linux-headers: Update
[qemu/ar7.git] / target / s390x / kvm.c
blobad6e38c8761be7e0cad57771f49b371ad393848b
1 /*
2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
24 #include <linux/kvm.h>
25 #include <asm/ptrace.h>
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "internal.h"
30 #include "kvm_s390x.h"
31 #include "sysemu/kvm_int.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "qemu/units.h"
36 #include "qemu/main-loop.h"
37 #include "qemu/mmap-alloc.h"
38 #include "qemu/log.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/hw_accel.h"
41 #include "sysemu/runstate.h"
42 #include "sysemu/device_tree.h"
43 #include "exec/gdbstub.h"
44 #include "exec/ram_addr.h"
45 #include "trace.h"
46 #include "hw/s390x/s390-pci-inst.h"
47 #include "hw/s390x/s390-pci-bus.h"
48 #include "hw/s390x/ipl.h"
49 #include "hw/s390x/ebcdic.h"
50 #include "exec/memattrs.h"
51 #include "hw/s390x/s390-virtio-ccw.h"
52 #include "hw/s390x/s390-virtio-hcall.h"
54 #ifndef DEBUG_KVM
55 #define DEBUG_KVM 0
56 #endif
58 #define DPRINTF(fmt, ...) do { \
59 if (DEBUG_KVM) { \
60 fprintf(stderr, fmt, ## __VA_ARGS__); \
61 } \
62 } while (0)
64 #define kvm_vm_check_mem_attr(s, attr) \
65 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
67 #define IPA0_DIAG 0x8300
68 #define IPA0_SIGP 0xae00
69 #define IPA0_B2 0xb200
70 #define IPA0_B9 0xb900
71 #define IPA0_EB 0xeb00
72 #define IPA0_E3 0xe300
74 #define PRIV_B2_SCLP_CALL 0x20
75 #define PRIV_B2_CSCH 0x30
76 #define PRIV_B2_HSCH 0x31
77 #define PRIV_B2_MSCH 0x32
78 #define PRIV_B2_SSCH 0x33
79 #define PRIV_B2_STSCH 0x34
80 #define PRIV_B2_TSCH 0x35
81 #define PRIV_B2_TPI 0x36
82 #define PRIV_B2_SAL 0x37
83 #define PRIV_B2_RSCH 0x38
84 #define PRIV_B2_STCRW 0x39
85 #define PRIV_B2_STCPS 0x3a
86 #define PRIV_B2_RCHP 0x3b
87 #define PRIV_B2_SCHM 0x3c
88 #define PRIV_B2_CHSC 0x5f
89 #define PRIV_B2_SIGA 0x74
90 #define PRIV_B2_XSCH 0x76
92 #define PRIV_EB_SQBS 0x8a
93 #define PRIV_EB_PCISTB 0xd0
94 #define PRIV_EB_SIC 0xd1
96 #define PRIV_B9_EQBS 0x9c
97 #define PRIV_B9_CLP 0xa0
98 #define PRIV_B9_PCISTG 0xd0
99 #define PRIV_B9_PCILG 0xd2
100 #define PRIV_B9_RPCIT 0xd3
102 #define PRIV_E3_MPCIFC 0xd0
103 #define PRIV_E3_STPCIFC 0xd4
105 #define DIAG_TIMEREVENT 0x288
106 #define DIAG_IPL 0x308
107 #define DIAG_KVM_HYPERCALL 0x500
108 #define DIAG_KVM_BREAKPOINT 0x501
110 #define ICPT_INSTRUCTION 0x04
111 #define ICPT_PROGRAM 0x08
112 #define ICPT_EXT_INT 0x14
113 #define ICPT_WAITPSW 0x1c
114 #define ICPT_SOFT_INTERCEPT 0x24
115 #define ICPT_CPU_STOP 0x28
116 #define ICPT_OPEREXC 0x2c
117 #define ICPT_IO 0x40
119 #define NR_LOCAL_IRQS 32
121 * Needs to be big enough to contain max_cpus emergency signals
122 * and in addition NR_LOCAL_IRQS interrupts
124 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \
125 (max_cpus + NR_LOCAL_IRQS))
127 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages
128 * as the dirty bitmap must be managed by bitops that take an int as
129 * position indicator. This would end at an unaligned address
130 * (0x7fffff00000). As future variants might provide larger pages
131 * and to make all addresses properly aligned, let us split at 4TB.
133 #define KVM_SLOT_MAX_BYTES (4UL * TiB)
135 static CPUWatchpoint hw_watchpoint;
137 * We don't use a list because this structure is also used to transmit the
138 * hardware breakpoints to the kernel.
140 static struct kvm_hw_breakpoint *hw_breakpoints;
141 static int nb_hw_breakpoints;
143 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
144 KVM_CAP_LAST_INFO
147 static int cap_sync_regs;
148 static int cap_async_pf;
149 static int cap_mem_op;
150 static int cap_s390_irq;
151 static int cap_ri;
152 static int cap_gs;
153 static int cap_hpage_1m;
155 static int active_cmma;
157 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared);
159 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
161 struct kvm_device_attr attr = {
162 .group = KVM_S390_VM_MEM_CTRL,
163 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
164 .addr = (uint64_t) memory_limit,
167 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
170 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
172 int rc;
174 struct kvm_device_attr attr = {
175 .group = KVM_S390_VM_MEM_CTRL,
176 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
177 .addr = (uint64_t) &new_limit,
180 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
181 return 0;
184 rc = kvm_s390_query_mem_limit(hw_limit);
185 if (rc) {
186 return rc;
187 } else if (*hw_limit < new_limit) {
188 return -E2BIG;
191 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
194 int kvm_s390_cmma_active(void)
196 return active_cmma;
199 static bool kvm_s390_cmma_available(void)
201 static bool initialized, value;
203 if (!initialized) {
204 initialized = true;
205 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
206 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
208 return value;
211 void kvm_s390_cmma_reset(void)
213 int rc;
214 struct kvm_device_attr attr = {
215 .group = KVM_S390_VM_MEM_CTRL,
216 .attr = KVM_S390_VM_MEM_CLR_CMMA,
219 if (!kvm_s390_cmma_active()) {
220 return;
223 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
224 trace_kvm_clear_cmma(rc);
227 static void kvm_s390_enable_cmma(void)
229 int rc;
230 struct kvm_device_attr attr = {
231 .group = KVM_S390_VM_MEM_CTRL,
232 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
235 if (cap_hpage_1m) {
236 warn_report("CMM will not be enabled because it is not "
237 "compatible with huge memory backings.");
238 return;
240 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
241 active_cmma = !rc;
242 trace_kvm_enable_cmma(rc);
245 static void kvm_s390_set_attr(uint64_t attr)
247 struct kvm_device_attr attribute = {
248 .group = KVM_S390_VM_CRYPTO,
249 .attr = attr,
252 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
254 if (ret) {
255 error_report("Failed to set crypto device attribute %lu: %s",
256 attr, strerror(-ret));
260 static void kvm_s390_init_aes_kw(void)
262 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
264 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
265 NULL)) {
266 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
269 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
270 kvm_s390_set_attr(attr);
274 static void kvm_s390_init_dea_kw(void)
276 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
278 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
279 NULL)) {
280 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
283 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
284 kvm_s390_set_attr(attr);
288 void kvm_s390_crypto_reset(void)
290 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
291 kvm_s390_init_aes_kw();
292 kvm_s390_init_dea_kw();
296 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
298 if (pagesize == 4 * KiB) {
299 return;
302 if (!hpage_1m_allowed()) {
303 error_setg(errp, "This QEMU machine does not support huge page "
304 "mappings");
305 return;
308 if (pagesize != 1 * MiB) {
309 error_setg(errp, "Memory backing with 2G pages was specified, "
310 "but KVM does not support this memory backing");
311 return;
314 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
315 error_setg(errp, "Memory backing with 1M pages was specified, "
316 "but KVM does not support this memory backing");
317 return;
320 cap_hpage_1m = 1;
323 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque)
325 MachineClass *mc = MACHINE_CLASS(oc);
327 mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
330 int kvm_arch_init(MachineState *ms, KVMState *s)
332 object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE,
333 false, NULL);
335 if (!kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) {
336 error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - "
337 "please use kernel 3.15 or newer");
338 return -1;
341 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
342 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
343 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
344 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
346 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
347 || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
348 phys_mem_set_alloc(legacy_s390_alloc);
351 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
352 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
353 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
354 if (ri_allowed()) {
355 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
356 cap_ri = 1;
359 if (cpu_model_allowed()) {
360 if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) {
361 cap_gs = 1;
366 * The migration interface for ais was introduced with kernel 4.13
367 * but the capability itself had been active since 4.12. As migration
368 * support is considered necessary let's disable ais in the 2.10
369 * machine.
