vfio-pci: Fix BAR size overflow
[qemu/ar7.git] / hw / vfio / pci.c
blobb6703c7d37e0b02c16963e21d2cfa5f37fe3ea46
1 /*
2 * vfio based device assignment support
4 * Copyright Red Hat, Inc. 2012
6 * Authors:
7 * Alex Williamson <alex.williamson@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Based on qemu-kvm device-assignment:
13 * Adapted for KVM by Qumranet.
14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
21 #include <dirent.h>
22 #include <linux/vfio.h>
23 #include <sys/ioctl.h>
24 #include <sys/mman.h>
25 #include <sys/stat.h>
26 #include <sys/types.h>
27 #include <unistd.h>
29 #include "config.h"
30 #include "exec/address-spaces.h"
31 #include "exec/memory.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci.h"
35 #include "qemu-common.h"
36 #include "qemu/error-report.h"
37 #include "qemu/event_notifier.h"
38 #include "qemu/queue.h"
39 #include "qemu/range.h"
40 #include "sysemu/kvm.h"
41 #include "sysemu/sysemu.h"
42 #include "trace.h"
43 #include "hw/vfio/vfio.h"
44 #include "hw/vfio/vfio-common.h"
46 struct VFIOPCIDevice;
48 typedef struct VFIOQuirk {
49 MemoryRegion mem;
50 struct VFIOPCIDevice *vdev;
51 QLIST_ENTRY(VFIOQuirk) next;
52 struct {
53 uint32_t base_offset:TARGET_PAGE_BITS;
54 uint32_t address_offset:TARGET_PAGE_BITS;
55 uint32_t address_size:3;
56 uint32_t bar:3;
58 uint32_t address_match;
59 uint32_t address_mask;
61 uint32_t address_val:TARGET_PAGE_BITS;
62 uint32_t data_offset:TARGET_PAGE_BITS;
63 uint32_t data_size:3;
65 uint8_t flags;
66 uint8_t read_flags;
67 uint8_t write_flags;
68 } data;
69 } VFIOQuirk;
71 typedef struct VFIOBAR {
72 VFIORegion region;
73 bool ioport;
74 bool mem64;
75 QLIST_HEAD(, VFIOQuirk) quirks;
76 } VFIOBAR;
78 typedef struct VFIOVGARegion {
79 MemoryRegion mem;
80 off_t offset;
81 int nr;
82 QLIST_HEAD(, VFIOQuirk) quirks;
83 } VFIOVGARegion;
85 typedef struct VFIOVGA {
86 off_t fd_offset;
87 int fd;
88 VFIOVGARegion region[QEMU_PCI_VGA_NUM_REGIONS];
89 } VFIOVGA;
91 typedef struct VFIOINTx {
92 bool pending; /* interrupt pending */
93 bool kvm_accel; /* set when QEMU bypass through KVM enabled */
94 uint8_t pin; /* which pin to pull for qemu_set_irq */
95 EventNotifier interrupt; /* eventfd triggered on interrupt */
96 EventNotifier unmask; /* eventfd for unmask on QEMU bypass */
97 PCIINTxRoute route; /* routing info for QEMU bypass */
98 uint32_t mmap_timeout; /* delay to re-enable mmaps after interrupt */
99 QEMUTimer *mmap_timer; /* enable mmaps after periods w/o interrupts */
100 } VFIOINTx;
102 typedef struct VFIOMSIVector {
104 * Two interrupt paths are configured per vector. The first, is only used
105 * for interrupts injected via QEMU. This is typically the non-accel path,
106 * but may also be used when we want QEMU to handle masking and pending
107 * bits. The KVM path bypasses QEMU and is therefore higher performance,
108 * but requires masking at the device. virq is used to track the MSI route
109 * through KVM, thus kvm_interrupt is only available when virq is set to a
110 * valid (>= 0) value.
112 EventNotifier interrupt;
113 EventNotifier kvm_interrupt;
114 struct VFIOPCIDevice *vdev; /* back pointer to device */
115 int virq;
116 bool use;
117 } VFIOMSIVector;
119 enum {
120 VFIO_INT_NONE = 0,
121 VFIO_INT_INTx = 1,
122 VFIO_INT_MSI = 2,
123 VFIO_INT_MSIX = 3,
126 /* Cache of MSI-X setup plus extra mmap and memory region for split BAR map */
127 typedef struct VFIOMSIXInfo {
128 uint8_t table_bar;
129 uint8_t pba_bar;
130 uint16_t entries;
131 uint32_t table_offset;
132 uint32_t pba_offset;
133 MemoryRegion mmap_mem;
134 void *mmap;
135 } VFIOMSIXInfo;
137 typedef struct VFIOPCIDevice {
138 PCIDevice pdev;
139 VFIODevice vbasedev;
140 VFIOINTx intx;
141 unsigned int config_size;
142 uint8_t *emulated_config_bits; /* QEMU emulated bits, little-endian */
143 off_t config_offset; /* Offset of config space region within device fd */
144 unsigned int rom_size;
145 off_t rom_offset; /* Offset of ROM region within device fd */
146 void *rom;
147 int msi_cap_size;
148 VFIOMSIVector *msi_vectors;
149 VFIOMSIXInfo *msix;
150 int nr_vectors; /* Number of MSI/MSIX vectors currently in use */
151 int interrupt; /* Current interrupt type */
152 VFIOBAR bars[PCI_NUM_REGIONS - 1]; /* No ROM */
153 VFIOVGA vga; /* 0xa0000, 0x3b0, 0x3c0 */
154 PCIHostDeviceAddress host;
155 EventNotifier err_notifier;
156 uint32_t features;
157 #define VFIO_FEATURE_ENABLE_VGA_BIT 0
158 #define VFIO_FEATURE_ENABLE_VGA (1 << VFIO_FEATURE_ENABLE_VGA_BIT)
159 int32_t bootindex;
160 uint8_t pm_cap;
161 bool has_vga;
162 bool pci_aer;
163 bool has_flr;
164 bool has_pm_reset;
165 bool rom_read_failed;
166 } VFIOPCIDevice;
168 typedef struct VFIORomBlacklistEntry {
169 uint16_t vendor_id;
170 uint16_t device_id;
171 } VFIORomBlacklistEntry;
174 * List of device ids/vendor ids for which to disable
175 * option rom loading. This avoids the guest hangs during rom
176 * execution as noticed with the BCM 57810 card for lack of a
177 * more better way to handle such issues.
178 * The user can still override by specifying a romfile or
179 * rombar=1.
180 * Please see https://bugs.launchpad.net/qemu/+bug/1284874
181 * for an analysis of the 57810 card hang. When adding
182 * a new vendor id/device id combination below, please also add
183 * your card/environment details and information that could
184 * help in debugging to the bug tracking this issue
186 static const VFIORomBlacklistEntry romblacklist[] = {
187 /* Broadcom BCM 57810 */
188 { 0x14e4, 0x168e }
191 #define MSIX_CAP_LENGTH 12
193 static void vfio_disable_interrupts(VFIOPCIDevice *vdev);
194 static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len);
195 static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr,
196 uint32_t val, int len);
197 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled);
198 static int vfio_populate_device(VFIODevice *vbasedev);
201 * Disabling BAR mmaping can be slow, but toggling it around INTx can
202 * also be a huge overhead. We try to get the best of both worlds by
203 * waiting until an interrupt to disable mmaps (subsequent transitions
204 * to the same state are effectively no overhead). If the interrupt has
205 * been serviced and the time gap is long enough, we re-enable mmaps for
206 * performance. This works well for things like graphics cards, which
207 * may not use their interrupt at all and are penalized to an unusable
208 * level by read/write BAR traps. Other devices, like NICs, have more
209 * regular interrupts and see much better latency by staying in non-mmap
210 * mode. We therefore set the default mmap_timeout such that a ping
211 * is just enough to keep the mmap disabled. Users can experiment with
212 * other options with the x-intx-mmap-timeout-ms parameter (a value of
213 * zero disables the timer).
215 static void vfio_intx_mmap_enable(void *opaque)
217 VFIOPCIDevice *vdev = opaque;
219 if (vdev->intx.pending) {
220 timer_mod(vdev->intx.mmap_timer,
221 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout);
222 return;
225 vfio_mmap_set_enabled(vdev, true);
228 static void vfio_intx_interrupt(void *opaque)
230 VFIOPCIDevice *vdev = opaque;
232 if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) {
233 return;
236 trace_vfio_intx_interrupt(vdev->vbasedev.name, 'A' + vdev->intx.pin);
238 vdev->intx.pending = true;
239 pci_irq_assert(&vdev->pdev);
240 vfio_mmap_set_enabled(vdev, false);
241 if (vdev->intx.mmap_timeout) {
242 timer_mod(vdev->intx.mmap_timer,
243 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout);
247 static void vfio_eoi(VFIODevice *vbasedev)
249 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
251 if (!vdev->intx.pending) {
252 return;
255 trace_vfio_eoi(vbasedev->name);
257 vdev->intx.pending = false;
258 pci_irq_deassert(&vdev->pdev);
259 vfio_unmask_single_irqindex(vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
262 static void vfio_enable_intx_kvm(VFIOPCIDevice *vdev)
264 #ifdef CONFIG_KVM
265 struct kvm_irqfd irqfd = {
266 .fd = event_notifier_get_fd(&vdev->intx.interrupt),
267 .gsi = vdev->intx.route.irq,
268 .flags = KVM_IRQFD_FLAG_RESAMPLE,
270 struct vfio_irq_set *irq_set;
271 int ret, argsz;
272 int32_t *pfd;
274 if (!VFIO_ALLOW_KVM_INTX || !kvm_irqfds_enabled() ||
275 vdev->intx.route.mode != PCI_INTX_ENABLED ||
276 !kvm_resamplefds_enabled()) {
277 return;
280 /* Get to a known interrupt state */
281 qemu_set_fd_handler(irqfd.fd, NULL, NULL, vdev);
282 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
283 vdev->intx.pending = false;
284 pci_irq_deassert(&vdev->pdev);
286 /* Get an eventfd for resample/unmask */
287 if (event_notifier_init(&vdev->intx.unmask, 0)) {
288 error_report("vfio: Error: event_notifier_init failed eoi");
289 goto fail;
292 /* KVM triggers it, VFIO listens for it */
293 irqfd.resamplefd = event_notifier_get_fd(&vdev->intx.unmask);
295 if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) {
296 error_report("vfio: Error: Failed to setup resample irqfd: %m");
297 goto fail_irqfd;
300 argsz = sizeof(*irq_set) + sizeof(*pfd);
302 irq_set = g_malloc0(argsz);
303 irq_set->argsz = argsz;
304 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_UNMASK;
305 irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
306 irq_set->start = 0;
307 irq_set->count = 1;
308 pfd = (int32_t *)&irq_set->data;
310 *pfd = irqfd.resamplefd;
312 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
313 g_free(irq_set);
314 if (ret) {
315 error_report("vfio: Error: Failed to setup INTx unmask fd: %m");
316 goto fail_vfio;
319 /* Let'em rip */
320 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
322 vdev->intx.kvm_accel = true;
324 trace_vfio_enable_intx_kvm(vdev->vbasedev.name);
326 return;
328 fail_vfio:
329 irqfd.flags = KVM_IRQFD_FLAG_DEASSIGN;
330 kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
331 fail_irqfd:
332 event_notifier_cleanup(&vdev->intx.unmask);
333 fail:
334 qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev);
335 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
336 #endif
339 static void vfio_disable_intx_kvm(VFIOPCIDevice *vdev)
341 #ifdef CONFIG_KVM
342 struct kvm_irqfd irqfd = {
343 .fd = event_notifier_get_fd(&vdev->intx.interrupt),
344 .gsi = vdev->intx.route.irq,
345 .flags = KVM_IRQFD_FLAG_DEASSIGN,
348 if (!vdev->intx.kvm_accel) {
349 return;
353 * Get to a known state, hardware masked, QEMU ready to accept new
354 * interrupts, QEMU IRQ de-asserted.
356 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
357 vdev->intx.pending = false;
358 pci_irq_deassert(&vdev->pdev);
360 /* Tell KVM to stop listening for an INTx irqfd */
361 if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) {
362 error_report("vfio: Error: Failed to disable INTx irqfd: %m");
365 /* We only need to close the eventfd for VFIO to cleanup the kernel side */
366 event_notifier_cleanup(&vdev->intx.unmask);
368 /* QEMU starts listening for interrupt events. */
369 qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev);
371 vdev->intx.kvm_accel = false;
373 /* If we've missed an event, let it re-fire through QEMU */
374 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
376 trace_vfio_disable_intx_kvm(vdev->vbasedev.name);
377 #endif
380 static void vfio_update_irq(PCIDevice *pdev)
382 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
383 PCIINTxRoute route;
385 if (vdev->interrupt != VFIO_INT_INTx) {
386 return;
389 route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin);
391 if (!pci_intx_route_changed(&vdev->intx.route, &route)) {
392 return; /* Nothing changed */
395 trace_vfio_update_irq(vdev->vbasedev.name,
396 vdev->intx.route.irq, route.irq);
398 vfio_disable_intx_kvm(vdev);
400 vdev->intx.route = route;
402 if (route.mode != PCI_INTX_ENABLED) {
403 return;
406 vfio_enable_intx_kvm(vdev);
408 /* Re-enable the interrupt in cased we missed an EOI */
409 vfio_eoi(&vdev->vbasedev);
412 static int vfio_enable_intx(VFIOPCIDevice *vdev)
414 uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1);
415 int ret, argsz;
416 struct vfio_irq_set *irq_set;
417 int32_t *pfd;
419 if (!pin) {
420 return 0;
423 vfio_disable_interrupts(vdev);
425 vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */
426 pci_config_set_interrupt_pin(vdev->pdev.config, pin);
428 #ifdef CONFIG_KVM
430 * Only conditional to avoid generating error messages on platforms
431 * where we won't actually use the result anyway.
