target/riscv: Activate decodetree and implemnt LUI & AUIPC
[qemu/ar7.git] / block / io.c
blob2ba603c7bc7b8ebc6fb13e00ecd355cb97ef9d41
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
41 static void bdrv_parent_cb_resize(BlockDriverState *bs);
42 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
43 int64_t offset, int bytes, BdrvRequestFlags flags);
45 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
46 bool ignore_bds_parents)
48 BdrvChild *c, *next;
50 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
51 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
52 continue;
54 bdrv_parent_drained_begin_single(c, false);
58 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
59 bool ignore_bds_parents)
61 BdrvChild *c, *next;
63 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
64 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
65 continue;
67 if (c->role->drained_end) {
68 c->role->drained_end(c);
73 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
75 if (c->role->drained_poll) {
76 return c->role->drained_poll(c);
78 return false;
81 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
82 bool ignore_bds_parents)
84 BdrvChild *c, *next;
85 bool busy = false;
87 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
88 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
89 continue;
91 busy |= bdrv_parent_drained_poll_single(c);
94 return busy;
97 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
99 if (c->role->drained_begin) {
100 c->role->drained_begin(c);
102 if (poll) {
103 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
107 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
109 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
110 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
111 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
112 src->opt_mem_alignment);
113 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
114 src->min_mem_alignment);
115 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
118 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
120 BlockDriver *drv = bs->drv;
121 Error *local_err = NULL;
123 memset(&bs->bl, 0, sizeof(bs->bl));
125 if (!drv) {
126 return;
129 /* Default alignment based on whether driver has byte interface */
130 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
131 drv->bdrv_aio_preadv) ? 1 : 512;
133 /* Take some limits from the children as a default */
134 if (bs->file) {
135 bdrv_refresh_limits(bs->file->bs, &local_err);
136 if (local_err) {
137 error_propagate(errp, local_err);
138 return;
140 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
141 } else {
142 bs->bl.min_mem_alignment = 512;
143 bs->bl.opt_mem_alignment = getpagesize();
145 /* Safe default since most protocols use readv()/writev()/etc */
146 bs->bl.max_iov = IOV_MAX;
149 if (bs->backing) {
150 bdrv_refresh_limits(bs->backing->bs, &local_err);
151 if (local_err) {
152 error_propagate(errp, local_err);
153 return;
155 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
158 /* Then let the driver override it */
159 if (drv->bdrv_refresh_limits) {
160 drv->bdrv_refresh_limits(bs, errp);
165 * The copy-on-read flag is actually a reference count so multiple users may
166 * use the feature without worrying about clobbering its previous state.
167 * Copy-on-read stays enabled until all users have called to disable it.
169 void bdrv_enable_copy_on_read(BlockDriverState *bs)
171 atomic_inc(&bs->copy_on_read);
174 void bdrv_disable_copy_on_read(BlockDriverState *bs)
176 int old = atomic_fetch_dec(&bs->copy_on_read);
177 assert(old >= 1);
180 typedef struct {
181 Coroutine *co;
182 BlockDriverState *bs;
183 bool done;
184 bool begin;
185 bool recursive;
186 bool poll;
187 BdrvChild *parent;
188 bool ignore_bds_parents;
189 } BdrvCoDrainData;
191 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
193 BdrvCoDrainData *data = opaque;
194 BlockDriverState *bs = data->bs;
196 if (data->begin) {
197 bs->drv->bdrv_co_drain_begin(bs);
198 } else {
199 bs->drv->bdrv_co_drain_end(bs);
202 /* Set data->done before reading bs->wakeup. */
203 atomic_mb_set(&data->done, true);
204 bdrv_dec_in_flight(bs);
206 if (data->begin) {
207 g_free(data);
211 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
212 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin)
214 BdrvCoDrainData *data;
216 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
217 (!begin && !bs->drv->bdrv_co_drain_end)) {
218 return;
221 data = g_new(BdrvCoDrainData, 1);
222 *data = (BdrvCoDrainData) {
223 .bs = bs,
224 .done = false,
225 .begin = begin
228 /* Make sure the driver callback completes during the polling phase for
229 * drain_begin. */
230 bdrv_inc_in_flight(bs);
231 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
232 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
234 if (!begin) {
235 BDRV_POLL_WHILE(bs, !data->done);
236 g_free(data);
240 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
241 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
242 BdrvChild *ignore_parent, bool ignore_bds_parents)
244 BdrvChild *child, *next;
246 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
247 return true;
250 if (atomic_read(&bs->in_flight)) {
251 return true;
254 if (recursive) {
255 assert(!ignore_bds_parents);
256 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
257 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
258 return true;
263 return false;
266 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
267 BdrvChild *ignore_parent)
269 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
272 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
273 BdrvChild *parent, bool ignore_bds_parents,
274 bool poll);
275 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
276 BdrvChild *parent, bool ignore_bds_parents);
278 static void bdrv_co_drain_bh_cb(void *opaque)
280 BdrvCoDrainData *data = opaque;
281 Coroutine *co = data->co;
282 BlockDriverState *bs = data->bs;
284 if (bs) {
285 AioContext *ctx = bdrv_get_aio_context(bs);
286 AioContext *co_ctx = qemu_coroutine_get_aio_context(co);
289 * When the coroutine yielded, the lock for its home context was
290 * released, so we need to re-acquire it here. If it explicitly
291 * acquired a different context, the lock is still held and we don't
292 * want to lock it a second time (or AIO_WAIT_WHILE() would hang).
294 if (ctx == co_ctx) {
295 aio_context_acquire(ctx);
297 bdrv_dec_in_flight(bs);
298 if (data->begin) {
299 bdrv_do_drained_begin(bs, data->recursive, data->parent,
300 data->ignore_bds_parents, data->poll);
301 } else {
302 bdrv_do_drained_end(bs, data->recursive, data->parent,
303 data->ignore_bds_parents);
305 if (ctx == co_ctx) {
306 aio_context_release(ctx);
308 } else {
309 assert(data->begin);
310 bdrv_drain_all_begin();
313 data->done = true;
314 aio_co_wake(co);
317 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
318 bool begin, bool recursive,
319 BdrvChild *parent,
320 bool ignore_bds_parents,
321 bool poll)
323 BdrvCoDrainData data;
325 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
326 * other coroutines run if they were queued by aio_co_enter(). */
328 assert(qemu_in_coroutine());
329 data = (BdrvCoDrainData) {
330 .co = qemu_coroutine_self(),
331 .bs = bs,
332 .done = false,
333 .begin = begin,
334 .recursive = recursive,
335 .parent = parent,
336 .ignore_bds_parents = ignore_bds_parents,
337 .poll = poll,
339 if (bs) {
340 bdrv_inc_in_flight(bs);
342 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
343 bdrv_co_drain_bh_cb, &data);
345 qemu_coroutine_yield();
346 /* If we are resumed from some other event (such as an aio completion or a
347 * timer callback), it is a bug in the caller that should be fixed. */
348 assert(data.done);
351 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
352 BdrvChild *parent, bool ignore_bds_parents)
354 assert(!qemu_in_coroutine());
356 /* Stop things in parent-to-child order */
357 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
358 aio_disable_external(bdrv_get_aio_context(bs));
361 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
362 bdrv_drain_invoke(bs, true);
365 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
366 BdrvChild *parent, bool ignore_bds_parents,
367 bool poll)
369 BdrvChild *child, *next;
371 if (qemu_in_coroutine()) {
372 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
373 poll);
374 return;
377 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
379 if (recursive) {
380 assert(!ignore_bds_parents);
381 bs->recursive_quiesce_counter++;
382 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
383 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
384 false);
389 * Wait for drained requests to finish.
391 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
392 * call is needed so things in this AioContext can make progress even
393 * though we don't return to the main AioContext loop - this automatically
394 * includes other nodes in the same AioContext and therefore all child
395 * nodes.
397 if (poll) {
398 assert(!ignore_bds_parents);
399 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
403 void bdrv_drained_begin(BlockDriverState *bs)
405 bdrv_do_drained_begin(bs, false, NULL, false, true);
408 void bdrv_subtree_drained_begin(BlockDriverState *bs)
410 bdrv_do_drained_begin(bs, true, NULL, false, true);
413 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
414 BdrvChild *parent, bool ignore_bds_parents)
416 BdrvChild *child, *next;
417 int old_quiesce_counter;
419 if (qemu_in_coroutine()) {
420 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
421 false);
422 return;
424 assert(bs->quiesce_counter > 0);
425 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
427 /* Re-enable things in child-to-parent order */
428 bdrv_drain_invoke(bs, false);
429 bdrv_parent_drained_end(bs, parent, ignore_bds_parents);
430 if (old_quiesce_counter == 1) {
431 aio_enable_external(bdrv_get_aio_context(bs));
434 if (recursive) {
435 assert(!ignore_bds_parents);
436 bs->recursive_quiesce_counter--;
437 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
438 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents);
443 void bdrv_drained_end(BlockDriverState *bs)
445 bdrv_do_drained_end(bs, false, NULL, false);
448 void bdrv_subtree_drained_end(BlockDriverState *bs)
450 bdrv_do_drained_end(bs, true, NULL, false);
453 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
455 int i;
457 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
458 bdrv_do_drained_begin(child->bs, true, child, false, true);
462 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
464 int i;
466 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
467 bdrv_do_drained_end(child->bs, true, child, false);
472 * Wait for pending requests to complete on a single BlockDriverState subtree,
473 * and suspend block driver's internal I/O until next request arrives.
475 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
476 * AioContext.
