1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
5 #include <sys/resource.h>
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/guest-random.h"
23 #define ELF_OSABI ELFOSABI_SYSV
25 /* from personality.h */
28 * Flags for bug emulation.
30 * These occupy the top three bytes.
33 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
34 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
35 descriptors (signal handling) */
36 MMAP_PAGE_ZERO
= 0x0100000,
37 ADDR_COMPAT_LAYOUT
= 0x0200000,
38 READ_IMPLIES_EXEC
= 0x0400000,
39 ADDR_LIMIT_32BIT
= 0x0800000,
40 SHORT_INODE
= 0x1000000,
41 WHOLE_SECONDS
= 0x2000000,
42 STICKY_TIMEOUTS
= 0x4000000,
43 ADDR_LIMIT_3GB
= 0x8000000,
49 * These go in the low byte. Avoid using the top bit, it will
50 * conflict with error returns.
54 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
55 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
56 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
57 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
58 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
59 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
60 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
61 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
63 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
64 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
66 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
67 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
68 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
69 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
71 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
72 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
73 PER_OSF4
= 0x000f, /* OSF/1 v4 */
79 * Return the base personality without flags.
81 #define personality(pers) (pers & PER_MASK)
83 int info_is_fdpic(struct image_info
*info
)
85 return info
->personality
== PER_LINUX_FDPIC
;
88 /* this flag is uneffective under linux too, should be deleted */
90 #define MAP_DENYWRITE 0
93 /* should probably go in elf.h */
98 #ifdef TARGET_WORDS_BIGENDIAN
99 #define ELF_DATA ELFDATA2MSB
101 #define ELF_DATA ELFDATA2LSB
104 #ifdef TARGET_ABI_MIPSN32
105 typedef abi_ullong target_elf_greg_t
;
106 #define tswapreg(ptr) tswap64(ptr)
108 typedef abi_ulong target_elf_greg_t
;
109 #define tswapreg(ptr) tswapal(ptr)
113 typedef abi_ushort target_uid_t
;
114 typedef abi_ushort target_gid_t
;
116 typedef abi_uint target_uid_t
;
117 typedef abi_uint target_gid_t
;
119 typedef abi_int target_pid_t
;
123 #define ELF_PLATFORM get_elf_platform()
125 static const char *get_elf_platform(void)
127 static char elf_platform
[] = "i386";
128 int family
= object_property_get_int(OBJECT(thread_cpu
), "family", NULL
);
132 elf_platform
[1] = '0' + family
;
136 #define ELF_HWCAP get_elf_hwcap()
138 static uint32_t get_elf_hwcap(void)
140 X86CPU
*cpu
= X86_CPU(thread_cpu
);
142 return cpu
->env
.features
[FEAT_1_EDX
];
146 #define ELF_START_MMAP 0x2aaaaab000ULL
148 #define ELF_CLASS ELFCLASS64
149 #define ELF_ARCH EM_X86_64
151 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
154 regs
->rsp
= infop
->start_stack
;
155 regs
->rip
= infop
->entry
;
159 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
162 * Note that ELF_NREG should be 29 as there should be place for
163 * TRAPNO and ERR "registers" as well but linux doesn't dump
166 * See linux kernel: arch/x86/include/asm/elf.h
168 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
170 (*regs
)[0] = env
->regs
[15];
171 (*regs
)[1] = env
->regs
[14];
172 (*regs
)[2] = env
->regs
[13];
173 (*regs
)[3] = env
->regs
[12];
174 (*regs
)[4] = env
->regs
[R_EBP
];
175 (*regs
)[5] = env
->regs
[R_EBX
];
176 (*regs
)[6] = env
->regs
[11];
177 (*regs
)[7] = env
->regs
[10];
178 (*regs
)[8] = env
->regs
[9];
179 (*regs
)[9] = env
->regs
[8];
180 (*regs
)[10] = env
->regs
[R_EAX
];
181 (*regs
)[11] = env
->regs
[R_ECX
];
182 (*regs
)[12] = env
->regs
[R_EDX
];
183 (*regs
)[13] = env
->regs
[R_ESI
];
184 (*regs
)[14] = env
->regs
[R_EDI
];
185 (*regs
)[15] = env
->regs
[R_EAX
]; /* XXX */
186 (*regs
)[16] = env
->eip
;
187 (*regs
)[17] = env
->segs
[R_CS
].selector
& 0xffff;
188 (*regs
)[18] = env
->eflags
;
189 (*regs
)[19] = env
->regs
[R_ESP
];
190 (*regs
)[20] = env
->segs
[R_SS
].selector
& 0xffff;
191 (*regs
)[21] = env
->segs
[R_FS
].selector
& 0xffff;
192 (*regs
)[22] = env
->segs
[R_GS
].selector
& 0xffff;
193 (*regs
)[23] = env
->segs
[R_DS
].selector
& 0xffff;
194 (*regs
)[24] = env
->segs
[R_ES
].selector
& 0xffff;
195 (*regs
)[25] = env
->segs
[R_FS
].selector
& 0xffff;
196 (*regs
)[26] = env
->segs
[R_GS
].selector
& 0xffff;
201 #define ELF_START_MMAP 0x80000000
204 * This is used to ensure we don't load something for the wrong architecture.
