ivshmem: Replace int role_val by OnOffAuto master
[qemu/ar7.git] / target-arm / op_helper.c
blobd626ff1a205dd35ff1c3989af1e6090f22cd463a
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "internals.h"
23 #include "exec/cpu_ldst.h"
25 #define SIGNBIT (uint32_t)0x80000000
26 #define SIGNBIT64 ((uint64_t)1 << 63)
28 static void raise_exception(CPUARMState *env, uint32_t excp,
29 uint32_t syndrome, uint32_t target_el)
31 CPUState *cs = CPU(arm_env_get_cpu(env));
33 assert(!excp_is_internal(excp));
34 cs->exception_index = excp;
35 env->exception.syndrome = syndrome;
36 env->exception.target_el = target_el;
37 cpu_loop_exit(cs);
40 static int exception_target_el(CPUARMState *env)
42 int target_el = MAX(1, arm_current_el(env));
44 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
45 * to EL3 in this case.
47 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
48 target_el = 3;
51 return target_el;
54 uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
55 uint32_t rn, uint32_t maxindex)
57 uint32_t val;
58 uint32_t tmp;
59 int index;
60 int shift;
61 uint64_t *table;
62 table = (uint64_t *)&env->vfp.regs[rn];
63 val = 0;
64 for (shift = 0; shift < 32; shift += 8) {
65 index = (ireg >> shift) & 0xff;
66 if (index < maxindex) {
67 tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
68 val |= tmp << shift;
69 } else {
70 val |= def & (0xff << shift);
73 return val;
76 #if !defined(CONFIG_USER_ONLY)
78 /* try to fill the TLB and return an exception if error. If retaddr is
79 * NULL, it means that the function was called in C code (i.e. not
80 * from generated code or from helper.c)
82 void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
83 uintptr_t retaddr)
85 bool ret;
86 uint32_t fsr = 0;
87 ARMMMUFaultInfo fi = {};
89 ret = arm_tlb_fill(cs, addr, is_write, mmu_idx, &fsr, &fi);
90 if (unlikely(ret)) {
91 ARMCPU *cpu = ARM_CPU(cs);
92 CPUARMState *env = &cpu->env;
93 uint32_t syn, exc;
94 unsigned int target_el;
95 bool same_el;
97 if (retaddr) {
98 /* now we have a real cpu fault */
99 cpu_restore_state(cs, retaddr);
102 target_el = exception_target_el(env);
103 if (fi.stage2) {
104 target_el = 2;
105 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
107 same_el = arm_current_el(env) == target_el;
108 /* AArch64 syndrome does not have an LPAE bit */
109 syn = fsr & ~(1 << 9);
111 /* For insn and data aborts we assume there is no instruction syndrome
112 * information; this is always true for exceptions reported to EL1.
114 if (is_write == 2) {
115 syn = syn_insn_abort(same_el, 0, fi.s1ptw, syn);
116 exc = EXCP_PREFETCH_ABORT;
117 } else {
118 syn = syn_data_abort(same_el, 0, 0, fi.s1ptw, is_write == 1, syn);
119 if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) {
120 fsr |= (1 << 11);
122 exc = EXCP_DATA_ABORT;
125 env->exception.vaddress = addr;
126 env->exception.fsr = fsr;
127 raise_exception(env, exc, syn, target_el);
131 /* Raise a data fault alignment exception for the specified virtual address */
132 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, int is_write,
133 int is_user, uintptr_t retaddr)
135 ARMCPU *cpu = ARM_CPU(cs);
136 CPUARMState *env = &cpu->env;
137 int target_el;
138 bool same_el;
140 if (retaddr) {
141 /* now we have a real cpu fault */
142 cpu_restore_state(cs, retaddr);
145 target_el = exception_target_el(env);
146 same_el = (arm_current_el(env) == target_el);
148 env->exception.vaddress = vaddr;
150 /* the DFSR for an alignment fault depends on whether we're using
151 * the LPAE long descriptor format, or the short descriptor format
153 if (arm_s1_regime_using_lpae_format(env, cpu_mmu_index(env, false))) {
154 env->exception.fsr = 0x21;
155 } else {
156 env->exception.fsr = 0x1;
159 if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) {
160 env->exception.fsr |= (1 << 11);
163 raise_exception(env, EXCP_DATA_ABORT,
164 syn_data_abort(same_el, 0, 0, 0, is_write == 1, 0x21),
165 target_el);
168 #endif /* !defined(CONFIG_USER_ONLY) */
170 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
172 uint32_t res = a + b;