478 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
480 assert(qemu_in_coroutine());
481 bdrv_drained_begin(bs);
482 bdrv_drained_end(bs);
485 void bdrv_drain(BlockDriverState *bs)
487 bdrv_drained_begin(bs);
488 bdrv_drained_end(bs);
491 static void bdrv_drain_assert_idle(BlockDriverState *bs)
493 BdrvChild *child, *next;
495 assert(atomic_read(&bs->in_flight) == 0);
496 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
497 bdrv_drain_assert_idle(child->bs);
501 unsigned int bdrv_drain_all_count = 0;
503 static bool bdrv_drain_all_poll(void)
505 BlockDriverState *bs = NULL;
506 bool result = false;
508 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
509 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
510 while ((bs = bdrv_next_all_states(bs))) {
511 AioContext *aio_context = bdrv_get_aio_context(bs);
512 aio_context_acquire(aio_context);
513 result |= bdrv_drain_poll(bs, false, NULL, true);
514 aio_context_release(aio_context);
517 return result;
521 * Wait for pending requests to complete across all BlockDriverStates
523 * This function does not flush data to disk, use bdrv_flush_all() for that
524 * after calling this function.
526 * This pauses all block jobs and disables external clients. It must
527 * be paired with bdrv_drain_all_end().
529 * NOTE: no new block jobs or BlockDriverStates can be created between
530 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
532 void bdrv_drain_all_begin(void)
534 BlockDriverState *bs = NULL;
536 if (qemu_in_coroutine()) {
537 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true);
538 return;
541 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
542 * loop AioContext, so make sure we're in the main context. */
543 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
544 assert(bdrv_drain_all_count < INT_MAX);
545 bdrv_drain_all_count++;
547 /* Quiesce all nodes, without polling in-flight requests yet. The graph
548 * cannot change during this loop. */
549 while ((bs = bdrv_next_all_states(bs))) {
550 AioContext *aio_context = bdrv_get_aio_context(bs);
552 aio_context_acquire(aio_context);
553 bdrv_do_drained_begin(bs, false, NULL, true, false);
554 aio_context_release(aio_context);
557 /* Now poll the in-flight requests */
558 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
560 while ((bs = bdrv_next_all_states(bs))) {
561 bdrv_drain_assert_idle(bs);
565 void bdrv_drain_all_end(void)
567 BlockDriverState *bs = NULL;
569 while ((bs = bdrv_next_all_states(bs))) {
570 AioContext *aio_context = bdrv_get_aio_context(bs);
572 aio_context_acquire(aio_context);
573 bdrv_do_drained_end(bs, false, NULL, true);
574 aio_context_release(aio_context);
577 assert(bdrv_drain_all_count > 0);
578 bdrv_drain_all_count--;
581 void bdrv_drain_all(void)
583 bdrv_drain_all_begin();
584 bdrv_drain_all_end();
588 * Remove an active request from the tracked requests list
590 * This function should be called when a tracked request is completing.
592 static void tracked_request_end(BdrvTrackedRequest *req)
594 if (req->serialising) {
595 atomic_dec(&req->bs->serialising_in_flight);
598 qemu_co_mutex_lock(&req->bs->reqs_lock);
599 QLIST_REMOVE(req, list);
600 qemu_co_queue_restart_all(&req->wait_queue);
601 qemu_co_mutex_unlock(&req->bs->reqs_lock);
605 * Add an active request to the tracked requests list
607 static void tracked_request_begin(BdrvTrackedRequest *req,
608 BlockDriverState *bs,
609 int64_t offset,
610 uint64_t bytes,
611 enum BdrvTrackedRequestType type)
613 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
615 *req = (BdrvTrackedRequest){
616 .bs = bs,
617 .offset = offset,
618 .bytes = bytes,
619 .type = type,
620 .co = qemu_coroutine_self(),
621 .serialising = false,
622 .overlap_offset = offset,
623 .overlap_bytes = bytes,
626 qemu_co_queue_init(&req->wait_queue);
628 qemu_co_mutex_lock(&bs->reqs_lock);
629 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
630 qemu_co_mutex_unlock(&bs->reqs_lock);
633 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
635 int64_t overlap_offset = req->offset & ~(align - 1);
636 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
637 - overlap_offset;
639 if (!req->serialising) {
640 atomic_inc(&req->bs->serialising_in_flight);
641 req->serialising = true;
644 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
645 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
648 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req)
651 * If the request is serialising, overlap_offset and overlap_bytes are set,
652 * so we can check if the request is aligned. Otherwise, don't care and
653 * return false.
656 return req->serialising && (req->offset == req->overlap_offset) &&
657 (req->bytes == req->overlap_bytes);
661 * Round a region to cluster boundaries
663 void bdrv_round_to_clusters(BlockDriverState *bs,
664 int64_t offset, int64_t bytes,
665 int64_t *cluster_offset,
666 int64_t *cluster_bytes)
668 BlockDriverInfo bdi;
670 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
671 *cluster_offset = offset;
672 *cluster_bytes = bytes;
673 } else {
674 int64_t c = bdi.cluster_size;
675 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
676 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
680 static int bdrv_get_cluster_size(BlockDriverState *bs)
682 BlockDriverInfo bdi;
683 int ret;
685 ret = bdrv_get_info(bs, &bdi);
686 if (ret < 0 || bdi.cluster_size == 0) {
687 return bs->bl.request_alignment;
688 } else {
689 return bdi.cluster_size;
693 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
694 int64_t offset, uint64_t bytes)
696 /* aaaa bbbb */
697 if (offset >= req->overlap_offset + req->overlap_bytes) {
698 return false;
700 /* bbbb aaaa */
701 if (req->overlap_offset >= offset + bytes) {
702 return false;
704 return true;
707 void bdrv_inc_in_flight(BlockDriverState *bs)
709 atomic_inc(&bs->in_flight);
712 void bdrv_wakeup(BlockDriverState *bs)
714 aio_wait_kick();
717 void bdrv_dec_in_flight(BlockDriverState *bs)
719 atomic_dec(&bs->in_flight);
720 bdrv_wakeup(bs);
723 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
725 BlockDriverState *bs = self->bs;
726 BdrvTrackedRequest *req;
727 bool retry;
728 bool waited = false;
730 if (!atomic_read(&bs->serialising_in_flight)) {
731 return false;
734 do {
735 retry = false;
736 qemu_co_mutex_lock(&bs->reqs_lock);
737 QLIST_FOREACH(req, &bs->tracked_requests, list) {
738 if (req == self || (!req->serialising && !self->serialising)) {
739 continue;
741 if (tracked_request_overlaps(req, self->overlap_offset,
742 self->overlap_bytes))
744 /* Hitting this means there was a reentrant request, for
745 * example, a block driver issuing nested requests. This must
746 * never happen since it means deadlock.
748 assert(qemu_coroutine_self() != req->co);
750 /* If the request is already (indirectly) waiting for us, or
751 * will wait for us as soon as it wakes up, then just go on
752 * (instead of producing a deadlock in the former case). */
753 if (!req->waiting_for) {
754 self->waiting_for = req;
755 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
756 self->waiting_for = NULL;
757 retry = true;
758 waited = true;
759 break;
763 qemu_co_mutex_unlock(&bs->reqs_lock);
764 } while (retry);
766 return waited;
769 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
770 size_t size)
772 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
773 return -EIO;
776 if (!bdrv_is_inserted(bs)) {
777 return -ENOMEDIUM;
780 if (offset < 0) {
781 return -EIO;
784 return 0;
787 typedef struct RwCo {
788 BdrvChild *child;
789 int64_t offset;
790 QEMUIOVector *qiov;
791 bool is_write;
792 int ret;
793 BdrvRequestFlags flags;
794 } RwCo;
796 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
798 RwCo *rwco = opaque;
800 if (!rwco->is_write) {
801 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
802 rwco->qiov->size, rwco->qiov,
803 rwco->flags);
804 } else {
805 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
806 rwco->qiov->size, rwco->qiov,
807 rwco->flags);
809 aio_wait_kick();
813 * Process a vectored synchronous request using coroutines
815 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
816 QEMUIOVector *qiov, bool is_write,
817 BdrvRequestFlags flags)
819 Coroutine *co;
820 RwCo rwco = {
821 .child = child,
822 .offset = offset,
823 .qiov = qiov,
824 .is_write = is_write,
825 .ret = NOT_DONE,
826 .flags = flags,
829 if (qemu_in_coroutine()) {
830 /* Fast-path if already in coroutine context */
831 bdrv_rw_co_entry(&rwco);
832 } else {
833 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
834 bdrv_coroutine_enter(child->bs, co);
835 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
837 return rwco.ret;
841 * Process a synchronous request using coroutines
843 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
844 int nb_sectors, bool is_write, BdrvRequestFlags flags)
846 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf,
847 nb_sectors * BDRV_SECTOR_SIZE);
849 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
850 return -EINVAL;
853 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
854 &qiov, is_write, flags);
857 /* return < 0 if error. See bdrv_write() for the return codes */
858 int bdrv_read(BdrvChild *child, int64_t sector_num,
859 uint8_t *buf, int nb_sectors)
861 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
864 /* Return < 0 if error. Important errors are:
865 -EIO generic I/O error (may happen for all errors)
866 -ENOMEDIUM No media inserted.
867 -EINVAL Invalid sector number or nb_sectors
868 -EACCES Trying to write a read-only device
870 int bdrv_write(BdrvChild *child, int64_t sector_num,
871 const uint8_t *buf, int nb_sectors)
873 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
876 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
877 int bytes, BdrvRequestFlags flags)
879 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
881 return bdrv_prwv_co(child, offset, &qiov, true,
882 BDRV_REQ_ZERO_WRITE | flags);
886 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
887 * The operation is sped up by checking the block status and only writing
888 * zeroes to the device if they currently do not return zeroes. Optional
889 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
890 * BDRV_REQ_FUA).