433 if (kvm_irqfds_enabled() && kvm_resamplefds_enabled()) {
434 vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev,
435 vdev->intx.pin);
437 #endif
439 ret = event_notifier_init(&vdev->intx.interrupt, 0);
440 if (ret) {
441 error_report("vfio: Error: event_notifier_init failed");
442 return ret;
445 argsz = sizeof(*irq_set) + sizeof(*pfd);
447 irq_set = g_malloc0(argsz);
448 irq_set->argsz = argsz;
449 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
450 irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
451 irq_set->start = 0;
452 irq_set->count = 1;
453 pfd = (int32_t *)&irq_set->data;
455 *pfd = event_notifier_get_fd(&vdev->intx.interrupt);
456 qemu_set_fd_handler(*pfd, vfio_intx_interrupt, NULL, vdev);
458 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
459 g_free(irq_set);
460 if (ret) {
461 error_report("vfio: Error: Failed to setup INTx fd: %m");
462 qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
463 event_notifier_cleanup(&vdev->intx.interrupt);
464 return -errno;
467 vfio_enable_intx_kvm(vdev);
469 vdev->interrupt = VFIO_INT_INTx;
471 trace_vfio_enable_intx(vdev->vbasedev.name);
473 return 0;
476 static void vfio_disable_intx(VFIOPCIDevice *vdev)
478 int fd;
480 timer_del(vdev->intx.mmap_timer);
481 vfio_disable_intx_kvm(vdev);
482 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
483 vdev->intx.pending = false;
484 pci_irq_deassert(&vdev->pdev);
485 vfio_mmap_set_enabled(vdev, true);
487 fd = event_notifier_get_fd(&vdev->intx.interrupt);
488 qemu_set_fd_handler(fd, NULL, NULL, vdev);
489 event_notifier_cleanup(&vdev->intx.interrupt);
491 vdev->interrupt = VFIO_INT_NONE;
493 trace_vfio_disable_intx(vdev->vbasedev.name);
497 * MSI/X
499 static void vfio_msi_interrupt(void *opaque)
501 VFIOMSIVector *vector = opaque;
502 VFIOPCIDevice *vdev = vector->vdev;
503 int nr = vector - vdev->msi_vectors;
505 if (!event_notifier_test_and_clear(&vector->interrupt)) {
506 return;
509 #ifdef DEBUG_VFIO
510 MSIMessage msg;
512 if (vdev->interrupt == VFIO_INT_MSIX) {
513 msg = msix_get_message(&vdev->pdev, nr);
514 } else if (vdev->interrupt == VFIO_INT_MSI) {
515 msg = msi_get_message(&vdev->pdev, nr);
516 } else {
517 abort();
520 trace_vfio_msi_interrupt(vbasedev->name, nr, msg.address, msg.data);
521 #endif
523 if (vdev->interrupt == VFIO_INT_MSIX) {
524 msix_notify(&vdev->pdev, nr);
525 } else if (vdev->interrupt == VFIO_INT_MSI) {
526 msi_notify(&vdev->pdev, nr);
527 } else {
528 error_report("vfio: MSI interrupt receieved, but not enabled?");
532 static int vfio_enable_vectors(VFIOPCIDevice *vdev, bool msix)
534 struct vfio_irq_set *irq_set;
535 int ret = 0, i, argsz;
536 int32_t *fds;
538 argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds));
540 irq_set = g_malloc0(argsz);
541 irq_set->argsz = argsz;
542 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
543 irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX;
544 irq_set->start = 0;
545 irq_set->count = vdev->nr_vectors;
546 fds = (int32_t *)&irq_set->data;
548 for (i = 0; i < vdev->nr_vectors; i++) {
549 int fd = -1;
552 * MSI vs MSI-X - The guest has direct access to MSI mask and pending
553 * bits, therefore we always use the KVM signaling path when setup.
554 * MSI-X mask and pending bits are emulated, so we want to use the
555 * KVM signaling path only when configured and unmasked.
557 if (vdev->msi_vectors[i].use) {
558 if (vdev->msi_vectors[i].virq < 0 ||
559 (msix && msix_is_masked(&vdev->pdev, i))) {
560 fd = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt);
561 } else {
562 fd = event_notifier_get_fd(&vdev->msi_vectors[i].kvm_interrupt);
566 fds[i] = fd;
569 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
571 g_free(irq_set);
573 return ret;
576 static void vfio_add_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage *msg,
577 bool msix)
579 int virq;
581 if ((msix && !VFIO_ALLOW_KVM_MSIX) ||
582 (!msix && !VFIO_ALLOW_KVM_MSI) || !msg) {
583 return;
586 if (event_notifier_init(&vector->kvm_interrupt, 0)) {
587 return;
590 virq = kvm_irqchip_add_msi_route(kvm_state, *msg);
591 if (virq < 0) {
592 event_notifier_cleanup(&vector->kvm_interrupt);
593 return;
596 if (kvm_irqchip_add_irqfd_notifier(kvm_state, &vector->kvm_interrupt,
597 NULL, virq) < 0) {
598 kvm_irqchip_release_virq(kvm_state, virq);
599 event_notifier_cleanup(&vector->kvm_interrupt);
600 return;
603 vector->virq = virq;
606 static void vfio_remove_kvm_msi_virq(VFIOMSIVector *vector)
608 kvm_irqchip_remove_irqfd_notifier(kvm_state, &vector->kvm_interrupt,
609 vector->virq);
610 kvm_irqchip_release_virq(kvm_state, vector->virq);
611 vector->virq = -1;
612 event_notifier_cleanup(&vector->kvm_interrupt);
615 static void vfio_update_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage msg)
617 kvm_irqchip_update_msi_route(kvm_state, vector->virq, msg);
620 static int vfio_msix_vector_do_use(PCIDevice *pdev, unsigned int nr,
621 MSIMessage *msg, IOHandler *handler)
623 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
624 VFIOMSIVector *vector;
625 int ret;
627 trace_vfio_msix_vector_do_use(vdev->vbasedev.name, nr);
629 vector = &vdev->msi_vectors[nr];
631 if (!vector->use) {
632 vector->vdev = vdev;
633 vector->virq = -1;
634 if (event_notifier_init(&vector->interrupt, 0)) {
635 error_report("vfio: Error: event_notifier_init failed");
637 vector->use = true;
638 msix_vector_use(pdev, nr);
641 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
642 handler, NULL, vector);
645 * Attempt to enable route through KVM irqchip,
646 * default to userspace handling if unavailable.
648 if (vector->virq >= 0) {
649 if (!msg) {
650 vfio_remove_kvm_msi_virq(vector);
651 } else {
652 vfio_update_kvm_msi_virq(vector, *msg);
654 } else {
655 vfio_add_kvm_msi_virq(vector, msg, true);
659 * We don't want to have the host allocate all possible MSI vectors
660 * for a device if they're not in use, so we shutdown and incrementally
661 * increase them as needed.
663 if (vdev->nr_vectors < nr + 1) {
664 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX);
665 vdev->nr_vectors = nr + 1;
666 ret = vfio_enable_vectors(vdev, true);
667 if (ret) {
668 error_report("vfio: failed to enable vectors, %d", ret);
670 } else {
671 int argsz;
672 struct vfio_irq_set *irq_set;
673 int32_t *pfd;
675 argsz = sizeof(*irq_set) + sizeof(*pfd);
677 irq_set = g_malloc0(argsz);
678 irq_set->argsz = argsz;
679 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
680 VFIO_IRQ_SET_ACTION_TRIGGER;
681 irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
682 irq_set->start = nr;
683 irq_set->count = 1;
684 pfd = (int32_t *)&irq_set->data;
686 if (vector->virq >= 0) {
687 *pfd = event_notifier_get_fd(&vector->kvm_interrupt);
688 } else {
689 *pfd = event_notifier_get_fd(&vector->interrupt);
692 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
693 g_free(irq_set);
694 if (ret) {
695 error_report("vfio: failed to modify vector, %d", ret);
699 return 0;
702 static int vfio_msix_vector_use(PCIDevice *pdev,
703 unsigned int nr, MSIMessage msg)
705 return vfio_msix_vector_do_use(pdev, nr, &msg, vfio_msi_interrupt);
708 static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr)
710 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
711 VFIOMSIVector *vector = &vdev->msi_vectors[nr];
713 trace_vfio_msix_vector_release(vdev->vbasedev.name, nr);
716 * There are still old guests that mask and unmask vectors on every
717 * interrupt. If we're using QEMU bypass with a KVM irqfd, leave all of
718 * the KVM setup in place, simply switch VFIO to use the non-bypass
719 * eventfd. We'll then fire the interrupt through QEMU and the MSI-X
720 * core will mask the interrupt and set pending bits, allowing it to
721 * be re-asserted on unmask. Nothing to do if already using QEMU mode.
723 if (vector->virq >= 0) {
724 int argsz;
725 struct vfio_irq_set *irq_set;
726 int32_t *pfd;
728 argsz = sizeof(*irq_set) + sizeof(*pfd);
730 irq_set = g_malloc0(argsz);
731 irq_set->argsz = argsz;
732 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
733 VFIO_IRQ_SET_ACTION_TRIGGER;
734 irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
735 irq_set->start = nr;
736 irq_set->count = 1;
737 pfd = (int32_t *)&irq_set->data;
739 *pfd = event_notifier_get_fd(&vector->interrupt);
741 ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
743 g_free(irq_set);
747 static void vfio_enable_msix(VFIOPCIDevice *vdev)
749 vfio_disable_interrupts(vdev);
751 vdev->msi_vectors = g_malloc0(vdev->msix->entries * sizeof(VFIOMSIVector));
753 vdev->interrupt = VFIO_INT_MSIX;
756 * Some communication channels between VF & PF or PF & fw rely on the
757 * physical state of the device and expect that enabling MSI-X from the
758 * guest enables the same on the host. When our guest is Linux, the
759 * guest driver call to pci_enable_msix() sets the enabling bit in the
760 * MSI-X capability, but leaves the vector table masked. We therefore
761 * can't rely on a vector_use callback (from request_irq() in the guest)
762 * to switch the physical device into MSI-X mode because that may come a
763 * long time after pci_enable_msix(). This code enables vector 0 with
764 * triggering to userspace, then immediately release the vector, leaving
765 * the physical device with no vectors enabled, but MSI-X enabled, just
766 * like the guest view.
768 vfio_msix_vector_do_use(&vdev->pdev, 0, NULL, NULL);
769 vfio_msix_vector_release(&vdev->pdev, 0);
771 if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use,
772 vfio_msix_vector_release, NULL)) {
773 error_report("vfio: msix_set_vector_notifiers failed");
776 trace_vfio_enable_msix(vdev->vbasedev.name);
779 static void vfio_enable_msi(VFIOPCIDevice *vdev)
781 int ret, i;
783 vfio_disable_interrupts(vdev);
785 vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev);
786 retry:
787 vdev->msi_vectors = g_malloc0(vdev->nr_vectors * sizeof(VFIOMSIVector));
789 for (i = 0; i < vdev->nr_vectors; i++) {
790 VFIOMSIVector *vector = &vdev->msi_vectors[i];
791 MSIMessage msg = msi_get_message(&vdev->pdev, i);
793 vector->vdev = vdev;
794 vector->virq = -1;
795 vector->use = true;
797 if (event_notifier_init(&vector->interrupt, 0)) {
798 error_report("vfio: Error: event_notifier_init failed");
801 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
802 vfio_msi_interrupt, NULL, vector);
805 * Attempt to enable route through KVM irqchip,
806 * default to userspace handling if unavailable.
808 vfio_add_kvm_msi_virq(vector, &msg, false);
811 /* Set interrupt type prior to possible interrupts */
812 vdev->interrupt = VFIO_INT_MSI;
814 ret = vfio_enable_vectors(vdev, false);
815 if (ret) {
816 if (ret < 0) {
817 error_report("vfio: Error: Failed to setup MSI fds: %m");
818 } else if (ret != vdev->nr_vectors) {
819 error_report("vfio: Error: Failed to enable %d "
820 "MSI vectors, retry with %d", vdev->nr_vectors, ret);
823 for (i = 0; i < vdev->nr_vectors; i++) {
824 VFIOMSIVector *vector = &vdev->msi_vectors[i];
825 if (vector->virq >= 0) {
826 vfio_remove_kvm_msi_virq(vector);
828 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
829 NULL, NULL, NULL);
830 event_notifier_cleanup(&vector->interrupt);
833 g_free(vdev->msi_vectors);
835 if (ret > 0 && ret != vdev->nr_vectors) {
836 vdev->nr_vectors = ret;
837 goto retry;
839 vdev->nr_vectors = 0;
842 * Failing to setup MSI doesn't really fall within any specification.
843 * Let's try leaving interrupts disabled and hope the guest figures
844 * out to fall back to INTx for this device.
846 error_report("vfio: Error: Failed to enable MSI");
847 vdev->interrupt = VFIO_INT_NONE;
849 return;
852 trace_vfio_enable_msi(vdev->vbasedev.name, vdev->nr_vectors);
855 static void vfio_disable_msi_common(VFIOPCIDevice *vdev)
857 int i;
859 for (i = 0; i < vdev->nr_vectors; i++) {
860 VFIOMSIVector *vector = &vdev->msi_vectors[i];
861 if (vdev->msi_vectors[i].use) {
862 if (vector->virq >= 0) {
863 vfio_remove_kvm_msi_virq(vector);
865 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
866 NULL, NULL, NULL);
867 event_notifier_cleanup(&vector->interrupt);
871 g_free(vdev->msi_vectors);
872 vdev->msi_vectors = NULL;
873 vdev->nr_vectors = 0;
874 vdev->interrupt = VFIO_INT_NONE;
876 vfio_enable_intx(vdev);
879 static void vfio_disable_msix(VFIOPCIDevice *vdev)
881 int i;
883 msix_unset_vector_notifiers(&vdev->pdev);
886 * MSI-X will only release vectors if MSI-X is still enabled on the
887 * device, check through the rest and release it ourselves if necessary.