371 /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */
373 kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES);
374 return 0;
377 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
379 return 0;
382 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
384 return cpu->cpu_index;
387 int kvm_arch_init_vcpu(CPUState *cs)
389 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
390 S390CPU *cpu = S390_CPU(cs);
391 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
392 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus));
393 return 0;
396 int kvm_arch_destroy_vcpu(CPUState *cs)
398 S390CPU *cpu = S390_CPU(cs);
400 g_free(cpu->irqstate);
401 cpu->irqstate = NULL;
403 return 0;
406 void kvm_s390_reset_vcpu(S390CPU *cpu)
408 CPUState *cs = CPU(cpu);
410 /* The initial reset call is needed here to reset in-kernel
411 * vcpu data that we can't access directly from QEMU
412 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
413 * Before this ioctl cpu_synchronize_state() is called in common kvm
414 * code (kvm-all) */
415 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
416 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
420 static int can_sync_regs(CPUState *cs, int regs)
422 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
425 int kvm_arch_put_registers(CPUState *cs, int level)
427 S390CPU *cpu = S390_CPU(cs);
428 CPUS390XState *env = &cpu->env;
429 struct kvm_sregs sregs;
430 struct kvm_regs regs;
431 struct kvm_fpu fpu = {};
432 int r;
433 int i;
435 /* always save the PSW and the GPRS*/
436 cs->kvm_run->psw_addr = env->psw.addr;
437 cs->kvm_run->psw_mask = env->psw.mask;
439 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
440 for (i = 0; i < 16; i++) {
441 cs->kvm_run->s.regs.gprs[i] = env->regs[i];
442 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
444 } else {
445 for (i = 0; i < 16; i++) {
446 regs.gprs[i] = env->regs[i];
448 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
449 if (r < 0) {
450 return r;
454 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
455 for (i = 0; i < 32; i++) {
456 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
457 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
459 cs->kvm_run->s.regs.fpc = env->fpc;
460 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
461 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
462 for (i = 0; i < 16; i++) {
463 cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
465 cs->kvm_run->s.regs.fpc = env->fpc;
466 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
467 } else {
468 /* Floating point */
469 for (i = 0; i < 16; i++) {
470 fpu.fprs[i] = *get_freg(env, i);
472 fpu.fpc = env->fpc;
474 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
475 if (r < 0) {
476 return r;
480 /* Do we need to save more than that? */
481 if (level == KVM_PUT_RUNTIME_STATE) {
482 return 0;
485 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
486 cs->kvm_run->s.regs.cputm = env->cputm;
487 cs->kvm_run->s.regs.ckc = env->ckc;
488 cs->kvm_run->s.regs.todpr = env->todpr;
489 cs->kvm_run->s.regs.gbea = env->gbea;
490 cs->kvm_run->s.regs.pp = env->pp;
491 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
492 } else {
494 * These ONE_REGS are not protected by a capability. As they are only
495 * necessary for migration we just trace a possible error, but don't
496 * return with an error return code.
498 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
499 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
500 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
501 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
502 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
505 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
506 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
507 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
510 /* pfault parameters */
511 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
512 cs->kvm_run->s.regs.pft = env->pfault_token;
513 cs->kvm_run->s.regs.pfs = env->pfault_select;
514 cs->kvm_run->s.regs.pfc = env->pfault_compare;
515 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
516 } else if (cap_async_pf) {
517 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
518 if (r < 0) {
519 return r;
521 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
522 if (r < 0) {
523 return r;
525 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
526 if (r < 0) {
527 return r;
531 /* access registers and control registers*/
532 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
533 for (i = 0; i < 16; i++) {
534 cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
535 cs->kvm_run->s.regs.crs[i] = env->cregs[i];
537 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
538 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
539 } else {
540 for (i = 0; i < 16; i++) {
541 sregs.acrs[i] = env->aregs[i];
542 sregs.crs[i] = env->cregs[i];
544 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
545 if (r < 0) {
546 return r;
550 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
551 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
552 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
555 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
556 cs->kvm_run->s.regs.bpbc = env->bpbc;
557 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
560 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
561 cs->kvm_run->s.regs.etoken = env->etoken;
562 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension;
563 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
566 /* Finally the prefix */
567 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
568 cs->kvm_run->s.regs.prefix = env->psa;
569 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
570 } else {
571 /* prefix is only supported via sync regs */
573 return 0;
576 int kvm_arch_get_registers(CPUState *cs)
578 S390CPU *cpu = S390_CPU(cs);
579 CPUS390XState *env = &cpu->env;
580 struct kvm_sregs sregs;
581 struct kvm_regs regs;
582 struct kvm_fpu fpu;
583 int i, r;
585 /* get the PSW */
586 env->psw.addr = cs->kvm_run->psw_addr;
587 env->psw.mask = cs->kvm_run->psw_mask;
589 /* the GPRS */
590 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
591 for (i = 0; i < 16; i++) {
592 env->regs[i] = cs->kvm_run->s.regs.gprs[i];
594 } else {
595 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
596 if (r < 0) {
597 return r;
599 for (i = 0; i < 16; i++) {
600 env->regs[i] = regs.gprs[i];
604 /* The ACRS and CRS */
605 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
606 for (i = 0; i < 16; i++) {
607 env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
608 env->cregs[i] = cs->kvm_run->s.regs.crs[i];
610 } else {
611 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
612 if (r < 0) {
613 return r;
615 for (i = 0; i < 16; i++) {
616 env->aregs[i] = sregs.acrs[i];
617 env->cregs[i] = sregs.crs[i];
621 /* Floating point and vector registers */
622 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
623 for (i = 0; i < 32; i++) {
624 env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
625 env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
627 env->fpc = cs->kvm_run->s.regs.fpc;
628 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
629 for (i = 0; i < 16; i++) {
630 *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
632 env->fpc = cs->kvm_run->s.regs.fpc;
633 } else {
634 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
635 if (r < 0) {
636 return r;
638 for (i = 0; i < 16; i++) {
639 *get_freg(env, i) = fpu.fprs[i];
641 env->fpc = fpu.fpc;
644 /* The prefix */
645 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
646 env->psa = cs->kvm_run->s.regs.prefix;
649 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
650 env->cputm = cs->kvm_run->s.regs.cputm;
651 env->ckc = cs->kvm_run->s.regs.ckc;
652 env->todpr = cs->kvm_run->s.regs.todpr;
653 env->gbea = cs->kvm_run->s.regs.gbea;
654 env->pp = cs->kvm_run->s.regs.pp;
655 } else {
657 * These ONE_REGS are not protected by a capability. As they are only
658 * necessary for migration we just trace a possible error, but don't
659 * return with an error return code.
