr, l2ptr;
400 STEDesc l1std;
403 * Align strtab base address to table size. For this purpose, assume it
404 * is not bounded by SMMU_IDR1_SIDSIZE.
406 strtab_size_shift = MAX(5, (int)log2size - s->sid_split - 1 + 3);
407 strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
408 ~MAKE_64BIT_MASK(0, strtab_size_shift);
409 l1_ste_offset = sid >> s->sid_split;
410 l2_ste_offset = sid & ((1 << s->sid_split) - 1);
411 l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std));
412 /* TODO: guarantee 64-bit single-copy atomicity */
413 ret = dma_memory_read(&address_space_memory, l1ptr, &l1std,
414 sizeof(l1std));
415 if (ret != MEMTX_OK) {
416 qemu_log_mask(LOG_GUEST_ERROR,
417 "Could not read L1PTR at 0X%"PRIx64"\n", l1ptr);
418 event->type = SMMU_EVT_F_STE_FETCH;
419 event->u.f_ste_fetch.addr = l1ptr;
420 return -EINVAL;
423 span = L1STD_SPAN(&l1std);
425 if (!span) {
426 /* l2ptr is not valid */
427 if (!event->inval_ste_allowed) {
428 qemu_log_mask(LOG_GUEST_ERROR,
429 "invalid sid=%d (L1STD span=0)\n", sid);
431 event->type = SMMU_EVT_C_BAD_STREAMID;
432 return -EINVAL;
434 max_l2_ste = (1 << span) - 1;
435 l2ptr = l1std_l2ptr(&l1std);
436 trace_smmuv3_find_ste_2lvl(s->strtab_base, l1ptr, l1_ste_offset,
437 l2ptr, l2_ste_offset, max_l2_ste);
438 if (l2_ste_offset > max_l2_ste) {
439 qemu_log_mask(LOG_GUEST_ERROR,
440 "l2_ste_offset=%d > max_l2_ste=%d\n",
441 l2_ste_offset, max_l2_ste);
442 event->type = SMMU_EVT_C_BAD_STE;
443 return -EINVAL;
445 addr = l2ptr + l2_ste_offset * sizeof(*ste);
446 } else {
447 strtab_size_shift = log2size + 5;
448 strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
449 ~MAKE_64BIT_MASK(0, strtab_size_shift);
450 addr = strtab_base + sid * sizeof(*ste);
453 if (smmu_get_ste(s, addr, ste, event)) {
454 return -EINVAL;
457 return 0;
460 static int decode_cd(SMMUTransCfg *cfg, CD *cd, SMMUEventInfo *event)
462 int ret = -EINVAL;
463 int i;
465 if (!CD_VALID(cd) || !CD_AARCH64(cd)) {
466 goto bad_cd;
468 if (!CD_A(cd)) {
469 goto bad_cd; /* SMMU_IDR0.TERM_MODEL == 1 */
471 if (CD_S(cd)) {
472 goto bad_cd; /* !STE_SECURE && SMMU_IDR0.STALL_MODEL == 1 */
474 if (CD_HA(cd) || CD_HD(cd)) {
475 goto bad_cd; /* HTTU = 0 */
478 /* we support only those at the moment */
479 cfg->aa64 = true;
480 cfg->stage = 1;
482 cfg->oas = oas2bits(CD_IPS(cd));
483 cfg->oas = MIN(oas2bits(SMMU_IDR5_OAS), cfg->oas);
484 cfg->tbi = CD_TBI(cd);
485 cfg->asid = CD_ASID(cd);
487 trace_smmuv3_decode_cd(cfg->oas);
489 /* decode data dependent on TT */
490 for (i = 0; i <= 1; i++) {
491 int tg, tsz;
492 SMMUTransTableInfo *tt = &cfg->tt[i];
494 cfg->tt[i].disabled = CD_EPD(cd, i);
495 if (cfg->tt[i].disabled) {
496 continue;
499 tsz = CD_TSZ(cd, i);
500 if (tsz < 16 || tsz > 39) {
501 goto bad_cd;
504 tg = CD_TG(cd, i);
505 tt->granule_sz = tg2granule(tg, i);
506 if ((tt->granule_sz != 12 && tt->granule_sz != 16) || CD_ENDI(cd)) {
507 goto bad_cd;
510 tt->tsz = tsz;
511 tt->ttb = CD_TTB(cd, i);
512 if (tt->ttb & ~(MAKE_64BIT_MASK(0, cfg->oas))) {
513 goto bad_cd;
515 tt->had = CD_HAD(cd, i);
516 trace_smmuv3_decode_cd_tt(i, tt->tsz, tt->ttb, tt->granule_sz, tt->had);
519 event->record_trans_faults = CD_R(cd);
521 return 0;
523 bad_cd:
524 event->type = SMMU_EVT_C_BAD_CD;
525 return ret;
529 * smmuv3_decode_config - Prepare the translation configuration
530 * for the @mr iommu region
531 * @mr: iommu memory region the translation config must be prepared for
532 * @cfg: output translation configuration which is populated through
533 * the different configuration decoding steps
534 * @event: must be zero'ed by the caller
536 * return < 0 in case of config decoding error (@event is filled
537 * accordingly). Return 0 otherwise.
