2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/bitops.h"
28 #include "qemu/datadir.h"
30 #include "hw/southbridge/piix.h"
31 #include "hw/isa/superio.h"
32 #include "hw/char/serial.h"
34 #include "hw/boards.h"
35 #include "hw/i2c/smbus_eeprom.h"
36 #include "hw/block/flash.h"
37 #include "hw/mips/mips.h"
38 #include "hw/mips/cpudevs.h"
39 #include "hw/pci/pci.h"
41 #include "hw/mips/bios.h"
44 #include "hw/loader.h"
46 #include "qom/object.h"
47 #include "hw/sysbus.h" /* SysBusDevice */
48 #include "qemu/host-utils.h"
49 #include "sysemu/qtest.h"
50 #include "sysemu/reset.h"
51 #include "sysemu/runstate.h"
52 #include "qapi/error.h"
53 #include "qemu/error-report.h"
54 #include "hw/misc/empty_slot.h"
55 #include "sysemu/kvm.h"
56 #include "semihosting/semihost.h"
57 #include "hw/mips/cps.h"
58 #include "hw/qdev-clock.h"
60 #define ENVP_PADDR 0x2000
61 #define ENVP_VADDR cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
62 #define ENVP_NB_ENTRIES 16
63 #define ENVP_ENTRY_SIZE 256
65 /* Hardware addresses */
66 #define FLASH_ADDRESS 0x1e000000ULL
67 #define FPGA_ADDRESS 0x1f000000ULL
68 #define RESET_ADDRESS 0x1fc00000ULL
70 #define FLASH_SIZE 0x400000
76 MemoryRegion iomem_lo
; /* 0 - 0x900 */
77 MemoryRegion iomem_hi
; /* 0xa00 - 0x100000 */
91 #define TYPE_MIPS_MALTA "mips-malta"
92 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState
, MIPS_MALTA
)
95 SysBusDevice parent_obj
;
101 static struct _loaderparams
{
102 int ram_size
, ram_low_size
;
103 const char *kernel_filename
;
104 const char *kernel_cmdline
;
105 const char *initrd_filename
;
109 static void malta_fpga_update_display(void *opaque
)
113 MaltaFPGAState
*s
= opaque
;
115 for (i
= 7 ; i
>= 0 ; i
--) {
116 if (s
->leds
& (1 << i
)) {
124 qemu_chr_fe_printf(&s
->display
, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
126 qemu_chr_fe_printf(&s
->display
, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
131 * EEPROM 24C01 / 24C02 emulation.
133 * Emulation for serial EEPROMs:
134 * 24C01 - 1024 bit (128 x 8)
135 * 24C02 - 2048 bit (256 x 8)
137 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
141 # define logout(fmt, ...) \
142 fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
144 # define logout(fmt, ...) ((void)0)
147 struct _eeprom24c0x_t
{
156 uint8_t contents
[256];
159 typedef struct _eeprom24c0x_t eeprom24c0x_t
;
161 static eeprom24c0x_t spd_eeprom
= {
164 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
166 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
168 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
170 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
172 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
174 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
176 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
178 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
180 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
182 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
184 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
186 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
188 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
190 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
192 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
194 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
198 static void generate_eeprom_spd(uint8_t *eeprom
, ram_addr_t ram_size
)
200 enum { SDR
= 0x4, DDR2
= 0x8 } type
;
201 uint8_t *spd
= spd_eeprom
.contents
;
203 uint16_t density
= 0;
206 /* work in terms of MB */
209 while ((ram_size
>= 4) && (nbanks
<= 2)) {
210 int sz_log2
= MIN(31 - clz32(ram_size
), 14);
212 density
|= 1 << (sz_log2
- 2);
213 ram_size
-= 1 << sz_log2
;
216 /* split to 2 banks if possible */
217 if ((nbanks
== 1) && (density
> 1)) {
222 if (density
& 0xff00) {
223 density
= (density
& 0xe0) | ((density
>> 8) & 0x1f);
225 } else if (!(density
& 0x1f)) {
232 warn_report("SPD cannot represent final " RAM_ADDR_FMT
"MB"
233 " of SDRAM", ram_size
);
236 /* fill in SPD memory information */
243 for (i
= 0; i
< 63; i
++) {
248 memcpy(eeprom
, spd
, sizeof(spd_eeprom
.contents
));
251 static void generate_eeprom_serial(uint8_t *eeprom
)
254 uint8_t mac
[6] = { 0x00 };
255 uint8_t sn
[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
258 eeprom
[pos
++] = 0x01;
261 eeprom
[pos
++] = 0x02;
264 eeprom
[pos
++] = 0x01; /* MAC */
265 eeprom
[pos
++] = 0x06; /* length */
266 memcpy(&eeprom
[pos
], mac
, sizeof(mac
));
270 eeprom
[pos
++] = 0x02; /* serial */
271 eeprom