206 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
209 * These are used to set parameters in the core dumps.
211 #define ELF_CLASS ELFCLASS32
212 #define ELF_ARCH EM_386
214 static inline void init_thread(struct target_pt_regs
*regs
,
215 struct image_info
*infop
)
217 regs
->esp
= infop
->start_stack
;
218 regs
->eip
= infop
->entry
;
220 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
221 starts %edx contains a pointer to a function which might be
222 registered using `atexit'. This provides a mean for the
223 dynamic linker to call DT_FINI functions for shared libraries
224 that have been loaded before the code runs.
226 A value of 0 tells we have no such handler. */
231 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
234 * Note that ELF_NREG should be 19 as there should be place for
235 * TRAPNO and ERR "registers" as well but linux doesn't dump
238 * See linux kernel: arch/x86/include/asm/elf.h
240 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
242 (*regs
)[0] = env
->regs
[R_EBX
];
243 (*regs
)[1] = env
->regs
[R_ECX
];
244 (*regs
)[2] = env
->regs
[R_EDX
];
245 (*regs
)[3] = env
->regs
[R_ESI
];
246 (*regs
)[4] = env
->regs
[R_EDI
];
247 (*regs
)[5] = env
->regs
[R_EBP
];
248 (*regs
)[6] = env
->regs
[R_EAX
];
249 (*regs
)[7] = env
->segs
[R_DS
].selector
& 0xffff;
250 (*regs
)[8] = env
->segs
[R_ES
].selector
& 0xffff;
251 (*regs
)[9] = env
->segs
[R_FS
].selector
& 0xffff;
252 (*regs
)[10] = env
->segs
[R_GS
].selector
& 0xffff;
253 (*regs
)[11] = env
->regs
[R_EAX
]; /* XXX */
254 (*regs
)[12] = env
->eip
;
255 (*regs
)[13] = env
->segs
[R_CS
].selector
& 0xffff;
256 (*regs
)[14] = env
->eflags
;
257 (*regs
)[15] = env
->regs
[R_ESP
];
258 (*regs
)[16] = env
->segs
[R_SS
].selector
& 0xffff;
262 #define USE_ELF_CORE_DUMP
263 #define ELF_EXEC_PAGESIZE 4096
269 #ifndef TARGET_AARCH64
270 /* 32 bit ARM definitions */
272 #define ELF_START_MMAP 0x80000000
274 #define ELF_ARCH EM_ARM
275 #define ELF_CLASS ELFCLASS32
277 static inline void init_thread(struct target_pt_regs
*regs
,
278 struct image_info
*infop
)
280 abi_long stack
= infop
->start_stack
;
281 memset(regs
, 0, sizeof(*regs
));
283 regs
->uregs
[16] = ARM_CPU_MODE_USR
;
284 if (infop
->entry
& 1) {
285 regs
->uregs
[16] |= CPSR_T
;
287 regs
->uregs
[15] = infop
->entry
& 0xfffffffe;
288 regs
->uregs
[13] = infop
->start_stack
;
289 /* FIXME - what to for failure of get_user()? */
290 get_user_ual(regs
->uregs
[2], stack
+ 8); /* envp */
291 get_user_ual(regs
->uregs
[1], stack
+ 4); /* envp */
292 /* XXX: it seems that r0 is zeroed after ! */
294 /* For uClinux PIC binaries. */
295 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
296 regs
->uregs
[10] = infop
->start_data
;
298 /* Support ARM FDPIC. */
299 if (info_is_fdpic(infop
)) {
300 /* As described in the ABI document, r7 points to the loadmap info
301 * prepared by the kernel. If an interpreter is needed, r8 points
302 * to the interpreter loadmap and r9 points to the interpreter
303 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
304 * r9 points to the main program PT_DYNAMIC info.