539 static int smmuv3_decode_config(IOMMUMemoryRegion *mr, SMMUTransCfg *cfg,
540 SMMUEventInfo *event)
542 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
543 uint32_t sid = smmu_get_sid(sdev);
544 SMMUv3State *s = sdev->smmu;
545 int ret;
546 STE ste;
547 CD cd;
549 ret = smmu_find_ste(s, sid, &ste, event);
550 if (ret) {
551 return ret;
554 ret = decode_ste(s, cfg, &ste, event);
555 if (ret) {
556 return ret;
559 if (cfg->aborted || cfg->bypassed) {
560 return 0;
563 ret = smmu_get_cd(s, &ste, 0 /* ssid */, &cd, event);
564 if (ret) {
565 return ret;
568 return decode_cd(cfg, &cd, event);
572 * smmuv3_get_config - Look up for a cached copy of configuration data for
573 * @sdev and on cache miss performs a configuration structure decoding from
574 * guest RAM.
576 * @sdev: SMMUDevice handle
577 * @event: output event info
579 * The configuration cache contains data resulting from both STE and CD
580 * decoding under the form of an SMMUTransCfg struct. The hash table is indexed
581 * by the SMMUDevice handle.
583 static SMMUTransCfg *smmuv3_get_config(SMMUDevice *sdev, SMMUEventInfo *event)
585 SMMUv3State *s = sdev->smmu;
586 SMMUState *bc = &s->smmu_state;
587 SMMUTransCfg *cfg;
589 cfg = g_hash_table_lookup(bc->configs, sdev);
590 if (cfg) {
591 sdev->cfg_cache_hits++;
592 trace_smmuv3_config_cache_hit(smmu_get_sid(sdev),
593 sdev->cfg_cache_hits, sdev->cfg_cache_misses,
594 100 * sdev->cfg_cache_hits /
595 (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
596 } else {
597 sdev->cfg_cache_misses++;
598 trace_smmuv3_config_cache_miss(smmu_get_sid(sdev),
599 sdev->cfg_cache_hits, sdev->cfg_cache_misses,
600 100 * sdev->cfg_cache_hits /
601 (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
602 cfg = g_new0(SMMUTransCfg, 1);
604 if (!smmuv3_decode_config(&sdev->iommu, cfg, event)) {
605 g_hash_table_insert(bc->configs, sdev, cfg);
606 } else {
607 g_free(cfg);
608 cfg = NULL;
611 return cfg;
614 static void smmuv3_flush_config(SMMUDevice *sdev)
616 SMMUv3State *s = sdev->smmu;
617 SMMUState *bc = &s->smmu_state;
619 trace_smmuv3_config_cache_inv(smmu_get_sid(sdev));
620 g_hash_table_remove(bc->configs, sdev);
623 static IOMMUTLBEntry smmuv3_translate(IOMMUMemoryRegion *mr, hwaddr addr,
624 IOMMUAccessFlags flag, int iommu_idx)
626 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
627 SMMUv3State *s = sdev->smmu;
628 uint32_t sid = smmu_get_sid(sdev);
629 SMMUEventInfo event = {.type = SMMU_EVT_NONE,
630 .sid = sid,
631 .inval_ste_allowed = false};
632 SMMUPTWEventInfo ptw_info = {};
633 SMMUTranslationStatus status;
634 SMMUState *bs = ARM_SMMU(s);
635 uint64_t page_mask, aligned_addr;
636 SMMUTLBEntry *cached_entry = NULL;
637 SMMUTransTableInfo *tt;
638 SMMUTransCfg *cfg = NULL;
639 IOMMUTLBEntry entry = {
640 .target_as = &address_space_memory,
641 .iova = addr,
642 .translated_addr = addr,
643 .addr_mask = ~(hwaddr)0,
644 .perm = IOMMU_NONE,
647 qemu_mutex_lock(&s->mutex);
649 if (!smmu_enabled(s)) {
650 status = SMMU_TRANS_DISABLE;
651 goto epilogue;
654 cfg = smmuv3_get_config(sdev, &event);
655 if (!cfg) {
656 status = SMMU_TRANS_ERROR;
657 goto epilogue;
660 if (cfg->aborted) {
661 status = SMMU_TRANS_ABORT;
662 goto epilogue;
665 if (cfg->bypassed) {
666 status = SMMU_TRANS_BYPASS;
667 goto epilogue;
670 tt = select_tt(cfg, addr);
671 if (!tt) {
672 if (event.record_trans_faults) {
673 event.type = SMMU_EVT_F_TRANSLATION;
674 event.u.f_translation.addr = addr;
675 event.u.f_translation.rnw = flag & 0x1;
677 status = SMMU_TRANS_ERROR;
678 goto epilogue;
681 page_mask = (1ULL << (tt->granule_sz)) - 1;
682 aligned_addr = addr & ~page_mask;
684 cached_entry = smmu_iotlb_lookup(bs, cfg, tt, aligned_addr);
685 if (cached_entry) {
686 if ((flag & IOMMU_WO) && !(cached_entry->entry.perm & IOMMU_WO)) {
687 status = SMMU_TRANS_ERROR;
688 if (event.record_trans_faults) {
689 event.type = SMMU_EVT_F_PERMISSION;
690 event.u.f_permission.addr = addr;