889 for (i = 0; i < vdev->nr_vectors; i++) {
890 if (vdev->msi_vectors[i].use) {
891 vfio_msix_vector_release(&vdev->pdev, i);
892 msix_vector_unuse(&vdev->pdev, i);
896 if (vdev->nr_vectors) {
897 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX);
900 vfio_disable_msi_common(vdev);
902 trace_vfio_disable_msix(vdev->vbasedev.name);
905 static void vfio_disable_msi(VFIOPCIDevice *vdev)
907 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSI_IRQ_INDEX);
908 vfio_disable_msi_common(vdev);
910 trace_vfio_disable_msi(vdev->vbasedev.name);
913 static void vfio_update_msi(VFIOPCIDevice *vdev)
915 int i;
917 for (i = 0; i < vdev->nr_vectors; i++) {
918 VFIOMSIVector *vector = &vdev->msi_vectors[i];
919 MSIMessage msg;
921 if (!vector->use || vector->virq < 0) {
922 continue;
925 msg = msi_get_message(&vdev->pdev, i);
926 vfio_update_kvm_msi_virq(vector, msg);
930 static void vfio_pci_load_rom(VFIOPCIDevice *vdev)
932 struct vfio_region_info reg_info = {
933 .argsz = sizeof(reg_info),
934 .index = VFIO_PCI_ROM_REGION_INDEX
936 uint64_t size;
937 off_t off = 0;
938 size_t bytes;
940 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info)) {
941 error_report("vfio: Error getting ROM info: %m");
942 return;
945 trace_vfio_pci_load_rom(vdev->vbasedev.name, (unsigned long)reg_info.size,
946 (unsigned long)reg_info.offset,
947 (unsigned long)reg_info.flags);
949 vdev->rom_size = size = reg_info.size;
950 vdev->rom_offset = reg_info.offset;
952 if (!vdev->rom_size) {
953 vdev->rom_read_failed = true;
954 error_report("vfio-pci: Cannot read device rom at "
955 "%s", vdev->vbasedev.name);
956 error_printf("Device option ROM contents are probably invalid "
957 "(check dmesg).\nSkip option ROM probe with rombar=0, "
958 "or load from file with romfile=\n");
959 return;
962 vdev->rom = g_malloc(size);
963 memset(vdev->rom, 0xff, size);
965 while (size) {
966 bytes = pread(vdev->vbasedev.fd, vdev->rom + off,
967 size, vdev->rom_offset + off);
968 if (bytes == 0) {
969 break;
970 } else if (bytes > 0) {
971 off += bytes;
972 size -= bytes;
973 } else {
974 if (errno == EINTR || errno == EAGAIN) {
975 continue;
977 error_report("vfio: Error reading device ROM: %m");
978 break;
983 static uint64_t vfio_rom_read(void *opaque, hwaddr addr, unsigned size)
985 VFIOPCIDevice *vdev = opaque;
986 union {
987 uint8_t byte;
988 uint16_t word;
989 uint32_t dword;
990 uint64_t qword;
991 } val;
992 uint64_t data = 0;
994 /* Load the ROM lazily when the guest tries to read it */
995 if (unlikely(!vdev->rom && !vdev->rom_read_failed)) {
996 vfio_pci_load_rom(vdev);
999 memcpy(&val, vdev->rom + addr,
1000 (addr < vdev->rom_size) ? MIN(size, vdev->rom_size - addr) : 0);
1002 switch (size) {
1003 case 1:
1004 data = val.byte;
1005 break;
1006 case 2:
1007 data = le16_to_cpu(val.word);
1008 break;
1009 case 4:
1010 data = le32_to_cpu(val.dword);
1011 break;
1012 default:
1013 hw_error("vfio: unsupported read size, %d bytes\n", size);
1014 break;
1017 trace_vfio_rom_read(vdev->vbasedev.name, addr, size, data);
1019 return data;
1022 static void vfio_rom_write(void *opaque, hwaddr addr,
1023 uint64_t data, unsigned size)
1027 static const MemoryRegionOps vfio_rom_ops = {
1028 .read = vfio_rom_read,
1029 .write = vfio_rom_write,
1030 .endianness = DEVICE_LITTLE_ENDIAN,
1033 static bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
1035 PCIDevice *pdev = &vdev->pdev;
1036 uint16_t vendor_id, device_id;
1037 int count = 0;
1039 vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID);
1040 device_id = pci_get_word(pdev->config + PCI_DEVICE_ID);
1042 while (count < ARRAY_SIZE(romblacklist)) {
1043 if (romblacklist[count].vendor_id == vendor_id &&
1044 romblacklist[count].device_id == device_id) {
1045 return true;
1047 count++;
1050 return false;
1053 static void vfio_pci_size_rom(VFIOPCIDevice *vdev)
1055 uint32_t orig, size = cpu_to_le32((uint32_t)PCI_ROM_ADDRESS_MASK);
1056 off_t offset = vdev->config_offset + PCI_ROM_ADDRESS;
1057 DeviceState *dev = DEVICE(vdev);
1058 char name[32];
1059 int fd = vdev->vbasedev.fd;
1061 if (vdev->pdev.romfile || !vdev->pdev.rom_bar) {
1062 /* Since pci handles romfile, just print a message and return */
1063 if (vfio_blacklist_opt_rom(vdev) && vdev->pdev.romfile) {
1064 error_printf("Warning : Device at %04x:%02x:%02x.%x "
1065 "is known to cause system instability issues during "
1066 "option rom execution. "
1067 "Proceeding anyway since user specified romfile\n",
1068 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1069 vdev->host.function);
1071 return;
1075 * Use the same size ROM BAR as the physical device. The contents
1076 * will get filled in later when the guest tries to read it.
1078 if (pread(fd, &orig, 4, offset) != 4 ||
1079 pwrite(fd, &size, 4, offset) != 4 ||
1080 pread(fd, &size, 4, offset) != 4 ||
1081 pwrite(fd, &orig, 4, offset) != 4) {
1082 error_report("%s(%04x:%02x:%02x.%x) failed: %m",
1083 __func__, vdev->host.domain, vdev->host.bus,
1084 vdev->host.slot, vdev->host.function);
1085 return;
1088 size = ~(le32_to_cpu(size) & PCI_ROM_ADDRESS_MASK) + 1;
1090 if (!size) {
1091 return;
1094 if (vfio_blacklist_opt_rom(vdev)) {
1095 if (dev->opts && qemu_opt_get(dev->opts, "rombar")) {
1096 error_printf("Warning : Device at %04x:%02x:%02x.%x "
1097 "is known to cause system instability issues during "
1098 "option rom execution. "
1099 "Proceeding anyway since user specified non zero value for "
1100 "rombar\n",
1101 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1102 vdev->host.function);
1103 } else {
1104 error_printf("Warning : Rom loading for device at "
1105 "%04x:%02x:%02x.%x has been disabled due to "
1106 "system instability issues. "
1107 "Specify rombar=1 or romfile to force\n",
1108 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1109 vdev->host.function);
1110 return;
1114 trace_vfio_pci_size_rom(vdev->vbasedev.name, size);
1116 snprintf(name, sizeof(name), "vfio[%04x:%02x:%02x.%x].rom",
1117 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1118 vdev->host.function);
1120 memory_region_init_io(&vdev->pdev.rom, OBJECT(vdev),
1121 &vfio_rom_ops, vdev, name, size);
1123 pci_register_bar(&vdev->pdev, PCI_ROM_SLOT,
1124 PCI_BASE_ADDRESS_SPACE_MEMORY, &vdev->pdev.rom);
1126 vdev->pdev.has_rom = true;
1127 vdev->rom_read_failed = false;
1130 static void vfio_vga_write(void *opaque, hwaddr addr,
1131 uint64_t data, unsigned size)
1133 VFIOVGARegion *region = opaque;
1134 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]);
1135 union {
1136 uint8_t byte;
1137 uint16_t word;
1138 uint32_t dword;
1139 uint64_t qword;
1140 } buf;
1141 off_t offset = vga->fd_offset + region->offset + addr;
1143 switch (size) {
1144 case 1:
1145 buf.byte = data;
1146 break;
1147 case 2:
1148 buf.word = cpu_to_le16(data);
1149 break;
1150 case 4:
1151 buf.dword = cpu_to_le32(data);
1152 break;
1153 default:
1154 hw_error("vfio: unsupported write size, %d bytes", size);
1155 break;
1158 if (pwrite(vga->fd, &buf, size, offset) != size) {
1159 error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m",
1160 __func__, region->offset + addr, data, size);
1163 trace_vfio_vga_write(region->offset + addr, data, size);
1166 static uint64_t vfio_vga_read(void *opaque, hwaddr addr, unsigned size)
1168 VFIOVGARegion *region = opaque;
1169 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]);
1170 union {
1171 uint8_t byte;
1172 uint16_t word;
1173 uint32_t dword;
1174 uint64_t qword;
1175 } buf;
1176 uint64_t data = 0;
1177 off_t offset = vga->fd_offset + region->offset + addr;
1179 if (pread(vga->fd, &buf, size, offset) != size) {
1180 error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m",
1181 __func__, region->offset + addr, size);
1182 return (uint64_t)-1;
1185 switch (size) {
1186 case 1:
1187 data = buf.byte;
1188 break;
1189 case 2:
1190 data = le16_to_cpu(buf.word);
1191 break;
1192 case 4:
1193 data = le32_to_cpu(buf.dword);
1194 break;
1195 default:
1196 hw_error("vfio: unsupported read size, %d bytes", size);
1197 break;
1200 trace_vfio_vga_read(region->offset + addr, size, data);
1202 return data;
1205 static const MemoryRegionOps vfio_vga_ops = {
1206 .read = vfio_vga_read,
1207 .write = vfio_vga_write,
1208 .endianness = DEVICE_LITTLE_ENDIAN,
1212 * Device specific quirks
1215 /* Is range1 fully contained within range2? */
1216 static bool vfio_range_contained(uint64_t first1, uint64_t len1,
1217 uint64_t first2, uint64_t len2) {
1218 return (first1 >= first2 && first1 + len1 <= first2 + len2);
1221 static bool vfio_flags_enabled(uint8_t flags, uint8_t mask)
1223 return (mask && (flags & mask) == mask);
1226 static uint64_t vfio_generic_window_quirk_read(void *opaque,
1227 hwaddr addr, unsigned size)
1229 VFIOQuirk *quirk = opaque;
1230 VFIOPCIDevice *vdev = quirk->vdev;
1231 uint64_t data;
1233 if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) &&
1234 ranges_overlap(addr, size,
1235 quirk->data.data_offset, quirk->data.data_size)) {
1236 hwaddr offset = addr - quirk->data.data_offset;
1238 if (!vfio_range_contained(addr, size, quirk->data.data_offset,
1239 quirk->data.data_size)) {
1240 hw_error("%s: window data read not fully contained: %s",
1241 __func__, memory_region_name(&quirk->mem));
1244 data = vfio_pci_read_config(&vdev->pdev,
1245 quirk->data.address_val + offset, size);
1247 trace_vfio_generic_window_quirk_read(memory_region_name(&quirk->mem),
1248 vdev->vbasedev.name,
1249 quirk->data.bar,
1250 addr, size, data);
1251 } else {
1252 data = vfio_region_read(&vdev->bars[quirk->data.bar].region,
1253 addr + quirk->data.base_offset, size);
1256 return data;
1259 static void vfio_generic_window_quirk_write(void *opaque, hwaddr addr,
1260 uint64_t data, unsigned size)
1262 VFIOQuirk *quirk = opaque;
1263 VFIOPCIDevice *vdev = quirk->vdev;
1265 if (ranges_overlap(addr, size,
1266 quirk->data.address_offset, quirk->data.address_size)) {
1268 if (addr != quirk->data.address_offset) {
1269 hw_error("%s: offset write into address window: %s",
1270 __func__, memory_region_name(&quirk->mem));
1273 if ((data & ~quirk->data.address_mask) == quirk->data.address_match) {
1274 quirk->data.flags |= quirk->data.write_flags |
1275 quirk->data.read_flags;
1276 quirk->data.address_val = data & quirk->data.address_mask;
1277 } else {
1278 quirk->data.flags &= ~(quirk->data.write_flags |
1279 quirk->data.read_flags);
1283 if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) &&
1284 ranges_overlap(addr, size,
1285 quirk->data.data_offset, quirk->data.data_size)) {
1286 hwaddr offset = addr - quirk->data.data_offset;
1288 if (!vfio_range_contained(addr, size, quirk->data.data_offset,
1289 quirk->data.data_size)) {
1290 hw_error("%s: window data write not fully contained: %s",
1291 __func__, memory_region_name(&quirk->mem));
1294 vfio_pci_write_config(&vdev->pdev,
1295 quirk->data.address_val + offset, data, size);
1296 trace_vfio_generic_window_quirk_write(memory_region_name(&quirk->mem),
1297 vdev->vbasedev.name,
1298 quirk->data.bar,
1299 addr, data, size);
1300 return;
1303 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1304 addr + quirk->data.base_offset, data, size);
1307 static const MemoryRegionOps vfio_generic_window_quirk = {
1308 .read = vfio_generic_window_quirk_read,
1309 .write = vfio_generic_window_quirk_write,
1310 .endianness = DEVICE_LITTLE_ENDIAN,
1313 static uint64_t vfio_generic_quirk_read(void *opaque,
1314 hwaddr addr, unsigned size)
1316 VFIOQuirk *quirk = opaque;
1317 VFIOPCIDevice *vdev = quirk->vdev;
1318 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
1319 hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK;
1320 uint64_t data;
1322 if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) &&
1323 ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) {
1324 if (!vfio_range_contained(addr, size, offset,
1325 quirk->data.address_mask + 1)) {
1326 hw_error("%s: read not fully contained: %s",
1327 __func__, memory_region_name(&quirk->mem));
1330 data = vfio_pci_read_config(&vdev->pdev, addr - offset, size);
1332 trace_vfio_generic_quirk_read(memory_region_name(&quirk->mem),
1333 vdev->vbasedev.name, quirk->data.bar,
1334 addr + base, size, data);
1335 } else {
1336 data = vfio_region_read(&vdev->bars[quirk->data.bar].region,
1337 addr + base, size);
1340 return data;
1343 static void vfio_generic_quirk_write(void *opaque, hwaddr addr,
1344 uint64_t data, unsigned size)
1346 VFIOQuirk *quirk = opaque;
1347 VFIOPCIDevice *vdev = quirk->vdev;
1348 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
1349 hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK;
1351 if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) &&
1352 ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) {
1353 if (!vfio_range_contained(addr, size, offset,
1354 quirk->data.address_mask + 1)) {
1355 hw_error("%s: write not fully contained: %s",
1356 __func__, memory_region_name(&quirk->mem));
1359 vfio_pci_write_config(&vdev->pdev, addr - offset, data, size);
1361 trace_vfio_generic_quirk_write(memory_region_name(&quirk->mem),
1362 vdev->vbasedev.name, quirk->data.bar,
1363 addr + base, data, size);
1364 } else {
1365 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1366 addr + base, data, size);
1370 static const MemoryRegionOps vfio_generic_quirk = {
1371 .read = vfio_generic_quirk_read,
1372 .write = vfio_generic_quirk_write,
1373 .endianness = DEVICE_LITTLE_ENDIAN,
1376 #define PCI_VENDOR_ID_ATI 0x1002
1379 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
1380 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always
1381 * BAR4 (older cards like the X550 used BAR1, but we don't care to support
1382 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the
1383 * I/O port BAR address. Originally this was coded to return the virtual BAR
1384 * address only if the physical register read returns the actual BAR address,
1385 * but users have reported greater success if we return the virtual address
1386 * unconditionally.