173 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
174 env->QF = 1;
175 return res;
178 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
180 uint32_t res = a + b;
181 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
182 env->QF = 1;
183 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
185 return res;
188 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
190 uint32_t res = a - b;
191 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
192 env->QF = 1;
193 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
195 return res;
198 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
200 uint32_t res;
201 if (val >= 0x40000000) {
202 res = ~SIGNBIT;
203 env->QF = 1;
204 } else if (val <= (int32_t)0xc0000000) {
205 res = SIGNBIT;
206 env->QF = 1;
207 } else {
208 res = val << 1;
210 return res;
213 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
215 uint32_t res = a + b;
216 if (res < a) {
217 env->QF = 1;
218 res = ~0;
220 return res;
223 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
225 uint32_t res = a - b;
226 if (res > a) {
227 env->QF = 1;
228 res = 0;
230 return res;
233 /* Signed saturation. */
234 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
236 int32_t top;
237 uint32_t mask;
239 top = val >> shift;
240 mask = (1u << shift) - 1;
241 if (top > 0) {
242 env->QF = 1;
243 return mask;
244 } else if (top < -1) {
245 env->QF = 1;
246 return ~mask;
248 return val;
251 /* Unsigned saturation. */
252 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
254 uint32_t max;
256 max = (1u << shift) - 1;
257 if (val < 0) {
258 env->QF = 1;
259 return 0;
260 } else if (val > max) {
261 env->QF = 1;
262 return max;
264 return val;
267 /* Signed saturate. */
268 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
270 return do_ssat(env, x, shift);
273 /* Dual halfword signed saturate. */
274 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
276 uint32_t res;
278 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
279 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
280 return res;
283 /* Unsigned saturate. */
284 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
286 return do_usat(env, x, shift);
289 /* Dual halfword unsigned saturate. */
290 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
292 uint32_t res;
294 res = (uint16_t)do_usat(env, (int16_t)x, shift);
295 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
296 return res;
299 void HELPER(setend)(CPUARMState *env)
301 env->uncached_cpsr ^= CPSR_E;
304 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
305 * The function returns the target EL (1-3) if the instruction is to be trapped;
306 * otherwise it returns 0 indicating it is not trapped.
308 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
310 int cur_el = arm_current_el(env);
311 uint64_t mask;
313 /* If we are currently in EL0 then we need to check if SCTLR is set up for
314 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
316 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
317 int target_el;
319 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
320 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
321 /* Secure EL0 and Secure PL1 is at EL3 */
322 target_el = 3;
323 } else {
324 target_el = 1;
327 if (!(env->cp15.sctlr_el[target_el] & mask)) {
328 return target_el;
332 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
333 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
334 * bits will be zero indicating no trap.
336 if (cur_el < 2 && !arm_is_secure(env)) {
337 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
338 if (env->cp15.hcr_el2 & mask) {
339 return 2;
343 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
344 if (cur_el < 3) {
345 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
346 if (env->cp15.scr_el3 & mask) {
347 return 3;
351 return 0;
354 void HELPER(wfi)(CPUARMState *env)
356 CPUState *cs = CPU(arm_env_get_cpu(env));
357 int target_el = check_wfx_trap(env, false);
359 if (cpu_has_work(cs)) {
360 /* Don't bother to go into our "low power state" if
361 * we would just wake up immediately.