[pos
++] = 0x05; /* length */
272 memcpy(&eeprom
[pos
], sn
, sizeof(sn
));
277 for (i
= 0; i
< pos
; i
++) {
278 eeprom
[pos
] += eeprom
[i
];
282 static uint8_t eeprom24c0x_read(eeprom24c0x_t
*eeprom
)
284 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
285 eeprom
->tick
, eeprom
->scl
, eeprom
->sda
, eeprom
->data
);
289 static void eeprom24c0x_write(eeprom24c0x_t
*eeprom
, int scl
, int sda
)
291 if (eeprom
->scl
&& scl
&& (eeprom
->sda
!= sda
)) {
292 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
293 eeprom
->tick
, eeprom
->scl
, scl
, eeprom
->sda
, sda
,
294 sda
? "stop" : "start");
299 } else if (eeprom
->tick
== 0 && !eeprom
->ack
) {
300 /* Waiting for start. */
301 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
302 eeprom
->tick
, eeprom
->scl
, scl
, eeprom
->sda
, sda
);
303 } else if (!eeprom
->scl
&& scl
) {
304 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
305 eeprom
->tick
, eeprom
->scl
, scl
, eeprom
->sda
, sda
);
307 logout("\ti2c ack bit = 0\n");
310 } else if (eeprom
->sda
== sda
) {
311 uint8_t bit
= (sda
!= 0);
312 logout("\ti2c bit = %d\n", bit
);
313 if (eeprom
->tick
< 9) {
314 eeprom
->command
<<= 1;
315 eeprom
->command
+= bit
;
317 if (eeprom
->tick
== 9) {
318 logout("\tcommand 0x%04x, %s\n", eeprom
->command
,
319 bit
? "read" : "write");
322 } else if (eeprom
->tick
< 17) {
323 if (eeprom
->command
& 1) {
324 sda
= ((eeprom
->data
& 0x80) != 0);
326 eeprom
->address
<<= 1;
327 eeprom
->address
+= bit
;
330 if (eeprom
->tick
== 17) {
331 eeprom
->data
= eeprom
->contents
[eeprom
->address
];
332 logout("\taddress 0x%04x, data 0x%02x\n",
333 eeprom
->address
, eeprom
->data
);
337 } else if (eeprom
->tick
>= 17) {
341 logout("\tsda changed with raising scl\n");
344 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom
->tick
, eeprom
->scl
,
345 scl
, eeprom
->sda
, sda
);
351 static uint64_t malta_fpga_read(void *opaque
, hwaddr addr
,
354 MaltaFPGAState
*s
= opaque
;
358 saddr
= (addr
& 0xfffff);
362 /* SWITCH Register */
367 /* STATUS Register */
369 #if TARGET_BIG_ENDIAN
381 /* LEDBAR Register */
386 /* BRKRES Register */
391 /* UART Registers are handled directly by the serial device */
398 /* XXX: implement a real I2C controller */
402 /* IN = OUT until a real I2C control is implemented */
410 /* I2CINP Register */
412 val
= ((s
->i2cin
& ~1) | eeprom24c0x_read(&spd_eeprom
));
420 /* I2COUT Register */
425 /* I2CSEL Register */
431 qemu_log_mask(LOG_GUEST_ERROR
,
432 "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX
"\n",
439 static void malta_fpga_write(void *opaque
, hwaddr addr
,
440 uint64_t val
, unsigned size
)
442 MaltaFPGAState
*s
= opaque
;
445 saddr
= (addr
& 0xfffff);
449 /* SWITCH Register */
457 /* LEDBAR Register */
459 s
->leds
= val
& 0xff;
460 malta_fpga_update_display(s
);
463 /* ASCIIWORD Register */
465 snprintf(s
->display_text
, 9, "%08X", (uint32_t)val
);
466 malta_fpga_update_display(s
);
469 /* ASCIIPOS0 to ASCIIPOS7 Registers */
478 s
->display_text
[(saddr
- 0x00418) >> 3] = (char) val
;
479 malta_fpga_update_display(s
);
482 /* SOFTRES Register */
485 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
489 /* BRKRES Register */
494 /* UART Registers are handled directly by the serial device */
498 s
->gpout
= val
& 0xff;
503 s
->i2coe
= val
& 0x03;
506 /* I2COUT Register */
508 eeprom24c0x_write(&spd_eeprom
, val
& 0x02, val
& 0x01);
512 /* I2CSEL Register */
514 s
->i2csel
= val
& 0x01;
518 qemu_log_mask(LOG_GUEST_ERROR
,
519 "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX
"\n",
525 static const MemoryRegionOps malta_fpga_ops
= {
526 .read
= malta_fpga_read
,
527 .write
= malta_fpga_write
,
528 .endianness
= DEVICE_NATIVE_ENDIAN
,
531 static void malta_fpga_reset(void *opaque
)
533 MaltaFPGAState
*s
= opaque
;
543 s
->display_text
[8] = '\0';
544 snprintf(s
->display_text
, 9, " ");
547 static void malta_fgpa_display_event(void *opaque
, QEMUChrEvent event
)
549 MaltaFPGAState
*s
= opaque
;
551 if (event
== CHR_EVENT_OPENED
&& !s
->display_inited
) {
552 qemu_chr_fe_printf(&s
->display
, "\e[HMalta LEDBAR\r\n");
553 qemu_chr_fe_printf(&s
->display
, "+--------+\r\n");
554 qemu_chr_fe_printf(&s
->display
, "+ +\r\n");
555 qemu_chr_fe_printf(&s
->display
, "+--------+\r\n");
556 qemu_chr_fe_printf(&s
->display
, "\n");
557 qemu_chr_fe_printf(&s
->display
, "Malta ASCII\r\n");
558 qemu_chr_fe_printf(&s
->display
, "+--------+\r\n");
559 qemu_chr_fe_printf(&s
->display
, "+ +\r\n");
560 qemu_chr_fe_printf(&s
->display
, "+--------+\r\n");