1388 static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
1389 hwaddr addr, unsigned size)
1391 VFIOQuirk *quirk = opaque;
1392 VFIOPCIDevice *vdev = quirk->vdev;
1393 uint64_t data = vfio_pci_read_config(&vdev->pdev,
1394 PCI_BASE_ADDRESS_0 + (4 * 4) + 1,
1395 size);
1396 trace_vfio_ati_3c3_quirk_read(data);
1398 return data;
1401 static const MemoryRegionOps vfio_ati_3c3_quirk = {
1402 .read = vfio_ati_3c3_quirk_read,
1403 .endianness = DEVICE_LITTLE_ENDIAN,
1406 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
1408 PCIDevice *pdev = &vdev->pdev;
1409 VFIOQuirk *quirk;
1411 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
1412 return;
1416 * As long as the BAR is >= 256 bytes it will be aligned such that the
1417 * lower byte is always zero. Filter out anything else, if it exists.
1419 if (!vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
1420 return;
1423 quirk = g_malloc0(sizeof(*quirk));
1424 quirk->vdev = vdev;
1426 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, quirk,
1427 "vfio-ati-3c3-quirk", 1);
1428 memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
1429 3 /* offset 3 bytes from 0x3c0 */, &quirk->mem);
1431 QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks,
1432 quirk, next);
1434 trace_vfio_vga_probe_ati_3c3_quirk(vdev->vbasedev.name);
1438 * Newer ATI/AMD devices, including HD5450 and HD7850, have a window to PCI
1439 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access
1440 * the MMIO space directly, but a window to this space is provided through
1441 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the
1442 * data register. When the address is programmed to a range of 0x4000-0x4fff
1443 * PCI configuration space is available. Experimentation seems to indicate
1444 * that only read-only access is provided, but we drop writes when the window
1445 * is enabled to config space nonetheless.
1447 static void vfio_probe_ati_bar4_window_quirk(VFIOPCIDevice *vdev, int nr)
1449 PCIDevice *pdev = &vdev->pdev;
1450 VFIOQuirk *quirk;
1452 if (!vdev->has_vga || nr != 4 ||
1453 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
1454 return;
1457 quirk = g_malloc0(sizeof(*quirk));
1458 quirk->vdev = vdev;
1459 quirk->data.address_size = 4;
1460 quirk->data.data_offset = 4;
1461 quirk->data.data_size = 4;
1462 quirk->data.address_match = 0x4000;
1463 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
1464 quirk->data.bar = nr;
1465 quirk->data.read_flags = quirk->data.write_flags = 1;
1467 memory_region_init_io(&quirk->mem, OBJECT(vdev),
1468 &vfio_generic_window_quirk, quirk,
1469 "vfio-ati-bar4-window-quirk", 8);
1470 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1471 quirk->data.base_offset, &quirk->mem, 1);
1473 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1475 trace_vfio_probe_ati_bar4_window_quirk(vdev->vbasedev.name);
1478 #define PCI_VENDOR_ID_REALTEK 0x10ec
1481 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2
1482 * offset 0x70 there is a dword data register, offset 0x74 is a dword address
1483 * register. According to the Linux r8169 driver, the MSI-X table is addressed
1484 * when the "type" portion of the address register is set to 0x1. This appears
1485 * to be bits 16:30. Bit 31 is both a write indicator and some sort of
1486 * "address latched" indicator. Bits 12:15 are a mask field, which we can
1487 * ignore because the MSI-X table should always be accessed as a dword (full
1488 * mask). Bits 0:11 is offset within the type.
1490 * Example trace:
1492 * Read from MSI-X table offset 0
1493 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
1494 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
1495 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
1497 * Write 0xfee00000 to MSI-X table offset 0
1498 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
1499 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
1500 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
1503 static uint64_t vfio_rtl8168_window_quirk_read(void *opaque,
1504 hwaddr addr, unsigned size)
1506 VFIOQuirk *quirk = opaque;
1507 VFIOPCIDevice *vdev = quirk->vdev;
1509 switch (addr) {
1510 case 4: /* address */
1511 if (quirk->data.flags) {
1512 trace_vfio_rtl8168_window_quirk_read_fake(
1513 memory_region_name(&quirk->mem),
1514 vdev->vbasedev.name);
1516 return quirk->data.address_match ^ 0x10000000U;
1518 break;
1519 case 0: /* data */
1520 if (quirk->data.flags) {
1521 uint64_t val;
1523 trace_vfio_rtl8168_window_quirk_read_table(
1524 memory_region_name(&quirk->mem),
1525 vdev->vbasedev.name);
1527 if (!(vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
1528 return 0;
1531 io_mem_read(&vdev->pdev.msix_table_mmio,
1532 (hwaddr)(quirk->data.address_match & 0xfff),
1533 &val, size);
1534 return val;
1538 trace_vfio_rtl8168_window_quirk_read_direct(memory_region_name(&quirk->mem),
1539 vdev->vbasedev.name);
1541 return vfio_region_read(&vdev->bars[quirk->data.bar].region,
1542 addr + 0x70, size);
1545 static void vfio_rtl8168_window_quirk_write(void *opaque, hwaddr addr,
1546 uint64_t data, unsigned size)
1548 VFIOQuirk *quirk = opaque;
1549 VFIOPCIDevice *vdev = quirk->vdev;
1551 switch (addr) {
1552 case 4: /* address */
1553 if ((data & 0x7fff0000) == 0x10000) {
1554 if (data & 0x10000000U &&
1555 vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
1557 trace_vfio_rtl8168_window_quirk_write_table(
1558 memory_region_name(&quirk->mem),
1559 vdev->vbasedev.name);
1561 io_mem_write(&vdev->pdev.msix_table_mmio,
1562 (hwaddr)(quirk->data.address_match & 0xfff),
1563 data, size);
1566 quirk->data.flags = 1;
1567 quirk->data.address_match = data;
1569 return;
1571 quirk->data.flags = 0;
1572 break;
1573 case 0: /* data */
1574 quirk->data.address_mask = data;
1575 break;
1578 trace_vfio_rtl8168_window_quirk_write_direct(
1579 memory_region_name(&quirk->mem),
1580 vdev->vbasedev.name);
1582 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1583 addr + 0x70, data, size);
1586 static const MemoryRegionOps vfio_rtl8168_window_quirk = {
1587 .read = vfio_rtl8168_window_quirk_read,
1588 .write = vfio_rtl8168_window_quirk_write,
1589 .valid = {
1590 .min_access_size = 4,
1591 .max_access_size = 4,
1592 .unaligned = false,
1594 .endianness = DEVICE_LITTLE_ENDIAN,
1597 static void vfio_probe_rtl8168_bar2_window_quirk(VFIOPCIDevice *vdev, int nr)
1599 PCIDevice *pdev = &vdev->pdev;
1600 VFIOQuirk *quirk;
1602 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_REALTEK ||
1603 pci_get_word(pdev->config + PCI_DEVICE_ID) != 0x8168 || nr != 2) {
1604 return;
1607 quirk = g_malloc0(sizeof(*quirk));
1608 quirk->vdev = vdev;
1609 quirk->data.bar = nr;
1611 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_rtl8168_window_quirk,
1612 quirk, "vfio-rtl8168-window-quirk", 8);
1613 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1614 0x70, &quirk->mem, 1);
1616 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1618 trace_vfio_probe_rtl8168_bar2_window_quirk(vdev->vbasedev.name);
1621 * Trap the BAR2 MMIO window to config space as well.
1623 static void vfio_probe_ati_bar2_4000_quirk(VFIOPCIDevice *vdev, int nr)
1625 PCIDevice *pdev = &vdev->pdev;
1626 VFIOQuirk *quirk;
1628 /* Only enable on newer devices where BAR2 is 64bit */
1629 if (!vdev->has_vga || nr != 2 || !vdev->bars[2].mem64 ||
1630 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
1631 return;
1634 quirk = g_malloc0(sizeof(*quirk));
1635 quirk->vdev = vdev;
1636 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
1637 quirk->data.address_match = 0x4000;
1638 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
1639 quirk->data.bar = nr;
1641 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk,
1642 "vfio-ati-bar2-4000-quirk",
1643 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
1644 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1645 quirk->data.address_match & TARGET_PAGE_MASK,
1646 &quirk->mem, 1);
1648 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1650 trace_vfio_probe_ati_bar2_4000_quirk(vdev->vbasedev.name);
1654 * Older ATI/AMD cards like the X550 have a similar window to that above.
1655 * I/O port BAR1 provides a window to a mirror of PCI config space located
1656 * in BAR2 at offset 0xf00. We don't care to support such older cards, but
1657 * note it for future reference.
1660 #define PCI_VENDOR_ID_NVIDIA 0x10de
1663 * Nvidia has several different methods to get to config space, the
1664 * nouveu project has several of these documented here:
1665 * https://github.com/pathscale/envytools/tree/master/hwdocs
1667 * The first quirk is actually not documented in envytools and is found
1668 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an
1669 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access
1670 * the mirror of PCI config space found at BAR0 offset 0x1800. The access
1671 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is
1672 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738
1673 * is written for a write to 0x3d4. The BAR0 offset is then accessible
1674 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards
1675 * that use the I/O port BAR5 window but it doesn't hurt to leave it.
1677 enum {
1678 NV_3D0_NONE = 0,
1679 NV_3D0_SELECT,
1680 NV_3D0_WINDOW,
1681 NV_3D0_READ,
1682 NV_3D0_WRITE,
1685 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
1686 hwaddr addr, unsigned size)
1688 VFIOQuirk *quirk = opaque;
1689 VFIOPCIDevice *vdev = quirk->vdev;
1690 PCIDevice *pdev = &vdev->pdev;
1691 uint64_t data = vfio_vga_read(&vdev->vga.region[QEMU_PCI_VGA_IO_HI],
1692 addr + quirk->data.base_offset, size);
1694 if (quirk->data.flags == NV_3D0_READ && addr == quirk->data.data_offset) {
1695 data = vfio_pci_read_config(pdev, quirk->data.address_val, size);
1696 trace_vfio_nvidia_3d0_quirk_read(size, data);
1699 quirk->data.flags = NV_3D0_NONE;
1701 return data;
1704 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
1705 uint64_t data, unsigned size)
1707 VFIOQuirk *quirk = opaque;
1708 VFIOPCIDevice *vdev = quirk->vdev;
1709 PCIDevice *pdev = &vdev->pdev;
1711 switch (quirk->data.flags) {
1712 case NV_3D0_NONE:
1713 if (addr == quirk->data.address_offset && data == 0x338) {
1714 quirk->data.flags = NV_3D0_SELECT;
1716 break;
1717 case NV_3D0_SELECT:
1718 quirk->data.flags = NV_3D0_NONE;
1719 if (addr == quirk->data.data_offset &&
1720 (data & ~quirk->data.address_mask) == quirk->data.address_match) {
1721 quirk->data.flags = NV_3D0_WINDOW;
1722 quirk->data.address_val = data & quirk->data.address_mask;
1724 break;
1725 case NV_3D0_WINDOW:
1726 quirk->data.flags = NV_3D0_NONE;
1727 if (addr == quirk->data.address_offset) {
1728 if (data == 0x538) {
1729 quirk->data.flags = NV_3D0_READ;
1730 } else if (data == 0x738) {
1731 quirk->data.flags = NV_3D0_WRITE;
1734 break;
1735 case NV_3D0_WRITE:
1736 quirk->data.flags = NV_3D0_NONE;
1737 if (addr == quirk->data.data_offset) {
1738 vfio_pci_write_config(pdev, quirk->data.address_val, data, size);
1739 trace_vfio_nvidia_3d0_quirk_write(data, size);
1740 return;
1742 break;
1745 vfio_vga_write(&vdev->vga.region[QEMU_PCI_VGA_IO_HI],
1746 addr + quirk->data.base_offset, data, size);
1749 static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
1750 .read = vfio_nvidia_3d0_quirk_read,
1751 .write = vfio_nvidia_3d0_quirk_write,
1752 .endianness = DEVICE_LITTLE_ENDIAN,
1755 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
1757 PCIDevice *pdev = &vdev->pdev;
1758 VFIOQuirk *quirk;
1760 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA ||
1761 !vdev->bars[1].region.size) {
1762 return;
1765 quirk = g_malloc0(sizeof(*quirk));
1766 quirk->vdev = vdev;
1767 quirk->data.base_offset = 0x10;
1768 quirk->data.address_offset = 4;
1769 quirk->data.address_size = 2;
1770 quirk->data.address_match = 0x1800;
1771 quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1;
1772 quirk->data.data_offset = 0;
1773 quirk->data.data_size = 4;
1775 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_3d0_quirk,
1776 quirk, "vfio-nvidia-3d0-quirk", 6);
1777 memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
1778 quirk->data.base_offset, &quirk->mem);
1780 QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks,
1781 quirk, next);
1783 trace_vfio_vga_probe_nvidia_3d0_quirk(vdev->vbasedev.name);
1787 * The second quirk is documented in envytools. The I/O port BAR5 is just
1788 * a set of address/data ports to the MMIO BARs. The BAR we care about is
1789 * again BAR0. This backdoor is apparently a bit newer than the one above
1790 * so we need to not only trap 256 bytes @0x1800, but all of PCI config
1791 * space, including extended space is available at the 4k @0x88000.