363 return;
366 if (target_el) {
367 env->pc -= 4;
368 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
371 cs->exception_index = EXCP_HLT;
372 cs->halted = 1;
373 cpu_loop_exit(cs);
376 void HELPER(wfe)(CPUARMState *env)
378 /* This is a hint instruction that is semantically different
379 * from YIELD even though we currently implement it identically.
380 * Don't actually halt the CPU, just yield back to top
381 * level loop. This is not going into a "low power state"
382 * (ie halting until some event occurs), so we never take
383 * a configurable trap to a different exception level.
385 HELPER(yield)(env);
388 void HELPER(yield)(CPUARMState *env)
390 ARMCPU *cpu = arm_env_get_cpu(env);
391 CPUState *cs = CPU(cpu);
393 /* This is a non-trappable hint instruction that generally indicates
394 * that the guest is currently busy-looping. Yield control back to the
395 * top level loop so that a more deserving VCPU has a chance to run.
397 cs->exception_index = EXCP_YIELD;
398 cpu_loop_exit(cs);
401 /* Raise an internal-to-QEMU exception. This is limited to only
402 * those EXCP values which are special cases for QEMU to interrupt
403 * execution and not to be used for exceptions which are passed to
404 * the guest (those must all have syndrome information and thus should
405 * use exception_with_syndrome).
407 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
409 CPUState *cs = CPU(arm_env_get_cpu(env));
411 assert(excp_is_internal(excp));
412 cs->exception_index = excp;
413 cpu_loop_exit(cs);
416 /* Raise an exception with the specified syndrome register value */
417 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
418 uint32_t syndrome, uint32_t target_el)
420 raise_exception(env, excp, syndrome, target_el);
423 uint32_t HELPER(cpsr_read)(CPUARMState *env)
425 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
428 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
430 cpsr_write(env, val, mask, CPSRWriteByInstr);
433 /* Write the CPSR for a 32-bit exception return */
434 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
436 cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
439 /* Access to user mode registers from privileged modes. */
440 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
442 uint32_t val;
444 if (regno == 13) {
445 val = env->banked_r13[BANK_USRSYS];
446 } else if (regno == 14) {
447 val = env->banked_r14[BANK_USRSYS];
448 } else if (regno >= 8
449 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
450 val = env->usr_regs[regno - 8];
451 } else {
452 val = env->regs[regno];
454 return val;
457 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
459 if (regno == 13) {
460 env->banked_r13[BANK_USRSYS] = val;
461 } else if (regno == 14) {
462 env->banked_r14[BANK_USRSYS] = val;
463 } else if (regno >= 8
464 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
465 env->usr_regs[regno - 8] = val;
466 } else {
467 env->regs[regno] = val;
471 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
473 if ((env->uncached_cpsr & CPSR_M) == mode) {
474 env->regs[13] = val;
475 } else {
476 env->banked_r13[bank_number(mode)] = val;
480 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
482 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
483 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
484 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
486 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
487 exception_target_el(env));
490 if ((env->uncached_cpsr & CPSR_M) == mode) {
491 return env->regs[13];
492 } else {
493 return env->banked_r13[bank_number(mode)];
497 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
498 uint32_t regno)
500 /* Raise an exception if the requested access is one of the UNPREDICTABLE
501 * cases; otherwise return. This broadly corresponds to the pseudocode
502 * BankedRegisterAccessValid() and SPSRAccessValid(),
503 * except that we have already handled some cases at translate time.