561 s
->display_inited
= true;
565 static MaltaFPGAState
*malta_fpga_init(MemoryRegion
*address_space
,
566 hwaddr base
, qemu_irq uart_irq
, Chardev
*uart_chr
)
571 s
= g_new0(MaltaFPGAState
, 1);
573 memory_region_init_io(&s
->iomem
, NULL
, &malta_fpga_ops
, s
,
574 "malta-fpga", 0x100000);
575 memory_region_init_alias(&s
->iomem_lo
, NULL
, "malta-fpga",
576 &s
->iomem
, 0, 0x900);
577 memory_region_init_alias(&s
->iomem_hi
, NULL
, "malta-fpga",
578 &s
->iomem
, 0xa00, 0x100000 - 0xa00);
580 memory_region_add_subregion(address_space
, base
, &s
->iomem_lo
);
581 memory_region_add_subregion(address_space
, base
+ 0xa00, &s
->iomem_hi
);
583 chr
= qemu_chr_new("fpga", "vc:320x200", NULL
);
584 qemu_chr_fe_init(&s
->display
, chr
, NULL
);
585 qemu_chr_fe_set_handlers(&s
->display
, NULL
, NULL
,
586 malta_fgpa_display_event
, NULL
, s
, NULL
, true);
588 s
->uart
= serial_mm_init(address_space
, base
+ 0x900, 3, uart_irq
,
589 230400, uart_chr
, DEVICE_NATIVE_ENDIAN
);
592 qemu_register_reset(malta_fpga_reset
, s
);
597 /* Network support */
598 static void network_init(PCIBus
*pci_bus
)
602 for (i
= 0; i
< nb_nics
; i
++) {
603 NICInfo
*nd
= &nd_table
[i
];
604 const char *default_devaddr
= NULL
;
606 if (i
== 0 && (!nd
->model
|| strcmp(nd
->model
, "pcnet") == 0))
607 /* The malta board has a PCNet card using PCI SLOT 11 */
608 default_devaddr
= "0b";
610 pci_nic_init_nofail(nd
, pci_bus
, "pcnet", default_devaddr
);
614 static void write_bootloader_nanomips(uint8_t *base
, uint64_t run_addr
,
615 uint64_t kernel_entry
)
619 /* Small bootloader */
620 p
= (uint16_t *)base
;
622 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
623 #define NM_HI2(VAL) \
624 (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
625 #define NM_LO(VAL) ((VAL) & 0xfff)
627 stw_p(p
++, 0x2800); stw_p(p
++, 0x001c);
629 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
631 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
633 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
635 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
637 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
639 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
641 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
645 if (semihosting_get_argc()) {
646 /* Preserve a0 content as arguments have been passed */
647 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
650 stw_p(p
++, 0x0080); stw_p(p
++, 0x0002);
654 stw_p(p
++, 0xe3a0 | NM_HI1(ENVP_VADDR
- 64));
656 stw_p(p
++, NM_HI2(ENVP_VADDR
- 64));
657 /* lui sp,%hi(ENVP_VADDR - 64) */
659 stw_p(p
++, 0x83bd); stw_p(p
++, NM_LO(ENVP_VADDR
- 64));
660 /* ori sp,sp,%lo(ENVP_VADDR - 64) */
662 stw_p(p
++, 0xe0a0 | NM_HI1(ENVP_VADDR
));
664 stw_p(p
++, NM_HI2(ENVP_VADDR
));
665 /* lui a1,%hi(ENVP_VADDR) */
667 stw_p(p
++, 0x80a5); stw_p(p
++, NM_LO(ENVP_VADDR
));
668 /* ori a1,a1,%lo(ENVP_VADDR) */
670 stw_p(p
++, 0xe0c0 | NM_HI1(ENVP_VADDR
+ 8));
672 stw_p(p
++, NM_HI2(ENVP_VADDR
+ 8));
673 /* lui a2,%hi(ENVP_VADDR + 8) */
675 stw_p(p
++, 0x80c6); stw_p(p
++, NM_LO(ENVP_VADDR
+ 8));
676 /* ori a2,a2,%lo(ENVP_VADDR + 8) */
678 stw_p(p
++, 0xe0e0 | NM_HI1(loaderparams
.ram_low_size
));
680 stw_p(p
++, NM_HI2(loaderparams
.ram_low_size
));
681 /* lui a3,%hi(loaderparams.ram_low_size) */
683 stw_p(p
++, 0x80e7); stw_p(p
++, NM_LO(loaderparams
.ram_low_size
));
684 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
687 * Load BAR registers as done by YAMON:
689 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
690 * - set up PCI0 MEM0 at 0x10000000, size 0x8000000
691 * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
694 stw_p(p
++, 0xe040); stw_p(p
++, 0x0681);
695 /* lui t1, %hi(0xb4000000) */
697 #if TARGET_BIG_ENDIAN
699 stw_p(p
++, 0xe020); stw_p(p
++, 0x0be1);
700 /* lui t0, %hi(0xdf000000) */
702 /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */
703 stw_p(p
++, 0x8422); stw_p(p
++, 0x9068);
704 /* sw t0, 0x68(t1) */
706 stw_p(p
++, 0xe040); stw_p(p
++, 0x077d);
707 /* lui t1, %hi(0xbbe00000) */
709 stw_p(p
++, 0xe020); stw_p(p
++, 0x0801);
710 /* lui t0, %hi(0xc0000000) */
712 /* 0x48 corresponds to GT_PCI0IOLD */
713 stw_p(p
++, 0x8422); stw_p(p
++, 0x9048);
714 /* sw t0, 0x48(t1) */
716 stw_p(p
++, 0xe020); stw_p(p
++, 0x0800);
717 /* lui t0, %hi(0x40000000) */
719 /* 0x50 corresponds to GT_PCI0IOHD */
720 stw_p(p
++, 0x8422); stw_p(p
++, 0x9050);
721 /* sw t0, 0x50(t1) */
723 stw_p(p
++, 0xe020); stw_p(p
++, 0x0001);
724 /* lui t0, %hi(0x80000000) */
726 /* 0x58 corresponds to GT_PCI0M0LD */