1793 enum {
1794 NV_BAR5_ADDRESS = 0x1,
1795 NV_BAR5_ENABLE = 0x2,
1796 NV_BAR5_MASTER = 0x4,
1797 NV_BAR5_VALID = 0x7,
1800 static void vfio_nvidia_bar5_window_quirk_write(void *opaque, hwaddr addr,
1801 uint64_t data, unsigned size)
1803 VFIOQuirk *quirk = opaque;
1805 switch (addr) {
1806 case 0x0:
1807 if (data & 0x1) {
1808 quirk->data.flags |= NV_BAR5_MASTER;
1809 } else {
1810 quirk->data.flags &= ~NV_BAR5_MASTER;
1812 break;
1813 case 0x4:
1814 if (data & 0x1) {
1815 quirk->data.flags |= NV_BAR5_ENABLE;
1816 } else {
1817 quirk->data.flags &= ~NV_BAR5_ENABLE;
1819 break;
1820 case 0x8:
1821 if (quirk->data.flags & NV_BAR5_MASTER) {
1822 if ((data & ~0xfff) == 0x88000) {
1823 quirk->data.flags |= NV_BAR5_ADDRESS;
1824 quirk->data.address_val = data & 0xfff;
1825 } else if ((data & ~0xff) == 0x1800) {
1826 quirk->data.flags |= NV_BAR5_ADDRESS;
1827 quirk->data.address_val = data & 0xff;
1828 } else {
1829 quirk->data.flags &= ~NV_BAR5_ADDRESS;
1832 break;
1835 vfio_generic_window_quirk_write(opaque, addr, data, size);
1838 static const MemoryRegionOps vfio_nvidia_bar5_window_quirk = {
1839 .read = vfio_generic_window_quirk_read,
1840 .write = vfio_nvidia_bar5_window_quirk_write,
1841 .valid.min_access_size = 4,
1842 .endianness = DEVICE_LITTLE_ENDIAN,
1845 static void vfio_probe_nvidia_bar5_window_quirk(VFIOPCIDevice *vdev, int nr)
1847 PCIDevice *pdev = &vdev->pdev;
1848 VFIOQuirk *quirk;
1850 if (!vdev->has_vga || nr != 5 ||
1851 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) {
1852 return;
1855 quirk = g_malloc0(sizeof(*quirk));
1856 quirk->vdev = vdev;
1857 quirk->data.read_flags = quirk->data.write_flags = NV_BAR5_VALID;
1858 quirk->data.address_offset = 0x8;
1859 quirk->data.address_size = 0; /* actually 4, but avoids generic code */
1860 quirk->data.data_offset = 0xc;
1861 quirk->data.data_size = 4;
1862 quirk->data.bar = nr;
1864 memory_region_init_io(&quirk->mem, OBJECT(vdev),
1865 &vfio_nvidia_bar5_window_quirk, quirk,
1866 "vfio-nvidia-bar5-window-quirk", 16);
1867 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1868 0, &quirk->mem, 1);
1870 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1872 trace_vfio_probe_nvidia_bar5_window_quirk(vdev->vbasedev.name);
1875 static void vfio_nvidia_88000_quirk_write(void *opaque, hwaddr addr,
1876 uint64_t data, unsigned size)
1878 VFIOQuirk *quirk = opaque;
1879 VFIOPCIDevice *vdev = quirk->vdev;
1880 PCIDevice *pdev = &vdev->pdev;
1881 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
1883 vfio_generic_quirk_write(opaque, addr, data, size);
1886 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
1887 * MSI capability ID register. Both the ID and next register are
1888 * read-only, so we allow writes covering either of those to real hw.
1889 * NB - only fixed for the 0x88000 MMIO window.
1891 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
1892 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
1893 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1894 addr + base, data, size);
1898 static const MemoryRegionOps vfio_nvidia_88000_quirk = {
1899 .read = vfio_generic_quirk_read,
1900 .write = vfio_nvidia_88000_quirk_write,
1901 .endianness = DEVICE_LITTLE_ENDIAN,
1905 * Finally, BAR0 itself. We want to redirect any accesses to either
1906 * 0x1800 or 0x88000 through the PCI config space access functions.
1908 * NB - quirk at a page granularity or else they don't seem to work when
1909 * BARs are mmap'd
1911 * Here's offset 0x88000...
1913 static void vfio_probe_nvidia_bar0_88000_quirk(VFIOPCIDevice *vdev, int nr)
1915 PCIDevice *pdev = &vdev->pdev;
1916 VFIOQuirk *quirk;
1917 uint16_t vendor, class;
1919 vendor = pci_get_word(pdev->config + PCI_VENDOR_ID);
1920 class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
1922 if (nr != 0 || vendor != PCI_VENDOR_ID_NVIDIA ||
1923 class != PCI_CLASS_DISPLAY_VGA) {
1924 return;
1927 quirk = g_malloc0(sizeof(*quirk));
1928 quirk->vdev = vdev;
1929 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
1930 quirk->data.address_match = 0x88000;
1931 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
1932 quirk->data.bar = nr;
1934 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_88000_quirk,
1935 quirk, "vfio-nvidia-bar0-88000-quirk",
1936 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
1937 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1938 quirk->data.address_match & TARGET_PAGE_MASK,
1939 &quirk->mem, 1);
1941 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1943 trace_vfio_probe_nvidia_bar0_88000_quirk(vdev->vbasedev.name);
1947 * And here's the same for BAR0 offset 0x1800...
1949 static void vfio_probe_nvidia_bar0_1800_quirk(VFIOPCIDevice *vdev, int nr)
1951 PCIDevice *pdev = &vdev->pdev;
1952 VFIOQuirk *quirk;
1954 if (!vdev->has_vga || nr != 0 ||
1955 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) {
1956 return;
1959 /* Log the chipset ID */
1960 trace_vfio_probe_nvidia_bar0_1800_quirk_id(
1961 (unsigned int)(vfio_region_read(&vdev->bars[0].region, 0, 4) >> 20)
1962 & 0xff);
1964 quirk = g_malloc0(sizeof(*quirk));
1965 quirk->vdev = vdev;
1966 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
1967 quirk->data.address_match = 0x1800;
1968 quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1;
1969 quirk->data.bar = nr;
1971 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk,
1972 "vfio-nvidia-bar0-1800-quirk",
1973 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
1974 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1975 quirk->data.address_match & TARGET_PAGE_MASK,
1976 &quirk->mem, 1);
1978 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1980 trace_vfio_probe_nvidia_bar0_1800_quirk(vdev->vbasedev.name);
1984 * TODO - Some Nvidia devices provide config access to their companion HDA
1985 * device and even to their parent bridge via these config space mirrors.
1986 * Add quirks for those regions.
1990 * Common quirk probe entry points.
1992 static void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
1994 vfio_vga_probe_ati_3c3_quirk(vdev);
1995 vfio_vga_probe_nvidia_3d0_quirk(vdev);
1998 static void vfio_vga_quirk_teardown(VFIOPCIDevice *vdev)
2000 int i;
2002 for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) {
2003 while (!QLIST_EMPTY(&vdev->vga.region[i].quirks)) {
2004 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga.region[i].quirks);
2005 memory_region_del_subregion(&vdev->vga.region[i].mem, &quirk->mem);
2006 object_unparent(OBJECT(&quirk->mem));
2007 QLIST_REMOVE(quirk, next);
2008 g_free(quirk);
2013 static void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
2015 vfio_probe_ati_bar4_window_quirk(vdev, nr);
2016 vfio_probe_ati_bar2_4000_quirk(vdev, nr);
2017 vfio_probe_nvidia_bar5_window_quirk(vdev, nr);
2018 vfio_probe_nvidia_bar0_88000_quirk(vdev, nr);
2019 vfio_probe_nvidia_bar0_1800_quirk(vdev, nr);
2020 vfio_probe_rtl8168_bar2_window_quirk(vdev, nr);
2023 static void vfio_bar_quirk_teardown(VFIOPCIDevice *vdev, int nr)
2025 VFIOBAR *bar = &vdev->bars[nr];
2027 while (!QLIST_EMPTY(&bar->quirks)) {
2028 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
2029 memory_region_del_subregion(&bar->region.mem, &quirk->mem);
2030 object_unparent(OBJECT(&quirk->mem));
2031 QLIST_REMOVE(quirk, next);
2032 g_free(quirk);
2037 * PCI config space
2039 static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len)
2041 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
2042 uint32_t emu_bits = 0, emu_val = 0, phys_val = 0, val;
2044 memcpy(&emu_bits, vdev->emulated_config_bits + addr, len);
2045 emu_bits = le32_to_cpu(emu_bits);
2047 if (emu_bits) {
2048 emu_val = pci_default_read_config(pdev, addr, len);
2051 if (~emu_bits & (0xffffffffU >> (32 - len * 8))) {
2052 ssize_t ret;
2054 ret = pread(vdev->vbasedev.fd, &phys_val, len,
2055 vdev->config_offset + addr);
2056 if (ret != len) {
2057 error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x) failed: %m",
2058 __func__, vdev->host.domain, vdev->host.bus,
2059 vdev->host.slot, vdev->host.function, addr, len);
2060 return -errno;
2062 phys_val = le32_to_cpu(phys_val);
2065 val = (emu_val & emu_bits) | (phys_val & ~emu_bits);
2067 trace_vfio_pci_read_config(vdev->vbasedev.name, addr, len, val);
2069 return val;
2072 static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr,
2073 uint32_t val, int len)
2075 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
2076 uint32_t val_le = cpu_to_le32(val);
2078 trace_vfio_pci_write_config(vdev->vbasedev.name, addr, val, len);
2080 /* Write everything to VFIO, let it filter out what we can't write */
2081 if (pwrite(vdev->vbasedev.fd, &val_le, len, vdev->config_offset + addr)
2082 != len) {
2083 error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x, 0x%x) failed: %m",
2084 __func__, vdev->host.domain, vdev->host.bus,
2085 vdev->host.slot, vdev->host.function, addr, val, len);
2088 /* MSI/MSI-X Enabling/Disabling */
2089 if (pdev->cap_present & QEMU_PCI_CAP_MSI &&
2090 ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) {
2091 int is_enabled, was_enabled = msi_enabled(pdev);
2093 pci_default_write_config(pdev, addr, val, len);
2095 is_enabled = msi_enabled(pdev);
2097 if (!was_enabled) {
2098 if (is_enabled) {
2099 vfio_enable_msi(vdev);
2101 } else {
2102 if (!is_enabled) {
2103 vfio_disable_msi(vdev);
2104 } else {
2105 vfio_update_msi(vdev);
2108 } else if (pdev->cap_present & QEMU_PCI_CAP_MSIX &&
2109 ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) {
2110 int is_enabled, was_enabled = msix_enabled(pdev);
2112 pci_default_write_config(pdev, addr, val, len);
2114 is_enabled = msix_enabled(pdev);
2116 if (!was_enabled && is_enabled) {
2117 vfio_enable_msix(vdev);
2118 } else if (was_enabled && !is_enabled) {
2119 vfio_disable_msix(vdev);
2121 } else {
2122 /* Write everything to QEMU to keep emulated bits correct */
2123 pci_default_write_config(pdev, addr, val, len);
2128 * Interrupt setup
2130 static void vfio_disable_interrupts(VFIOPCIDevice *vdev)
2132 switch (vdev->interrupt) {
2133 case VFIO_INT_INTx:
2134 vfio_disable_intx(vdev);
2135 break;
2136 case VFIO_INT_MSI:
2137 vfio_disable_msi(vdev);
2138 break;
2139 case VFIO_INT_MSIX:
2140 vfio_disable_msix(vdev);
2141 break;
2145 static int vfio_setup_msi(VFIOPCIDevice *vdev, int pos)
2147 uint16_t ctrl;
2148 bool msi_64bit, msi_maskbit;
2149 int ret, entries;
2151 if (pread(vdev->vbasedev.fd, &ctrl, sizeof(ctrl),
2152 vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) {
2153 return -errno;
2155 ctrl = le16_to_cpu(ctrl);
2157 msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT);
2158 msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT);
2159 entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1);
2161 trace_vfio_setup_msi(vdev->vbasedev.name, pos);
2163 ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit);
2164 if (ret < 0) {
2165 if (ret == -ENOTSUP) {
2166 return 0;
2168 error_report("vfio: msi_init failed");
2169 return ret;
2171 vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0);
2173 return 0;
2177 * We don't have any control over how pci_add_capability() inserts
2178 * capabilities into the chain. In order to setup MSI-X we need a
2179 * MemoryRegion for the BAR. In order to setup the BAR and not
2180 * attempt to mmap the MSI-X table area, which VFIO won't allow, we
2181 * need to first look for where the MSI-X table lives. So we
2182 * unfortunately split MSI-X setup across two functions.