691 event.u.f_permission.rnw = flag & 0x1;
693 } else {
694 status = SMMU_TRANS_SUCCESS;
696 goto epilogue;
699 cached_entry = g_new0(SMMUTLBEntry, 1);
701 if (smmu_ptw(cfg, aligned_addr, flag, cached_entry, &ptw_info)) {
702 g_free(cached_entry);
703 switch (ptw_info.type) {
704 case SMMU_PTW_ERR_WALK_EABT:
705 event.type = SMMU_EVT_F_WALK_EABT;
706 event.u.f_walk_eabt.addr = addr;
707 event.u.f_walk_eabt.rnw = flag & 0x1;
708 event.u.f_walk_eabt.class = 0x1;
709 event.u.f_walk_eabt.addr2 = ptw_info.addr;
710 break;
711 case SMMU_PTW_ERR_TRANSLATION:
712 if (event.record_trans_faults) {
713 event.type = SMMU_EVT_F_TRANSLATION;
714 event.u.f_translation.addr = addr;
715 event.u.f_translation.rnw = flag & 0x1;
717 break;
718 case SMMU_PTW_ERR_ADDR_SIZE:
719 if (event.record_trans_faults) {
720 event.type = SMMU_EVT_F_ADDR_SIZE;
721 event.u.f_addr_size.addr = addr;
722 event.u.f_addr_size.rnw = flag & 0x1;
724 break;
725 case SMMU_PTW_ERR_ACCESS:
726 if (event.record_trans_faults) {
727 event.type = SMMU_EVT_F_ACCESS;
728 event.u.f_access.addr = addr;
729 event.u.f_access.rnw = flag & 0x1;
731 break;
732 case SMMU_PTW_ERR_PERMISSION:
733 if (event.record_trans_faults) {
734 event.type = SMMU_EVT_F_PERMISSION;
735 event.u.f_permission.addr = addr;
736 event.u.f_permission.rnw = flag & 0x1;
738 break;
739 default:
740 g_assert_not_reached();
742 status = SMMU_TRANS_ERROR;
743 } else {
744 smmu_iotlb_insert(bs, cfg, cached_entry);
745 status = SMMU_TRANS_SUCCESS;
748 epilogue:
749 qemu_mutex_unlock(&s->mutex);
750 switch (status) {
751 case SMMU_TRANS_SUCCESS:
752 entry.perm = flag;
753 entry.translated_addr = cached_entry->entry.translated_addr +
754 (addr & cached_entry->entry.addr_mask);
755 entry.addr_mask = cached_entry->entry.addr_mask;
756 trace_smmuv3_translate_success(mr->parent_obj.name, sid, addr,
757 entry.translated_addr, entry.perm);
758 break;
759 case SMMU_TRANS_DISABLE:
760 entry.perm = flag;
761 entry.addr_mask = ~TARGET_PAGE_MASK;
762 trace_smmuv3_translate_disable(mr->parent_obj.name, sid, addr,
763 entry.perm);
764 break;
765 case SMMU_TRANS_BYPASS:
766 entry.perm = flag;
767 entry.addr_mask = ~TARGET_PAGE_MASK;
768 trace_smmuv3_translate_bypass(mr->parent_obj.name, sid, addr,
769 entry.perm);
770 break;
771 case SMMU_TRANS_ABORT:
772 /* no event is recorded on abort */
773 trace_smmuv3_translate_abort(mr->parent_obj.name, sid, addr,
774 entry.perm);
775 break;
776 case SMMU_TRANS_ERROR:
777 qemu_log_mask(LOG_GUEST_ERROR,
778 "%s translation failed for iova=0x%"PRIx64"(%s)\n",
779 mr->parent_obj.name, addr, smmu_event_string(event.type));
780 smmuv3_record_event(s, &event);
781 break;
784 return entry;
788 * smmuv3_notify_iova - call the notifier @n for a given
789 * @asid and @iova tuple.
791 * @mr: IOMMU mr region handle
792 * @n: notifier to be called
793 * @asid: address space ID or negative value if we don't care
794 * @iova: iova
795 * @tg: translation granule (if communicated through range invalidation)
796 * @num_pages: number of @granule sized pages (if tg != 0), otherwise 1
798 static void smmuv3_notify_iova(IOMMUMemoryRegion *mr,
799 IOMMUNotifier *n,
800 int asid, dma_addr_t iova,
801 uint8_t tg, uint64_t num_pages)
803 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
804 IOMMUTLBEvent event;
805 uint8_t granule;
807 if (!tg) {
808 SMMUEventInfo event = {.inval_ste_allowed = true};
809 SMMUTransCfg *cfg = smmuv3_get_config(sdev, &event);
810 SMMUTransTableInfo *tt;
812 if (!cfg) {
813 return;
816 if (asid >= 0 && cfg->asid != asid) {
817 return;
820 tt = select_tt(cfg, iova);
821 if (!tt) {
822 return;
824 granule = tt->granule_sz;
825 } else {
826 granule = tg * 2 + 10;
829 event.type = IOMMU_NOTIFIER_UNMAP;
830 event.entry.target_as = &address_space_memory;
831 event.entry.iova = iova;
832 event.entry.addr_mask = num_pages * (1 << granule) - 1;
833 event.entry.perm = IOMMU_NONE;
835 memory_region_notify_iommu_one(n, &event);