661 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
662 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
663 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
664 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
665 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
668 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
669 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
672 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
673 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
676 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
677 env->bpbc = cs->kvm_run->s.regs.bpbc;
680 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
681 env->etoken = cs->kvm_run->s.regs.etoken;
682 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
685 /* pfault parameters */
686 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
687 env->pfault_token = cs->kvm_run->s.regs.pft;
688 env->pfault_select = cs->kvm_run->s.regs.pfs;
689 env->pfault_compare = cs->kvm_run->s.regs.pfc;
690 } else if (cap_async_pf) {
691 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
692 if (r < 0) {
693 return r;
695 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
696 if (r < 0) {
697 return r;
699 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
700 if (r < 0) {
701 return r;
705 return 0;
708 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
710 int r;
711 struct kvm_device_attr attr = {
712 .group = KVM_S390_VM_TOD,
713 .attr = KVM_S390_VM_TOD_LOW,
714 .addr = (uint64_t)tod_low,
717 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
718 if (r) {
719 return r;
722 attr.attr = KVM_S390_VM_TOD_HIGH;
723 attr.addr = (uint64_t)tod_high;
724 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
727 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
729 int r;
730 struct kvm_s390_vm_tod_clock gtod;
731 struct kvm_device_attr attr = {
732 .group = KVM_S390_VM_TOD,
733 .attr = KVM_S390_VM_TOD_EXT,
734 .addr = (uint64_t)&gtod,
737 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
738 *tod_high = gtod.epoch_idx;
739 *tod_low = gtod.tod;
741 return r;
744 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
746 int r;
747 struct kvm_device_attr attr = {
748 .group = KVM_S390_VM_TOD,
749 .attr = KVM_S390_VM_TOD_LOW,
750 .addr = (uint64_t)&tod_low,
753 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
754 if (r) {
755 return r;
758 attr.attr = KVM_S390_VM_TOD_HIGH;
759 attr.addr = (uint64_t)&tod_high;
760 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
763 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
765 struct kvm_s390_vm_tod_clock gtod = {
766 .epoch_idx = tod_high,
767 .tod = tod_low,
769 struct kvm_device_attr attr = {
770 .group = KVM_S390_VM_TOD,
771 .attr = KVM_S390_VM_TOD_EXT,
772 .addr = (uint64_t)&gtod,
775 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
779 * kvm_s390_mem_op:
780 * @addr: the logical start address in guest memory
781 * @ar: the access register number
782 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
783 * @len: length that should be transferred
784 * @is_write: true = write, false = read
785 * Returns: 0 on success, non-zero if an exception or error occurred
787 * Use KVM ioctl to read/write from/to guest memory. An access exception
788 * is injected into the vCPU in case of translation errors.
790 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
791 int len, bool is_write)
793 struct kvm_s390_mem_op mem_op = {
794 .gaddr = addr,
795 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
796 .size = len,
797 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
798 : KVM_S390_MEMOP_LOGICAL_READ,
799 .buf = (uint64_t)hostbuf,
800 .ar = ar,
802 int ret;
804 if (!cap_mem_op) {
805 return -ENOSYS;
807 if (!hostbuf) {
808 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
811 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
812 if (ret < 0) {
813 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
815 return ret;
819 * Legacy layout for s390:
820 * Older S390 KVM requires the topmost vma of the RAM to be
821 * smaller than an system defined value, which is at least 256GB.
822 * Larger systems have larger values. We put the guest between
823 * the end of data segment (system break) and this value. We
824 * use 32GB as a base to have enough room for the system break
825 * to grow. We also have to use MAP parameters that avoid
826 * read-only mapping of guest pages.
828 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared)
830 static void *mem;
832 if (mem) {
833 /* we only support one allocation, which is enough for initial ram */
834 return NULL;
837 mem = mmap((void *) 0x800000000ULL, size,
838 PROT_EXEC|PROT_READ|PROT_WRITE,
839 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
840 if (mem == MAP_FAILED) {
841 mem = NULL;
843 if (mem && align) {
844 *align = QEMU_VMALLOC_ALIGN;
846 return mem;
849 static uint8_t const *sw_bp_inst;
850 static uint8_t sw_bp_ilen;
852 static void determine_sw_breakpoint_instr(void)
854 /* DIAG 501 is used for sw breakpoints with old kernels */
855 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
856 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
857 static const uint8_t instr_0x0000[] = {0x00, 0x00};
859 if (sw_bp_inst) {
860 return;
862 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
863 sw_bp_inst = diag_501;
864 sw_bp_ilen = sizeof(diag_501);
865 DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
866 } else {
867 sw_bp_inst = instr_0x0000;
868 sw_bp_ilen = sizeof(instr_0x0000);
869 DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
873 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
875 determine_sw_breakpoint_instr();
877 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
878 sw_bp_ilen, 0) ||
879 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
880 return -EINVAL;
882 return 0;
885 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
887 uint8_t t[MAX_ILEN];
889 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
890 return -EINVAL;
891 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
892 return -EINVAL;
893 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
894 sw_bp_ilen, 1)) {
895 return -EINVAL;
898 return 0;
901 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
902 int len, int type)
904 int n;
906 for (n = 0; n < nb_hw_breakpoints; n++) {
907 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
908 (hw_breakpoints[n].len == len || len == -1)) {
909 return &hw_breakpoints[n];
913 return NULL;
916 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
918 int size;
920 if (find_hw_breakpoint(addr, len, type)) {
921 return -EEXIST;
924 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
926 if (!hw_breakpoints) {
927 nb_hw_breakpoints = 0;
928 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
929 } else {
930 hw_breakpoints =
931 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
934 if (!hw_breakpoints) {
935 nb_hw_breakpoints = 0;
936 return -ENOMEM;
939 hw_breakpoints[nb_hw_breakpoints].addr = addr;
940 hw_breakpoints[nb_hw_breakpoints].len = len;
941 hw_breakpoints[nb_hw_breakpoints].type = type;
943 nb_hw_breakpoints++;
945 return 0;
948 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
949 target_ulong len, int type)
951 switch (type) {
952 case GDB_BREAKPOINT_HW:
953 type = KVM_HW_BP;
954 break;
955 case GDB_WATCHPOINT_WRITE:
956 if (len < 1) {
957 return -EINVAL;
959 type = KVM_HW_WP_WRITE;
960 break;
961 default:
962 return -ENOSYS;
964 return insert_hw_breakpoint(addr, len, type);
967 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
968 target_ulong len, int type)
970 int size;
971 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
973 if (bp == NULL) {
974 return -ENOENT;
977 nb_hw_breakpoints--;
978 if (nb_hw_breakpoints > 0) {
980 * In order to trim the array, move the last element to the position to
981 * be removed - if necessary.
