2 * ARM implementation of KVM hooks, 32 bit specific code.
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu-common.h"
18 #include "qemu/timer.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
22 #include "internals.h"
23 #include "hw/arm/arm.h"
26 static inline void set_feature(uint64_t *features
, int feature
)
28 *features
|= 1ULL << feature
;
31 static int read_sys_reg32(int fd
, uint32_t *pret
, uint64_t id
)
33 struct kvm_one_reg idreg
= { .id
= id
, .addr
= (uintptr_t)pret
};
35 assert((id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U32
);
36 return ioctl(fd
, KVM_GET_ONE_REG
, &idreg
);
39 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures
*ahcf
)
41 /* Identify the feature bits corresponding to the host CPU, and
42 * fill out the ARMHostCPUClass fields accordingly. To do this
43 * we have to create a scratch VM, create a single CPU inside it,
44 * and then query that CPU for the relevant ID registers.
46 int err
= 0, fdarray
[3];
47 uint32_t midr
, id_pfr0
;
48 uint64_t features
= 0;
50 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
51 * we know these will only support creating one kind of guest CPU,
52 * which is its preferred CPU type.
54 static const uint32_t cpus_to_try
[] = {
55 QEMU_KVM_ARM_TARGET_CORTEX_A15
,
56 QEMU_KVM_ARM_TARGET_NONE
58 struct kvm_vcpu_init init
;
60 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try
, fdarray
, &init
)) {
64 ahcf
->target
= init
.target
;
66 /* This is not strictly blessed by the device tree binding docs yet,
67 * but in practice the kernel does not care about this string so
68 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
70 ahcf
->dtb_compatible
= "arm,arm-v7";
72 err
|= read_sys_reg32(fdarray
[2], &midr
, ARM_CP15_REG32(0, 0, 0, 0));
73 err
|= read_sys_reg32(fdarray
[2], &id_pfr0
, ARM_CP15_REG32(0, 0, 1, 0));
75 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar0
,
76 ARM_CP15_REG32(0, 0, 2, 0));
77 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar1
,
78 ARM_CP15_REG32(0, 0, 2, 1));
79 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar2
,
80 ARM_CP15_REG32(0, 0, 2, 2));
81 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar3
,
82 ARM_CP15_REG32(0, 0, 2, 3));
83 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar4
,
84 ARM_CP15_REG32(0, 0, 2, 4));
85 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar5
,
86 ARM_CP15_REG32(0, 0, 2, 5));
87 if (read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar6
,
88 ARM_CP15_REG32(0, 0, 2, 7))) {
90 * Older kernels don't support reading ID_ISAR6. This register was
91 * only introduced in ARMv8, so we can assume that it is zero on a
92 * CPU that a kernel this old is running on.
94 ahcf
->isar
.id_isar6
= 0;
97 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr0
,
98 KVM_REG_ARM
| KVM_REG_SIZE_U32
|
99 KVM_REG_ARM_VFP
| KVM_REG_ARM_VFP_MVFR0
);
100 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr1
,
101 KVM_REG_ARM
| KVM_REG_SIZE_U32
|
102 KVM_REG_ARM_VFP
| KVM_REG_ARM_VFP_MVFR1
);
104 * FIXME: There is not yet a way to read MVFR2.
105 * Fortunately there is not yet anything in there that affects migration.
108 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
114 /* Now we've retrieved all the register information we can
115 * set the feature bits based on the ID register fields.
116 * We can assume any KVM supporting CPU is at least a v7
117 * with VFPv3, virtualization extensions, and the generic
118 * timers; this in turn implies most of the other feature
119 * bits, but a few must be tested.