892 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
894 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
896 int ret;
897 int64_t target_size, bytes, offset = 0;
898 BlockDriverState *bs = child->bs;
900 target_size = bdrv_getlength(bs);
901 if (target_size < 0) {
902 return target_size;
905 for (;;) {
906 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
907 if (bytes <= 0) {
908 return 0;
910 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
911 if (ret < 0) {
912 error_report("error getting block status at offset %" PRId64 ": %s",
913 offset, strerror(-ret));
914 return ret;
916 if (ret & BDRV_BLOCK_ZERO) {
917 offset += bytes;
918 continue;
920 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
921 if (ret < 0) {
922 error_report("error writing zeroes at offset %" PRId64 ": %s",
923 offset, strerror(-ret));
924 return ret;
926 offset += bytes;
930 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
932 int ret;
934 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
935 if (ret < 0) {
936 return ret;
939 return qiov->size;
942 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
944 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
946 if (bytes < 0) {
947 return -EINVAL;
950 return bdrv_preadv(child, offset, &qiov);
953 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
955 int ret;
957 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
958 if (ret < 0) {
959 return ret;
962 return qiov->size;
965 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
967 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
969 if (bytes < 0) {
970 return -EINVAL;
973 return bdrv_pwritev(child, offset, &qiov);
977 * Writes to the file and ensures that no writes are reordered across this
978 * request (acts as a barrier)
980 * Returns 0 on success, -errno in error cases.
982 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
983 const void *buf, int count)
985 int ret;
987 ret = bdrv_pwrite(child, offset, buf, count);
988 if (ret < 0) {
989 return ret;
992 ret = bdrv_flush(child->bs);
993 if (ret < 0) {
994 return ret;
997 return 0;
1000 typedef struct CoroutineIOCompletion {
1001 Coroutine *coroutine;
1002 int ret;
1003 } CoroutineIOCompletion;
1005 static void bdrv_co_io_em_complete(void *opaque, int ret)
1007 CoroutineIOCompletion *co = opaque;
1009 co->ret = ret;
1010 aio_co_wake(co->coroutine);
1013 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1014 uint64_t offset, uint64_t bytes,
1015 QEMUIOVector *qiov, int flags)
1017 BlockDriver *drv = bs->drv;
1018 int64_t sector_num;
1019 unsigned int nb_sectors;
1021 assert(!(flags & ~BDRV_REQ_MASK));
1023 if (!drv) {
1024 return -ENOMEDIUM;
1027 if (drv->bdrv_co_preadv) {
1028 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1031 if (drv->bdrv_aio_preadv) {
1032 BlockAIOCB *acb;
1033 CoroutineIOCompletion co = {
1034 .coroutine = qemu_coroutine_self(),
1037 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1038 bdrv_co_io_em_complete, &co);
1039 if (acb == NULL) {
1040 return -EIO;
1041 } else {
1042 qemu_coroutine_yield();
1043 return co.ret;
1047 sector_num = offset >> BDRV_SECTOR_BITS;
1048 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1050 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1051 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1052 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
1053 assert(drv->bdrv_co_readv);
1055 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1058 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1059 uint64_t offset, uint64_t bytes,
1060 QEMUIOVector *qiov, int flags)
1062 BlockDriver *drv = bs->drv;
1063 int64_t sector_num;
1064 unsigned int nb_sectors;
1065 int ret;
1067 assert(!(flags & ~BDRV_REQ_MASK));
1069 if (!drv) {
1070 return -ENOMEDIUM;
1073 if (drv->bdrv_co_pwritev) {
1074 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1075 flags & bs->supported_write_flags);
1076 flags &= ~bs->supported_write_flags;
1077 goto emulate_flags;
1080 if (drv->bdrv_aio_pwritev) {
1081 BlockAIOCB *acb;
1082 CoroutineIOCompletion co = {
1083 .coroutine = qemu_coroutine_self(),
1086 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1087 flags & bs->supported_write_flags,
1088 bdrv_co_io_em_complete, &co);
1089 flags &= ~bs->supported_write_flags;
1090 if (acb == NULL) {
1091 ret = -EIO;
1092 } else {
1093 qemu_coroutine_yield();
1094 ret = co.ret;
1096 goto emulate_flags;
1099 sector_num = offset >> BDRV_SECTOR_BITS;
1100 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1102 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1103 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1104 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
1106 assert(drv->bdrv_co_writev);
1107 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1108 flags & bs->supported_write_flags);
1109 flags &= ~bs->supported_write_flags;
1111 emulate_flags:
1112 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1113 ret = bdrv_co_flush(bs);
1116 return ret;
1119 static int coroutine_fn
1120 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1121 uint64_t bytes, QEMUIOVector *qiov)
1123 BlockDriver *drv = bs->drv;
1125 if (!drv) {
1126 return -ENOMEDIUM;
1129 if (!drv->bdrv_co_pwritev_compressed) {
1130 return -ENOTSUP;
1133 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1136 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1137 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
1139 BlockDriverState *bs = child->bs;
1141 /* Perform I/O through a temporary buffer so that users who scribble over
1142 * their read buffer while the operation is in progress do not end up
1143 * modifying the image file. This is critical for zero-copy guest I/O
1144 * where anything might happen inside guest memory.
1146 void *bounce_buffer;
1148 BlockDriver *drv = bs->drv;
1149 QEMUIOVector local_qiov;
1150 int64_t cluster_offset;
1151 int64_t cluster_bytes;
1152 size_t skip_bytes;
1153 int ret;
1154 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1155 BDRV_REQUEST_MAX_BYTES);
1156 unsigned int progress = 0;
1158 if (!drv) {
1159 return -ENOMEDIUM;
1162 /* FIXME We cannot require callers to have write permissions when all they
1163 * are doing is a read request. If we did things right, write permissions
1164 * would be obtained anyway, but internally by the copy-on-read code. As
1165 * long as it is implemented here rather than in a separate filter driver,
1166 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1167 * it could request permissions. Therefore we have to bypass the permission
1168 * system for the moment. */
1169 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1171 /* Cover entire cluster so no additional backing file I/O is required when
1172 * allocating cluster in the image file. Note that this value may exceed
1173 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1174 * is one reason we loop rather than doing it all at once.
1176 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1177 skip_bytes = offset - cluster_offset;
1179 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1180 cluster_offset, cluster_bytes);
1182 bounce_buffer = qemu_try_blockalign(bs,
1183 MIN(MIN(max_transfer, cluster_bytes),
1184 MAX_BOUNCE_BUFFER));
1185 if (bounce_buffer == NULL) {
1186 ret = -ENOMEM;
1187 goto err;
1190 while (cluster_bytes) {
1191 int64_t pnum;
1193 ret = bdrv_is_allocated(bs, cluster_offset,
1194 MIN(cluster_bytes, max_transfer), &pnum);
1195 if (ret < 0) {
1196 /* Safe to treat errors in querying allocation as if
1197 * unallocated; we'll probably fail again soon on the
1198 * read, but at least that will set a decent errno.
1200 pnum = MIN(cluster_bytes, max_transfer);
1203 /* Stop at EOF if the image ends in the middle of the cluster */
1204 if (ret == 0 && pnum == 0) {
1205 assert(progress >= bytes);
1206 break;
1209 assert(skip_bytes < pnum);
1211 if (ret <= 0) {
1212 /* Must copy-on-read; use the bounce buffer */
1213 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1214 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1216 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1217 &local_qiov, 0);
1218 if (ret < 0) {
1219 goto err;
1222 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1223 if (drv->bdrv_co_pwrite_zeroes &&
1224 buffer_is_zero(bounce_buffer, pnum)) {
1225 /* FIXME: Should we (perhaps conditionally) be setting
1226 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1227 * that still correctly reads as zero? */
1228 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1229 BDRV_REQ_WRITE_UNCHANGED);
1230 } else {
1231 /* This does not change the data on the disk, it is not
1232 * necessary to flush even in cache=writethrough mode.
1234 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1235 &local_qiov,
1236 BDRV_REQ_WRITE_UNCHANGED);
1239 if (ret < 0) {
1240 /* It might be okay to ignore write errors for guest
1241 * requests. If this is a deliberate copy-on-read
1242 * then we don't want to ignore the error. Simply
1243 * report it in all cases.
1245 goto err;
1248 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1249 pnum - skip_bytes);
1250 } else {
1251 /* Read directly into the destination */
1252 qemu_iovec_init(&local_qiov, qiov->niov);
1253 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1254 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1255 &local_qiov, 0);
1256 qemu_iovec_destroy(&local_qiov);
1257 if (ret < 0) {
1258 goto err;
1262 cluster_offset += pnum;
1263 cluster_bytes -= pnum;
1264 progress += pnum - skip_bytes;
1265 skip_bytes = 0;
1267 ret = 0;
1269 err:
1270 qemu_vfree(bounce_buffer);
1271 return ret;
1275 * Forwards an already correctly aligned request to the BlockDriver. This
1276 * handles copy on read, zeroing after EOF, and fragmentation of large
1277 * reads; any other features must be implemented by the caller.