983 if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
984 *bp = hw_breakpoints[nb_hw_breakpoints];
986 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
987 hw_breakpoints =
988 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
989 } else {
990 g_free(hw_breakpoints);
991 hw_breakpoints = NULL;
994 return 0;
997 void kvm_arch_remove_all_hw_breakpoints(void)
999 nb_hw_breakpoints = 0;
1000 g_free(hw_breakpoints);
1001 hw_breakpoints = NULL;
1004 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
1006 int i;
1008 if (nb_hw_breakpoints > 0) {
1009 dbg->arch.nr_hw_bp = nb_hw_breakpoints;
1010 dbg->arch.hw_bp = hw_breakpoints;
1012 for (i = 0; i < nb_hw_breakpoints; ++i) {
1013 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
1014 hw_breakpoints[i].addr);
1016 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1017 } else {
1018 dbg->arch.nr_hw_bp = 0;
1019 dbg->arch.hw_bp = NULL;
1023 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1027 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1029 return MEMTXATTRS_UNSPECIFIED;
1032 int kvm_arch_process_async_events(CPUState *cs)
1034 return cs->halted;
1037 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1038 struct kvm_s390_interrupt *interrupt)
1040 int r = 0;
1042 interrupt->type = irq->type;
1043 switch (irq->type) {
1044 case KVM_S390_INT_VIRTIO:
1045 interrupt->parm = irq->u.ext.ext_params;
1046 /* fall through */
1047 case KVM_S390_INT_PFAULT_INIT:
1048 case KVM_S390_INT_PFAULT_DONE:
1049 interrupt->parm64 = irq->u.ext.ext_params2;
1050 break;
1051 case KVM_S390_PROGRAM_INT:
1052 interrupt->parm = irq->u.pgm.code;
1053 break;
1054 case KVM_S390_SIGP_SET_PREFIX:
1055 interrupt->parm = irq->u.prefix.address;
1056 break;
1057 case KVM_S390_INT_SERVICE:
1058 interrupt->parm = irq->u.ext.ext_params;
1059 break;
1060 case KVM_S390_MCHK:
1061 interrupt->parm = irq->u.mchk.cr14;
1062 interrupt->parm64 = irq->u.mchk.mcic;
1063 break;
1064 case KVM_S390_INT_EXTERNAL_CALL:
1065 interrupt->parm = irq->u.extcall.code;
1066 break;
1067 case KVM_S390_INT_EMERGENCY:
1068 interrupt->parm = irq->u.emerg.code;
1069 break;
1070 case KVM_S390_SIGP_STOP:
1071 case KVM_S390_RESTART:
1072 break; /* These types have no parameters */
1073 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1074 interrupt->parm = irq->u.io.subchannel_id << 16;
1075 interrupt->parm |= irq->u.io.subchannel_nr;
1076 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1077 interrupt->parm64 |= irq->u.io.io_int_word;
1078 break;
1079 default:
1080 r = -EINVAL;
1081 break;
1083 return r;
1086 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1088 struct kvm_s390_interrupt kvmint = {};
1089 int r;
1091 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1092 if (r < 0) {
1093 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1094 exit(1);
1097 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1098 if (r < 0) {
1099 fprintf(stderr, "KVM failed to inject interrupt\n");
1100 exit(1);
1104 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1106 CPUState *cs = CPU(cpu);
1107 int r;
1109 if (cap_s390_irq) {
1110 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1111 if (!r) {
1112 return;
1114 error_report("KVM failed to inject interrupt %llx", irq->type);
1115 exit(1);
1118 inject_vcpu_irq_legacy(cs, irq);
1121 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1123 struct kvm_s390_interrupt kvmint = {};
1124 int r;
1126 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1127 if (r < 0) {
1128 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1129 exit(1);
1132 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1133 if (r < 0) {
1134 fprintf(stderr, "KVM failed to inject interrupt\n");
1135 exit(1);
1139 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1141 struct kvm_s390_irq irq = {
1142 .type = KVM_S390_PROGRAM_INT,
1143 .u.pgm.code = code,
1145 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1146 cpu->env.psw.addr);
1147 kvm_s390_vcpu_interrupt(cpu, &irq);
1150 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1152 struct kvm_s390_irq irq = {
1153 .type = KVM_S390_PROGRAM_INT,
1154 .u.pgm.code = code,
1155 .u.pgm.trans_exc_code = te_code,
1156 .u.pgm.exc_access_id = te_code & 3,
1159 kvm_s390_vcpu_interrupt(cpu, &irq);
1162 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1163 uint16_t ipbh0)
1165 CPUS390XState *env = &cpu->env;
1166 uint64_t sccb;
1167 uint32_t code;
1168 int r;
1170 sccb = env->regs[ipbh0 & 0xf];
1171 code = env->regs[(ipbh0 & 0xf0) >> 4];
1173 r = sclp_service_call(env, sccb, code);
1174 if (r < 0) {
1175 kvm_s390_program_interrupt(cpu, -r);
1176 return;
1178 setcc(cpu, r);
1181 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1183 CPUS390XState *env = &cpu->env;
1184 int rc = 0;
1185 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1187 switch (ipa1) {
1188 case PRIV_B2_XSCH:
1189 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1190 break;
1191 case PRIV_B2_CSCH:
1192 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1193 break;
1194 case PRIV_B2_HSCH:
1195 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1196 break;
1197 case PRIV_B2_MSCH:
1198 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1199 break;
1200 case PRIV_B2_SSCH:
1201 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1202 break;
1203 case PRIV_B2_STCRW:
1204 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1205 break;
1206 case PRIV_B2_STSCH:
1207 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1208 break;
1209 case PRIV_B2_TSCH:
1210 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1211 fprintf(stderr, "Spurious tsch intercept\n");
1212 break;
1213 case PRIV_B2_CHSC:
1214 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1215 break;
1216 case PRIV_B2_TPI:
1217 /* This should have been handled by kvm already. */
1218 fprintf(stderr, "Spurious tpi intercept\n");
1219 break;
1220 case PRIV_B2_SCHM:
1221 ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1222 run->s390_sieic.ipb, RA_IGNORED);
1223 break;
1224 case PRIV_B2_RSCH:
1225 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1226 break;
1227 case PRIV_B2_RCHP:
1228 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1229 break;
1230 case PRIV_B2_STCPS:
1231 /* We do not provide this instruction, it is suppressed. */
1232 break;
1233 case PRIV_B2_SAL:
1234 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1235 break;
1236 case PRIV_B2_SIGA:
1237 /* Not provided, set CC = 3 for subchannel not operational */
1238 setcc(cpu, 3);
1239 break;
1240 case PRIV_B2_SCLP_CALL:
1241 kvm_sclp_service_call(cpu, run, ipbh0);
1242 break;
1243 default:
1244 rc = -1;
1245 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1246 break;
1249 return rc;
1252 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1253 uint8_t *ar)
1255 CPUS390XState *env = &cpu->env;
1256 uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1257 uint32_t base2 = run->s390_sieic.ipb >> 28;
1258 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1259 ((run->s390_sieic.ipb & 0xff00) << 4);
1261 if (disp2 & 0x80000) {
1262 disp2 += 0xfff00000;
1264 if (ar) {
1265 *ar = base2;
1268 return (base2 ? env->regs[base2] : 0) +
1269 (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1272 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1273 uint8_t *ar)
1275 CPUS390XState *env = &cpu->env;
1276 uint32_t base2 = run->s390_sieic.ipb >> 28;
1277 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1278 ((run->s390_sieic.ipb & 0xff00) << 4);
1280 if (disp2 & 0x80000) {
1281 disp2 += 0xfff00000;
1283 if (ar) {
1284 *ar = base2;
1287 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1290 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1292 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1294 if (s390_has_feat(S390_FEAT_ZPCI)) {
1295 return clp_service_call(cpu, r2, RA_IGNORED);
1296 } else {
1297 return -1;
1301 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1303 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1304 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1306 if (s390_has_feat(S390_FEAT_ZPCI)) {
1307 return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1308 } else {
1309 return -1;
1313 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1315 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1316 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1318 if (s390_has_feat(S390_FEAT_ZPCI)) {
1319 return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1320 } else {
1321 return -1;
1325 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1327 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1328 uint64_t fiba;
1329 uint8_t ar;
1331 if (s390_has_feat(S390_FEAT_ZPCI)) {
1332 fiba = get_base_disp_rxy(cpu, run, &ar);
1334 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1335 } else {
1336 return -1;
1340 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1342 CPUS390XState *env = &cpu->env;
1343 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1344 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1345 uint8_t isc;
1346 uint16_t mode;
1347 int r;
1349 mode = env->regs[r1] & 0xffff;
1350 isc = (env->regs[r3] >> 27) & 0x7;
1351 r = css_do_sic(env, isc, mode);
1352 if (r) {
1353 kvm_s390_program_interrupt(cpu, -r);
1356 return 0;
1359 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1361 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1362 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1364 if (s390_has_feat(S390_FEAT_ZPCI)) {
1365 return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1366 } else {
1367 return -1;
1371 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1373 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1374 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1375 uint64_t gaddr;
1376 uint8_t ar;
1378 if (s390_has_feat(S390_FEAT_ZPCI)) {
1379 gaddr = get_base_disp_rsy(cpu, run, &ar);
1381 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1382 } else {
1383 return -1;
1387 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1389 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1390 uint64_t fiba;
1391 uint8_t ar;
1393 if (s390_has_feat(S390_FEAT_ZPCI)) {
1394 fiba = get_base_disp_rxy(cpu, run, &ar);
1396 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1397 } else {
1398 return -1;
1402 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1404 int r = 0;
1406 switch (ipa1) {
1407 case PRIV_B9_CLP:
1408 r = kvm_clp_service_call(cpu, run);
1409 break;
1410 case PRIV_B9_PCISTG:
1411 r = kvm_pcistg_service_call(cpu, run);
1412 break;
1413 case PRIV_B9_PCILG:
1414 r = kvm_pcilg_service_call(cpu, run);
1415 break;
1416 case PRIV_B9_RPCIT:
1417 r = kvm_rpcit_service_call(cpu, run);
1418 break;
1419 case PRIV_B9_EQBS:
1420 /* just inject exception */
1421 r = -1;
1422 break;
1423 default:
1424 r = -1;
1425 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1426 break;
1429 return r;
1432 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1434 int r = 0;
1436 switch (ipbl) {
1437 case PRIV_EB_PCISTB:
1438 r = kvm_pcistb_service_call(cpu, run);
1439 break;
1440 case PRIV_EB_SIC:
1441 r = kvm_sic_service_call(cpu, run);
1442 break;
1443 case PRIV_EB_SQBS:
1444 /* just inject exception */
1445 r = -1;
1446 break;
1447 default:
1448 r = -1;
1449 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1450 break;
1453 return r;
1456 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1458 int r = 0;
1460 switch (ipbl) {
1461 case PRIV_E3_MPCIFC:
1462 r = kvm_mpcifc_service_call(cpu, run);
1463 break;
1464 case PRIV_E3_STPCIFC:
1465 r = kvm_stpcifc_service_call(cpu, run);
1466 break;
1467 default:
1468 r = -1;
1469 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1470 break;
1473 return r;
1476 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1478 CPUS390XState *env = &cpu->env;
1479 int ret;
1481 ret = s390_virtio_hypercall(env);
1482 if (ret == -EINVAL) {
1483 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1484 return 0;
1487 return ret;
1490 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1492 uint64_t r1, r3;
1493 int rc;
1495 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1496 r3 = run->s390_sieic.ipa & 0x000f;
1497 rc = handle_diag_288(&cpu->env, r1, r3);
1498 if (rc) {
1499 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1503 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1505 uint64_t r1, r3;
1507 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1508 r3 = run->s390_sieic.ipa & 0x000f;
1509 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1512 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1514 CPUS390XState *env = &cpu->env;
1515 unsigned long pc;
1517 pc = env->psw.addr - sw_bp_ilen;
1518 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1519 env->psw.addr = pc;
1520 return EXCP_DEBUG;
1523 return -ENOENT;
1526 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1528 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1530 int r = 0;
1531 uint16_t func_code;
1534 * For any diagnose call we support, bits 48-63 of the resulting
1535 * address specify the function code; the remainder is ignored.