2184 static int vfio_early_setup_msix(VFIOPCIDevice *vdev)
2186 uint8_t pos;
2187 uint16_t ctrl;
2188 uint32_t table, pba;
2189 int fd = vdev->vbasedev.fd;
2191 pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX);
2192 if (!pos) {
2193 return 0;
2196 if (pread(fd, &ctrl, sizeof(ctrl),
2197 vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) {
2198 return -errno;
2201 if (pread(fd, &table, sizeof(table),
2202 vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) {
2203 return -errno;
2206 if (pread(fd, &pba, sizeof(pba),
2207 vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) {
2208 return -errno;
2211 ctrl = le16_to_cpu(ctrl);
2212 table = le32_to_cpu(table);
2213 pba = le32_to_cpu(pba);
2215 vdev->msix = g_malloc0(sizeof(*(vdev->msix)));
2216 vdev->msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK;
2217 vdev->msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK;
2218 vdev->msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK;
2219 vdev->msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK;
2220 vdev->msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
2222 trace_vfio_early_setup_msix(vdev->vbasedev.name, pos,
2223 vdev->msix->table_bar,
2224 vdev->msix->table_offset,
2225 vdev->msix->entries);
2227 return 0;
2230 static int vfio_setup_msix(VFIOPCIDevice *vdev, int pos)
2232 int ret;
2234 ret = msix_init(&vdev->pdev, vdev->msix->entries,
2235 &vdev->bars[vdev->msix->table_bar].region.mem,
2236 vdev->msix->table_bar, vdev->msix->table_offset,
2237 &vdev->bars[vdev->msix->pba_bar].region.mem,
2238 vdev->msix->pba_bar, vdev->msix->pba_offset, pos);
2239 if (ret < 0) {
2240 if (ret == -ENOTSUP) {
2241 return 0;
2243 error_report("vfio: msix_init failed");
2244 return ret;
2247 return 0;
2250 static void vfio_teardown_msi(VFIOPCIDevice *vdev)
2252 msi_uninit(&vdev->pdev);
2254 if (vdev->msix) {
2255 msix_uninit(&vdev->pdev,
2256 &vdev->bars[vdev->msix->table_bar].region.mem,
2257 &vdev->bars[vdev->msix->pba_bar].region.mem);
2262 * Resource setup
2264 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled)
2266 int i;
2268 for (i = 0; i < PCI_ROM_SLOT; i++) {
2269 VFIOBAR *bar = &vdev->bars[i];
2271 if (!bar->region.size) {
2272 continue;
2275 memory_region_set_enabled(&bar->region.mmap_mem, enabled);
2276 if (vdev->msix && vdev->msix->table_bar == i) {
2277 memory_region_set_enabled(&vdev->msix->mmap_mem, enabled);
2282 static void vfio_unmap_bar(VFIOPCIDevice *vdev, int nr)
2284 VFIOBAR *bar = &vdev->bars[nr];
2286 if (!bar->region.size) {
2287 return;
2290 vfio_bar_quirk_teardown(vdev, nr);
2292 memory_region_del_subregion(&bar->region.mem, &bar->region.mmap_mem);
2293 munmap(bar->region.mmap, memory_region_size(&bar->region.mmap_mem));
2295 if (vdev->msix && vdev->msix->table_bar == nr) {
2296 memory_region_del_subregion(&bar->region.mem, &vdev->msix->mmap_mem);
2297 munmap(vdev->msix->mmap, memory_region_size(&vdev->msix->mmap_mem));
2301 static void vfio_map_bar(VFIOPCIDevice *vdev, int nr)
2303 VFIOBAR *bar = &vdev->bars[nr];
2304 uint64_t size = bar->region.size;
2305 char name[64];
2306 uint32_t pci_bar;
2307 uint8_t type;
2308 int ret;
2310 /* Skip both unimplemented BARs and the upper half of 64bit BARS. */
2311 if (!size) {
2312 return;
2315 snprintf(name, sizeof(name), "VFIO %04x:%02x:%02x.%x BAR %d",
2316 vdev->host.domain, vdev->host.bus, vdev->host.slot,
2317 vdev->host.function, nr);
2319 /* Determine what type of BAR this is for registration */
2320 ret = pread(vdev->vbasedev.fd, &pci_bar, sizeof(pci_bar),
2321 vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr));
2322 if (ret != sizeof(pci_bar)) {
2323 error_report("vfio: Failed to read BAR %d (%m)", nr);
2324 return;
2327 pci_bar = le32_to_cpu(pci_bar);
2328 bar->ioport = (pci_bar & PCI_BASE_ADDRESS_SPACE_IO);
2329 bar->mem64 = bar->ioport ? 0 : (pci_bar & PCI_BASE_ADDRESS_MEM_TYPE_64);
2330 type = pci_bar & (bar->ioport ? ~PCI_BASE_ADDRESS_IO_MASK :
2331 ~PCI_BASE_ADDRESS_MEM_MASK);
2333 /* A "slow" read/write mapping underlies all BARs */
2334 memory_region_init_io(&bar->region.mem, OBJECT(vdev), &vfio_region_ops,
2335 bar, name, size);
2336 pci_register_bar(&vdev->pdev, nr, type, &bar->region.mem);
2339 * We can't mmap areas overlapping the MSIX vector table, so we
2340 * potentially insert a direct-mapped subregion before and after it.
2342 if (vdev->msix && vdev->msix->table_bar == nr) {
2343 size = vdev->msix->table_offset & qemu_host_page_mask;
2346 strncat(name, " mmap", sizeof(name) - strlen(name) - 1);
2347 if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem,
2348 &bar->region.mmap_mem, &bar->region.mmap,
2349 size, 0, name)) {
2350 error_report("%s unsupported. Performance may be slow", name);
2353 if (vdev->msix && vdev->msix->table_bar == nr) {
2354 uint64_t start;
2356 start = HOST_PAGE_ALIGN(vdev->msix->table_offset +
2357 (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE));
2359 size = start < bar->region.size ? bar->region.size - start : 0;
2360 strncat(name, " msix-hi", sizeof(name) - strlen(name) - 1);
2361 /* VFIOMSIXInfo contains another MemoryRegion for this mapping */
2362 if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem,
2363 &vdev->msix->mmap_mem,
2364 &vdev->msix->mmap, size, start, name)) {
2365 error_report("%s unsupported. Performance may be slow", name);
2369 vfio_bar_quirk_setup(vdev, nr);
2372 static void vfio_map_bars(VFIOPCIDevice *vdev)
2374 int i;
2376 for (i = 0; i < PCI_ROM_SLOT; i++) {
2377 vfio_map_bar(vdev, i);
2380 if (vdev->has_vga) {
2381 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_MEM].mem,
2382 OBJECT(vdev), &vfio_vga_ops,
2383 &vdev->vga.region[QEMU_PCI_VGA_MEM],
2384 "vfio-vga-mmio@0xa0000",
2385 QEMU_PCI_VGA_MEM_SIZE);
2386 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem,
2387 OBJECT(vdev), &vfio_vga_ops,
2388 &vdev->vga.region[QEMU_PCI_VGA_IO_LO],
2389 "vfio-vga-io@0x3b0",
2390 QEMU_PCI_VGA_IO_LO_SIZE);
2391 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
2392 OBJECT(vdev), &vfio_vga_ops,
2393 &vdev->vga.region[QEMU_PCI_VGA_IO_HI],
2394 "vfio-vga-io@0x3c0",
2395 QEMU_PCI_VGA_IO_HI_SIZE);
2397 pci_register_vga(&vdev->pdev, &vdev->vga.region[QEMU_PCI_VGA_MEM].mem,
2398 &vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem,
2399 &vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem);
2400 vfio_vga_quirk_setup(vdev);
2404 static void vfio_unmap_bars(VFIOPCIDevice *vdev)
2406 int i;
2408 for (i = 0; i < PCI_ROM_SLOT; i++) {
2409 vfio_unmap_bar(vdev, i);
2412 if (vdev->has_vga) {
2413 vfio_vga_quirk_teardown(vdev);
2414 pci_unregister_vga(&vdev->pdev);
2419 * General setup
2421 static uint8_t vfio_std_cap_max_size(PCIDevice *pdev, uint8_t pos)
2423 uint8_t tmp, next = 0xff;
2425 for (tmp = pdev->config[PCI_CAPABILITY_LIST]; tmp;
2426 tmp = pdev->config[tmp + 1]) {
2427 if (tmp > pos && tmp < next) {
2428 next = tmp;
2432 return next - pos;
2435 static void vfio_set_word_bits(uint8_t *buf, uint16_t val, uint16_t mask)
2437 pci_set_word(buf, (pci_get_word(buf) & ~mask) | val);
2440 static void vfio_add_emulated_word(VFIOPCIDevice *vdev, int pos,
2441 uint16_t val, uint16_t mask)
2443 vfio_set_word_bits(vdev->pdev.config + pos, val, mask);
2444 vfio_set_word_bits(vdev->pdev.wmask + pos, ~mask, mask);
2445 vfio_set_word_bits(vdev->emulated_config_bits + pos, mask, mask);
2448 static void vfio_set_long_bits(uint8_t *buf, uint32_t val, uint32_t mask)
2450 pci_set_long(buf, (pci_get_long(buf) & ~mask) | val);
2453 static void vfio_add_emulated_long(VFIOPCIDevice *vdev, int pos,
2454 uint32_t val, uint32_t mask)
2456 vfio_set_long_bits(vdev->pdev.config + pos, val, mask);
2457 vfio_set_long_bits(vdev->pdev.wmask + pos, ~mask, mask);
2458 vfio_set_long_bits(vdev->emulated_config_bits + pos, mask, mask);
2461 static int vfio_setup_pcie_cap(VFIOPCIDevice *vdev, int pos, uint8_t size)
2463 uint16_t flags;
2464 uint8_t type;
2466 flags = pci_get_word(vdev->pdev.config + pos + PCI_CAP_FLAGS);
2467 type = (flags & PCI_EXP_FLAGS_TYPE) >> 4;
2469 if (type != PCI_EXP_TYPE_ENDPOINT &&
2470 type != PCI_EXP_TYPE_LEG_END &&
2471 type != PCI_EXP_TYPE_RC_END) {
2473 error_report("vfio: Assignment of PCIe type 0x%x "
2474 "devices is not currently supported", type);
2475 return -EINVAL;
2478 if (!pci_bus_is_express(vdev->pdev.bus)) {
2480 * Use express capability as-is on PCI bus. It doesn't make much
2481 * sense to even expose, but some drivers (ex. tg3) depend on it
2482 * and guests don't seem to be particular about it. We'll need
2483 * to revist this or force express devices to express buses if we
2484 * ever expose an IOMMU to the guest.
2486 } else if (pci_bus_is_root(vdev->pdev.bus)) {
2488 * On a Root Complex bus Endpoints become Root Complex Integrated
2489 * Endpoints, which changes the type and clears the LNK & LNK2 fields.
2491 if (type == PCI_EXP_TYPE_ENDPOINT) {
2492 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS,
2493 PCI_EXP_TYPE_RC_END << 4,
2494 PCI_EXP_FLAGS_TYPE);
2496 /* Link Capabilities, Status, and Control goes away */
2497 if (size > PCI_EXP_LNKCTL) {
2498 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 0, ~0);
2499 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0);
2500 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 0, ~0);
2502 #ifndef PCI_EXP_LNKCAP2
2503 #define PCI_EXP_LNKCAP2 44
2504 #endif
2505 #ifndef PCI_EXP_LNKSTA2
2506 #define PCI_EXP_LNKSTA2 50
2507 #endif
2508 /* Link 2 Capabilities, Status, and Control goes away */
2509 if (size > PCI_EXP_LNKCAP2) {
2510 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP2, 0, ~0);
2511 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL2, 0, ~0);
2512 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA2, 0, ~0);
2516 } else if (type == PCI_EXP_TYPE_LEG_END) {
2518 * Legacy endpoints don't belong on the root complex. Windows
2519 * seems to be happier with devices if we skip the capability.
2521 return 0;
2524 } else {
2526 * Convert Root Complex Integrated Endpoints to regular endpoints.
2527 * These devices don't support LNK/LNK2 capabilities, so make them up.
2529 if (type == PCI_EXP_TYPE_RC_END) {
2530 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS,
2531 PCI_EXP_TYPE_ENDPOINT << 4,
2532 PCI_EXP_FLAGS_TYPE);
2533 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP,
2534 PCI_EXP_LNK_MLW_1 | PCI_EXP_LNK_LS_25, ~0);
2535 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0);
2538 /* Mark the Link Status bits as emulated to allow virtual negotiation */
2539 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA,
2540 pci_get_word(vdev->pdev.config + pos +
2541 PCI_EXP_LNKSTA),
2542 PCI_EXP_LNKCAP_MLW | PCI_EXP_LNKCAP_SLS);
2545 pos = pci_add_capability(&vdev->pdev, PCI_CAP_ID_EXP, pos, size);
2546 if (pos >= 0) {
2547 vdev->pdev.exp.exp_cap = pos;
2550 return pos;
2553 static void vfio_check_pcie_flr(VFIOPCIDevice *vdev, uint8_t pos)
2555 uint32_t cap = pci_get_long(vdev->pdev.config + pos + PCI_EXP_DEVCAP);
2557 if (cap & PCI_EXP_DEVCAP_FLR) {
2558 trace_vfio_check_pcie_flr(vdev->vbasedev.name);
2559 vdev->has_flr = true;
2563 static void vfio_check_pm_reset(VFIOPCIDevice *vdev, uint8_t pos)
2565 uint16_t csr = pci_get_word(vdev->pdev.config + pos + PCI_PM_CTRL);
2567 if (!(csr & PCI_PM_CTRL_NO_SOFT_RESET)) {
2568 trace_vfio_check_pm_reset(vdev->vbasedev.name);
2569 vdev->has_pm_reset = true;
2573 static void vfio_check_af_flr(VFIOPCIDevice *vdev, uint8_t pos)
2575 uint8_t cap = pci_get_byte(vdev->pdev.config + pos + PCI_AF_CAP);
2577 if ((cap & PCI_AF_CAP_TP) && (cap & PCI_AF_CAP_FLR)) {
2578 trace_vfio_check_af_flr(vdev->vbasedev.name);
2579 vdev->has_flr = true;
2583 static int vfio_add_std_cap(VFIOPCIDevice *vdev, uint8_t pos)
2585 PCIDevice *pdev = &vdev->pdev;
2586 uint8_t cap_id, next, size;
2587 int ret;
2589 cap_id = pdev->config[pos];
2590 next = pdev->config[pos + 1];
2593 * If it becomes important to configure capabilities to their actual
2594 * size, use this as the default when it's something we don't recognize.
2595 * Since QEMU doesn't actually handle many of the config accesses,
2596 * exact size doesn't seem worthwhile.
2598 size = vfio_std_cap_max_size(pdev, pos);
2601 * pci_add_capability always inserts the new capability at the head
2602 * of the chain. Therefore to end up with a chain that matches the
2603 * physical device, we insert from the end by making this recursive.
2604 * This is also why we pre-caclulate size above as cached config space
2605 * will be changed as we unwind the stack.