1279 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1280 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1281 int64_t align, QEMUIOVector *qiov, int flags)
1283 BlockDriverState *bs = child->bs;
1284 int64_t total_bytes, max_bytes;
1285 int ret = 0;
1286 uint64_t bytes_remaining = bytes;
1287 int max_transfer;
1289 assert(is_power_of_2(align));
1290 assert((offset & (align - 1)) == 0);
1291 assert((bytes & (align - 1)) == 0);
1292 assert(!qiov || bytes == qiov->size);
1293 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1294 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1295 align);
1297 /* TODO: We would need a per-BDS .supported_read_flags and
1298 * potential fallback support, if we ever implement any read flags
1299 * to pass through to drivers. For now, there aren't any
1300 * passthrough flags. */
1301 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1303 /* Handle Copy on Read and associated serialisation */
1304 if (flags & BDRV_REQ_COPY_ON_READ) {
1305 /* If we touch the same cluster it counts as an overlap. This
1306 * guarantees that allocating writes will be serialized and not race
1307 * with each other for the same cluster. For example, in copy-on-read
1308 * it ensures that the CoR read and write operations are atomic and
1309 * guest writes cannot interleave between them. */
1310 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1313 /* BDRV_REQ_SERIALISING is only for write operation */
1314 assert(!(flags & BDRV_REQ_SERIALISING));
1316 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1317 wait_serialising_requests(req);
1320 if (flags & BDRV_REQ_COPY_ON_READ) {
1321 int64_t pnum;
1323 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1324 if (ret < 0) {
1325 goto out;
1328 if (!ret || pnum != bytes) {
1329 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1330 goto out;
1334 /* Forward the request to the BlockDriver, possibly fragmenting it */
1335 total_bytes = bdrv_getlength(bs);
1336 if (total_bytes < 0) {
1337 ret = total_bytes;
1338 goto out;
1341 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1342 if (bytes <= max_bytes && bytes <= max_transfer) {
1343 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1344 goto out;
1347 while (bytes_remaining) {
1348 int num;
1350 if (max_bytes) {
1351 QEMUIOVector local_qiov;
1353 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1354 assert(num);
1355 qemu_iovec_init(&local_qiov, qiov->niov);
1356 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1358 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1359 num, &local_qiov, 0);
1360 max_bytes -= num;
1361 qemu_iovec_destroy(&local_qiov);
1362 } else {
1363 num = bytes_remaining;
1364 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1365 bytes_remaining);
1367 if (ret < 0) {
1368 goto out;
1370 bytes_remaining -= num;
1373 out:
1374 return ret < 0 ? ret : 0;
1378 * Handle a read request in coroutine context
1380 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1381 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1382 BdrvRequestFlags flags)
1384 BlockDriverState *bs = child->bs;
1385 BlockDriver *drv = bs->drv;
1386 BdrvTrackedRequest req;
1388 uint64_t align = bs->bl.request_alignment;
1389 uint8_t *head_buf = NULL;
1390 uint8_t *tail_buf = NULL;
1391 QEMUIOVector local_qiov;
1392 bool use_local_qiov = false;
1393 int ret;
1395 trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1397 if (!drv) {
1398 return -ENOMEDIUM;
1401 ret = bdrv_check_byte_request(bs, offset, bytes);
1402 if (ret < 0) {
1403 return ret;
1406 bdrv_inc_in_flight(bs);
1408 /* Don't do copy-on-read if we read data before write operation */
1409 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1410 flags |= BDRV_REQ_COPY_ON_READ;
1413 /* Align read if necessary by padding qiov */
1414 if (offset & (align - 1)) {
1415 head_buf = qemu_blockalign(bs, align);
1416 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1417 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1418 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1419 use_local_qiov = true;
1421 bytes += offset & (align - 1);
1422 offset = offset & ~(align - 1);
1425 if ((offset + bytes) & (align - 1)) {
1426 if (!use_local_qiov) {
1427 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1428 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1429 use_local_qiov = true;
1431 tail_buf = qemu_blockalign(bs, align);
1432 qemu_iovec_add(&local_qiov, tail_buf,
1433 align - ((offset + bytes) & (align - 1)));
1435 bytes = ROUND_UP(bytes, align);
1438 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1439 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1440 use_local_qiov ? &local_qiov : qiov,
1441 flags);
1442 tracked_request_end(&req);
1443 bdrv_dec_in_flight(bs);
1445 if (use_local_qiov) {
1446 qemu_iovec_destroy(&local_qiov);
1447 qemu_vfree(head_buf);
1448 qemu_vfree(tail_buf);
1451 return ret;
1454 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1455 int64_t offset, int bytes, BdrvRequestFlags flags)
1457 BlockDriver *drv = bs->drv;
1458 QEMUIOVector qiov;
1459 void *buf = NULL;
1460 int ret = 0;
1461 bool need_flush = false;
1462 int head = 0;
1463 int tail = 0;
1465 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1466 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1467 bs->bl.request_alignment);
1468 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1470 if (!drv) {
1471 return -ENOMEDIUM;
1474 assert(alignment % bs->bl.request_alignment == 0);
1475 head = offset % alignment;
1476 tail = (offset + bytes) % alignment;
1477 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1478 assert(max_write_zeroes >= bs->bl.request_alignment);
1480 while (bytes > 0 && !ret) {
1481 int num = bytes;
1483 /* Align request. Block drivers can expect the "bulk" of the request
1484 * to be aligned, and that unaligned requests do not cross cluster
1485 * boundaries.
1487 if (head) {
1488 /* Make a small request up to the first aligned sector. For
1489 * convenience, limit this request to max_transfer even if
1490 * we don't need to fall back to writes. */
1491 num = MIN(MIN(bytes, max_transfer), alignment - head);
1492 head = (head + num) % alignment;
1493 assert(num < max_write_zeroes);
1494 } else if (tail && num > alignment) {
1495 /* Shorten the request to the last aligned sector. */
1496 num -= tail;
1499 /* limit request size */
1500 if (num > max_write_zeroes) {
1501 num = max_write_zeroes;
1504 ret = -ENOTSUP;
1505 /* First try the efficient write zeroes operation */
1506 if (drv->bdrv_co_pwrite_zeroes) {
1507 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1508 flags & bs->supported_zero_flags);
1509 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1510 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1511 need_flush = true;
1513 } else {
1514 assert(!bs->supported_zero_flags);
1517 if (ret == -ENOTSUP) {
1518 /* Fall back to bounce buffer if write zeroes is unsupported */
1519 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1521 if ((flags & BDRV_REQ_FUA) &&
1522 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1523 /* No need for bdrv_driver_pwrite() to do a fallback
1524 * flush on each chunk; use just one at the end */
1525 write_flags &= ~BDRV_REQ_FUA;
1526 need_flush = true;
1528 num = MIN(num, max_transfer);
1529 if (buf == NULL) {
1530 buf = qemu_try_blockalign0(bs, num);
1531 if (buf == NULL) {
1532 ret = -ENOMEM;
1533 goto fail;
1536 qemu_iovec_init_buf(&qiov, buf, num);
1538 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1540 /* Keep bounce buffer around if it is big enough for all
1541 * all future requests.
1543 if (num < max_transfer) {
1544 qemu_vfree(buf);
1545 buf = NULL;
1549 offset += num;
1550 bytes -= num;
1553 fail:
1554 if (ret == 0 && need_flush) {
1555 ret = bdrv_co_flush(bs);
1557 qemu_vfree(buf);
1558 return ret;
1561 static inline int coroutine_fn
1562 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1563 BdrvTrackedRequest *req, int flags)
1565 BlockDriverState *bs = child->bs;
1566 bool waited;
1567 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1569 if (bs->read_only) {
1570 return -EPERM;
1573 /* BDRV_REQ_NO_SERIALISING is only for read operation */
1574 assert(!(flags & BDRV_REQ_NO_SERIALISING));
1575 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1576 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1577 assert(!(flags & ~BDRV_REQ_MASK));
1579 if (flags & BDRV_REQ_SERIALISING) {
1580 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1583 waited = wait_serialising_requests(req);
1585 assert(!waited || !req->serialising ||
1586 is_request_serialising_and_aligned(req));
1587 assert(req->overlap_offset <= offset);
1588 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1589 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1591 switch (req->type) {
1592 case BDRV_TRACKED_WRITE:
1593 case BDRV_TRACKED_DISCARD:
1594 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1595 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1596 } else {
1597 assert(child->perm & BLK_PERM_WRITE);
1599 return notifier_with_return_list_notify(&bs->before_write_notifiers,
1600 req);
1601 case BDRV_TRACKED_TRUNCATE:
1602 assert(child->perm & BLK_PERM_RESIZE);
1603 return 0;
1604 default:
1605 abort();
1609 static inline void coroutine_fn
1610 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1611 BdrvTrackedRequest *req, int ret)
1613 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1614 BlockDriverState *bs = child->bs;
1616 atomic_inc(&bs->write_gen);
1619 * Discard cannot extend the image, but in error handling cases, such as
1620 * when reverting a qcow2 cluster allocation, the discarded range can pass
1621 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1622 * here. Instead, just skip it, since semantically a discard request
1623 * beyond EOF cannot expand the image anyway.
1625 if (ret == 0 &&
1626 (req->type == BDRV_TRACKED_TRUNCATE ||
1627 end_sector > bs->total_sectors) &&
1628 req->type != BDRV_TRACKED_DISCARD) {
1629 bs->total_sectors = end_sector;
1630 bdrv_parent_cb_resize(bs);
1631 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1633 if (req->bytes) {
1634 switch (req->type) {
1635 case BDRV_TRACKED_WRITE:
1636 stat64_max(&bs->wr_highest_offset, offset + bytes);
1637 /* fall through, to set dirty bits */
1638 case BDRV_TRACKED_DISCARD:
1639 bdrv_set_dirty(bs, offset, bytes);
1640 break;
1641 default:
1642 break;
1648 * Forwards an already correctly aligned write request to the BlockDriver,
1649 * after possibly fragmenting it.