1537 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1538 switch (func_code) {
1539 case DIAG_TIMEREVENT:
1540 kvm_handle_diag_288(cpu, run);
1541 break;
1542 case DIAG_IPL:
1543 kvm_handle_diag_308(cpu, run);
1544 break;
1545 case DIAG_KVM_HYPERCALL:
1546 r = handle_hypercall(cpu, run);
1547 break;
1548 case DIAG_KVM_BREAKPOINT:
1549 r = handle_sw_breakpoint(cpu, run);
1550 break;
1551 default:
1552 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1553 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1554 break;
1557 return r;
1560 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1562 CPUS390XState *env = &cpu->env;
1563 const uint8_t r1 = ipa1 >> 4;
1564 const uint8_t r3 = ipa1 & 0x0f;
1565 int ret;
1566 uint8_t order;
1568 /* get order code */
1569 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1571 ret = handle_sigp(env, order, r1, r3);
1572 setcc(cpu, ret);
1573 return 0;
1576 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1578 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1579 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1580 int r = -1;
1582 DPRINTF("handle_instruction 0x%x 0x%x\n",
1583 run->s390_sieic.ipa, run->s390_sieic.ipb);
1584 switch (ipa0) {
1585 case IPA0_B2:
1586 r = handle_b2(cpu, run, ipa1);
1587 break;
1588 case IPA0_B9:
1589 r = handle_b9(cpu, run, ipa1);
1590 break;
1591 case IPA0_EB:
1592 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1593 break;
1594 case IPA0_E3:
1595 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1596 break;
1597 case IPA0_DIAG:
1598 r = handle_diag(cpu, run, run->s390_sieic.ipb);
1599 break;
1600 case IPA0_SIGP:
1601 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1602 break;
1605 if (r < 0) {
1606 r = 0;
1607 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1610 return r;
1613 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1614 int pswoffset)
1616 CPUState *cs = CPU(cpu);
1618 s390_cpu_halt(cpu);
1619 cpu->env.crash_reason = reason;
1620 qemu_system_guest_panicked(cpu_get_crash_info(cs));
1623 /* try to detect pgm check loops */
1624 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1626 CPUState *cs = CPU(cpu);
1627 PSW oldpsw, newpsw;
1629 newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1630 offsetof(LowCore, program_new_psw));
1631 newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1632 offsetof(LowCore, program_new_psw) + 8);
1633 oldpsw.mask = run->psw_mask;
1634 oldpsw.addr = run->psw_addr;
1636 * Avoid endless loops of operation exceptions, if the pgm new
1637 * PSW will cause a new operation exception.
1638 * The heuristic checks if the pgm new psw is within 6 bytes before
1639 * the faulting psw address (with same DAT, AS settings) and the
1640 * new psw is not a wait psw and the fault was not triggered by
1641 * problem state. In that case go into crashed state.
1644 if (oldpsw.addr - newpsw.addr <= 6 &&
1645 !(newpsw.mask & PSW_MASK_WAIT) &&
1646 !(oldpsw.mask & PSW_MASK_PSTATE) &&
1647 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1648 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1649 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1650 offsetof(LowCore, program_new_psw));
1651 return EXCP_HALTED;
1653 return 0;
1656 static int handle_intercept(S390CPU *cpu)
1658 CPUState *cs = CPU(cpu);
1659 struct kvm_run *run = cs->kvm_run;
1660 int icpt_code = run->s390_sieic.icptcode;
1661 int r = 0;
1663 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1664 (long)cs->kvm_run->psw_addr);
1665 switch (icpt_code) {
1666 case ICPT_INSTRUCTION:
1667 r = handle_instruction(cpu, run);
1668 break;
1669 case ICPT_PROGRAM:
1670 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1671 offsetof(LowCore, program_new_psw));
1672 r = EXCP_HALTED;
1673 break;
1674 case ICPT_EXT_INT:
1675 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1676 offsetof(LowCore, external_new_psw));
1677 r = EXCP_HALTED;
1678 break;
1679 case ICPT_WAITPSW:
1680 /* disabled wait, since enabled wait is handled in kernel */
1681 s390_handle_wait(cpu);
1682 r = EXCP_HALTED;
1683 break;
1684 case ICPT_CPU_STOP:
1685 do_stop_interrupt(&cpu->env);
1686 r = EXCP_HALTED;
1687 break;
1688 case ICPT_OPEREXC:
1689 /* check for break points */
1690 r = handle_sw_breakpoint(cpu, run);
1691 if (r == -ENOENT) {
1692 /* Then check for potential pgm check loops */
1693 r = handle_oper_loop(cpu, run);
1694 if (r == 0) {
1695 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1698 break;
1699 case ICPT_SOFT_INTERCEPT:
1700 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1701 exit(1);
1702 break;
1703 case ICPT_IO:
1704 fprintf(stderr, "KVM unimplemented icpt IO\n");
1705 exit(1);
1706 break;
1707 default:
1708 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1709 exit(1);
1710 break;
1713 return r;
1716 static int handle_tsch(S390CPU *cpu)
1718 CPUState *cs = CPU(cpu);
1719 struct kvm_run *run = cs->kvm_run;
1720 int ret;
1722 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1723 RA_IGNORED);
1724 if (ret < 0) {
1726 * Failure.
1727 * If an I/O interrupt had been dequeued, we have to reinject it.
1729 if (run->s390_tsch.dequeued) {
1730 s390_io_interrupt(run->s390_tsch.subchannel_id,
1731 run->s390_tsch.subchannel_nr,
1732 run->s390_tsch.io_int_parm,
1733 run->s390_tsch.io_int_word);
1735 ret = 0;
1737 return ret;
1740 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1742 SysIB_322 sysib;
1743 int del;
1745 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1746 return;
1748 /* Shift the stack of Extended Names to prepare for our own data */
1749 memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1750 sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1751 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1752 * assumed it's not capable of managing Extended Names for lower levels.
1754 for (del = 1; del < sysib.count; del++) {
1755 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1756 break;
1759 if (del < sysib.count) {
1760 memset(sysib.ext_names[del], 0,
1761 sizeof(sysib.ext_names[0]) * (sysib.count - del));
1763 /* Insert short machine name in EBCDIC, padded with blanks */
1764 if (qemu_name) {
1765 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1766 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1767 strlen(qemu_name)));
1769 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1770 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
1771 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1772 * considered by s390 as not capable of providing any Extended Name.
1773 * Therefore if no name was specified on qemu invocation, we go with the
1774 * same "KVMguest" default, which KVM has filled into short name field.