2607 if (next) {
2608 ret = vfio_add_std_cap(vdev, next);
2609 if (ret) {
2610 return ret;
2612 } else {
2613 /* Begin the rebuild, use QEMU emulated list bits */
2614 pdev->config[PCI_CAPABILITY_LIST] = 0;
2615 vdev->emulated_config_bits[PCI_CAPABILITY_LIST] = 0xff;
2616 vdev->emulated_config_bits[PCI_STATUS] |= PCI_STATUS_CAP_LIST;
2619 /* Use emulated next pointer to allow dropping caps */
2620 pci_set_byte(vdev->emulated_config_bits + pos + 1, 0xff);
2622 switch (cap_id) {
2623 case PCI_CAP_ID_MSI:
2624 ret = vfio_setup_msi(vdev, pos);
2625 break;
2626 case PCI_CAP_ID_EXP:
2627 vfio_check_pcie_flr(vdev, pos);
2628 ret = vfio_setup_pcie_cap(vdev, pos, size);
2629 break;
2630 case PCI_CAP_ID_MSIX:
2631 ret = vfio_setup_msix(vdev, pos);
2632 break;
2633 case PCI_CAP_ID_PM:
2634 vfio_check_pm_reset(vdev, pos);
2635 vdev->pm_cap = pos;
2636 ret = pci_add_capability(pdev, cap_id, pos, size);
2637 break;
2638 case PCI_CAP_ID_AF:
2639 vfio_check_af_flr(vdev, pos);
2640 ret = pci_add_capability(pdev, cap_id, pos, size);
2641 break;
2642 default:
2643 ret = pci_add_capability(pdev, cap_id, pos, size);
2644 break;
2647 if (ret < 0) {
2648 error_report("vfio: %04x:%02x:%02x.%x Error adding PCI capability "
2649 "0x%x[0x%x]@0x%x: %d", vdev->host.domain,
2650 vdev->host.bus, vdev->host.slot, vdev->host.function,
2651 cap_id, size, pos, ret);
2652 return ret;
2655 return 0;
2658 static int vfio_add_capabilities(VFIOPCIDevice *vdev)
2660 PCIDevice *pdev = &vdev->pdev;
2662 if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST) ||
2663 !pdev->config[PCI_CAPABILITY_LIST]) {
2664 return 0; /* Nothing to add */
2667 return vfio_add_std_cap(vdev, pdev->config[PCI_CAPABILITY_LIST]);
2670 static void vfio_pci_pre_reset(VFIOPCIDevice *vdev)
2672 PCIDevice *pdev = &vdev->pdev;
2673 uint16_t cmd;
2675 vfio_disable_interrupts(vdev);
2677 /* Make sure the device is in D0 */
2678 if (vdev->pm_cap) {
2679 uint16_t pmcsr;
2680 uint8_t state;
2682 pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2);
2683 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
2684 if (state) {
2685 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2686 vfio_pci_write_config(pdev, vdev->pm_cap + PCI_PM_CTRL, pmcsr, 2);
2687 /* vfio handles the necessary delay here */
2688 pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2);
2689 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
2690 if (state) {
2691 error_report("vfio: Unable to power on device, stuck in D%d",
2692 state);
2698 * Stop any ongoing DMA by disconecting I/O, MMIO, and bus master.
2699 * Also put INTx Disable in known state.
2701 cmd = vfio_pci_read_config(pdev, PCI_COMMAND, 2);
2702 cmd &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
2703 PCI_COMMAND_INTX_DISABLE);
2704 vfio_pci_write_config(pdev, PCI_COMMAND, cmd, 2);
2707 static void vfio_pci_post_reset(VFIOPCIDevice *vdev)
2709 vfio_enable_intx(vdev);
2712 static bool vfio_pci_host_match(PCIHostDeviceAddress *host1,
2713 PCIHostDeviceAddress *host2)
2715 return (host1->domain == host2->domain && host1->bus == host2->bus &&
2716 host1->slot == host2->slot && host1->function == host2->function);
2719 static int vfio_pci_hot_reset(VFIOPCIDevice *vdev, bool single)
2721 VFIOGroup *group;
2722 struct vfio_pci_hot_reset_info *info;
2723 struct vfio_pci_dependent_device *devices;
2724 struct vfio_pci_hot_reset *reset;
2725 int32_t *fds;
2726 int ret, i, count;
2727 bool multi = false;
2729 trace_vfio_pci_hot_reset(vdev->vbasedev.name, single ? "one" : "multi");
2731 vfio_pci_pre_reset(vdev);
2732 vdev->vbasedev.needs_reset = false;
2734 info = g_malloc0(sizeof(*info));
2735 info->argsz = sizeof(*info);
2737 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info);
2738 if (ret && errno != ENOSPC) {
2739 ret = -errno;
2740 if (!vdev->has_pm_reset) {
2741 error_report("vfio: Cannot reset device %04x:%02x:%02x.%x, "
2742 "no available reset mechanism.", vdev->host.domain,
2743 vdev->host.bus, vdev->host.slot, vdev->host.function);
2745 goto out_single;
2748 count = info->count;
2749 info = g_realloc(info, sizeof(*info) + (count * sizeof(*devices)));
2750 info->argsz = sizeof(*info) + (count * sizeof(*devices));
2751 devices = &info->devices[0];
2753 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info);
2754 if (ret) {
2755 ret = -errno;
2756 error_report("vfio: hot reset info failed: %m");
2757 goto out_single;
2760 trace_vfio_pci_hot_reset_has_dep_devices(vdev->vbasedev.name);
2762 /* Verify that we have all the groups required */
2763 for (i = 0; i < info->count; i++) {
2764 PCIHostDeviceAddress host;
2765 VFIOPCIDevice *tmp;
2766 VFIODevice *vbasedev_iter;
2768 host.domain = devices[i].segment;
2769 host.bus = devices[i].bus;
2770 host.slot = PCI_SLOT(devices[i].devfn);
2771 host.function = PCI_FUNC(devices[i].devfn);
2773 trace_vfio_pci_hot_reset_dep_devices(host.domain,
2774 host.bus, host.slot, host.function, devices[i].group_id);
2776 if (vfio_pci_host_match(&host, &vdev->host)) {
2777 continue;
2780 QLIST_FOREACH(group, &vfio_group_list, next) {
2781 if (group->groupid == devices[i].group_id) {
2782 break;
2786 if (!group) {
2787 if (!vdev->has_pm_reset) {
2788 error_report("vfio: Cannot reset device %s, "
2789 "depends on group %d which is not owned.",
2790 vdev->vbasedev.name, devices[i].group_id);
2792 ret = -EPERM;
2793 goto out;
2796 /* Prep dependent devices for reset and clear our marker. */
2797 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
2798 if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) {
2799 continue;
2801 tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev);
2802 if (vfio_pci_host_match(&host, &tmp->host)) {
2803 if (single) {
2804 ret = -EINVAL;
2805 goto out_single;
2807 vfio_pci_pre_reset(tmp);
2808 tmp->vbasedev.needs_reset = false;
2809 multi = true;
2810 break;
2815 if (!single && !multi) {
2816 ret = -EINVAL;
2817 goto out_single;
2820 /* Determine how many group fds need to be passed */
2821 count = 0;
2822 QLIST_FOREACH(group, &vfio_group_list, next) {
2823 for (i = 0; i < info->count; i++) {
2824 if (group->groupid == devices[i].group_id) {
2825 count++;
2826 break;
2831 reset = g_malloc0(sizeof(*reset) + (count * sizeof(*fds)));
2832 reset->argsz = sizeof(*reset) + (count * sizeof(*fds));
2833 fds = &reset->group_fds[0];
2835 /* Fill in group fds */
2836 QLIST_FOREACH(group, &vfio_group_list, next) {
2837 for (i = 0; i < info->count; i++) {
2838 if (group->groupid == devices[i].group_id) {
2839 fds[reset->count++] = group->fd;
2840 break;
2845 /* Bus reset! */
2846 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_PCI_HOT_RESET, reset);
2847 g_free(reset);
2849 trace_vfio_pci_hot_reset_result(vdev->vbasedev.name,
2850 ret ? "%m" : "Success");
2852 out:
2853 /* Re-enable INTx on affected devices */
2854 for (i = 0; i < info->count; i++) {
2855 PCIHostDeviceAddress host;
2856 VFIOPCIDevice *tmp;
2857 VFIODevice *vbasedev_iter;
2859 host.domain = devices[i].segment;
2860 host.bus = devices[i].bus;
2861 host.slot = PCI_SLOT(devices[i].devfn);
2862 host.function = PCI_FUNC(devices[i].devfn);
2864 if (vfio_pci_host_match(&host, &vdev->host)) {
2865 continue;
2868 QLIST_FOREACH(group, &vfio_group_list, next) {
2869 if (group->groupid == devices[i].group_id) {
2870 break;
2874 if (!group) {
2875 break;
2878 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
2879 if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) {
2880 continue;
2882 tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev);
2883 if (vfio_pci_host_match(&host, &tmp->host)) {
2884 vfio_pci_post_reset(tmp);
2885 break;
2889 out_single:
2890 vfio_pci_post_reset(vdev);
2891 g_free(info);
2893 return ret;
2897 * We want to differentiate hot reset of mulitple in-use devices vs hot reset
2898 * of a single in-use device. VFIO_DEVICE_RESET will already handle the case
2899 * of doing hot resets when there is only a single device per bus. The in-use
2900 * here refers to how many VFIODevices are affected. A hot reset that affects
2901 * multiple devices, but only a single in-use device, means that we can call
2902 * it from our bus ->reset() callback since the extent is effectively a single
2903 * device. This allows us to make use of it in the hotplug path. When there
2904 * are multiple in-use devices, we can only trigger the hot reset during a
2905 * system reset and thus from our reset handler. We separate _one vs _multi
2906 * here so that we don't overlap and do a double reset on the system reset
2907 * path where both our reset handler and ->reset() callback are used. Calling
2908 * _one() will only do a hot reset for the one in-use devices case, calling
2909 * _multi() will do nothing if a _one() would have been sufficient.
2911 static int vfio_pci_hot_reset_one(VFIOPCIDevice *vdev)
2913 return vfio_pci_hot_reset(vdev, true);
2916 static int vfio_pci_hot_reset_multi(VFIODevice *vbasedev)
2918 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
2919 return vfio_pci_hot_reset(vdev, false);
2922 static void vfio_pci_compute_needs_reset(VFIODevice *vbasedev)
2924 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
2925 if (!vbasedev->reset_works || (!vdev->has_flr && vdev->has_pm_reset)) {
2926 vbasedev->needs_reset = true;
2930 static VFIODeviceOps vfio_pci_ops = {
2931 .vfio_compute_needs_reset = vfio_pci_compute_needs_reset,
2932 .vfio_hot_reset_multi = vfio_pci_hot_reset_multi,
2933 .vfio_eoi = vfio_eoi,
2934 .vfio_populate_device = vfio_populate_device,
2937 static int vfio_populate_device(VFIODevice *vbasedev)
2939 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
2940 struct vfio_region_info reg_info = { .argsz = sizeof(reg_info) };
2941 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info) };
2942 int i, ret = -1;
2944 /* Sanity check device */
2945 if (!(vbasedev->flags & VFIO_DEVICE_FLAGS_PCI)) {
2946 error_report("vfio: Um, this isn't a PCI device");
2947 goto error;
2950 if (vbasedev->num_regions < VFIO_PCI_CONFIG_REGION_INDEX + 1) {
2951 error_report("vfio: unexpected number of io regions %u",
2952 vbasedev->num_regions);
2953 goto error;
2956 if (vbasedev->num_irqs < VFIO_PCI_MSIX_IRQ_INDEX + 1) {
2957 error_report("vfio: unexpected number of irqs %u", vbasedev->num_irqs);
2958 goto error;
2961 for (i = VFIO_PCI_BAR0_REGION_INDEX; i < VFIO_PCI_ROM_REGION_INDEX; i++) {
2962 reg_info.index = i;
2964 ret = ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info);
2965 if (ret) {
2966 error_report("vfio: Error getting region %d info: %m", i);
2967 goto error;
2970 trace_vfio_populate_device_region(vbasedev->name, i,
2971 (unsigned long)reg_info.size,
2972 (unsigned long)reg_info.offset,
2973 (unsigned long)reg_info.flags);
2975 vdev->bars[i].region.vbasedev = vbasedev;
2976 vdev->bars[i].region.flags = reg_info.flags;
2977 vdev->bars[i].region.size = reg_info.size;
2978 vdev->bars[i].region.fd_offset = reg_info.offset;
2979 vdev->bars[i].region.nr = i;
2980 QLIST_INIT(&vdev->bars[i].quirks);
2983 reg_info.index = VFIO_PCI_CONFIG_REGION_INDEX;
2985 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info);
2986 if (ret) {
2987 error_report("vfio: Error getting config info: %m");
2988 goto error;
2991 trace_vfio_populate_device_config(vdev->vbasedev.name,
2992 (unsigned long)reg_info.size,
2993 (unsigned long)reg_info.offset,
2994 (unsigned long)reg_info.flags);
2996 vdev->config_size = reg_info.size;
2997 if (vdev->config_size == PCI_CONFIG_SPACE_SIZE) {
2998 vdev->pdev.cap_present &= ~QEMU_PCI_CAP_EXPRESS;
3000 vdev->config_offset = reg_info.offset;
3002 if ((vdev->features & VFIO_FEATURE_ENABLE_VGA) &&
3003 vbasedev->num_regions > VFIO_PCI_VGA_REGION_INDEX) {
3004 struct vfio_region_info vga_info = {
3005 .argsz = sizeof(vga_info),
3006 .index = VFIO_PCI_VGA_REGION_INDEX,
3009 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &vga_info);
3010 if (ret) {
3011 error_report(
3012 "vfio: Device does not support requested feature x-vga");
3013 goto error;
3016 if (!(vga_info.flags & VFIO_REGION_INFO_FLAG_READ) ||
3017 !(vga_info.flags & VFIO_REGION_INFO_FLAG_WRITE) ||
3018 vga_info.size < 0xbffff + 1) {
3019 error_report("vfio: Unexpected VGA info, flags 0x%lx, size 0x%lx",
3020 (unsigned long)vga_info.flags,
3021 (unsigned long)vga_info.size);
3022 goto error;
3025 vdev->vga.fd_offset = vga_info.offset;
3026 vdev->vga.fd = vdev->vbasedev.fd;
3028 vdev->vga.region[QEMU_PCI_VGA_MEM].offset = QEMU_PCI_VGA_MEM_BASE;
3029 vdev->vga.region[QEMU_PCI_VGA_MEM].nr = QEMU_PCI_VGA_MEM;
3030 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_MEM].quirks);
3032 vdev->vga.region[QEMU_PCI_VGA_IO_LO].offset = QEMU_PCI_VGA_IO_LO_BASE;
3033 vdev->vga.region[QEMU_PCI_VGA_IO_LO].nr = QEMU_PCI_VGA_IO_LO;
3034 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].quirks);
3036 vdev->vga.region[QEMU_PCI_VGA_IO_HI].offset = QEMU_PCI_VGA_IO_HI_BASE;
3037 vdev->vga.region[QEMU_PCI_VGA_IO_HI].nr = QEMU_PCI_VGA_IO_HI;
3038 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks);
3040 vdev->has_vga = true;
3042 irq_info.index = VFIO_PCI_ERR_IRQ_INDEX;
3044 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info);
3045 if (ret) {
3046 /* This can fail for an old kernel or legacy PCI dev */
3047 trace_vfio_populate_device_get_irq_info_failure();
3048 ret = 0;
3049 } else if (irq_info.count == 1) {
3050 vdev->pci_aer = true;
3051 } else {
3052 error_report("vfio: %s "
3053 "Could not enable error recovery for the device",
3054 vbasedev->name);
3057 error:
3058 return ret;
3061 static void vfio_put_device(VFIOPCIDevice *vdev)
3063 g_free(vdev->vbasedev.name);
3064 if (vdev->msix) {
3065 g_free(vdev->msix);
3066 vdev->msix = NULL;
3068 vfio_put_base_device(&vdev->vbasedev);
3071 static void vfio_err_notifier_handler(void *opaque)
3073 VFIOPCIDevice *vdev = opaque;
3075 if (!event_notifier_test_and_clear(&vdev->err_notifier)) {
3076 return;
3080 * TBD. Retrieve the error details and decide what action
3081 * needs to be taken. One of the actions could be to pass
3082 * the error to the guest and have the guest driver recover
3083 * from the error. This requires that PCIe capabilities be
3084 * exposed to the guest. For now, we just terminate the
3085 * guest to contain the error.