727 stw_p(p
++, 0x8422); stw_p(p
++, 0x9058);
728 /* sw t0, 0x58(t1) */
730 stw_p(p
++, 0xe020); stw_p(p
++, 0x07e0);
731 /* lui t0, %hi(0x3f000000) */
733 /* 0x60 corresponds to GT_PCI0M0HD */
734 stw_p(p
++, 0x8422); stw_p(p
++, 0x9060);
735 /* sw t0, 0x60(t1) */
737 stw_p(p
++, 0xe020); stw_p(p
++, 0x0821);
738 /* lui t0, %hi(0xc1000000) */
740 /* 0x80 corresponds to GT_PCI0M1LD */
741 stw_p(p
++, 0x8422); stw_p(p
++, 0x9080);
742 /* sw t0, 0x80(t1) */
744 stw_p(p
++, 0xe020); stw_p(p
++, 0x0bc0);
745 /* lui t0, %hi(0x5e000000) */
749 stw_p(p
++, 0x0020); stw_p(p
++, 0x00df);
750 /* addiu[32] t0, $0, 0xdf */
752 /* 0x68 corresponds to GT_ISD */
753 stw_p(p
++, 0x8422); stw_p(p
++, 0x9068);
754 /* sw t0, 0x68(t1) */
756 /* Use kseg2 remapped address 0x1be00000 */
757 stw_p(p
++, 0xe040); stw_p(p
++, 0x077d);
758 /* lui t1, %hi(0xbbe00000) */
760 stw_p(p
++, 0x0020); stw_p(p
++, 0x00c0);
761 /* addiu[32] t0, $0, 0xc0 */
763 /* 0x48 corresponds to GT_PCI0IOLD */
764 stw_p(p
++, 0x8422); stw_p(p
++, 0x9048);
765 /* sw t0, 0x48(t1) */
767 stw_p(p
++, 0x0020); stw_p(p
++, 0x0040);
768 /* addiu[32] t0, $0, 0x40 */
770 /* 0x50 corresponds to GT_PCI0IOHD */
771 stw_p(p
++, 0x8422); stw_p(p
++, 0x9050);
772 /* sw t0, 0x50(t1) */
774 stw_p(p
++, 0x0020); stw_p(p
++, 0x0080);
775 /* addiu[32] t0, $0, 0x80 */
777 /* 0x58 corresponds to GT_PCI0M0LD */
778 stw_p(p
++, 0x8422); stw_p(p
++, 0x9058);
779 /* sw t0, 0x58(t1) */
781 stw_p(p
++, 0x0020); stw_p(p
++, 0x003f);
782 /* addiu[32] t0, $0, 0x3f */
784 /* 0x60 corresponds to GT_PCI0M0HD */
785 stw_p(p
++, 0x8422); stw_p(p
++, 0x9060);
786 /* sw t0, 0x60(t1) */
788 stw_p(p
++, 0x0020); stw_p(p
++, 0x00c1);
789 /* addiu[32] t0, $0, 0xc1 */
791 /* 0x80 corresponds to GT_PCI0M1LD */
792 stw_p(p
++, 0x8422); stw_p(p
++, 0x9080);
793 /* sw t0, 0x80(t1) */
795 stw_p(p
++, 0x0020); stw_p(p
++, 0x005e);
796 /* addiu[32] t0, $0, 0x5e */
800 /* 0x88 corresponds to GT_PCI0M1HD */
801 stw_p(p
++, 0x8422); stw_p(p
++, 0x9088);
802 /* sw t0, 0x88(t1) */
804 stw_p(p
++, 0xe320 | NM_HI1(kernel_entry
));
806 stw_p(p
++, NM_HI2(kernel_entry
));
807 /* lui t9,%hi(kernel_entry) */
809 stw_p(p
++, 0x8339); stw_p(p
++, NM_LO(kernel_entry
));
810 /* ori t9,t9,%lo(kernel_entry) */
812 stw_p(p
++, 0x4bf9); stw_p(p
++, 0x0000);
817 * ROM and pseudo bootloader
819 * The following code implements a very very simple bootloader. It first
820 * loads the registers a0 to a3 to the values expected by the OS, and
821 * then jump at the kernel address.
823 * The bootloader should pass the locations of the kernel arguments and
824 * environment variables tables. Those tables contain the 32-bit address
825 * of NULL terminated strings. The environment variables table should be
826 * terminated by a NULL address.
828 * For a simpler implementation, the number of kernel arguments is fixed
829 * to two (the name of the kernel and the command line), and the two
830 * tables are actually the same one.
832 * The registers a0 to a3 should contain the following values:
833 * a0 - number of kernel arguments
834 * a1 - 32-bit address of the kernel arguments table
835 * a2 - 32-bit address of the environment variables table
836 * a3 - RAM size in bytes
838 static void write_bootloader(uint8_t *base
, uint64_t run_addr
,
839 uint64_t kernel_entry
)
843 /* Small bootloader */
844 p
= (uint32_t *)base
;
846 stl_p(p
++, 0x08000000 | /* j 0x1fc00580 */
847 ((run_addr
+ 0x580) & 0x0fffffff) >> 2);
848 stl_p(p
++, 0x00000000); /* nop */
850 /* YAMON service vector */
851 stl_p(base
+ 0x500, run_addr
+ 0x0580); /* start: */
852 stl_p(base
+ 0x504, run_addr
+ 0x083c); /* print_count: */
853 stl_p(base
+ 0x520, run_addr
+ 0x0580); /* start: */
854 stl_p(base
+ 0x52c, run_addr
+ 0x0800); /* flush_cache: */
855 stl_p(base
+ 0x534, run_addr
+ 0x0808); /* print: */
856 stl_p(base
+ 0x538, run_addr
+ 0x0800); /* reg_cpu_isr: */
857 stl_p(base
+ 0x53c, run_addr
+ 0x0800); /* unred_cpu_isr: */
858 stl_p(base
+ 0x540, run_addr
+ 0x0800); /* reg_ic_isr: */
859 stl_p(base
+ 0x544, run_addr
+ 0x0800); /* unred_ic_isr: */
860 stl_p(base
+ 0x548, run_addr
+ 0x0800); /* reg_esr: */
861 stl_p(base
+ 0x54c, run_addr
+ 0x0800); /* unreg_esr: */
862 stl_p(base
+ 0x550, run_addr
+ 0x0800); /* getchar: */
863 stl_p(base
+ 0x554, run_addr
+ 0x0800); /* syscon_read: */
866 /* Second part of the bootloader */
867 p
= (uint32_t *) (base
+ 0x580);
869 if (semihosting_get_argc()) {
870 /* Preserve a0 content as arguments have been passed */
871 stl_p(p
++, 0x00000000); /* nop */