1776 if (qemu_name) {
1777 strncpy((char *)sysib.ext_names[0], qemu_name,
1778 sizeof(sysib.ext_names[0]));
1779 } else {
1780 strcpy((char *)sysib.ext_names[0], "KVMguest");
1782 /* Insert UUID */
1783 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1785 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1788 static int handle_stsi(S390CPU *cpu)
1790 CPUState *cs = CPU(cpu);
1791 struct kvm_run *run = cs->kvm_run;
1793 switch (run->s390_stsi.fc) {
1794 case 3:
1795 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1796 return 0;
1798 /* Only sysib 3.2.2 needs post-handling for now. */
1799 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1800 return 0;
1801 default:
1802 return 0;
1806 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1808 CPUState *cs = CPU(cpu);
1809 struct kvm_run *run = cs->kvm_run;
1811 int ret = 0;
1812 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1814 switch (arch_info->type) {
1815 case KVM_HW_WP_WRITE:
1816 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1817 cs->watchpoint_hit = &hw_watchpoint;
1818 hw_watchpoint.vaddr = arch_info->addr;
1819 hw_watchpoint.flags = BP_MEM_WRITE;
1820 ret = EXCP_DEBUG;
1822 break;
1823 case KVM_HW_BP:
1824 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1825 ret = EXCP_DEBUG;
1827 break;
1828 case KVM_SINGLESTEP:
1829 if (cs->singlestep_enabled) {
1830 ret = EXCP_DEBUG;
1832 break;
1833 default:
1834 ret = -ENOSYS;
1837 return ret;
1840 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1842 S390CPU *cpu = S390_CPU(cs);
1843 int ret = 0;
1845 qemu_mutex_lock_iothread();
1847 kvm_cpu_synchronize_state(cs);
1849 switch (run->exit_reason) {
1850 case KVM_EXIT_S390_SIEIC:
1851 ret = handle_intercept(cpu);
1852 break;
1853 case KVM_EXIT_S390_RESET:
1854 s390_ipl_reset_request(cs, S390_RESET_REIPL);
1855 break;
1856 case KVM_EXIT_S390_TSCH:
1857 ret = handle_tsch(cpu);
1858 break;
1859 case KVM_EXIT_S390_STSI:
1860 ret = handle_stsi(cpu);
1861 break;
1862 case KVM_EXIT_DEBUG:
1863 ret = kvm_arch_handle_debug_exit(cpu);
1864 break;
1865 default:
1866 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1867 break;
1869 qemu_mutex_unlock_iothread();
1871 if (ret == 0) {
1872 ret = EXCP_INTERRUPT;
1874 return ret;
1877 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1879 return true;
1882 void kvm_s390_enable_css_support(S390CPU *cpu)
1884 int r;
1886 /* Activate host kernel channel subsystem support. */
1887 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
1888 assert(r == 0);
1891 void kvm_arch_init_irq_routing(KVMState *s)
1894 * Note that while irqchip capabilities generally imply that cpustates
1895 * are handled in-kernel, it is not true for s390 (yet); therefore, we
1896 * have to override the common code kvm_halt_in_kernel_allowed setting.
1898 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
1899 kvm_gsi_routing_allowed = true;
1900 kvm_halt_in_kernel_allowed = false;
1904 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
1905 int vq, bool assign)
1907 struct kvm_ioeventfd kick = {
1908 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
1909 KVM_IOEVENTFD_FLAG_DATAMATCH,
1910 .fd = event_notifier_get_fd(notifier),
1911 .datamatch = vq,
1912 .addr = sch,
1913 .len = 8,
1915 trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
1916 kick.datamatch);
1917 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
1918 return -ENOSYS;
1920 if (!assign) {
1921 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1923 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1926 int kvm_s390_get_ri(void)
1928 return cap_ri;
1931 int kvm_s390_get_gs(void)
1933 return cap_gs;
1936 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
1938 struct kvm_mp_state mp_state = {};
1939 int ret;
1941 /* the kvm part might not have been initialized yet */
1942 if (CPU(cpu)->kvm_state == NULL) {
1943 return 0;
1946 switch (cpu_state) {
1947 case S390_CPU_STATE_STOPPED:
1948 mp_state.mp_state = KVM_MP_STATE_STOPPED;
1949 break;
1950 case S390_CPU_STATE_CHECK_STOP:
1951 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
1952 break;
1953 case S390_CPU_STATE_OPERATING:
1954 mp_state.mp_state = KVM_MP_STATE_OPERATING;
1955 break;
1956 case S390_CPU_STATE_LOAD:
1957 mp_state.mp_state = KVM_MP_STATE_LOAD;
1958 break;
1959 default:
1960 error_report("Requested CPU state is not a valid S390 CPU state: %u",
1961 cpu_state);
1962 exit(1);
1965 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1966 if (ret) {
1967 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
1968 strerror(-ret));
1971 return ret;
1974 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
1976 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
1977 struct kvm_s390_irq_state irq_state = {
1978 .buf = (uint64_t) cpu->irqstate,
1979 .len = VCPU_IRQ_BUF_SIZE(max_cpus),
1981 CPUState *cs = CPU(cpu);
1982 int32_t bytes;
1984 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
1985 return;
1988 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
1989 if (bytes < 0) {
1990 cpu->irqstate_saved_size = 0;
1991 error_report("Migration of interrupt state failed");
1992 return;
1995 cpu->irqstate_saved_size = bytes;
1998 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2000 CPUState *cs = CPU(cpu);
2001 struct kvm_s390_irq_state irq_state = {
2002 .buf = (uint64_t) cpu->irqstate,
2003 .len = cpu->irqstate_saved_size,
2005 int r;
2007 if (cpu->irqstate_saved_size == 0) {
2008 return 0;
2011 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2012 return -ENOSYS;
2015 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2016 if (r) {
2017 error_report("Setting interrupt state failed %d", r);
2019 return r;
2022 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2023 uint64_t address, uint32_t data, PCIDevice *dev)
2025 S390PCIBusDevice *pbdev;
2026 uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2028 if (!dev) {
2029 DPRINTF("add_msi_route no pci device\n");
2030 return -ENODEV;
2033 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2034 if (!pbdev) {
2035 DPRINTF("add_msi_route no zpci device\n");
2036 return -ENODEV;
2039 route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2040 route->flags = 0;
2041 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2042 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2043 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2044 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2045 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2046 return 0;
2049 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2050 int vector, PCIDevice *dev)
2052 return 0;
2055 int kvm_arch_release_virq_post(int virq)
2057 return 0;
2060 int kvm_arch_msi_data_to_gsi(uint32_t data)
2062 abort();
2065 static int query_cpu_subfunc(S390FeatBitmap features)
2067 struct kvm_s390_vm_cpu_subfunc prop;
2068 struct kvm_device_attr attr = {
2069 .group = KVM_S390_VM_CPU_MODEL,
2070 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2071 .addr = (uint64_t) &prop,
2073 int rc;
2075 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2076 if (rc) {
2077 return rc;
2081 * We're going to add all subfunctions now, if the corresponding feature
2082 * is available that unlocks the query functions.