505 int curmode = env->uncached_cpsr & CPSR_M;
507 if (curmode == tgtmode) {
508 goto undef;
511 if (tgtmode == ARM_CPU_MODE_USR) {
512 switch (regno) {
513 case 8 ... 12:
514 if (curmode != ARM_CPU_MODE_FIQ) {
515 goto undef;
517 break;
518 case 13:
519 if (curmode == ARM_CPU_MODE_SYS) {
520 goto undef;
522 break;
523 case 14:
524 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
525 goto undef;
527 break;
528 default:
529 break;
533 if (tgtmode == ARM_CPU_MODE_HYP) {
534 switch (regno) {
535 case 17: /* ELR_Hyp */
536 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
537 goto undef;
539 break;
540 default:
541 if (curmode != ARM_CPU_MODE_MON) {
542 goto undef;
544 break;
548 return;
550 undef:
551 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
552 exception_target_el(env));
555 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
556 uint32_t regno)
558 msr_mrs_banked_exc_checks(env, tgtmode, regno);
560 switch (regno) {
561 case 16: /* SPSRs */
562 env->banked_spsr[bank_number(tgtmode)] = value;
563 break;
564 case 17: /* ELR_Hyp */
565 env->elr_el[2] = value;
566 break;
567 case 13:
568 env->banked_r13[bank_number(tgtmode)] = value;
569 break;
570 case 14:
571 env->banked_r14[bank_number(tgtmode)] = value;
572 break;
573 case 8 ... 12:
574 switch (tgtmode) {
575 case ARM_CPU_MODE_USR:
576 env->usr_regs[regno - 8] = value;
577 break;
578 case ARM_CPU_MODE_FIQ:
579 env->fiq_regs[regno - 8] = value;
580 break;
581 default:
582 g_assert_not_reached();
584 break;
585 default:
586 g_assert_not_reached();
590 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
592 msr_mrs_banked_exc_checks(env, tgtmode, regno);
594 switch (regno) {
595 case 16: /* SPSRs */
596 return env->banked_spsr[bank_number(tgtmode)];
597 case 17: /* ELR_Hyp */
598 return env->elr_el[2];
599 case 13:
600 return env->banked_r13[bank_number(tgtmode)];
601 case 14:
602 return env->banked_r14[bank_number(tgtmode)];
603 case 8 ... 12:
604 switch (tgtmode) {
605 case ARM_CPU_MODE_USR:
606 return env->usr_regs[regno - 8];
607 case ARM_CPU_MODE_FIQ:
608 return env->fiq_regs[regno - 8];
609 default:
610 g_assert_not_reached();
612 default:
613 g_assert_not_reached();
617 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
618 uint32_t isread)
620 const ARMCPRegInfo *ri = rip;
621 int target_el;
623 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
624 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
625 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
628 if (!ri->accessfn) {
629 return;
632 switch (ri->accessfn(env, ri, isread)) {
633 case CP_ACCESS_OK:
634 return;
635 case CP_ACCESS_TRAP:
636 target_el = exception_target_el(env);
637 break;
638 case CP_ACCESS_TRAP_EL2:
639 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
640 * a bug in the access function.
642 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
643 target_el = 2;
644 break;
645 case CP_ACCESS_TRAP_EL3:
646 target_el = 3;
647 break;
648 case CP_ACCESS_TRAP_UNCATEGORIZED:
649 target_el = exception_target_el(env);
650 syndrome = syn_uncategorized();
651 break;
652 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
653 target_el = 2;
654 syndrome = syn_uncategorized();
655 break;
656 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
657 target_el = 3;
658 syndrome = syn_uncategorized();
659 break;
660 case CP_ACCESS_TRAP_FP_EL2:
661 target_el = 2;
662 /* Since we are an implementation that takes exceptions on a trapped
663 * conditional insn only if the insn has passed its condition code
664 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
665 * (which is also the required value for AArch64 traps).
667 syndrome = syn_fp_access_trap(1, 0xe, false);
668 break;
669 case CP_ACCESS_TRAP_FP_EL3:
670 target_el = 3;
671 syndrome = syn_fp_access_trap(1, 0xe, false);
672 break;
673 default:
674 g_assert_not_reached();
677 raise_exception(env, EXCP_UDEF, syndrome, target_el);
680 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
682 const ARMCPRegInfo *ri = rip;
684 ri->writefn(env, ri, value);
687 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
689 const ARMCPRegInfo *ri = rip;
691 return ri->readfn(env, ri);
694 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
696 const ARMCPRegInfo *ri = rip;
698 ri->writefn(env, ri, value);
701 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
703 const ARMCPRegInfo *ri = rip;
705 return ri->readfn(env, ri);
708 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
710 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
711 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
712 * to catch that case at translate time.