873 stl_p(p
++, 0x24040002); /* addiu a0, zero, 2 */
876 /* lui sp, high(ENVP_VADDR) */
877 stl_p(p
++, 0x3c1d0000 | (((ENVP_VADDR
- 64) >> 16) & 0xffff));
878 /* ori sp, sp, low(ENVP_VADDR) */
879 stl_p(p
++, 0x37bd0000 | ((ENVP_VADDR
- 64) & 0xffff));
880 /* lui a1, high(ENVP_VADDR) */
881 stl_p(p
++, 0x3c050000 | ((ENVP_VADDR
>> 16) & 0xffff));
882 /* ori a1, a1, low(ENVP_VADDR) */
883 stl_p(p
++, 0x34a50000 | (ENVP_VADDR
& 0xffff));
884 /* lui a2, high(ENVP_VADDR + 8) */
885 stl_p(p
++, 0x3c060000 | (((ENVP_VADDR
+ 8) >> 16) & 0xffff));
886 /* ori a2, a2, low(ENVP_VADDR + 8) */
887 stl_p(p
++, 0x34c60000 | ((ENVP_VADDR
+ 8) & 0xffff));
888 /* lui a3, high(ram_low_size) */
889 stl_p(p
++, 0x3c070000 | (loaderparams
.ram_low_size
>> 16));
890 /* ori a3, a3, low(ram_low_size) */
891 stl_p(p
++, 0x34e70000 | (loaderparams
.ram_low_size
& 0xffff));
893 /* Load BAR registers as done by YAMON */
894 stl_p(p
++, 0x3c09b400); /* lui t1, 0xb400 */
896 #if TARGET_BIG_ENDIAN
897 stl_p(p
++, 0x3c08df00); /* lui t0, 0xdf00 */
899 stl_p(p
++, 0x340800df); /* ori t0, r0, 0x00df */
901 stl_p(p
++, 0xad280068); /* sw t0, 0x0068(t1) */
903 stl_p(p
++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
905 #if TARGET_BIG_ENDIAN
906 stl_p(p
++, 0x3c08c000); /* lui t0, 0xc000 */
908 stl_p(p
++, 0x340800c0); /* ori t0, r0, 0x00c0 */
910 stl_p(p
++, 0xad280048); /* sw t0, 0x0048(t1) */
911 #if TARGET_BIG_ENDIAN
912 stl_p(p
++, 0x3c084000); /* lui t0, 0x4000 */
914 stl_p(p
++, 0x34080040); /* ori t0, r0, 0x0040 */
916 stl_p(p
++, 0xad280050); /* sw t0, 0x0050(t1) */
918 #if TARGET_BIG_ENDIAN
919 stl_p(p
++, 0x3c088000); /* lui t0, 0x8000 */
921 stl_p(p
++, 0x34080080); /* ori t0, r0, 0x0080 */
923 stl_p(p
++, 0xad280058); /* sw t0, 0x0058(t1) */
924 #if TARGET_BIG_ENDIAN
925 stl_p(p
++, 0x3c083f00); /* lui t0, 0x3f00 */
927 stl_p(p
++, 0x3408003f); /* ori t0, r0, 0x003f */
929 stl_p(p
++, 0xad280060); /* sw t0, 0x0060(t1) */
931 #if TARGET_BIG_ENDIAN
932 stl_p(p
++, 0x3c08c100); /* lui t0, 0xc100 */
934 stl_p(p
++, 0x340800c1); /* ori t0, r0, 0x00c1 */
936 stl_p(p
++, 0xad280080); /* sw t0, 0x0080(t1) */
937 #if TARGET_BIG_ENDIAN
938 stl_p(p
++, 0x3c085e00); /* lui t0, 0x5e00 */
940 stl_p(p
++, 0x3408005e); /* ori t0, r0, 0x005e */
942 stl_p(p
++, 0xad280088); /* sw t0, 0x0088(t1) */
944 /* Jump to kernel code */
945 stl_p(p
++, 0x3c1f0000 |
946 ((kernel_entry
>> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
947 stl_p(p
++, 0x37ff0000 |
948 (kernel_entry
& 0xffff)); /* ori ra, ra, low(kernel_entry) */
949 stl_p(p
++, 0x03e00009); /* jalr ra */
950 stl_p(p
++, 0x00000000); /* nop */
952 /* YAMON subroutines */
953 p
= (uint32_t *) (base
+ 0x800);
954 stl_p(p
++, 0x03e00009); /* jalr ra */
955 stl_p(p
++, 0x24020000); /* li v0,0 */
956 /* 808 YAMON print */
957 stl_p(p
++, 0x03e06821); /* move t5,ra */
958 stl_p(p
++, 0x00805821); /* move t3,a0 */
959 stl_p(p
++, 0x00a05021); /* move t2,a1 */
960 stl_p(p
++, 0x91440000); /* lbu a0,0(t2) */
961 stl_p(p
++, 0x254a0001); /* addiu t2,t2,1 */
962 stl_p(p
++, 0x10800005); /* beqz a0,834 */
963 stl_p(p
++, 0x00000000); /* nop */
964 stl_p(p
++, 0x0ff0021c); /* jal 870 */
965 stl_p(p
++, 0x00000000); /* nop */
966 stl_p(p
++, 0x1000fff9); /* b 814 */
967 stl_p(p
++, 0x00000000); /* nop */
968 stl_p(p
++, 0x01a00009); /* jalr t5 */
969 stl_p(p
++, 0x01602021); /* move a0,t3 */
970 /* 0x83c YAMON print_count */
971 stl_p(p
++, 0x03e06821); /* move t5,ra */
972 stl_p(p
++, 0x00805821); /* move t3,a0 */
973 stl_p(p
++, 0x00a05021); /* move t2,a1 */
974 stl_p(p
++, 0x00c06021); /* move t4,a2 */
975 stl_p(p
++, 0x91440000); /* lbu a0,0(t2) */
976 stl_p(p
++, 0x0ff0021c); /* jal 870 */
977 stl_p(p
++, 0x00000000); /* nop */
978 stl_p(p
++, 0x254a0001); /* addiu t2,t2,1 */
979 stl_p(p
++, 0x258cffff); /* addiu t4,t4,-1 */
980 stl_p(p
++, 0x1580fffa); /* bnez t4,84c */
981 stl_p(p
++, 0x00000000); /* nop */
982 stl_p(p
++, 0x01a00009); /* jalr t5 */
983 stl_p(p
++, 0x01602021); /* move a0,t3 */
985 stl_p(p
++, 0x3c08b800); /* lui t0,0xb400 */
986 stl_p(p
++, 0x350803f8); /* ori t0,t0,0x3f8 */
987 stl_p(p
++, 0x91090005); /* lbu t1,5(t0) */
988 stl_p(p
++, 0x00000000); /* nop */
989 stl_p(p
++, 0x31290040); /* andi t1,t1,0x40 */
990 stl_p(p
++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
991 stl_p(p
++, 0x00000000); /* nop */
992 stl_p(p
++, 0x03e00009); /* jalr ra */
993 stl_p(p
++, 0xa1040000); /* sb a0,0(t0) */
997 static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf
, int index
,
998 const char *string
, ...)