121 set_feature(&features
, ARM_FEATURE_V7VE
);
122 set_feature(&features
, ARM_FEATURE_VFP3
);
123 set_feature(&features
, ARM_FEATURE_GENERIC_TIMER
);
125 if (extract32(id_pfr0
, 12, 4) == 1) {
126 set_feature(&features
, ARM_FEATURE_THUMB2EE
);
128 if (extract32(ahcf
->isar
.mvfr1
, 20, 4) == 1) {
129 set_feature(&features
, ARM_FEATURE_VFP_FP16
);
131 if (extract32(ahcf
->isar
.mvfr1
, 12, 4) == 1) {
132 set_feature(&features
, ARM_FEATURE_NEON
);
134 if (extract32(ahcf
->isar
.mvfr1
, 28, 4) == 1) {
135 /* FMAC support implies VFPv4 */
136 set_feature(&features
, ARM_FEATURE_VFP4
);
139 ahcf
->features
= features
;
144 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx
)
146 /* Return true if the regidx is a register we should synchronize
147 * via the cpreg_tuples array (ie is not a core reg we sync by
148 * hand in kvm_arch_get/put_registers())
150 switch (regidx
& KVM_REG_ARM_COPROC_MASK
) {
151 case KVM_REG_ARM_CORE
:
152 case KVM_REG_ARM_VFP
:
159 typedef struct CPRegStateLevel
{
164 /* All coprocessor registers not listed in the following table are assumed to
165 * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
166 * often, you must add it to this table with a state of either
167 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
169 static const CPRegStateLevel non_runtime_cpregs
[] = {
170 { KVM_REG_ARM_TIMER_CNT
, KVM_PUT_FULL_STATE
},
173 int kvm_arm_cpreg_level(uint64_t regidx
)
177 for (i
= 0; i
< ARRAY_SIZE(non_runtime_cpregs
); i
++) {
178 const CPRegStateLevel
*l
= &non_runtime_cpregs
[i
];
179 if (l
->regidx
== regidx
) {
184 return KVM_PUT_RUNTIME_STATE
;
187 #define ARM_CPU_ID_MPIDR 0, 0, 0, 5
189 int kvm_arch_init_vcpu(CPUState
*cs
)
194 struct kvm_one_reg r
;
195 ARMCPU
*cpu
= ARM_CPU(cs
);
197 if (cpu
->kvm_target
== QEMU_KVM_ARM_TARGET_NONE
) {
198 fprintf(stderr
, "KVM is not supported for this guest CPU type\n");
202 /* Determine init features for this CPU */
203 memset(cpu
->kvm_init_features
, 0, sizeof(cpu
->kvm_init_features
));
204 if (cpu
->start_powered_off
) {
205 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_POWER_OFF
;
207 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_ARM_PSCI_0_2
)) {
208 cpu
->psci_version
= 2;
209 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2
;
212 /* Do KVM_ARM_VCPU_INIT ioctl */
213 ret
= kvm_arm_vcpu_init(cs
);
218 /* Query the kernel to make sure it supports 32 VFP
219 * registers: QEMU's "cortex-a15" CPU is always a
220 * VFP-D32 core. The simplest way to do this is just
221 * to attempt to read register d31.
223 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
| 31;
224 r
.addr
= (uintptr_t)(&v
);
225 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
226 if (ret
== -ENOENT
) {
231 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
232 * Currently KVM has its own idea about MPIDR assignment, so we
233 * override our defaults with what we get from KVM.