1651 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1652 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1653 int64_t align, QEMUIOVector *qiov, int flags)
1655 BlockDriverState *bs = child->bs;
1656 BlockDriver *drv = bs->drv;
1657 int ret;
1659 uint64_t bytes_remaining = bytes;
1660 int max_transfer;
1662 if (!drv) {
1663 return -ENOMEDIUM;
1666 if (bdrv_has_readonly_bitmaps(bs)) {
1667 return -EPERM;
1670 assert(is_power_of_2(align));
1671 assert((offset & (align - 1)) == 0);
1672 assert((bytes & (align - 1)) == 0);
1673 assert(!qiov || bytes == qiov->size);
1674 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1675 align);
1677 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1679 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1680 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1681 qemu_iovec_is_zero(qiov)) {
1682 flags |= BDRV_REQ_ZERO_WRITE;
1683 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1684 flags |= BDRV_REQ_MAY_UNMAP;
1688 if (ret < 0) {
1689 /* Do nothing, write notifier decided to fail this request */
1690 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1691 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1692 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1693 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1694 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1695 } else if (bytes <= max_transfer) {
1696 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1697 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1698 } else {
1699 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1700 while (bytes_remaining) {
1701 int num = MIN(bytes_remaining, max_transfer);
1702 QEMUIOVector local_qiov;
1703 int local_flags = flags;
1705 assert(num);
1706 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1707 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1708 /* If FUA is going to be emulated by flush, we only
1709 * need to flush on the last iteration */
1710 local_flags &= ~BDRV_REQ_FUA;
1712 qemu_iovec_init(&local_qiov, qiov->niov);
1713 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1715 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1716 num, &local_qiov, local_flags);
1717 qemu_iovec_destroy(&local_qiov);
1718 if (ret < 0) {
1719 break;
1721 bytes_remaining -= num;
1724 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1726 if (ret >= 0) {
1727 ret = 0;
1729 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1731 return ret;
1734 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1735 int64_t offset,
1736 unsigned int bytes,
1737 BdrvRequestFlags flags,
1738 BdrvTrackedRequest *req)
1740 BlockDriverState *bs = child->bs;
1741 uint8_t *buf = NULL;
1742 QEMUIOVector local_qiov;
1743 uint64_t align = bs->bl.request_alignment;
1744 unsigned int head_padding_bytes, tail_padding_bytes;
1745 int ret = 0;
1747 head_padding_bytes = offset & (align - 1);
1748 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1751 assert(flags & BDRV_REQ_ZERO_WRITE);
1752 if (head_padding_bytes || tail_padding_bytes) {
1753 buf = qemu_blockalign(bs, align);
1754 qemu_iovec_init_buf(&local_qiov, buf, align);
1756 if (head_padding_bytes) {
1757 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1759 /* RMW the unaligned part before head. */
1760 mark_request_serialising(req, align);
1761 wait_serialising_requests(req);
1762 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1763 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1764 align, &local_qiov, 0);
1765 if (ret < 0) {
1766 goto fail;
1768 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1770 memset(buf + head_padding_bytes, 0, zero_bytes);
1771 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1772 align, &local_qiov,
1773 flags & ~BDRV_REQ_ZERO_WRITE);
1774 if (ret < 0) {
1775 goto fail;
1777 offset += zero_bytes;
1778 bytes -= zero_bytes;
1781 assert(!bytes || (offset & (align - 1)) == 0);
1782 if (bytes >= align) {
1783 /* Write the aligned part in the middle. */
1784 uint64_t aligned_bytes = bytes & ~(align - 1);
1785 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1786 NULL, flags);
1787 if (ret < 0) {
1788 goto fail;
1790 bytes -= aligned_bytes;
1791 offset += aligned_bytes;
1794 assert(!bytes || (offset & (align - 1)) == 0);
1795 if (bytes) {
1796 assert(align == tail_padding_bytes + bytes);
1797 /* RMW the unaligned part after tail. */
1798 mark_request_serialising(req, align);
1799 wait_serialising_requests(req);
1800 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1801 ret = bdrv_aligned_preadv(child, req, offset, align,
1802 align, &local_qiov, 0);
1803 if (ret < 0) {
1804 goto fail;
1806 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1808 memset(buf, 0, bytes);
1809 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1810 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1812 fail:
1813 qemu_vfree(buf);
1814 return ret;
1819 * Handle a write request in coroutine context
1821 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1822 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1823 BdrvRequestFlags flags)
1825 BlockDriverState *bs = child->bs;
1826 BdrvTrackedRequest req;
1827 uint64_t align = bs->bl.request_alignment;
1828 uint8_t *head_buf = NULL;
1829 uint8_t *tail_buf = NULL;
1830 QEMUIOVector local_qiov;
1831 bool use_local_qiov = false;
1832 int ret;
1834 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1836 if (!bs->drv) {
1837 return -ENOMEDIUM;
1840 ret = bdrv_check_byte_request(bs, offset, bytes);
1841 if (ret < 0) {
1842 return ret;
1845 bdrv_inc_in_flight(bs);
1847 * Align write if necessary by performing a read-modify-write cycle.
1848 * Pad qiov with the read parts and be sure to have a tracked request not
1849 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1851 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1853 if (flags & BDRV_REQ_ZERO_WRITE) {
1854 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1855 goto out;
1858 if (offset & (align - 1)) {
1859 QEMUIOVector head_qiov;
1861 mark_request_serialising(&req, align);
1862 wait_serialising_requests(&req);
1864 head_buf = qemu_blockalign(bs, align);
1865 qemu_iovec_init_buf(&head_qiov, head_buf, align);
1867 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1868 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1869 align, &head_qiov, 0);
1870 if (ret < 0) {
1871 goto fail;
1873 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1875 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1876 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1877 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1878 use_local_qiov = true;
1880 bytes += offset & (align - 1);
1881 offset = offset & ~(align - 1);
1883 /* We have read the tail already if the request is smaller
1884 * than one aligned block.
1886 if (bytes < align) {
1887 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1888 bytes = align;
1892 if ((offset + bytes) & (align - 1)) {
1893 QEMUIOVector tail_qiov;
1894 size_t tail_bytes;
1895 bool waited;
1897 mark_request_serialising(&req, align);
1898 waited = wait_serialising_requests(&req);
1899 assert(!waited || !use_local_qiov);
1901 tail_buf = qemu_blockalign(bs, align);
1902 qemu_iovec_init_buf(&tail_qiov, tail_buf, align);
1904 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1905 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1906 align, align, &tail_qiov, 0);
1907 if (ret < 0) {
1908 goto fail;
1910 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1912 if (!use_local_qiov) {
1913 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1914 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1915 use_local_qiov = true;
1918 tail_bytes = (offset + bytes) & (align - 1);
1919 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1921 bytes = ROUND_UP(bytes, align);
1924 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1925 use_local_qiov ? &local_qiov : qiov,
1926 flags);
1928 fail:
1930 if (use_local_qiov) {
1931 qemu_iovec_destroy(&local_qiov);
1933 qemu_vfree(head_buf);
1934 qemu_vfree(tail_buf);
1935 out:
1936 tracked_request_end(&req);
1937 bdrv_dec_in_flight(bs);
1938 return ret;
1941 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1942 int bytes, BdrvRequestFlags flags)
1944 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1946 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1947 flags &= ~BDRV_REQ_MAY_UNMAP;
1950 return bdrv_co_pwritev(child, offset, bytes, NULL,
1951 BDRV_REQ_ZERO_WRITE | flags);
1955 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1957 int bdrv_flush_all(void)
1959 BdrvNextIterator it;
1960 BlockDriverState *bs = NULL;
1961 int result = 0;
1963 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1964 AioContext *aio_context = bdrv_get_aio_context(bs);
1965 int ret;
1967 aio_context_acquire(aio_context);
1968 ret = bdrv_flush(bs);
1969 if (ret < 0 && !result) {
1970 result = ret;
1972 aio_context_release(aio_context);
1975 return result;
1979 typedef struct BdrvCoBlockStatusData {
1980 BlockDriverState *bs;
1981 BlockDriverState *base;
1982 bool want_zero;
1983 int64_t offset;
1984 int64_t bytes;
1985 int64_t *pnum;
1986 int64_t *map;
1987 BlockDriverState **file;
1988 int ret;
1989 bool done;
1990 } BdrvCoBlockStatusData;
1992 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
1993 bool want_zero,
1994 int64_t offset,
1995 int64_t bytes,
1996 int64_t *pnum,
1997 int64_t *map,
1998 BlockDriverState **file)
2000 assert(bs->file && bs->file->bs);
2001 *pnum = bytes;
2002 *map = offset;
2003 *file = bs->file->bs;
2004 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2007 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
2008 bool want_zero,
2009 int64_t offset,
2010 int64_t bytes,
2011 int64_t *pnum,
2012 int64_t *map,
2013 BlockDriverState **file)
2015 assert(bs->backing && bs->backing->bs);
2016 *pnum = bytes;
2017 *map = offset;
2018 *file = bs->backing->bs;
2019 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2023 * Returns the allocation status of the specified sectors.
2024 * Drivers not implementing the functionality are assumed to not support
2025 * backing files, hence all their sectors are reported as allocated.