3088 error_report("%s(%04x:%02x:%02x.%x) Unrecoverable error detected. "
3089 "Please collect any data possible and then kill the guest",
3090 __func__, vdev->host.domain, vdev->host.bus,
3091 vdev->host.slot, vdev->host.function);
3093 vm_stop(RUN_STATE_INTERNAL_ERROR);
3097 * Registers error notifier for devices supporting error recovery.
3098 * If we encounter a failure in this function, we report an error
3099 * and continue after disabling error recovery support for the
3100 * device.
3102 static void vfio_register_err_notifier(VFIOPCIDevice *vdev)
3104 int ret;
3105 int argsz;
3106 struct vfio_irq_set *irq_set;
3107 int32_t *pfd;
3109 if (!vdev->pci_aer) {
3110 return;
3113 if (event_notifier_init(&vdev->err_notifier, 0)) {
3114 error_report("vfio: Unable to init event notifier for error detection");
3115 vdev->pci_aer = false;
3116 return;
3119 argsz = sizeof(*irq_set) + sizeof(*pfd);
3121 irq_set = g_malloc0(argsz);
3122 irq_set->argsz = argsz;
3123 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3124 VFIO_IRQ_SET_ACTION_TRIGGER;
3125 irq_set->index = VFIO_PCI_ERR_IRQ_INDEX;
3126 irq_set->start = 0;
3127 irq_set->count = 1;
3128 pfd = (int32_t *)&irq_set->data;
3130 *pfd = event_notifier_get_fd(&vdev->err_notifier);
3131 qemu_set_fd_handler(*pfd, vfio_err_notifier_handler, NULL, vdev);
3133 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
3134 if (ret) {
3135 error_report("vfio: Failed to set up error notification");
3136 qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
3137 event_notifier_cleanup(&vdev->err_notifier);
3138 vdev->pci_aer = false;
3140 g_free(irq_set);
3143 static void vfio_unregister_err_notifier(VFIOPCIDevice *vdev)
3145 int argsz;
3146 struct vfio_irq_set *irq_set;
3147 int32_t *pfd;
3148 int ret;
3150 if (!vdev->pci_aer) {
3151 return;
3154 argsz = sizeof(*irq_set) + sizeof(*pfd);
3156 irq_set = g_malloc0(argsz);
3157 irq_set->argsz = argsz;
3158 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3159 VFIO_IRQ_SET_ACTION_TRIGGER;
3160 irq_set->index = VFIO_PCI_ERR_IRQ_INDEX;
3161 irq_set->start = 0;
3162 irq_set->count = 1;
3163 pfd = (int32_t *)&irq_set->data;
3164 *pfd = -1;
3166 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
3167 if (ret) {
3168 error_report("vfio: Failed to de-assign error fd: %m");
3170 g_free(irq_set);
3171 qemu_set_fd_handler(event_notifier_get_fd(&vdev->err_notifier),
3172 NULL, NULL, vdev);
3173 event_notifier_cleanup(&vdev->err_notifier);
3176 static int vfio_initfn(PCIDevice *pdev)
3178 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
3179 VFIODevice *vbasedev_iter;
3180 VFIOGroup *group;
3181 char path[PATH_MAX], iommu_group_path[PATH_MAX], *group_name;
3182 ssize_t len;
3183 struct stat st;
3184 int groupid;
3185 int ret;
3187 /* Check that the host device exists */
3188 snprintf(path, sizeof(path),
3189 "/sys/bus/pci/devices/%04x:%02x:%02x.%01x/",
3190 vdev->host.domain, vdev->host.bus, vdev->host.slot,
3191 vdev->host.function);
3192 if (stat(path, &st) < 0) {
3193 error_report("vfio: error: no such host device: %s", path);
3194 return -errno;
3197 vdev->vbasedev.ops = &vfio_pci_ops;
3199 vdev->vbasedev.type = VFIO_DEVICE_TYPE_PCI;
3200 vdev->vbasedev.name = g_strdup_printf("%04x:%02x:%02x.%01x",
3201 vdev->host.domain, vdev->host.bus,
3202 vdev->host.slot, vdev->host.function);
3204 strncat(path, "iommu_group", sizeof(path) - strlen(path) - 1);
3206 len = readlink(path, iommu_group_path, sizeof(path));
3207 if (len <= 0 || len >= sizeof(path)) {
3208 error_report("vfio: error no iommu_group for device");
3209 return len < 0 ? -errno : ENAMETOOLONG;
3212 iommu_group_path[len] = 0;
3213 group_name = basename(iommu_group_path);
3215 if (sscanf(group_name, "%d", &groupid) != 1) {
3216 error_report("vfio: error reading %s: %m", path);
3217 return -errno;
3220 trace_vfio_initfn(vdev->vbasedev.name, groupid);
3222 group = vfio_get_group(groupid, pci_device_iommu_address_space(pdev));
3223 if (!group) {
3224 error_report("vfio: failed to get group %d", groupid);
3225 return -ENOENT;
3228 snprintf(path, sizeof(path), "%04x:%02x:%02x.%01x",
3229 vdev->host.domain, vdev->host.bus, vdev->host.slot,
3230 vdev->host.function);
3232 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
3233 if (strcmp(vbasedev_iter->name, vdev->vbasedev.name) == 0) {
3234 error_report("vfio: error: device %s is already attached", path);
3235 vfio_put_group(group);
3236 return -EBUSY;
3240 ret = vfio_get_device(group, path, &vdev->vbasedev);
3241 if (ret) {
3242 error_report("vfio: failed to get device %s", path);
3243 vfio_put_group(group);
3244 return ret;
3247 /* Get a copy of config space */
3248 ret = pread(vdev->vbasedev.fd, vdev->pdev.config,
3249 MIN(pci_config_size(&vdev->pdev), vdev->config_size),
3250 vdev->config_offset);
3251 if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) {
3252 ret = ret < 0 ? -errno : -EFAULT;
3253 error_report("vfio: Failed to read device config space");
3254 goto out_put;
3257 /* vfio emulates a lot for us, but some bits need extra love */
3258 vdev->emulated_config_bits = g_malloc0(vdev->config_size);
3260 /* QEMU can choose to expose the ROM or not */
3261 memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4);
3263 /* QEMU can change multi-function devices to single function, or reverse */
3264 vdev->emulated_config_bits[PCI_HEADER_TYPE] =
3265 PCI_HEADER_TYPE_MULTI_FUNCTION;
3267 /* Restore or clear multifunction, this is always controlled by QEMU */
3268 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) {
3269 vdev->pdev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION;
3270 } else {
3271 vdev->pdev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION;
3275 * Clear host resource mapping info. If we choose not to register a
3276 * BAR, such as might be the case with the option ROM, we can get
3277 * confusing, unwritable, residual addresses from the host here.
3279 memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24);
3280 memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4);
3282 vfio_pci_size_rom(vdev);
3284 ret = vfio_early_setup_msix(vdev);
3285 if (ret) {
3286 goto out_put;
3289 vfio_map_bars(vdev);
3291 ret = vfio_add_capabilities(vdev);
3292 if (ret) {
3293 goto out_teardown;
3296 /* QEMU emulates all of MSI & MSIX */
3297 if (pdev->cap_present & QEMU_PCI_CAP_MSIX) {
3298 memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff,
3299 MSIX_CAP_LENGTH);
3302 if (pdev->cap_present & QEMU_PCI_CAP_MSI) {
3303 memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff,
3304 vdev->msi_cap_size);
3307 if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) {
3308 vdev->intx.mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3309 vfio_intx_mmap_enable, vdev);
3310 pci_device_set_intx_routing_notifier(&vdev->pdev, vfio_update_irq);
3311 ret = vfio_enable_intx(vdev);
3312 if (ret) {
3313 goto out_teardown;
3317 vfio_register_err_notifier(vdev);
3319 return 0;
3321 out_teardown:
3322 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL);
3323 vfio_teardown_msi(vdev);
3324 vfio_unmap_bars(vdev);
3325 out_put:
3326 g_free(vdev->emulated_config_bits);
3327 vfio_put_device(vdev);
3328 vfio_put_group(group);
3329 return ret;
3332 static void vfio_exitfn(PCIDevice *pdev)
3334 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
3335 VFIOGroup *group = vdev->vbasedev.group;
3337 vfio_unregister_err_notifier(vdev);
3338 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL);
3339 vfio_disable_interrupts(vdev);
3340 if (vdev->intx.mmap_timer) {
3341 timer_free(vdev->intx.mmap_timer);
3343 vfio_teardown_msi(vdev);
3344 vfio_unmap_bars(vdev);
3345 g_free(vdev->emulated_config_bits);
3346 g_free(vdev->rom);
3347 vfio_put_device(vdev);
3348 vfio_put_group(group);
3351 static void vfio_pci_reset(DeviceState *dev)
3353 PCIDevice *pdev = DO_UPCAST(PCIDevice, qdev, dev);
3354 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
3356 trace_vfio_pci_reset(vdev->vbasedev.name);
3358 vfio_pci_pre_reset(vdev);
3360 if (vdev->vbasedev.reset_works &&
3361 (vdev->has_flr || !vdev->has_pm_reset) &&
3362 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) {
3363 trace_vfio_pci_reset_flr(vdev->vbasedev.name);
3364 goto post_reset;
3367 /* See if we can do our own bus reset */
3368 if (!vfio_pci_hot_reset_one(vdev)) {
3369 goto post_reset;
3372 /* If nothing else works and the device supports PM reset, use it */
3373 if (vdev->vbasedev.reset_works && vdev->has_pm_reset &&
3374 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) {
3375 trace_vfio_pci_reset_pm(vdev->vbasedev.name);
3376 goto post_reset;
3379 post_reset:
3380 vfio_pci_post_reset(vdev);
3383 static void vfio_instance_init(Object *obj)
3385 PCIDevice *pci_dev = PCI_DEVICE(obj);
3386 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, PCI_DEVICE(obj));
3388 device_add_bootindex_property(obj, &vdev->bootindex,
3389 "bootindex", NULL,
3390 &pci_dev->qdev, NULL);
3393 static Property vfio_pci_dev_properties[] = {
3394 DEFINE_PROP_PCI_HOST_DEVADDR("host", VFIOPCIDevice, host),
3395 DEFINE_PROP_UINT32("x-intx-mmap-timeout-ms", VFIOPCIDevice,
3396 intx.mmap_timeout, 1100),
3397 DEFINE_PROP_BIT("x-vga", VFIOPCIDevice, features,
3398 VFIO_FEATURE_ENABLE_VGA_BIT, false),
3399 DEFINE_PROP_INT32("bootindex", VFIOPCIDevice, bootindex, -1),
3401 * TODO - support passed fds... is this necessary?
3402 * DEFINE_PROP_STRING("vfiofd", VFIOPCIDevice, vfiofd_name),
3403 * DEFINE_PROP_STRING("vfiogroupfd, VFIOPCIDevice, vfiogroupfd_name),
3405 DEFINE_PROP_END_OF_LIST(),
3408 static const VMStateDescription vfio_pci_vmstate = {
3409 .name = "vfio-pci",
3410 .unmigratable = 1,
3413 static void vfio_pci_dev_class_init(ObjectClass *klass, void *data)
3415 DeviceClass *dc = DEVICE_CLASS(klass);
3416 PCIDeviceClass *pdc = PCI_DEVICE_CLASS(klass);
3418 dc->reset = vfio_pci_reset;
3419 dc->props = vfio_pci_dev_properties;
3420 dc->vmsd = &vfio_pci_vmstate;
3421 dc->desc = "VFIO-based PCI device assignment";
3422 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3423 pdc->init = vfio_initfn;
3424 pdc->exit = vfio_exitfn;
3425 pdc->config_read = vfio_pci_read_config;
3426 pdc->config_write = vfio_pci_write_config;
3427 pdc->is_express = 1; /* We might be */
3430 static const TypeInfo vfio_pci_dev_info = {
3431 .name = "vfio-pci",
3432 .parent = TYPE_PCI_DEVICE,
3433 .instance_size = sizeof(VFIOPCIDevice),
3434 .class_init = vfio_pci_dev_class_init,
3435 .instance_init = vfio_instance_init,
3438 static void register_vfio_pci_dev_type(void)
3440 type_register_static(&vfio_pci_dev_info);
3443 type_init(register_vfio_pci_dev_type)