838 /* invalidate an asid/iova range tuple in all mr's */
839 static void smmuv3_inv_notifiers_iova(SMMUState *s, int asid, dma_addr_t iova,
840 uint8_t tg, uint64_t num_pages)
842 SMMUDevice *sdev;
844 QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
845 IOMMUMemoryRegion *mr = &sdev->iommu;
846 IOMMUNotifier *n;
848 trace_smmuv3_inv_notifiers_iova(mr->parent_obj.name, asid, iova,
849 tg, num_pages);
851 IOMMU_NOTIFIER_FOREACH(n, mr) {
852 smmuv3_notify_iova(mr, n, asid, iova, tg, num_pages);
857 static void smmuv3_s1_range_inval(SMMUState *s, Cmd *cmd)
859 uint8_t scale = 0, num = 0, ttl = 0;
860 dma_addr_t addr = CMD_ADDR(cmd);
861 uint8_t type = CMD_TYPE(cmd);
862 uint16_t vmid = CMD_VMID(cmd);
863 bool leaf = CMD_LEAF(cmd);
864 uint8_t tg = CMD_TG(cmd);
865 uint64_t first_page = 0, last_page;
866 uint64_t num_pages = 1;
867 int asid = -1;
869 if (tg) {
870 scale = CMD_SCALE(cmd);
871 num = CMD_NUM(cmd);
872 ttl = CMD_TTL(cmd);
873 num_pages = (num + 1) * BIT_ULL(scale);
876 if (type == SMMU_CMD_TLBI_NH_VA) {
877 asid = CMD_ASID(cmd);
880 /* Split invalidations into ^2 range invalidations */
881 last_page = num_pages - 1;
882 while (num_pages) {
883 uint8_t granule = tg * 2 + 10;
884 uint64_t mask, count;
886 mask = dma_aligned_pow2_mask(first_page, last_page, 64 - granule);
887 count = mask + 1;
889 trace_smmuv3_s1_range_inval(vmid, asid, addr, tg, count, ttl, leaf);
890 smmuv3_inv_notifiers_iova(s, asid, addr, tg, count);
891 smmu_iotlb_inv_iova(s, asid, addr, tg, count, ttl);
893 num_pages -= count;
894 first_page += count;
895 addr += count * BIT_ULL(granule);
899 static gboolean
900 smmuv3_invalidate_ste(gpointer key, gpointer value, gpointer user_data)
902 SMMUDevice *sdev = (SMMUDevice *)key;
903 uint32_t sid = smmu_get_sid(sdev);
904 SMMUSIDRange *sid_range = (SMMUSIDRange *)user_data;
906 if (sid < sid_range->start || sid > sid_range->end) {
907 return false;
909 trace_smmuv3_config_cache_inv(sid);
910 return true;
913 static int smmuv3_cmdq_consume(SMMUv3State *s)
915 SMMUState *bs = ARM_SMMU(s);
916 SMMUCmdError cmd_error = SMMU_CERROR_NONE;
917 SMMUQueue *q = &s->cmdq;
918 SMMUCommandType type = 0;
920 if (!smmuv3_cmdq_enabled(s)) {
921 return 0;
924 * some commands depend on register values, typically CR0. In case those
925 * register values change while handling the command, spec says it
926 * is UNPREDICTABLE whether the command is interpreted under the new
927 * or old value.
930 while (!smmuv3_q_empty(q)) {
931 uint32_t pending = s->gerror ^ s->gerrorn;
932 Cmd cmd;
934 trace_smmuv3_cmdq_consume(Q_PROD(q), Q_CONS(q),
935 Q_PROD_WRAP(q), Q_CONS_WRAP(q));
937 if (FIELD_EX32(pending, GERROR, CMDQ_ERR)) {
938 break;
941 if (queue_read(q, &cmd) != MEMTX_OK) {
942 cmd_error = SMMU_CERROR_ABT;
943 break;
946 type = CMD_TYPE(&cmd);
948 trace_smmuv3_cmdq_opcode(smmu_cmd_string(type));
950 qemu_mutex_lock(&s->mutex);
951 switch (type) {
952 case SMMU_CMD_SYNC:
953 if (CMD_SYNC_CS(&cmd) & CMD_SYNC_SIG_IRQ) {
954 smmuv3_trigger_irq(s, SMMU_IRQ_CMD_SYNC, 0);
956 break;
957 case SMMU_CMD_PREFETCH_CONFIG:
958 case SMMU_CMD_PREFETCH_ADDR:
959 break;
960 case SMMU_CMD_CFGI_STE:
962 uint32_t sid = CMD_SID(&cmd);
963 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
964 SMMUDevice *sdev;
966 if (CMD_SSEC(&cmd)) {
967 cmd_error = SMMU_CERROR_ILL;
968 break;
971 if (!mr) {
972 break;
975 trace_smmuv3_cmdq_cfgi_ste(sid);
976 sdev = container_of(mr, SMMUDevice, iommu);
977 smmuv3_flush_config(sdev);
979 break;
981 case SMMU_CMD_CFGI_STE_RANGE: /* same as SMMU_CMD_CFGI_ALL */
983 uint32_t start = CMD_SID(&cmd);
984 uint8_t range = CMD_STE_RANGE(&cmd);
985 uint64_t end = start + (1ULL << (range + 1)) - 1;
986 SMMUSIDRange sid_range = {start, end};
988 if (CMD_SSEC(&cmd)) {
989 cmd_error = SMMU_CERROR_ILL;
990 break;
992 trace_smmuv3_cmdq_cfgi_ste_range(start, end);
993 g_hash_table_foreach_remove(bs->configs, smmuv3_invalidate_ste,
994 &sid_range);
995 break;
997 case SMMU_CMD_CFGI_CD:
998 case SMMU_CMD_CFGI_CD_ALL:
1000 uint32_t sid = CMD_SID(&cmd);
1001 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
1002 SMMUDevice *sdev;
1004 if (CMD_SSEC(&cmd)) {
1005 cmd_error = SMMU_CERROR_ILL;
1006 break;
1009 if (!mr) {
1010 break;
1013 trace_smmuv3_cmdq_cfgi_cd(sid);
1014 sdev = container_of(mr, SMMUDevice, iommu);
1015 smmuv3_flush_config(sdev);
1016 break;
1018 case SMMU_CMD_TLBI_NH_ASID:
1020 uint16_t asid = CMD_ASID(&cmd);
1022 trace_smmuv3_cmdq_tlbi_nh_asid(asid);
1023 smmu_inv_notifiers_all(&s->smmu_state);
1024 smmu_iotlb_inv_asid(bs, asid);
1025 break;
1027 case SMMU_CMD_TLBI_NH_ALL:
1028 case SMMU_CMD_TLBI_NSNH_ALL:
1029 trace_smmuv3_cmdq_tlbi_nh();
1030 smmu_inv_notifiers_all(&s->smmu_state);
1031 smmu_iotlb_inv_all(bs);
1032 break;
1033 case SMMU_CMD_TLBI_NH_VAA:
1034 case SMMU_CMD_TLBI_NH_VA:
1035 smmuv3_s1_range_inval(bs, &cmd);
1036 break;
1037 case SMMU_CMD_TLBI_EL3_ALL:
1038 case SMMU_CMD_TLBI_EL3_VA:
1039 case SMMU_CMD_TLBI_EL2_ALL:
1040 case SMMU_CMD_TLBI_EL2_ASID:
1041 case SMMU_CMD_TLBI_EL2_VA:
1042 case SMMU_CMD_TLBI_EL2_VAA:
1043 case SMMU_CMD_TLBI_S12_VMALL:
1044 case SMMU_CMD_TLBI_S2_IPA:
1045 case SMMU_CMD_ATC_INV:
1046 case SMMU_CMD_PRI_RESP:
1047 case SMMU_CMD_RESUME:
1048 case SMMU_CMD_STALL_TERM:
1049 trace_smmuv3_unhandled_cmd(type);
1050 break;
1051 default:
1052 cmd_error = SMMU_CERROR_ILL;
1053 qemu_log_mask(LOG_GUEST_ERROR,
1054 "Illegal command type: %d\n", CMD_TYPE(&cmd));
1055 break;
1057 qemu_mutex_unlock(&s->mutex);
1058 if (cmd_error) {
1059 break;
1062 * We only increment the cons index after the completion of
1063 * the command. We do that because the SYNC returns immediately
1064 * and does not check the completion of previous commands
1066 queue_cons_incr(q);
1069 if (cmd_error) {
1070 trace_smmuv3_cmdq_consume_error(smmu_cmd_string(type), cmd_error);
1071 smmu_write_cmdq_err(s, cmd_error);
1072 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_CMDQ_ERR_MASK);
1075 trace_smmuv3_cmdq_consume_out(Q_PROD(q), Q_CONS(q),
1076 Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1078 return 0;
1081 static MemTxResult smmu_writell(SMMUv3State *s, hwaddr offset,
1082 uint64_t data, MemTxAttrs attrs)
1084 switch (offset) {
1085 case A_GERROR_IRQ_CFG0:
1086 s->gerror_irq_cfg0 = data;
1087 return MEMTX_OK;
1088 case A_STRTAB_BASE:
1089 s->strtab_base = data;
1090 return MEMTX_OK;
1091 case A_CMDQ_BASE:
1092 s->cmdq.base = data;
1093 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1094 if (s->cmdq.log2size > SMMU_CMDQS) {
1095 s->cmdq.log2size = SMMU_CMDQS;
1097 return MEMTX_OK;
1098 case A_EVENTQ_BASE:
1099 s->eventq.base = data;
1100 s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1101 if (s->eventq.log2size > SMMU_EVENTQS) {
1102 s->eventq.log2size = SMMU_EVENTQS;
1104 return MEMTX_OK;
1105 case A_EVENTQ_IRQ_CFG0:
1106 s->eventq_irq_cfg0 = data;
1107 return MEMTX_OK;
1108 default:
1109 qemu_log_mask(LOG_UNIMP,
1110 "%s Unexpected 64-bit access to 0x%"PRIx64" (WI)\n",
1111 __func__, offset);
1112 return MEMTX_OK;
1116 static MemTxResult smmu_writel(SMMUv3State *s, hwaddr offset,
1117 uint64_t data, MemTxAttrs attrs)
1119 switch (offset) {
1120 case A_CR0:
1121 s->cr[0] = data;
1122 s->cr0ack = data & ~SMMU_CR0_RESERVED;
1123 /* in case the command queue has been enabled */
1124 smmuv3_cmdq_consume(s);
1125 return MEMTX_OK;
1126 case A_CR1:
1127 s->cr[1] = data;
1128 return MEMTX_OK;
1129 case A_CR2:
1130 s->cr[2] = data;
1131 return MEMTX_OK;
1132 case A_IRQ_CTRL:
1133 s->irq_ctrl = data;
1134 return MEMTX_OK;
1135 case A_GERRORN:
1136 smmuv3_write_gerrorn(s, data);
1138 * By acknowledging the CMDQ_ERR, SW may notify cmds can
1139 * be processed again
1141 smmuv3_cmdq_consume(s);
1142 return MEMTX_OK;
1143 case A_GERROR_IRQ_CFG0: /* 64b */
1144 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 0, 32, data);
1145 return MEMTX_OK;
1146 case A_GERROR_IRQ_CFG0 + 4:
1147 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 32, 32, data);