714 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
715 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
716 extract32(op, 3, 3), 4,
717 imm, 0x1f, 0);
718 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
721 switch (op) {
722 case 0x05: /* SPSel */
723 update_spsel(env, imm);
724 break;
725 case 0x1e: /* DAIFSet */
726 env->daif |= (imm << 6) & PSTATE_DAIF;
727 break;
728 case 0x1f: /* DAIFClear */
729 env->daif &= ~((imm << 6) & PSTATE_DAIF);
730 break;
731 default:
732 g_assert_not_reached();
736 void HELPER(clear_pstate_ss)(CPUARMState *env)
738 env->pstate &= ~PSTATE_SS;
741 void HELPER(pre_hvc)(CPUARMState *env)
743 ARMCPU *cpu = arm_env_get_cpu(env);
744 int cur_el = arm_current_el(env);
745 /* FIXME: Use actual secure state. */
746 bool secure = false;
747 bool undef;
749 if (arm_is_psci_call(cpu, EXCP_HVC)) {
750 /* If PSCI is enabled and this looks like a valid PSCI call then
751 * that overrides the architecturally mandated HVC behaviour.
753 return;
756 if (!arm_feature(env, ARM_FEATURE_EL2)) {
757 /* If EL2 doesn't exist, HVC always UNDEFs */
758 undef = true;
759 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
760 /* EL3.HCE has priority over EL2.HCD. */
761 undef = !(env->cp15.scr_el3 & SCR_HCE);
762 } else {
763 undef = env->cp15.hcr_el2 & HCR_HCD;
766 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
767 * For ARMv8/AArch64, HVC is allowed in EL3.
768 * Note that we've already trapped HVC from EL0 at translation
769 * time.
771 if (secure && (!is_a64(env) || cur_el == 1)) {
772 undef = true;
775 if (undef) {
776 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
777 exception_target_el(env));
781 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
783 ARMCPU *cpu = arm_env_get_cpu(env);
784 int cur_el = arm_current_el(env);
785 bool secure = arm_is_secure(env);
786 bool smd = env->cp15.scr_el3 & SCR_SMD;
787 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
788 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
789 * extensions, SMD only applies to NS state.
790 * On ARMv7 without the Virtualization extensions, the SMD bit
791 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
792 * so we need not special case this here.
794 bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
796 if (arm_is_psci_call(cpu, EXCP_SMC)) {
797 /* If PSCI is enabled and this looks like a valid PSCI call then
798 * that overrides the architecturally mandated SMC behaviour.
800 return;
803 if (!arm_feature(env, ARM_FEATURE_EL3)) {
804 /* If we have no EL3 then SMC always UNDEFs */
805 undef = true;
806 } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
807 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
808 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
811 if (undef) {
812 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
813 exception_target_el(env));
817 static int el_from_spsr(uint32_t spsr)
819 /* Return the exception level that this SPSR is requesting a return to,
820 * or -1 if it is invalid (an illegal return)
822 if (spsr & PSTATE_nRW) {
823 switch (spsr & CPSR_M) {
824 case ARM_CPU_MODE_USR:
825 return 0;
826 case ARM_CPU_MODE_HYP:
827 return 2;
828 case ARM_CPU_MODE_FIQ:
829 case ARM_CPU_MODE_IRQ:
830 case ARM_CPU_MODE_SVC:
831 case ARM_CPU_MODE_ABT:
832 case ARM_CPU_MODE_UND:
833 case ARM_CPU_MODE_SYS:
834 return 1;
835 case ARM_CPU_MODE_MON:
836 /* Returning to Mon from AArch64 is never possible,
837 * so this is an illegal return.