2027 * If 'want_zero' is true, the caller is querying for mapping
2028 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2029 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2030 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2032 * If 'offset' is beyond the end of the disk image the return value is
2033 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2035 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2036 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2037 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2039 * 'pnum' is set to the number of bytes (including and immediately
2040 * following the specified offset) that are easily known to be in the
2041 * same allocated/unallocated state. Note that a second call starting
2042 * at the original offset plus returned pnum may have the same status.
2043 * The returned value is non-zero on success except at end-of-file.
2045 * Returns negative errno on failure. Otherwise, if the
2046 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2047 * set to the host mapping and BDS corresponding to the guest offset.
2049 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2050 bool want_zero,
2051 int64_t offset, int64_t bytes,
2052 int64_t *pnum, int64_t *map,
2053 BlockDriverState **file)
2055 int64_t total_size;
2056 int64_t n; /* bytes */
2057 int ret;
2058 int64_t local_map = 0;
2059 BlockDriverState *local_file = NULL;
2060 int64_t aligned_offset, aligned_bytes;
2061 uint32_t align;
2063 assert(pnum);
2064 *pnum = 0;
2065 total_size = bdrv_getlength(bs);
2066 if (total_size < 0) {
2067 ret = total_size;
2068 goto early_out;
2071 if (offset >= total_size) {
2072 ret = BDRV_BLOCK_EOF;
2073 goto early_out;
2075 if (!bytes) {
2076 ret = 0;
2077 goto early_out;
2080 n = total_size - offset;
2081 if (n < bytes) {
2082 bytes = n;
2085 /* Must be non-NULL or bdrv_getlength() would have failed */
2086 assert(bs->drv);
2087 if (!bs->drv->bdrv_co_block_status) {
2088 *pnum = bytes;
2089 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2090 if (offset + bytes == total_size) {
2091 ret |= BDRV_BLOCK_EOF;
2093 if (bs->drv->protocol_name) {
2094 ret |= BDRV_BLOCK_OFFSET_VALID;
2095 local_map = offset;
2096 local_file = bs;
2098 goto early_out;
2101 bdrv_inc_in_flight(bs);
2103 /* Round out to request_alignment boundaries */
2104 align = bs->bl.request_alignment;
2105 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2106 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2108 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2109 aligned_bytes, pnum, &local_map,
2110 &local_file);
2111 if (ret < 0) {
2112 *pnum = 0;
2113 goto out;
2117 * The driver's result must be a non-zero multiple of request_alignment.
2118 * Clamp pnum and adjust map to original request.
2120 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2121 align > offset - aligned_offset);
2122 *pnum -= offset - aligned_offset;
2123 if (*pnum > bytes) {
2124 *pnum = bytes;
2126 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2127 local_map += offset - aligned_offset;
2130 if (ret & BDRV_BLOCK_RAW) {
2131 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2132 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2133 *pnum, pnum, &local_map, &local_file);
2134 goto out;
2137 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2138 ret |= BDRV_BLOCK_ALLOCATED;
2139 } else if (want_zero) {
2140 if (bdrv_unallocated_blocks_are_zero(bs)) {
2141 ret |= BDRV_BLOCK_ZERO;
2142 } else if (bs->backing) {
2143 BlockDriverState *bs2 = bs->backing->bs;
2144 int64_t size2 = bdrv_getlength(bs2);
2146 if (size2 >= 0 && offset >= size2) {
2147 ret |= BDRV_BLOCK_ZERO;
2152 if (want_zero && local_file && local_file != bs &&
2153 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2154 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2155 int64_t file_pnum;
2156 int ret2;
2158 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2159 *pnum, &file_pnum, NULL, NULL);
2160 if (ret2 >= 0) {
2161 /* Ignore errors. This is just providing extra information, it
2162 * is useful but not necessary.
2164 if (ret2 & BDRV_BLOCK_EOF &&
2165 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2167 * It is valid for the format block driver to read
2168 * beyond the end of the underlying file's current
2169 * size; such areas read as zero.
2171 ret |= BDRV_BLOCK_ZERO;
2172 } else {
2173 /* Limit request to the range reported by the protocol driver */
2174 *pnum = file_pnum;
2175 ret |= (ret2 & BDRV_BLOCK_ZERO);
2180 out:
2181 bdrv_dec_in_flight(bs);
2182 if (ret >= 0 && offset + *pnum == total_size) {
2183 ret |= BDRV_BLOCK_EOF;
2185 early_out:
2186 if (file) {
2187 *file = local_file;
2189 if (map) {
2190 *map = local_map;
2192 return ret;
2195 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2196 BlockDriverState *base,
2197 bool want_zero,
2198 int64_t offset,
2199 int64_t bytes,
2200 int64_t *pnum,
2201 int64_t *map,
2202 BlockDriverState **file)
2204 BlockDriverState *p;
2205 int ret = 0;
2206 bool first = true;
2208 assert(bs != base);
2209 for (p = bs; p != base; p = backing_bs(p)) {
2210 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2211 file);
2212 if (ret < 0) {
2213 break;
2215 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2217 * Reading beyond the end of the file continues to read
2218 * zeroes, but we can only widen the result to the
2219 * unallocated length we learned from an earlier
2220 * iteration.
2222 *pnum = bytes;
2224 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2225 break;
2227 /* [offset, pnum] unallocated on this layer, which could be only
2228 * the first part of [offset, bytes]. */
2229 bytes = MIN(bytes, *pnum);
2230 first = false;
2232 return ret;
2235 /* Coroutine wrapper for bdrv_block_status_above() */
2236 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2238 BdrvCoBlockStatusData *data = opaque;
2240 data->ret = bdrv_co_block_status_above(data->bs, data->base,
2241 data->want_zero,
2242 data->offset, data->bytes,
2243 data->pnum, data->map, data->file);
2244 data->done = true;
2245 aio_wait_kick();
2249 * Synchronous wrapper around bdrv_co_block_status_above().
2251 * See bdrv_co_block_status_above() for details.
2253 static int bdrv_common_block_status_above(BlockDriverState *bs,
2254 BlockDriverState *base,
2255 bool want_zero, int64_t offset,
2256 int64_t bytes, int64_t *pnum,
2257 int64_t *map,
2258 BlockDriverState **file)
2260 Coroutine *co;
2261 BdrvCoBlockStatusData data = {
2262 .bs = bs,
2263 .base = base,
2264 .want_zero = want_zero,
2265 .offset = offset,
2266 .bytes = bytes,
2267 .pnum = pnum,
2268 .map = map,
2269 .file = file,
2270 .done = false,
2273 if (qemu_in_coroutine()) {
2274 /* Fast-path if already in coroutine context */
2275 bdrv_block_status_above_co_entry(&data);
2276 } else {
2277 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2278 bdrv_coroutine_enter(bs, co);
2279 BDRV_POLL_WHILE(bs, !data.done);
2281 return data.ret;
2284 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2285 int64_t offset, int64_t bytes, int64_t *pnum,
2286 int64_t *map, BlockDriverState **file)
2288 return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2289 pnum, map, file);
2292 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2293 int64_t *pnum, int64_t *map, BlockDriverState **file)
2295 return bdrv_block_status_above(bs, backing_bs(bs),
2296 offset, bytes, pnum, map, file);
2299 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2300 int64_t bytes, int64_t *pnum)
2302 int ret;
2303 int64_t dummy;
2305 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2306 bytes, pnum ? pnum : &dummy, NULL,
2307 NULL);
2308 if (ret < 0) {
2309 return ret;
2311 return !!(ret & BDRV_BLOCK_ALLOCATED);
2315 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2317 * Return true if (a prefix of) the given range is allocated in any image
2318 * between BASE and TOP (inclusive). BASE can be NULL to check if the given
2319 * offset is allocated in any image of the chain. Return false otherwise,
2320 * or negative errno on failure.
2322 * 'pnum' is set to the number of bytes (including and immediately
2323 * following the specified offset) that are known to be in the same
2324 * allocated/unallocated state. Note that a subsequent call starting
2325 * at 'offset + *pnum' may return the same allocation status (in other
2326 * words, the result is not necessarily the maximum possible range);
2327 * but 'pnum' will only be 0 when end of file is reached.