2084 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2085 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2086 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2088 if (test_bit(S390_FEAT_MSA, features)) {
2089 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2090 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2091 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2092 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2093 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2095 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2096 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2098 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2099 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2100 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2101 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2102 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2104 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2105 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2107 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2108 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2110 if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2111 s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2113 if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2114 s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2116 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2117 s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2119 return 0;
2122 static int configure_cpu_subfunc(const S390FeatBitmap features)
2124 struct kvm_s390_vm_cpu_subfunc prop = {};
2125 struct kvm_device_attr attr = {
2126 .group = KVM_S390_VM_CPU_MODEL,
2127 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2128 .addr = (uint64_t) &prop,
2131 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2132 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2133 /* hardware support might be missing, IBC will handle most of this */
2134 return 0;
2137 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2138 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2139 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2141 if (test_bit(S390_FEAT_MSA, features)) {
2142 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2143 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2144 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2145 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2146 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2148 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2149 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2151 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2152 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2153 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2154 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2155 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2157 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2158 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2160 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2161 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2163 if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2164 s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2166 if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2167 s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2169 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2170 s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2172 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2175 static int kvm_to_feat[][2] = {
2176 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2177 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2178 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2179 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2180 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2181 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2182 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2183 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2184 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2185 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2186 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2187 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2188 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2189 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2192 static int query_cpu_feat(S390FeatBitmap features)
2194 struct kvm_s390_vm_cpu_feat prop;
2195 struct kvm_device_attr attr = {
2196 .group = KVM_S390_VM_CPU_MODEL,
2197 .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2198 .addr = (uint64_t) &prop,
2200 int rc;
2201 int i;
2203 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2204 if (rc) {
2205 return rc;
2208 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2209 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2210 set_bit(kvm_to_feat[i][1], features);
2213 return 0;
2216 static int configure_cpu_feat(const S390FeatBitmap features)
2218 struct kvm_s390_vm_cpu_feat prop = {};
2219 struct kvm_device_attr attr = {
2220 .group = KVM_S390_VM_CPU_MODEL,
2221 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2222 .addr = (uint64_t) &prop,
2224 int i;
2226 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2227 if (test_bit(kvm_to_feat[i][1], features)) {
2228 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2231 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2234 bool kvm_s390_cpu_models_supported(void)
2236 if (!cpu_model_allowed()) {
2237 /* compatibility machines interfere with the cpu model */
2238 return false;
2240 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2241 KVM_S390_VM_CPU_MACHINE) &&
2242 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2243 KVM_S390_VM_CPU_PROCESSOR) &&
2244 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2245 KVM_S390_VM_CPU_MACHINE_FEAT) &&
2246 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2247 KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2248 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2249 KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2252 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2254 struct kvm_s390_vm_cpu_machine prop = {};
2255 struct kvm_device_attr attr = {
2256 .group = KVM_S390_VM_CPU_MODEL,
2257 .attr = KVM_S390_VM_CPU_MACHINE,
2258 .addr = (uint64_t) &prop,
2260 uint16_t unblocked_ibc = 0, cpu_type = 0;
2261 int rc;
2263 memset(model, 0, sizeof(*model));
2265 if (!kvm_s390_cpu_models_supported()) {
2266 error_setg(errp, "KVM doesn't support CPU models");
2267 return;
2270 /* query the basic cpu model properties */
2271 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2272 if (rc) {
2273 error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2274 return;
2277 cpu_type = cpuid_type(prop.cpuid);
2278 if (has_ibc(prop.ibc)) {
2279 model->lowest_ibc = lowest_ibc(prop.ibc);
2280 unblocked_ibc = unblocked_ibc(prop.ibc);
2282 model->cpu_id = cpuid_id(prop.cpuid);
2283 model->cpu_id_format = cpuid_format(prop.cpuid);
2284 model->cpu_ver = 0xff;
2286 /* get supported cpu features indicated via STFL(E) */
2287 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2288 (uint8_t *) prop.fac_mask);
2289 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2290 if (test_bit(S390_FEAT_STFLE, model->features)) {
2291 set_bit(S390_FEAT_DAT_ENH_2, model->features);
2293 /* get supported cpu features indicated e.g. via SCLP */
2294 rc = query_cpu_feat(model->features);
2295 if (rc) {
2296 error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2297 return;
2299 /* get supported cpu subfunctions indicated via query / test bit */
2300 rc = query_cpu_subfunc(model->features);
2301 if (rc) {
2302 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2303 return;
2306 /* PTFF subfunctions might be indicated although kernel support missing */
2307 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2308 clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2309 clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2310 clear_bit(S390_FEAT_PTFF_STOE, model->features);
2311 clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2314 /* with cpu model support, CMM is only indicated if really available */
2315 if (kvm_s390_cmma_available()) {
2316 set_bit(S390_FEAT_CMM, model->features);
2317 } else {
2318 /* no cmm -> no cmm nt */
2319 clear_bit(S390_FEAT_CMM_NT, model->features);
2322 /* bpb needs kernel support for migration, VSIE and reset */
2323 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2324 clear_bit(S390_FEAT_BPB, model->features);
2327 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2328 set_bit(S390_FEAT_ZPCI, model->features);
2329 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2331 if (s390_known_cpu_type(cpu_type)) {
2332 /* we want the exact model, even if some features are missing */
2333 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2334 ibc_ec_ga(unblocked_ibc), NULL);
2335 } else {
2336 /* model unknown, e.g. too new - search using features */
2337 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2338 ibc_ec_ga(unblocked_ibc),
2339 model->features);
2341 if (!model->def) {
2342 error_setg(errp, "KVM: host CPU model could not be identified");
2343 return;
2345 /* for now, we can only provide the AP feature with HW support */
2346 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2347 KVM_S390_VM_CRYPTO_ENABLE_APIE)) {
2348 set_bit(S390_FEAT_AP, model->features);
2350 /* strip of features that are not part of the maximum model */
2351 bitmap_and(model->features, model->features, model->def->full_feat,
2352 S390_FEAT_MAX);
2355 static void kvm_s390_configure_apie(bool interpret)
2357 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2358 KVM_S390_VM_CRYPTO_DISABLE_APIE;
2360 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2361 kvm_s390_set_attr(attr);
2365 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2367 struct kvm_s390_vm_cpu_processor prop = {
2368 .fac_list = { 0 },
2370 struct kvm_device_attr attr = {
2371 .group = KVM_S390_VM_CPU_MODEL,
2372 .attr = KVM_S390_VM_CPU_PROCESSOR,
2373 .addr = (uint64_t) &prop,
2375 int rc;
2377 if (!model) {
2378 /* compatibility handling if cpu models are disabled */
2379 if (kvm_s390_cmma_available()) {
2380 kvm_s390_enable_cmma();
2382 return;
2384 if (!kvm_s390_cpu_models_supported()) {
2385 error_setg(errp, "KVM doesn't support CPU models");
2386 return;
2388 prop.cpuid = s390_cpuid_from_cpu_model(model);
2389 prop.ibc = s390_ibc_from_cpu_model(model);
2390 /* configure cpu features indicated via STFL(e) */
2391 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2392 (uint8_t *) prop.fac_list);
2393 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2394 if (rc) {
2395 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2396 return;
2398 /* configure cpu features indicated e.g. via SCLP */
2399 rc = configure_cpu_feat(model->features);
2400 if (rc) {
2401 error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2402 return;
2404 /* configure cpu subfunctions indicated via query / test bit */
2405 rc = configure_cpu_subfunc(model->features);
2406 if (rc) {
2407 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2408 return;
2410 /* enable CMM via CMMA */
2411 if (test_bit(S390_FEAT_CMM, model->features)) {
2412 kvm_s390_enable_cmma();
2415 if (test_bit(S390_FEAT_AP, model->features)) {
2416 kvm_s390_configure_apie(true);
2420 void kvm_s390_restart_interrupt(S390CPU *cpu)
2422 struct kvm_s390_irq irq = {
2423 .type = KVM_S390_RESTART,
2426 kvm_s390_vcpu_interrupt(cpu, &irq);
2429 void kvm_s390_stop_interrupt(S390CPU *cpu)
2431 struct kvm_s390_irq irq = {
2432 .type = KVM_S390_SIGP_STOP,
2435 kvm_s390_vcpu_interrupt(cpu, &irq);