839 default:
840 return -1;
842 } else {
843 if (extract32(spsr, 1, 1)) {
844 /* Return with reserved M[1] bit set */
845 return -1;
847 if (extract32(spsr, 0, 4) == 1) {
848 /* return to EL0 with M[0] bit set */
849 return -1;
851 return extract32(spsr, 2, 2);
855 void HELPER(exception_return)(CPUARMState *env)
857 int cur_el = arm_current_el(env);
858 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
859 uint32_t spsr = env->banked_spsr[spsr_idx];
860 int new_el;
861 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
863 aarch64_save_sp(env, cur_el);
865 env->exclusive_addr = -1;
867 /* We must squash the PSTATE.SS bit to zero unless both of the
868 * following hold:
869 * 1. debug exceptions are currently disabled
870 * 2. singlestep will be active in the EL we return to
871 * We check 1 here and 2 after we've done the pstate/cpsr write() to
872 * transition to the EL we're going to.
874 if (arm_generate_debug_exceptions(env)) {
875 spsr &= ~PSTATE_SS;
878 new_el = el_from_spsr(spsr);
879 if (new_el == -1) {
880 goto illegal_return;
882 if (new_el > cur_el
883 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
884 /* Disallow return to an EL which is unimplemented or higher
885 * than the current one.
887 goto illegal_return;
890 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
891 /* Return to an EL which is configured for a different register width */
892 goto illegal_return;
895 if (new_el == 2 && arm_is_secure_below_el3(env)) {
896 /* Return to the non-existent secure-EL2 */
897 goto illegal_return;
900 if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
901 && !arm_is_secure_below_el3(env)) {
902 goto illegal_return;
905 if (!return_to_aa64) {
906 env->aarch64 = 0;
907 /* We do a raw CPSR write because aarch64_sync_64_to_32()
908 * will sort the register banks out for us, and we've already
909 * caught all the bad-mode cases in el_from_spsr().
911 cpsr_write(env, spsr, ~0, CPSRWriteRaw);
912 if (!arm_singlestep_active(env)) {
913 env->uncached_cpsr &= ~PSTATE_SS;
915 aarch64_sync_64_to_32(env);
917 if (spsr & CPSR_T) {
918 env->regs[15] = env->elr_el[cur_el] & ~0x1;
919 } else {
920 env->regs[15] = env->elr_el[cur_el] & ~0x3;
922 } else {
923 env->aarch64 = 1;
924 pstate_write(env, spsr);
925 if (!arm_singlestep_active(env)) {
926 env->pstate &= ~PSTATE_SS;
928 aarch64_restore_sp(env, new_el);
929 env->pc = env->elr_el[cur_el];
932 return;
934 illegal_return:
935 /* Illegal return events of various kinds have architecturally
936 * mandated behaviour:
937 * restore NZCV and DAIF from SPSR_ELx
938 * set PSTATE.IL
939 * restore PC from ELR_ELx
940 * no change to exception level, execution state or stack pointer
942 env->pstate |= PSTATE_IL;
943 env->pc = env->elr_el[cur_el];
944 spsr &= PSTATE_NZCV | PSTATE_DAIF;
945 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
946 pstate_write(env, spsr);
947 if (!arm_singlestep_active(env)) {
948 env->pstate &= ~PSTATE_SS;
952 /* Return true if the linked breakpoint entry lbn passes its checks */
953 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
955 CPUARMState *env = &cpu->env;
956 uint64_t bcr = env->cp15.dbgbcr[lbn];
957 int brps = extract32(cpu->dbgdidr, 24, 4);
958 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
959 int bt;
960 uint32_t contextidr;
962 /* Links to unimplemented or non-context aware breakpoints are
963 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
964 * as if linked to an UNKNOWN context-aware breakpoint (in which
965 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
966 * We choose the former.