1148 return MEMTX_OK;
1149 case A_GERROR_IRQ_CFG1:
1150 s->gerror_irq_cfg1 = data;
1151 return MEMTX_OK;
1152 case A_GERROR_IRQ_CFG2:
1153 s->gerror_irq_cfg2 = data;
1154 return MEMTX_OK;
1155 case A_STRTAB_BASE: /* 64b */
1156 s->strtab_base = deposit64(s->strtab_base, 0, 32, data);
1157 return MEMTX_OK;
1158 case A_STRTAB_BASE + 4:
1159 s->strtab_base = deposit64(s->strtab_base, 32, 32, data);
1160 return MEMTX_OK;
1161 case A_STRTAB_BASE_CFG:
1162 s->strtab_base_cfg = data;
1163 if (FIELD_EX32(data, STRTAB_BASE_CFG, FMT) == 1) {
1164 s->sid_split = FIELD_EX32(data, STRTAB_BASE_CFG, SPLIT);
1165 s->features |= SMMU_FEATURE_2LVL_STE;
1167 return MEMTX_OK;
1168 case A_CMDQ_BASE: /* 64b */
1169 s->cmdq.base = deposit64(s->cmdq.base, 0, 32, data);
1170 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1171 if (s->cmdq.log2size > SMMU_CMDQS) {
1172 s->cmdq.log2size = SMMU_CMDQS;
1174 return MEMTX_OK;
1175 case A_CMDQ_BASE + 4: /* 64b */
1176 s->cmdq.base = deposit64(s->cmdq.base, 32, 32, data);
1177 return MEMTX_OK;
1178 case A_CMDQ_PROD:
1179 s->cmdq.prod = data;
1180 smmuv3_cmdq_consume(s);
1181 return MEMTX_OK;
1182 case A_CMDQ_CONS:
1183 s->cmdq.cons = data;
1184 return MEMTX_OK;
1185 case A_EVENTQ_BASE: /* 64b */
1186 s->eventq.base = deposit64(s->eventq.base, 0, 32, data);
1187 s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1188 if (s->eventq.log2size > SMMU_EVENTQS) {
1189 s->eventq.log2size = SMMU_EVENTQS;
1191 return MEMTX_OK;
1192 case A_EVENTQ_BASE + 4:
1193 s->eventq.base = deposit64(s->eventq.base, 32, 32, data);
1194 return MEMTX_OK;
1195 case A_EVENTQ_PROD:
1196 s->eventq.prod = data;
1197 return MEMTX_OK;
1198 case A_EVENTQ_CONS:
1199 s->eventq.cons = data;
1200 return MEMTX_OK;
1201 case A_EVENTQ_IRQ_CFG0: /* 64b */
1202 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 0, 32, data);
1203 return MEMTX_OK;
1204 case A_EVENTQ_IRQ_CFG0 + 4:
1205 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 32, 32, data);
1206 return MEMTX_OK;
1207 case A_EVENTQ_IRQ_CFG1:
1208 s->eventq_irq_cfg1 = data;
1209 return MEMTX_OK;
1210 case A_EVENTQ_IRQ_CFG2:
1211 s->eventq_irq_cfg2 = data;
1212 return MEMTX_OK;
1213 default:
1214 qemu_log_mask(LOG_UNIMP,
1215 "%s Unexpected 32-bit access to 0x%"PRIx64" (WI)\n",
1216 __func__, offset);
1217 return MEMTX_OK;
1221 static MemTxResult smmu_write_mmio(void *opaque, hwaddr offset, uint64_t data,
1222 unsigned size, MemTxAttrs attrs)
1224 SMMUState *sys = opaque;
1225 SMMUv3State *s = ARM_SMMUV3(sys);
1226 MemTxResult r;
1228 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1229 offset &= ~0x10000;
1231 switch (size) {
1232 case 8:
1233 r = smmu_writell(s, offset, data, attrs);
1234 break;
1235 case 4:
1236 r = smmu_writel(s, offset, data, attrs);
1237 break;
1238 default:
1239 r = MEMTX_ERROR;
1240 break;
1243 trace_smmuv3_write_mmio(offset, data, size, r);
1244 return r;
1247 static MemTxResult smmu_readll(SMMUv3State *s, hwaddr offset,
1248 uint64_t *data, MemTxAttrs attrs)
1250 switch (offset) {
1251 case A_GERROR_IRQ_CFG0:
1252 *data = s->gerror_irq_cfg0;
1253 return MEMTX_OK;
1254 case A_STRTAB_BASE:
1255 *data = s->strtab_base;
1256 return MEMTX_OK;
1257 case A_CMDQ_BASE:
1258 *data = s->cmdq.base;
1259 return MEMTX_OK;
1260 case A_EVENTQ_BASE:
1261 *data = s->eventq.base;
1262 return MEMTX_OK;
1263 default:
1264 *data = 0;
1265 qemu_log_mask(LOG_UNIMP,
1266 "%s Unexpected 64-bit access to 0x%"PRIx64" (RAZ)\n",
1267 __func__, offset);
1268 return MEMTX_OK;
1272 static MemTxResult smmu_readl(SMMUv3State *s, hwaddr offset,
1273 uint64_t *data, MemTxAttrs attrs)
1275 switch (offset) {
1276 case A_IDREGS ... A_IDREGS + 0x2f:
1277 *data = smmuv3_idreg(offset - A_IDREGS);
1278 return MEMTX_OK;
1279 case A_IDR0 ... A_IDR5:
1280 *data = s->idr[(offset - A_IDR0) / 4];
1281 return MEMTX_OK;
1282 case A_IIDR:
1283 *data = s->iidr;
1284 return MEMTX_OK;
1285 case A_AIDR:
1286 *data = s->aidr;