2330 int bdrv_is_allocated_above(BlockDriverState *top,
2331 BlockDriverState *base,
2332 int64_t offset, int64_t bytes, int64_t *pnum)
2334 BlockDriverState *intermediate;
2335 int ret;
2336 int64_t n = bytes;
2338 intermediate = top;
2339 while (intermediate && intermediate != base) {
2340 int64_t pnum_inter;
2341 int64_t size_inter;
2343 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2344 if (ret < 0) {
2345 return ret;
2347 if (ret) {
2348 *pnum = pnum_inter;
2349 return 1;
2352 size_inter = bdrv_getlength(intermediate);
2353 if (size_inter < 0) {
2354 return size_inter;
2356 if (n > pnum_inter &&
2357 (intermediate == top || offset + pnum_inter < size_inter)) {
2358 n = pnum_inter;
2361 intermediate = backing_bs(intermediate);
2364 *pnum = n;
2365 return 0;
2368 typedef struct BdrvVmstateCo {
2369 BlockDriverState *bs;
2370 QEMUIOVector *qiov;
2371 int64_t pos;
2372 bool is_read;
2373 int ret;
2374 } BdrvVmstateCo;
2376 static int coroutine_fn
2377 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2378 bool is_read)
2380 BlockDriver *drv = bs->drv;
2381 int ret = -ENOTSUP;
2383 bdrv_inc_in_flight(bs);
2385 if (!drv) {
2386 ret = -ENOMEDIUM;
2387 } else if (drv->bdrv_load_vmstate) {
2388 if (is_read) {
2389 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2390 } else {
2391 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2393 } else if (bs->file) {
2394 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2397 bdrv_dec_in_flight(bs);
2398 return ret;
2401 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2403 BdrvVmstateCo *co = opaque;
2404 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2405 aio_wait_kick();
2408 static inline int
2409 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2410 bool is_read)
2412 if (qemu_in_coroutine()) {
2413 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2414 } else {
2415 BdrvVmstateCo data = {
2416 .bs = bs,
2417 .qiov = qiov,
2418 .pos = pos,
2419 .is_read = is_read,
2420 .ret = -EINPROGRESS,
2422 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2424 bdrv_coroutine_enter(bs, co);
2425 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2426 return data.ret;
2430 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2431 int64_t pos, int size)
2433 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2434 int ret;
2436 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2437 if (ret < 0) {
2438 return ret;
2441 return size;
2444 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2446 return bdrv_rw_vmstate(bs, qiov, pos, false);
2449 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2450 int64_t pos, int size)
2452 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2453 int ret;
2455 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2456 if (ret < 0) {
2457 return ret;
2460 return size;
2463 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2465 return bdrv_rw_vmstate(bs, qiov, pos, true);
2468 /**************************************************************/
2469 /* async I/Os */
2471 void bdrv_aio_cancel(BlockAIOCB *acb)
2473 qemu_aio_ref(acb);
2474 bdrv_aio_cancel_async(acb);
2475 while (acb->refcnt > 1) {
2476 if (acb->aiocb_info->get_aio_context) {
2477 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2478 } else if (acb->bs) {
2479 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2480 * assert that we're not using an I/O thread. Thread-safe
2481 * code should use bdrv_aio_cancel_async exclusively.
2483 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2484 aio_poll(bdrv_get_aio_context(acb->bs), true);
2485 } else {
2486 abort();
2489 qemu_aio_unref(acb);
2492 /* Async version of aio cancel. The caller is not blocked if the acb implements
2493 * cancel_async, otherwise we do nothing and let the request normally complete.
2494 * In either case the completion callback must be called. */
2495 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2497 if (acb->aiocb_info->cancel_async) {
2498 acb->aiocb_info->cancel_async(acb);
2502 /**************************************************************/
2503 /* Coroutine block device emulation */
2505 typedef struct FlushCo {
2506 BlockDriverState *bs;
2507 int ret;
2508 } FlushCo;
2511 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2513 FlushCo *rwco = opaque;
2515 rwco->ret = bdrv_co_flush(rwco->bs);
2516 aio_wait_kick();
2519 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2521 int current_gen;
2522 int ret = 0;
2524 bdrv_inc_in_flight(bs);
2526 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2527 bdrv_is_sg(bs)) {
2528 goto early_exit;
2531 qemu_co_mutex_lock(&bs->reqs_lock);
2532 current_gen = atomic_read(&bs->write_gen);
2534 /* Wait until any previous flushes are completed */
2535 while (bs->active_flush_req) {
2536 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2539 /* Flushes reach this point in nondecreasing current_gen order. */
2540 bs->active_flush_req = true;
2541 qemu_co_mutex_unlock(&bs->reqs_lock);
2543 /* Write back all layers by calling one driver function */
2544 if (bs->drv->bdrv_co_flush) {
2545 ret = bs->drv->bdrv_co_flush(bs);
2546 goto out;
2549 /* Write back cached data to the OS even with cache=unsafe */
2550 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2551 if (bs->drv->bdrv_co_flush_to_os) {
2552 ret = bs->drv->bdrv_co_flush_to_os(bs);
2553 if (ret < 0) {
2554 goto out;
2558 /* But don't actually force it to the disk with cache=unsafe */
2559 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2560 goto flush_parent;
2563 /* Check if we really need to flush anything */
2564 if (bs->flushed_gen == current_gen) {
2565 goto flush_parent;
2568 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2569 if (!bs->drv) {
2570 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2571 * (even in case of apparent success) */
2572 ret = -ENOMEDIUM;
2573 goto out;
2575 if (bs->drv->bdrv_co_flush_to_disk) {
2576 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2577 } else if (bs->drv->bdrv_aio_flush) {
2578 BlockAIOCB *acb;
2579 CoroutineIOCompletion co = {
2580 .coroutine = qemu_coroutine_self(),
2583 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2584 if (acb == NULL) {
2585 ret = -EIO;
2586 } else {
2587 qemu_coroutine_yield();
2588 ret = co.ret;
2590 } else {
2592 * Some block drivers always operate in either writethrough or unsafe
2593 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2594 * know how the server works (because the behaviour is hardcoded or
2595 * depends on server-side configuration), so we can't ensure that
2596 * everything is safe on disk. Returning an error doesn't work because
2597 * that would break guests even if the server operates in writethrough
2598 * mode.
2600 * Let's hope the user knows what he's doing.
2602 ret = 0;
2605 if (ret < 0) {
2606 goto out;
2609 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2610 * in the case of cache=unsafe, so there are no useless flushes.
2612 flush_parent:
2613 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2614 out:
2615 /* Notify any pending flushes that we have completed */
2616 if (ret == 0) {
2617 bs->flushed_gen = current_gen;
2620 qemu_co_mutex_lock(&bs->reqs_lock);
2621 bs->active_flush_req = false;
2622 /* Return value is ignored - it's ok if wait queue is empty */
2623 qemu_co_queue_next(&bs->flush_queue);
2624 qemu_co_mutex_unlock(&bs->reqs_lock);
2626 early_exit:
2627 bdrv_dec_in_flight(bs);
2628 return ret;
2631 int bdrv_flush(BlockDriverState *bs)
2633 Coroutine *co;
2634 FlushCo flush_co = {
2635 .bs = bs,
2636 .ret = NOT_DONE,
2639 if (qemu_in_coroutine()) {
2640 /* Fast-path if already in coroutine context */
2641 bdrv_flush_co_entry(&flush_co);
2642 } else {
2643 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2644 bdrv_coroutine_enter(bs, co);
2645 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2648 return flush_co.ret;
2651 typedef struct DiscardCo {
2652 BdrvChild *child;
2653 int64_t offset;
2654 int bytes;
2655 int ret;
2656 } DiscardCo;
2657 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2659 DiscardCo *rwco = opaque;
2661 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes);
2662 aio_wait_kick();
2665 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, int bytes)
2667 BdrvTrackedRequest req;
2668 int max_pdiscard, ret;
2669 int head, tail, align;
2670 BlockDriverState *bs = child->bs;
2672 if (!bs || !bs->drv) {
2673 return -ENOMEDIUM;
2676 if (bdrv_has_readonly_bitmaps(bs)) {
2677 return -EPERM;
2680 ret = bdrv_check_byte_request(bs, offset, bytes);
2681 if (ret < 0) {
2682 return ret;
2685 /* Do nothing if disabled. */
2686 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2687 return 0;
2690 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2691 return 0;
2694 /* Discard is advisory, but some devices track and coalesce
2695 * unaligned requests, so we must pass everything down rather than
2696 * round here. Still, most devices will just silently ignore
2697 * unaligned requests (by returning -ENOTSUP), so we must fragment
2698 * the request accordingly. */
2699 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2700 assert(align % bs->bl.request_alignment == 0);
2701 head = offset % align;
2702 tail = (offset + bytes) % align;
2704 bdrv_inc_in_flight(bs);
2705 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2707 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2708 if (ret < 0) {
2709 goto out;
2712 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2713 align);
2714 assert(max_pdiscard >= bs->bl.request_alignment);
2716 while (bytes > 0) {
2717 int num = bytes;
2719 if (head) {
2720 /* Make small requests to get to alignment boundaries. */
2721 num = MIN(bytes, align - head);
2722 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2723 num %= bs->bl.request_alignment;
2725 head = (head + num) % align;
2726 assert(num < max_pdiscard);
2727 } else if (tail) {
2728 if (num > align) {
2729 /* Shorten the request to the last aligned cluster. */
2730 num -= tail;
2731 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2732 tail > bs->bl.request_alignment) {
2733 tail %= bs->bl.request_alignment;
2734 num -= tail;
2737 /* limit request size */
2738 if (num > max_pdiscard) {
2739 num = max_pdiscard;
2742 if (!bs->drv) {
2743 ret = -ENOMEDIUM;
2744 goto out;
2746 if (bs->drv->bdrv_co_pdiscard) {
2747 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2748 } else {
2749 BlockAIOCB *acb;
2750 CoroutineIOCompletion co = {
2751 .coroutine = qemu_coroutine_self(),
2754 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2755 bdrv_co_io_em_complete, &co);
2756 if (acb == NULL) {
2757 ret = -EIO;
2758 goto out;
2759 } else {
2760 qemu_coroutine_yield();
2761 ret = co.ret;
2764 if (ret && ret != -ENOTSUP) {
2765 goto out;
2768 offset += num;
2769 bytes -= num;
2771 ret = 0;
2772 out:
2773 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
2774 tracked_request_end(&req);
2775 bdrv_dec_in_flight(bs);
2776 return ret;
2779 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int bytes)
2781 Coroutine *co;
2782 DiscardCo rwco = {
2783 .child = child,
2784 .offset = offset,
2785 .bytes = bytes,
2786 .ret = NOT_DONE,
2789 if (qemu_in_coroutine()) {
2790 /* Fast-path if already in coroutine context */
2791 bdrv_pdiscard_co_entry(&rwco);
2792 } else {
2793 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2794 bdrv_coroutine_enter(child->bs, co);
2795 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
2798 return rwco.ret;
2801 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2803 BlockDriver *drv = bs->drv;
2804 CoroutineIOCompletion co = {
2805 .coroutine = qemu_coroutine_self(),
2807 BlockAIOCB *acb;
2809 bdrv_inc_in_flight(bs);
2810 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2811 co.ret = -ENOTSUP;
2812 goto out;
2815 if (drv->bdrv_co_ioctl) {
2816 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2817 } else {
2818 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2819 if (!acb) {
2820 co.ret = -ENOTSUP;
2821 goto out;
2823 qemu_coroutine_yield();
2825 out:
2826 bdrv_dec_in_flight(bs);
2827 return co.ret;
2830 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2832 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2835 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2837 return memset(qemu_blockalign(bs, size), 0, size);
2840 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2842 size_t align = bdrv_opt_mem_align(bs);
2844 /* Ensure that NULL is never returned on success */
2845 assert(align > 0);
2846 if (size == 0) {
2847 size = align;
2850 return qemu_try_memalign(align, size);
2853 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2855 void *mem = qemu_try_blockalign(bs, size);
2857 if (mem) {
2858 memset(mem, 0, size);
2861 return mem;
2865 * Check if all memory in this vector is sector aligned.