968 if (lbn > brps || lbn < (brps - ctx_cmps)) {
969 return false;
972 bcr = env->cp15.dbgbcr[lbn];
974 if (extract64(bcr, 0, 1) == 0) {
975 /* Linked breakpoint disabled : generate no events */
976 return false;
979 bt = extract64(bcr, 20, 4);
981 /* We match the whole register even if this is AArch32 using the
982 * short descriptor format (in which case it holds both PROCID and ASID),
983 * since we don't implement the optional v7 context ID masking.
985 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
987 switch (bt) {
988 case 3: /* linked context ID match */
989 if (arm_current_el(env) > 1) {
990 /* Context matches never fire in EL2 or (AArch64) EL3 */
991 return false;
993 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
994 case 5: /* linked address mismatch (reserved in AArch64) */
995 case 9: /* linked VMID match (reserved if no EL2) */
996 case 11: /* linked context ID and VMID match (reserved if no EL2) */
997 default:
998 /* Links to Unlinked context breakpoints must generate no
999 * events; we choose to do the same for reserved values too.
1001 return false;
1004 return false;
1007 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
1009 CPUARMState *env = &cpu->env;
1010 uint64_t cr;
1011 int pac, hmc, ssc, wt, lbn;
1012 /* Note that for watchpoints the check is against the CPU security
1013 * state, not the S/NS attribute on the offending data access.
1015 bool is_secure = arm_is_secure(env);
1016 int access_el = arm_current_el(env);
1018 if (is_wp) {
1019 CPUWatchpoint *wp = env->cpu_watchpoint[n];
1021 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
1022 return false;
1024 cr = env->cp15.dbgwcr[n];
1025 if (wp->hitattrs.user) {
1026 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1027 * match watchpoints as if they were accesses done at EL0, even if
1028 * the CPU is at EL1 or higher.
1030 access_el = 0;
1032 } else {
1033 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1035 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
1036 return false;
1038 cr = env->cp15.dbgbcr[n];
1040 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1041 * enabled and that the address and access type match; for breakpoints
1042 * we know the address matched; check the remaining fields, including
1043 * linked breakpoints. We rely on WCR and BCR having the same layout
1044 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1045 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1046 * must act either like some valid combination or as if the watchpoint
1047 * were disabled. We choose the former, and use this together with
1048 * the fact that EL3 must always be Secure and EL2 must always be
1049 * Non-Secure to simplify the code slightly compared to the full
1050 * table in the ARM ARM.
1052 pac = extract64(cr, 1, 2);
1053 hmc = extract64(cr, 13, 1);
1054 ssc = extract64(cr, 14, 2);
1056 switch (ssc) {
1057 case 0:
1058 break;
1059 case 1:
1060 case 3:
1061 if (is_secure) {
1062 return false;
1064 break;
1065 case 2:
1066 if (!is_secure) {
1067 return false;
1069 break;
1072 switch (access_el) {
1073 case 3:
1074 case 2:
1075 if (!hmc) {
1076 return false;
1078 break;
1079 case 1:
1080 if (extract32(pac, 0, 1) == 0) {
1081 return false;
1083 break;
1084 case 0:
1085 if (extract32(pac, 1, 1) == 0) {
1086 return false;
1088 break;
1089 default:
1090 g_assert_not_reached();
1093 wt = extract64(cr, 20, 1);
1094 lbn = extract64(cr, 16, 4);
1096 if (wt && !linked_bp_matches(cpu, lbn)) {
1097 return false;
1100 return true;
1103 static bool check_watchpoints(ARMCPU *cpu)
1105 CPUARMState *env = &cpu->env;
1106 int n;
1108 /* If watchpoints are disabled globally or we can't take debug
1109 * exceptions here then watchpoint firings are ignored.
1111 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1112 || !arm_generate_debug_exceptions(env)) {
1113 return false;
1116 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
1117 if (bp_wp_matches(cpu, n, true)) {
1118 return true;
1121 return false;
1124 static bool check_breakpoints(ARMCPU *cpu)
1126 CPUARMState *env = &cpu->env;
1127 int n;
1129 /* If breakpoints are disabled globally or we can't take debug
1130 * exceptions here then breakpoint firings are ignored.