1001 uint32_t table_addr
;
1003 if (index
>= ENVP_NB_ENTRIES
) {
1007 if (string
== NULL
) {
1008 prom_buf
[index
] = 0;
1012 table_addr
= sizeof(uint32_t) * ENVP_NB_ENTRIES
+ index
* ENVP_ENTRY_SIZE
;
1013 prom_buf
[index
] = tswap32(ENVP_VADDR
+ table_addr
);
1015 va_start(ap
, string
);
1016 vsnprintf((char *)prom_buf
+ table_addr
, ENVP_ENTRY_SIZE
, string
, ap
);
1021 static uint64_t load_kernel(void)
1023 uint64_t kernel_entry
, kernel_high
, initrd_size
;
1025 ram_addr_t initrd_offset
;
1030 uint64_t (*xlate_to_kseg0
) (void *opaque
, uint64_t addr
);
1032 #if TARGET_BIG_ENDIAN
1038 kernel_size
= load_elf(loaderparams
.kernel_filename
, NULL
,
1039 cpu_mips_kseg0_to_phys
, NULL
,
1040 &kernel_entry
, NULL
,
1041 &kernel_high
, NULL
, big_endian
, EM_MIPS
,
1043 if (kernel_size
< 0) {
1044 error_report("could not load kernel '%s': %s",
1045 loaderparams
.kernel_filename
,
1046 load_elf_strerror(kernel_size
));
1050 /* Check where the kernel has been linked */
1051 if (kernel_entry
& 0x80000000ll
) {
1052 if (kvm_enabled()) {
1053 error_report("KVM guest kernels must be linked in useg. "
1054 "Did you forget to enable CONFIG_KVM_GUEST?");
1058 xlate_to_kseg0
= cpu_mips_phys_to_kseg0
;
1060 /* if kernel entry is in useg it is probably a KVM T&E kernel */
1061 mips_um_ksegs_enable();
1063 xlate_to_kseg0
= cpu_mips_kvm_um_phys_to_kseg0
;
1069 if (loaderparams
.initrd_filename
) {
1070 initrd_size
= get_image_size(loaderparams
.initrd_filename
);
1071 if (initrd_size
> 0) {
1073 * The kernel allocates the bootmap memory in the low memory after
1074 * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
1077 initrd_offset
= ROUND_UP(loaderparams
.ram_low_size
1078 - (initrd_size
+ 128 * KiB
),
1080 if (kernel_high
>= initrd_offset
) {
1081 error_report("memory too small for initial ram disk '%s'",
1082 loaderparams
.initrd_filename
);
1085 initrd_size
= load_image_targphys(loaderparams
.initrd_filename
,
1087 loaderparams
.ram_size
- initrd_offset
);
1089 if (initrd_size
== (target_ulong
) -1) {
1090 error_report("could not load initial ram disk '%s'",
1091 loaderparams
.initrd_filename
);
1096 /* Setup prom parameters. */
1097 prom_size
= ENVP_NB_ENTRIES
* (sizeof(int32_t) + ENVP_ENTRY_SIZE
);
1098 prom_buf
= g_malloc(prom_size
);
1100 prom_set(prom_buf
, prom_index
++, "%s", loaderparams
.kernel_filename
);
1101 if (initrd_size
> 0) {
1102 prom_set(prom_buf
, prom_index
++,
1103 "rd_start=0x%" PRIx64
" rd_size=%" PRId64
" %s",
1104 xlate_to_kseg0(NULL
, initrd_offset
),
1105 initrd_size
, loaderparams
.kernel_cmdline
);
1107 prom_set(prom_buf
, prom_index
++, "%s", loaderparams
.kernel_cmdline
);
1110 prom_set(prom_buf
, prom_index
++, "memsize");
1111 prom_set(prom_buf
, prom_index
++, "%u", loaderparams
.ram_low_size
);
1113 prom_set(prom_buf
, prom_index
++, "ememsize");
1114 prom_set(prom_buf
, prom_index
++, "%u", loaderparams
.ram_size
);
1116 prom_set(prom_buf
, prom_index
++, "modetty0");
1117 prom_set(prom_buf
, prom_index
++, "38400n8r");
1118 prom_set(prom_buf
, prom_index
++, NULL
);
1120 rom_add_blob_fixed("prom", prom_buf
, prom_size
, ENVP_PADDR
);
1123 return kernel_entry
;
1126 static void malta_mips_config(MIPSCPU
*cpu
)
1128 MachineState
*ms
= MACHINE(qdev_get_machine());
1129 unsigned int smp_cpus
= ms
->smp
.cpus
;
1130 CPUMIPSState
*env
= &cpu
->env
;
1131 CPUState
*cs
= CPU(cpu
);
1133 if (ase_mt_available(env
)) {
1134 env
->mvp
->CP0_MVPConf0
= deposit32(env
->mvp
->CP0_MVPConf0
,
1136 smp_cpus
* cs
->nr_threads
- 1);
1137 env
->mvp
->CP0_MVPConf0
= deposit32(env
->mvp
->CP0_MVPConf0
,
1138 CP0MVPC0_PVPE
, 4, smp_cpus
- 1);
1142 static void main_cpu_reset(void *opaque
)
1144 MIPSCPU
*cpu
= opaque
;
1145 CPUMIPSState
*env
= &cpu
->env
;
1147 cpu_reset(CPU(cpu
));
1150 * The bootloader does not need to be rewritten as it is located in a
1151 * read only location. The kernel location and the arguments table
1152 * location does not change.