1287 return MEMTX_OK;
1288 case A_CR0:
1289 *data = s->cr[0];
1290 return MEMTX_OK;
1291 case A_CR0ACK:
1292 *data = s->cr0ack;
1293 return MEMTX_OK;
1294 case A_CR1:
1295 *data = s->cr[1];
1296 return MEMTX_OK;
1297 case A_CR2:
1298 *data = s->cr[2];
1299 return MEMTX_OK;
1300 case A_STATUSR:
1301 *data = s->statusr;
1302 return MEMTX_OK;
1303 case A_IRQ_CTRL:
1304 case A_IRQ_CTRL_ACK:
1305 *data = s->irq_ctrl;
1306 return MEMTX_OK;
1307 case A_GERROR:
1308 *data = s->gerror;
1309 return MEMTX_OK;
1310 case A_GERRORN:
1311 *data = s->gerrorn;
1312 return MEMTX_OK;
1313 case A_GERROR_IRQ_CFG0: /* 64b */
1314 *data = extract64(s->gerror_irq_cfg0, 0, 32);
1315 return MEMTX_OK;
1316 case A_GERROR_IRQ_CFG0 + 4:
1317 *data = extract64(s->gerror_irq_cfg0, 32, 32);
1318 return MEMTX_OK;
1319 case A_GERROR_IRQ_CFG1:
1320 *data = s->gerror_irq_cfg1;
1321 return MEMTX_OK;
1322 case A_GERROR_IRQ_CFG2:
1323 *data = s->gerror_irq_cfg2;
1324 return MEMTX_OK;
1325 case A_STRTAB_BASE: /* 64b */
1326 *data = extract64(s->strtab_base, 0, 32);
1327 return MEMTX_OK;
1328 case A_STRTAB_BASE + 4: /* 64b */
1329 *data = extract64(s->strtab_base, 32, 32);
1330 return MEMTX_OK;
1331 case A_STRTAB_BASE_CFG:
1332 *data = s->strtab_base_cfg;
1333 return MEMTX_OK;
1334 case A_CMDQ_BASE: /* 64b */
1335 *data = extract64(s->cmdq.base, 0, 32);
1336 return MEMTX_OK;
1337 case A_CMDQ_BASE + 4:
1338 *data = extract64(s->cmdq.base, 32, 32);
1339 return MEMTX_OK;
1340 case A_CMDQ_PROD:
1341 *data = s->cmdq.prod;
1342 return MEMTX_OK;
1343 case A_CMDQ_CONS:
1344 *data = s->cmdq.cons;
1345 return MEMTX_OK;
1346 case A_EVENTQ_BASE: /* 64b */
1347 *data = extract64(s->eventq.base, 0, 32);
1348 return MEMTX_OK;
1349 case A_EVENTQ_BASE + 4: /* 64b */
1350 *data = extract64(s->eventq.base, 32, 32);
1351 return MEMTX_OK;
1352 case A_EVENTQ_PROD:
1353 *data = s->eventq.prod;
1354 return MEMTX_OK;
1355 case A_EVENTQ_CONS:
1356 *data = s->eventq.cons;
1357 return MEMTX_OK;
1358 default:
1359 *data = 0;
1360 qemu_log_mask(LOG_UNIMP,
1361 "%s unhandled 32-bit access at 0x%"PRIx64" (RAZ)\n",
1362 __func__, offset);
1363 return MEMTX_OK;
1367 static MemTxResult smmu_read_mmio(void *opaque, hwaddr offset, uint64_t *data,
1368 unsigned size, MemTxAttrs attrs)
1370 SMMUState *sys = opaque;
1371 SMMUv3State *s = ARM_SMMUV3(sys);
1372 MemTxResult r;
1374 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1375 offset &= ~0x10000;
1377 switch (size) {
1378 case 8:
1379 r = smmu_readll(s, offset, data, attrs);
1380 break;
1381 case 4:
1382 r = smmu_readl(s, offset, data, attrs);
1383 break;
1384 default:
1385 r = MEMTX_ERROR;
1386 break;
1389 trace_smmuv3_read_mmio(offset, *data, size, r);
1390 return r;
1393 static const MemoryRegionOps smmu_mem_ops = {
1394 .read_with_attrs = smmu_read_mmio,
1395 .write_with_attrs = smmu_write_mmio,
1396 .endianness = DEVICE_LITTLE_ENDIAN,
1397 .valid = {
1398 .min_access_size = 4,
1399 .max_access_size = 8,
1401 .impl = {
1402 .min_access_size = 4,
1403 .max_access_size = 8,
1407 static void smmu_init_irq(SMMUv3State *s, SysBusDevice *dev)
1409 int i;
1411 for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
1412 sysbus_init_irq(dev, &s->irq[i]);
1416 static void smmu_reset(DeviceState *dev)
1418 SMMUv3State *s = ARM_SMMUV3(dev);
1419 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1421 c->parent_reset(dev);
1423 smmuv3_init_regs(s);
1426 static void smmu_realize(DeviceState *d, Error **errp)
1428 SMMUState *sys = ARM_SMMU(d);
1429 SMMUv3State *s = ARM_SMMUV3(sys);
1430 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1431 SysBusDevice *dev = SYS_BUS_DEVICE(d);
1432 Error *local_err = NULL;
1434 c->parent_realize(d, &local_err);
1435 if (local_err) {
1436 error_propagate(errp, local_err);
1437 return;
1440 qemu_mutex_init(&s->mutex);
1442 memory_region_init_io(&sys->iomem, OBJECT(s),
1443 &smmu_mem_ops, sys, TYPE_ARM_SMMUV3, 0x20000);
1445 sys->mrtypename = TYPE_SMMUV3_IOMMU_MEMORY_REGION;