235 ret
= kvm_get_one_reg(cs
, ARM_CP15_REG32(ARM_CPU_ID_MPIDR
), &mpidr
);
239 cpu
->mp_affinity
= mpidr
& ARM32_AFFINITY_MASK
;
241 /* Check whether userspace can specify guest syndrome value */
242 kvm_arm_init_serror_injection(cs
);
244 return kvm_arm_init_cpreg_list(cpu
);
252 #define COREREG(KERNELNAME, QEMUFIELD) \
254 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
255 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
256 offsetof(CPUARMState, QEMUFIELD) \
259 #define VFPSYSREG(R) \
261 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
262 KVM_REG_ARM_VFP_##R, \
263 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
266 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
267 #define COREREG64(KERNELNAME, QEMUFIELD) \
269 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
270 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
271 offsetoflow32(CPUARMState, QEMUFIELD) \
274 static const Reg regs
[] = {
275 /* R0_usr .. R14_usr */
276 COREREG(usr_regs
.uregs
[0], regs
[0]),
277 COREREG(usr_regs
.uregs
[1], regs
[1]),
278 COREREG(usr_regs
.uregs
[2], regs
[2]),
279 COREREG(usr_regs
.uregs
[3], regs
[3]),
280 COREREG(usr_regs
.uregs
[4], regs
[4]),
281 COREREG(usr_regs
.uregs
[5], regs
[5]),
282 COREREG(usr_regs
.uregs
[6], regs
[6]),
283 COREREG(usr_regs
.uregs
[7], regs
[7]),
284 COREREG(usr_regs
.uregs
[8], usr_regs
[0]),
285 COREREG(usr_regs
.uregs
[9], usr_regs
[1]),
286 COREREG(usr_regs
.uregs
[10], usr_regs
[2]),
287 COREREG(usr_regs
.uregs
[11], usr_regs
[3]),
288 COREREG(usr_regs
.uregs
[12], usr_regs
[4]),
289 COREREG(usr_regs
.uregs
[13], banked_r13
[BANK_USRSYS
]),
290 COREREG(usr_regs
.uregs
[14], banked_r14
[BANK_USRSYS
]),
291 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
292 COREREG(svc_regs
[0], banked_r13
[BANK_SVC
]),
293 COREREG(svc_regs
[1], banked_r14
[BANK_SVC
]),
294 COREREG64(svc_regs
[2], banked_spsr
[BANK_SVC
]),
295 COREREG(abt_regs
[0], banked_r13
[BANK_ABT
]),
296 COREREG(abt_regs
[1], banked_r14
[BANK_ABT
]),
297 COREREG64(abt_regs
[2], banked_spsr
[BANK_ABT
]),
298 COREREG(und_regs
[0], banked_r13
[BANK_UND
]),
299 COREREG(und_regs
[1], banked_r14
[BANK_UND
]),
300 COREREG64(und_regs
[2], banked_spsr
[BANK_UND
]),
301 COREREG(irq_regs
[0], banked_r13
[BANK_IRQ
]),
302 COREREG(irq_regs
[1], banked_r14
[BANK_IRQ
]),
303 COREREG64(irq_regs
[2], banked_spsr
[BANK_IRQ
]),
304 /* R8_fiq .. R14_fiq and SPSR_fiq */
305 COREREG(fiq_regs
[0], fiq_regs
[0]),
306 COREREG(fiq_regs
[1], fiq_regs
[1]),
307 COREREG(fiq_regs
[2], fiq_regs
[2]),
308 COREREG(fiq_regs
[3], fiq_regs
[3]),
309 COREREG(fiq_regs
[4], fiq_regs
[4]),
310 COREREG(fiq_regs
[5], banked_r13
[BANK_FIQ
]),
311 COREREG(fiq_regs
[6], banked_r14
[BANK_FIQ
]),
312 COREREG64(fiq_regs
[7], banked_spsr
[BANK_FIQ
]),
314 COREREG(usr_regs
.uregs
[15], regs
[15]),
315 /* VFP system registers */
324 int kvm_arch_put_registers(CPUState
*cs
, int level
)
326 ARMCPU
*cpu
= ARM_CPU(cs
);
327 CPUARMState
*env
= &cpu
->env
;
328 struct kvm_one_reg r
;
331 uint32_t cpsr
, fpscr
;
333 /* Make sure the banked regs are properly set */
334 mode
= env
->uncached_cpsr
& CPSR_M
;
335 bn
= bank_number(mode
);
336 if (mode
== ARM_CPU_MODE_FIQ
) {
337 memcpy(env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
339 memcpy(env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
341 env
->banked_r13
[bn
] = env
->regs
[13];
342 env
->banked_spsr
[bn
] = env
->spsr
;
343 env
->banked_r14
[r14_bank_number(mode
)] = env
->regs
[14];
345 /* Now we can safely copy stuff down to the kernel */
346 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
348 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
349 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
355 /* Special cases which aren't a single CPUARMState field */
356 cpsr
= cpsr_read(env
);
357 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
358 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
359 r
.addr
= (uintptr_t)(&cpsr
);
360 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
366 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
367 for (i
= 0; i
< 32; i
++) {
368 r
.addr
= (uintptr_t)aa32_vfp_dreg(env
, i
);
369 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
376 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
377 KVM_REG_ARM_VFP_FPSCR
;
378 fpscr
= vfp_get_fpscr(env
);
379 r
.addr
= (uintptr_t)&fpscr
;
380 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
385 ret
= kvm_put_vcpu_events(cpu
);
390 /* Note that we do not call write_cpustate_to_list()
391 * here, so we are only writing the tuple list back to
392 * KVM. This is safe because nothing can change the
393 * CPUARMState cp15 fields (in particular gdb accesses cannot)
394 * and so there are no changes to sync. In fact syncing would
395 * be wrong at this point: for a constant register where TCG and
396 * KVM disagree about its value, the preceding write_list_to_cpustate()
397 * would not have had any effect on the CPUARMState value (since the
398 * register is read-only), and a write_cpustate_to_list() here would
399 * then try to write the TCG value back into KVM -- this would either
400 * fail or incorrectly change the value the guest sees.