1154 if (loaderparams
.kernel_filename
) {
1155 env
->CP0_Status
&= ~(1 << CP0St_ERL
);
1158 malta_mips_config(cpu
);
1160 if (kvm_enabled()) {
1161 /* Start running from the bootloader we wrote to end of RAM */
1162 env
->active_tc
.PC
= 0x40000000 + loaderparams
.ram_low_size
;
1166 static void create_cpu_without_cps(MachineState
*ms
, MaltaState
*s
,
1167 qemu_irq
*cbus_irq
, qemu_irq
*i8259_irq
)
1173 for (i
= 0; i
< ms
->smp
.cpus
; i
++) {
1174 cpu
= mips_cpu_create_with_clock(ms
->cpu_type
, s
->cpuclk
);
1176 /* Init internal devices */
1177 cpu_mips_irq_init_cpu(cpu
);
1178 cpu_mips_clock_init(cpu
);
1179 qemu_register_reset(main_cpu_reset
, cpu
);
1182 cpu
= MIPS_CPU(first_cpu
);
1184 *i8259_irq
= env
->irq
[2];
1185 *cbus_irq
= env
->irq
[4];
1188 static void create_cps(MachineState
*ms
, MaltaState
*s
,
1189 qemu_irq
*cbus_irq
, qemu_irq
*i8259_irq
)
1191 object_initialize_child(OBJECT(s
), "cps", &s
->cps
, TYPE_MIPS_CPS
);
1192 object_property_set_str(OBJECT(&s
->cps
), "cpu-type", ms
->cpu_type
,
1194 object_property_set_int(OBJECT(&s
->cps
), "num-vp", ms
->smp
.cpus
,
1196 qdev_connect_clock_in(DEVICE(&s
->cps
), "clk-in", s
->cpuclk
);
1197 sysbus_realize(SYS_BUS_DEVICE(&s
->cps
), &error_fatal
);
1199 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s
->cps
), 0, 0, 1);
1201 *i8259_irq
= get_cps_irq(&s
->cps
, 3);
1205 static void mips_create_cpu(MachineState
*ms
, MaltaState
*s
,
1206 qemu_irq
*cbus_irq
, qemu_irq
*i8259_irq
)
1208 if ((ms
->smp
.cpus
> 1) && cpu_type_supports_cps_smp(ms
->cpu_type
)) {
1209 create_cps(ms
, s
, cbus_irq
, i8259_irq
);
1211 create_cpu_without_cps(ms
, s
, cbus_irq
, i8259_irq
);
1216 void mips_malta_init(MachineState
*machine
)
1218 ram_addr_t ram_size
= machine
->ram_size
;
1219 ram_addr_t ram_low_size
;
1220 const char *kernel_filename
= machine
->kernel_filename
;
1221 const char *kernel_cmdline
= machine
->kernel_cmdline
;
1222 const char *initrd_filename
= machine
->initrd_filename
;
1225 MemoryRegion
*system_memory
= get_system_memory();
1226 MemoryRegion
*ram_low_preio
= g_new(MemoryRegion
, 1);
1227 MemoryRegion
*ram_low_postio
;
1228 MemoryRegion
*bios
, *bios_copy
= g_new(MemoryRegion
, 1);
1229 const size_t smbus_eeprom_size
= 8 * 256;
1230 uint8_t *smbus_eeprom_buf
= g_malloc0(smbus_eeprom_size
);
1231 uint64_t kernel_entry
, bootloader_run_addr
;
1234 qemu_irq cbus_irq
, i8259_irq
;
1242 s
= MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA
));
1243 sysbus_realize_and_unref(SYS_BUS_DEVICE(s
), &error_fatal
);
1246 mips_create_cpu(machine
, s
, &cbus_irq
, &i8259_irq
);
1249 if (ram_size
> 2 * GiB
) {
1250 error_report("Too much memory for this machine: %" PRId64
"MB,"
1251 " maximum 2048MB", ram_size
/ MiB
);
1255 /* register RAM at high address where it is undisturbed by IO */
1256 memory_region_add_subregion(system_memory
, 0x80000000, machine
->ram
);
1258 /* alias for pre IO hole access */
1259 memory_region_init_alias(ram_low_preio
, NULL
, "mips_malta_low_preio.ram",
1260 machine
->ram
, 0, MIN(ram_size
, 256 * MiB
));
1261 memory_region_add_subregion(system_memory
, 0, ram_low_preio
);
1263 /* alias for post IO hole access, if there is enough RAM */
1264 if (ram_size
> 512 * MiB
) {
1265 ram_low_postio
= g_new(MemoryRegion
, 1);
1266 memory_region_init_alias(ram_low_postio
, NULL
,
1267 "mips_malta_low_postio.ram",
1268 machine
->ram
, 512 * MiB
,
1269 ram_size
- 512 * MiB
);
1270 memory_region_add_subregion(system_memory
, 512 * MiB
,
1274 #if TARGET_BIG_ENDIAN
1282 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1283 malta_fpga_init(system_memory
, FPGA_ADDRESS
, cbus_irq
, serial_hd(2));
1285 /* Load firmware in flash / BIOS. */
1286 dinfo
= drive_get(IF_PFLASH
, 0, fl_idx
);
1287 fl
= pflash_cfi01_register(FLASH_ADDRESS
, "mips_malta.bios",
1289 dinfo
? blk_by_legacy_dinfo(dinfo
) : NULL
,
1291 4, 0x0000, 0x0000, 0x0000, 0x0000, be
);
1292 bios
= pflash_cfi01_get_memory(fl
);
1294 if (kernel_filename
) {
1295 ram_low_size
= MIN(ram_size
, 256 * MiB
);
1296 /* For KVM we reserve 1MB of RAM for running bootloader */
1297 if (kvm_enabled()) {
1298 ram_low_size
-= 0x100000;
1299 bootloader_run_addr
= cpu_mips_kvm_um_phys_to_kseg0(NULL
, ram_low_size
);
1301 bootloader_run_addr
= cpu_mips_phys_to_kseg0(NULL
, RESET_ADDRESS
);
1304 /* Write a small bootloader to the flash location. */
1305 loaderparams
.ram_size
= ram_size
;
1306 loaderparams
.ram_low_size
= ram_low_size
;