1132 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1133 || !arm_generate_debug_exceptions(env)) {
1134 return false;
1137 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
1138 if (bp_wp_matches(cpu, n, false)) {
1139 return true;
1142 return false;
1145 void HELPER(check_breakpoints)(CPUARMState *env)
1147 ARMCPU *cpu = arm_env_get_cpu(env);
1149 if (check_breakpoints(cpu)) {
1150 HELPER(exception_internal(env, EXCP_DEBUG));
1154 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
1156 /* Called by core code when a CPU watchpoint fires; need to check if this
1157 * is also an architectural watchpoint match.
1159 ARMCPU *cpu = ARM_CPU(cs);
1161 return check_watchpoints(cpu);
1164 void arm_debug_excp_handler(CPUState *cs)
1166 /* Called by core code when a watchpoint or breakpoint fires;
1167 * need to check which one and raise the appropriate exception.
1169 ARMCPU *cpu = ARM_CPU(cs);
1170 CPUARMState *env = &cpu->env;
1171 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
1173 if (wp_hit) {
1174 if (wp_hit->flags & BP_CPU) {
1175 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
1176 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
1178 cs->watchpoint_hit = NULL;
1180 if (extended_addresses_enabled(env)) {
1181 env->exception.fsr = (1 << 9) | 0x22;
1182 } else {
1183 env->exception.fsr = 0x2;
1185 env->exception.vaddress = wp_hit->hitaddr;
1186 raise_exception(env, EXCP_DATA_ABORT,
1187 syn_watchpoint(same_el, 0, wnr),
1188 arm_debug_target_el(env));
1190 } else {
1191 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1192 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
1194 /* (1) GDB breakpoints should be handled first.
1195 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1196 * since singlestep is also done by generating a debug internal
1197 * exception.
1199 if (cpu_breakpoint_test(cs, pc, BP_GDB)
1200 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
1201 return;
1204 if (extended_addresses_enabled(env)) {
1205 env->exception.fsr = (1 << 9) | 0x22;
1206 } else {
1207 env->exception.fsr = 0x2;
1209 /* FAR is UNKNOWN, so doesn't need setting */
1210 raise_exception(env, EXCP_PREFETCH_ABORT,
1211 syn_breakpoint(same_el),
1212 arm_debug_target_el(env));
1216 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1217 The only way to do that in TCG is a conditional branch, which clobbers
1218 all our temporaries. For now implement these as helper functions. */
1220 /* Similarly for variable shift instructions. */
1222 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1224 int shift = i & 0xff;
1225 if (shift >= 32) {
1226 if (shift == 32)
1227 env->CF = x & 1;
1228 else
1229 env->CF = 0;
1230 return 0;
1231 } else if (shift != 0) {
1232 env->CF = (x >> (32 - shift)) & 1;
1233 return x << shift;
1235 return x;
1238 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1240 int shift = i & 0xff;
1241 if (shift >= 32) {
1242 if (shift == 32)
1243 env->CF = (x >> 31) & 1;
1244 else
1245 env->CF = 0;
1246 return 0;
1247 } else if (shift != 0) {
1248 env->CF = (x >> (shift - 1)) & 1;
1249 return x >> shift;
1251 return x;
1254 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1256 int shift = i & 0xff;
1257 if (shift >= 32) {
1258 env->CF = (x >> 31) & 1;
1259 return (int32_t)x >> 31;
1260 } else if (shift != 0) {
1261 env->CF = (x >> (shift - 1)) & 1;
1262 return (int32_t)x >> shift;
1264 return x;
1267 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1269 int shift1, shift;
1270 shift1 = i & 0xff;
1271 shift = shift1 & 0x1f;
1272 if (shift == 0) {
1273 if (shift1 != 0)
1274 env->CF = (x >> 31) & 1;
1275 return x;
1276 } else {
1277 env->CF = (x >> (shift - 1)) & 1;
1278 return ((uint32_t)x >> shift) | (x << (32 - shift));