402 * If we ever want to allow the user to modify cp15 registers via
403 * the gdb stub, we would need to be more clever here (for instance
404 * tracking the set of registers kvm_arch_get_registers() successfully
405 * managed to update the CPUARMState with, and only allowing those
406 * to be written back up into the kernel).
408 if (!write_list_to_kvmstate(cpu
, level
)) {
412 kvm_arm_sync_mpstate_to_kvm(cpu
);
417 int kvm_arch_get_registers(CPUState
*cs
)
419 ARMCPU
*cpu
= ARM_CPU(cs
);
420 CPUARMState
*env
= &cpu
->env
;
421 struct kvm_one_reg r
;
424 uint32_t cpsr
, fpscr
;
426 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
428 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
429 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
435 /* Special cases which aren't a single CPUARMState field */
436 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
437 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
438 r
.addr
= (uintptr_t)(&cpsr
);
439 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
443 cpsr_write(env
, cpsr
, 0xffffffff, CPSRWriteRaw
);
445 /* Make sure the current mode regs are properly set */
446 mode
= env
->uncached_cpsr
& CPSR_M
;
447 bn
= bank_number(mode
);
448 if (mode
== ARM_CPU_MODE_FIQ
) {
449 memcpy(env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
451 memcpy(env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
453 env
->regs
[13] = env
->banked_r13
[bn
];
454 env
->spsr
= env
->banked_spsr
[bn
];
455 env
->regs
[14] = env
->banked_r14
[r14_bank_number(mode
)];
458 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
459 for (i
= 0; i
< 32; i
++) {
460 r
.addr
= (uintptr_t)aa32_vfp_dreg(env
, i
);
461 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
468 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
469 KVM_REG_ARM_VFP_FPSCR
;
470 r
.addr
= (uintptr_t)&fpscr
;
471 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
475 vfp_set_fpscr(env
, fpscr
);
477 ret
= kvm_get_vcpu_events(cpu
);
482 if (!write_kvmstate_to_list(cpu
)) {
485 /* Note that it's OK to have registers which aren't in CPUState,
486 * so we can ignore a failure return here.
488 write_list_to_cpustate(cpu
);
490 kvm_arm_sync_mpstate_to_qemu(cpu
);
495 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
497 qemu_log_mask(LOG_UNIMP
, "%s: guest debug not yet implemented\n", __func__
);
501 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
503 qemu_log_mask(LOG_UNIMP
, "%s: guest debug not yet implemented\n", __func__
);
507 bool kvm_arm_handle_debug(CPUState
*cs
, struct kvm_debug_exit_arch
*debug_exit
)
509 qemu_log_mask(LOG_UNIMP
, "%s: guest debug not yet implemented\n", __func__
);
513 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
514 target_ulong len
, int type
)
516 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
520 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
521 target_ulong len
, int type
)
523 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
527 void kvm_arch_remove_all_hw_breakpoints(void)
529 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
532 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch
*ptr
)
534 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
537 bool kvm_arm_hw_debug_active(CPUState
*cs
)
542 void kvm_arm_pmu_set_irq(CPUState
*cs
, int irq
)
544 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
547 void kvm_arm_pmu_init(CPUState
*cs
)
549 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);