1447 sysbus_init_mmio(dev, &sys->iomem);
1449 smmu_init_irq(s, dev);
1452 static const VMStateDescription vmstate_smmuv3_queue = {
1453 .name = "smmuv3_queue",
1454 .version_id = 1,
1455 .minimum_version_id = 1,
1456 .fields = (VMStateField[]) {
1457 VMSTATE_UINT64(base, SMMUQueue),
1458 VMSTATE_UINT32(prod, SMMUQueue),
1459 VMSTATE_UINT32(cons, SMMUQueue),
1460 VMSTATE_UINT8(log2size, SMMUQueue),
1461 VMSTATE_END_OF_LIST(),
1465 static const VMStateDescription vmstate_smmuv3 = {
1466 .name = "smmuv3",
1467 .version_id = 1,
1468 .minimum_version_id = 1,
1469 .priority = MIG_PRI_IOMMU,
1470 .fields = (VMStateField[]) {
1471 VMSTATE_UINT32(features, SMMUv3State),
1472 VMSTATE_UINT8(sid_size, SMMUv3State),
1473 VMSTATE_UINT8(sid_split, SMMUv3State),
1475 VMSTATE_UINT32_ARRAY(cr, SMMUv3State, 3),
1476 VMSTATE_UINT32(cr0ack, SMMUv3State),
1477 VMSTATE_UINT32(statusr, SMMUv3State),
1478 VMSTATE_UINT32(irq_ctrl, SMMUv3State),
1479 VMSTATE_UINT32(gerror, SMMUv3State),
1480 VMSTATE_UINT32(gerrorn, SMMUv3State),
1481 VMSTATE_UINT64(gerror_irq_cfg0, SMMUv3State),
1482 VMSTATE_UINT32(gerror_irq_cfg1, SMMUv3State),
1483 VMSTATE_UINT32(gerror_irq_cfg2, SMMUv3State),
1484 VMSTATE_UINT64(strtab_base, SMMUv3State),
1485 VMSTATE_UINT32(strtab_base_cfg, SMMUv3State),
1486 VMSTATE_UINT64(eventq_irq_cfg0, SMMUv3State),
1487 VMSTATE_UINT32(eventq_irq_cfg1, SMMUv3State),
1488 VMSTATE_UINT32(eventq_irq_cfg2, SMMUv3State),
1490 VMSTATE_STRUCT(cmdq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1491 VMSTATE_STRUCT(eventq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1493 VMSTATE_END_OF_LIST(),
1497 static void smmuv3_instance_init(Object *obj)
1499 /* Nothing much to do here as of now */
1502 static void smmuv3_class_init(ObjectClass *klass, void *data)
1504 DeviceClass *dc = DEVICE_CLASS(klass);
1505 SMMUv3Class *c = ARM_SMMUV3_CLASS(klass);
1507 dc->vmsd = &vmstate_smmuv3;
1508 device_class_set_parent_reset(dc, smmu_reset, &c->parent_reset);
1509 c->parent_realize = dc->realize;
1510 dc->realize = smmu_realize;
1513 static int smmuv3_notify_flag_changed(IOMMUMemoryRegion *iommu,
1514 IOMMUNotifierFlag old,
1515 IOMMUNotifierFlag new,
1516 Error **errp)
1518 SMMUDevice *sdev = container_of(iommu, SMMUDevice, iommu);
1519 SMMUv3State *s3 = sdev->smmu;
1520 SMMUState *s = &(s3->smmu_state);
1522 if (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
1523 error_setg(errp, "SMMUv3 does not support dev-iotlb yet");
1524 return -EINVAL;
1527 if (new & IOMMU_NOTIFIER_MAP) {
1528 error_setg(errp,
1529 "device %02x.%02x.%x requires iommu MAP notifier which is "
1530 "not currently supported", pci_bus_num(sdev->bus),
1531 PCI_SLOT(sdev->devfn), PCI_FUNC(sdev->devfn));
1532 return -EINVAL;
1535 if (old == IOMMU_NOTIFIER_NONE) {
1536 trace_smmuv3_notify_flag_add(iommu->parent_obj.name);
1537 QLIST_INSERT_HEAD(&s->devices_with_notifiers, sdev, next);
1538 } else if (new == IOMMU_NOTIFIER_NONE) {
1539 trace_smmuv3_notify_flag_del(iommu->parent_obj.name);
1540 QLIST_REMOVE(sdev, next);
1542 return 0;
1545 static void smmuv3_iommu_memory_region_class_init(ObjectClass *klass,
1546 void *data)
1548 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1550 imrc->translate = smmuv3_translate;
1551 imrc->notify_flag_changed = smmuv3_notify_flag_changed;
1554 static const TypeInfo smmuv3_type_info = {
1555 .name = TYPE_ARM_SMMUV3,
1556 .parent = TYPE_ARM_SMMU,
1557 .instance_size = sizeof(SMMUv3State),
1558 .instance_init = smmuv3_instance_init,
1559 .class_size = sizeof(SMMUv3Class),
1560 .class_init = smmuv3_class_init,
1563 static const TypeInfo smmuv3_iommu_memory_region_info = {
1564 .parent = TYPE_IOMMU_MEMORY_REGION,
1565 .name = TYPE_SMMUV3_IOMMU_MEMORY_REGION,
1566 .class_init = smmuv3_iommu_memory_region_class_init,
1569 static void smmuv3_register_types(void)
1571 type_register(&smmuv3_type_info);
1572 type_register(&smmuv3_iommu_memory_region_info);
1575 type_init(smmuv3_register_types)