2867 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2869 int i;
2870 size_t alignment = bdrv_min_mem_align(bs);
2872 for (i = 0; i < qiov->niov; i++) {
2873 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2874 return false;
2876 if (qiov->iov[i].iov_len % alignment) {
2877 return false;
2881 return true;
2884 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2885 NotifierWithReturn *notifier)
2887 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2890 void bdrv_io_plug(BlockDriverState *bs)
2892 BdrvChild *child;
2894 QLIST_FOREACH(child, &bs->children, next) {
2895 bdrv_io_plug(child->bs);
2898 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2899 BlockDriver *drv = bs->drv;
2900 if (drv && drv->bdrv_io_plug) {
2901 drv->bdrv_io_plug(bs);
2906 void bdrv_io_unplug(BlockDriverState *bs)
2908 BdrvChild *child;
2910 assert(bs->io_plugged);
2911 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2912 BlockDriver *drv = bs->drv;
2913 if (drv && drv->bdrv_io_unplug) {
2914 drv->bdrv_io_unplug(bs);
2918 QLIST_FOREACH(child, &bs->children, next) {
2919 bdrv_io_unplug(child->bs);
2923 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
2925 BdrvChild *child;
2927 if (bs->drv && bs->drv->bdrv_register_buf) {
2928 bs->drv->bdrv_register_buf(bs, host, size);
2930 QLIST_FOREACH(child, &bs->children, next) {
2931 bdrv_register_buf(child->bs, host, size);
2935 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
2937 BdrvChild *child;
2939 if (bs->drv && bs->drv->bdrv_unregister_buf) {
2940 bs->drv->bdrv_unregister_buf(bs, host);
2942 QLIST_FOREACH(child, &bs->children, next) {
2943 bdrv_unregister_buf(child->bs, host);
2947 static int coroutine_fn bdrv_co_copy_range_internal(
2948 BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
2949 uint64_t dst_offset, uint64_t bytes,
2950 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
2951 bool recurse_src)
2953 BdrvTrackedRequest req;
2954 int ret;
2956 if (!dst || !dst->bs) {
2957 return -ENOMEDIUM;
2959 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
2960 if (ret) {
2961 return ret;
2963 if (write_flags & BDRV_REQ_ZERO_WRITE) {
2964 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
2967 if (!src || !src->bs) {
2968 return -ENOMEDIUM;
2970 ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
2971 if (ret) {
2972 return ret;
2975 if (!src->bs->drv->bdrv_co_copy_range_from
2976 || !dst->bs->drv->bdrv_co_copy_range_to
2977 || src->bs->encrypted || dst->bs->encrypted) {
2978 return -ENOTSUP;
2981 if (recurse_src) {
2982 bdrv_inc_in_flight(src->bs);
2983 tracked_request_begin(&req, src->bs, src_offset, bytes,
2984 BDRV_TRACKED_READ);
2986 /* BDRV_REQ_SERIALISING is only for write operation */
2987 assert(!(read_flags & BDRV_REQ_SERIALISING));
2988 if (!(read_flags & BDRV_REQ_NO_SERIALISING)) {
2989 wait_serialising_requests(&req);
2992 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
2993 src, src_offset,
2994 dst, dst_offset,
2995 bytes,
2996 read_flags, write_flags);
2998 tracked_request_end(&req);
2999 bdrv_dec_in_flight(src->bs);
3000 } else {
3001 bdrv_inc_in_flight(dst->bs);
3002 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3003 BDRV_TRACKED_WRITE);
3004 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3005 write_flags);
3006 if (!ret) {
3007 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3008 src, src_offset,
3009 dst, dst_offset,
3010 bytes,
3011 read_flags, write_flags);
3013 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3014 tracked_request_end(&req);
3015 bdrv_dec_in_flight(dst->bs);
3018 return ret;
3021 /* Copy range from @src to @dst.
3023 * See the comment of bdrv_co_copy_range for the parameter and return value
3024 * semantics. */
3025 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3026 BdrvChild *dst, uint64_t dst_offset,
3027 uint64_t bytes,
3028 BdrvRequestFlags read_flags,
3029 BdrvRequestFlags write_flags)
3031 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3032 read_flags, write_flags);
3033 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3034 bytes, read_flags, write_flags, true);
3037 /* Copy range from @src to @dst.
3039 * See the comment of bdrv_co_copy_range for the parameter and return value
3040 * semantics. */
3041 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3042 BdrvChild *dst, uint64_t dst_offset,
3043 uint64_t bytes,
3044 BdrvRequestFlags read_flags,
3045 BdrvRequestFlags write_flags)
3047 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3048 read_flags, write_flags);
3049 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3050 bytes, read_flags, write_flags, false);
3053 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3054 BdrvChild *dst, uint64_t dst_offset,
3055 uint64_t bytes, BdrvRequestFlags read_flags,
3056 BdrvRequestFlags write_flags)
3058 return bdrv_co_copy_range_from(src, src_offset,
3059 dst, dst_offset,
3060 bytes, read_flags, write_flags);
3063 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3065 BdrvChild *c;
3066 QLIST_FOREACH(c, &bs->parents, next_parent) {
3067 if (c->role->resize) {
3068 c->role->resize(c);
3074 * Truncate file to 'offset' bytes (needed only for file protocols)
3076 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset,
3077 PreallocMode prealloc, Error **errp)
3079 BlockDriverState *bs = child->bs;
3080 BlockDriver *drv = bs->drv;
3081 BdrvTrackedRequest req;
3082 int64_t old_size, new_bytes;
3083 int ret;
3086 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3087 if (!drv) {
3088 error_setg(errp, "No medium inserted");
3089 return -ENOMEDIUM;
3091 if (offset < 0) {
3092 error_setg(errp, "Image size cannot be negative");
3093 return -EINVAL;
3096 old_size = bdrv_getlength(bs);
3097 if (old_size < 0) {
3098 error_setg_errno(errp, -old_size, "Failed to get old image size");
3099 return old_size;
3102 if (offset > old_size) {
3103 new_bytes = offset - old_size;
3104 } else {
3105 new_bytes = 0;
3108 bdrv_inc_in_flight(bs);
3109 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3110 BDRV_TRACKED_TRUNCATE);
3112 /* If we are growing the image and potentially using preallocation for the
3113 * new area, we need to make sure that no write requests are made to it
3114 * concurrently or they might be overwritten by preallocation. */
3115 if (new_bytes) {
3116 mark_request_serialising(&req, 1);
3118 if (bs->read_only) {
3119 error_setg(errp, "Image is read-only");
3120 ret = -EACCES;
3121 goto out;
3123 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3125 if (ret < 0) {
3126 error_setg_errno(errp, -ret,
3127 "Failed to prepare request for truncation");
3128 goto out;
3131 if (!drv->bdrv_co_truncate) {
3132 if (bs->file && drv->is_filter) {
3133 ret = bdrv_co_truncate(bs->file, offset, prealloc, errp);
3134 goto out;
3136 error_setg(errp, "Image format driver does not support resize");
3137 ret = -ENOTSUP;
3138 goto out;
3141 ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp);
3142 if (ret < 0) {
3143 goto out;
3145 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3146 if (ret < 0) {
3147 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3148 } else {
3149 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3151 /* It's possible that truncation succeeded but refresh_total_sectors
3152 * failed, but the latter doesn't affect how we should finish the request.
3153 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3154 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3156 out:
3157 tracked_request_end(&req);
3158 bdrv_dec_in_flight(bs);
3160 return ret;
3163 typedef struct TruncateCo {
3164 BdrvChild *child;
3165 int64_t offset;
3166 PreallocMode prealloc;
3167 Error **errp;
3168 int ret;
3169 } TruncateCo;
3171 static void coroutine_fn bdrv_truncate_co_entry(void *opaque)
3173 TruncateCo *tco = opaque;
3174 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc,
3175 tco->errp);
3176 aio_wait_kick();
3179 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc,
3180 Error **errp)
3182 Coroutine *co;
3183 TruncateCo tco = {
3184 .child = child,
3185 .offset = offset,
3186 .prealloc = prealloc,
3187 .errp = errp,
3188 .ret = NOT_DONE,
3191 if (qemu_in_coroutine()) {
3192 /* Fast-path if already in coroutine context */
3193 bdrv_truncate_co_entry(&tco);
3194 } else {
3195 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco);
3196 bdrv_coroutine_enter(child->bs, co);
3197 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE);
3200 return tco.ret;