1307 loaderparams
.kernel_filename
= kernel_filename
;
1308 loaderparams
.kernel_cmdline
= kernel_cmdline
;
1309 loaderparams
.initrd_filename
= initrd_filename
;
1310 kernel_entry
= load_kernel();
1312 if (!cpu_type_supports_isa(machine
->cpu_type
, ISA_NANOMIPS32
)) {
1313 write_bootloader(memory_region_get_ram_ptr(bios
),
1314 bootloader_run_addr
, kernel_entry
);
1316 write_bootloader_nanomips(memory_region_get_ram_ptr(bios
),
1317 bootloader_run_addr
, kernel_entry
);
1319 if (kvm_enabled()) {
1320 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1321 write_bootloader(memory_region_get_ram_ptr(ram_low_preio
) +
1323 bootloader_run_addr
, kernel_entry
);
1326 target_long bios_size
= FLASH_SIZE
;
1327 /* The flash region isn't executable from a KVM guest */
1328 if (kvm_enabled()) {
1329 error_report("KVM enabled but no -kernel argument was specified. "
1330 "Booting from flash is not supported with KVM.");
1333 /* Load firmware from flash. */
1335 /* Load a BIOS image. */
1336 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
,
1337 machine
->firmware
?: BIOS_FILENAME
);
1339 bios_size
= load_image_targphys(filename
, FLASH_ADDRESS
,
1345 if ((bios_size
< 0 || bios_size
> BIOS_SIZE
) &&
1346 machine
->firmware
&& !qtest_enabled()) {
1347 error_report("Could not load MIPS bios '%s'", machine
->firmware
);
1352 * In little endian mode the 32bit words in the bios are swapped,
1353 * a neat trick which allows bi-endian firmware.
1355 #if !TARGET_BIG_ENDIAN
1357 uint32_t *end
, *addr
;
1358 const size_t swapsize
= MIN(bios_size
, 0x3e0000);
1359 addr
= rom_ptr(FLASH_ADDRESS
, swapsize
);
1361 addr
= memory_region_get_ram_ptr(bios
);
1363 end
= (void *)addr
+ swapsize
;
1364 while (addr
< end
) {
1373 * Map the BIOS at a 2nd physical location, as on the real board.
1374 * Copy it so that we can patch in the MIPS revision, which cannot be
1375 * handled by an overlapping region as the resulting ROM code subpage
1376 * regions are not executable.
1378 memory_region_init_ram(bios_copy
, NULL
, "bios.1fc", BIOS_SIZE
,
1380 if (!rom_copy(memory_region_get_ram_ptr(bios_copy
),
1381 FLASH_ADDRESS
, BIOS_SIZE
)) {
1382 memcpy(memory_region_get_ram_ptr(bios_copy
),
1383 memory_region_get_ram_ptr(bios
), BIOS_SIZE
);
1385 memory_region_set_readonly(bios_copy
, true);
1386 memory_region_add_subregion(system_memory
, RESET_ADDRESS
, bios_copy
);
1388 /* Board ID = 0x420 (Malta Board with CoreLV) */
1389 stl_p(memory_region_get_ram_ptr(bios_copy
) + 0x10, 0x00000420);
1392 dev
= sysbus_create_simple("gt64120", -1, NULL
);
1393 pci_bus
= PCI_BUS(qdev_get_child_bus(dev
, "pci"));
1395 * The whole address space decoded by the GT-64120A doesn't generate
1396 * exception when accessing invalid memory. Create an empty slot to
1397 * emulate this feature.
1399 empty_slot_init("GT64120", 0, 0x20000000);
1402 dev
= piix4_create(pci_bus
, &isa_bus
, &smbus
);
1404 /* Interrupt controller */
1405 qdev_connect_gpio_out_named(dev
, "intr", 0, i8259_irq
);
1407 /* generate SPD EEPROM data */
1408 generate_eeprom_spd(&smbus_eeprom_buf
[0 * 256], ram_size
);
1409 generate_eeprom_serial(&smbus_eeprom_buf
[6 * 256]);
1410 smbus_eeprom_init(smbus
, 8, smbus_eeprom_buf
, smbus_eeprom_size
);
1411 g_free(smbus_eeprom_buf
);
1413 /* Super I/O: SMS FDC37M817 */
1414 isa_create_simple(isa_bus
, TYPE_FDC37M81X_SUPERIO
);
1417 network_init(pci_bus
);
1419 /* Optional PCI video card */
1420 pci_vga_init(pci_bus
);
1423 static void mips_malta_instance_init(Object
*obj
)
1425 MaltaState
*s
= MIPS_MALTA(obj
);
1427 s
->cpuclk
= qdev_init_clock_out(DEVICE(obj
), "cpu-refclk");
1428 clock_set_hz(s
->cpuclk
, 320000000); /* 320 MHz */
1431 static const TypeInfo mips_malta_device
= {
1432 .name
= TYPE_MIPS_MALTA
,
1433 .parent
= TYPE_SYS_BUS_DEVICE
,
1434 .instance_size
= sizeof(MaltaState
),
1435 .instance_init
= mips_malta_instance_init
,
1438 static void mips_malta_machine_init(MachineClass
*mc
)
1440 mc
->desc
= "MIPS Malta Core LV";
1441 mc
->init
= mips_malta_init
;
1442 mc
->block_default_type
= IF_IDE
;
1444 mc
->is_default
= true;
1445 #ifdef TARGET_MIPS64
1446 mc
->default_cpu_type
= MIPS_CPU_TYPE_NAME("20Kc");
1448 mc
->default_cpu_type
= MIPS_CPU_TYPE_NAME("24Kf");
1450 mc
->default_ram_id
= "mips_malta.ram";
1453 DEFINE_MACHINE("malta", mips_malta_machine_init
)
1455 static void mips_malta_register_types(void)
1457 type_register_static(&mips_malta_device
);
1460 type_init(mips_malta_register_types
)