306 regs
->uregs
[7] = infop
->loadmap_addr
;
307 if (infop
->interpreter_loadmap_addr
) {
308 /* Executable is dynamically loaded. */
309 regs
->uregs
[8] = infop
->interpreter_loadmap_addr
;
310 regs
->uregs
[9] = infop
->interpreter_pt_dynamic_addr
;
313 regs
->uregs
[9] = infop
->pt_dynamic_addr
;
319 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
321 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUARMState
*env
)
323 (*regs
)[0] = tswapreg(env
->regs
[0]);
324 (*regs
)[1] = tswapreg(env
->regs
[1]);
325 (*regs
)[2] = tswapreg(env
->regs
[2]);
326 (*regs
)[3] = tswapreg(env
->regs
[3]);
327 (*regs
)[4] = tswapreg(env
->regs
[4]);
328 (*regs
)[5] = tswapreg(env
->regs
[5]);
329 (*regs
)[6] = tswapreg(env
->regs
[6]);
330 (*regs
)[7] = tswapreg(env
->regs
[7]);
331 (*regs
)[8] = tswapreg(env
->regs
[8]);
332 (*regs
)[9] = tswapreg(env
->regs
[9]);
333 (*regs
)[10] = tswapreg(env
->regs
[10]);
334 (*regs
)[11] = tswapreg(env
->regs
[11]);
335 (*regs
)[12] = tswapreg(env
->regs
[12]);
336 (*regs
)[13] = tswapreg(env
->regs
[13]);
337 (*regs
)[14] = tswapreg(env
->regs
[14]);
338 (*regs
)[15] = tswapreg(env
->regs
[15]);
340 (*regs
)[16] = tswapreg(cpsr_read((CPUARMState
*)env
));
341 (*regs
)[17] = tswapreg(env
->regs
[0]); /* XXX */
344 #define USE_ELF_CORE_DUMP
345 #define ELF_EXEC_PAGESIZE 4096
349 ARM_HWCAP_ARM_SWP
= 1 << 0,
350 ARM_HWCAP_ARM_HALF
= 1 << 1,
351 ARM_HWCAP_ARM_THUMB
= 1 << 2,
352 ARM_HWCAP_ARM_26BIT
= 1 << 3,
353 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
354 ARM_HWCAP_ARM_FPA
= 1 << 5,
355 ARM_HWCAP_ARM_VFP
= 1 << 6,
356 ARM_HWCAP_ARM_EDSP
= 1 << 7,
357 ARM_HWCAP_ARM_JAVA
= 1 << 8,
358 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
359 ARM_HWCAP_ARM_CRUNCH
= 1 << 10,
360 ARM_HWCAP_ARM_THUMBEE
= 1 << 11,
361 ARM_HWCAP_ARM_NEON
= 1 << 12,
362 ARM_HWCAP_ARM_VFPv3
= 1 << 13,
363 ARM_HWCAP_ARM_VFPv3D16
= 1 << 14,
364 ARM_HWCAP_ARM_TLS
= 1 << 15,
365 ARM_HWCAP_ARM_VFPv4
= 1 << 16,
366 ARM_HWCAP_ARM_IDIVA
= 1 << 17,
367 ARM_HWCAP_ARM_IDIVT
= 1 << 18,
368 ARM_HWCAP_ARM_VFPD32
= 1 << 19,
369 ARM_HWCAP_ARM_LPAE
= 1 << 20,
370 ARM_HWCAP_ARM_EVTSTRM
= 1 << 21,
374 ARM_HWCAP2_ARM_AES
= 1 << 0,
375 ARM_HWCAP2_ARM_PMULL
= 1 << 1,
376 ARM_HWCAP2_ARM_SHA1
= 1 << 2,
377 ARM_HWCAP2_ARM_SHA2
= 1 << 3,
378 ARM_HWCAP2_ARM_CRC32
= 1 << 4,
381 /* The commpage only exists for 32 bit kernels */
383 /* Return 1 if the proposed guest space is suitable for the guest.
384 * Return 0 if the proposed guest space isn't suitable, but another
385 * address space should be tried.
386 * Return -1 if there is no way the proposed guest space can be
387 * valid regardless of the base.
388 * The guest code may leave a page mapped and populate it if the
389 * address is suitable.
391 static int init_guest_commpage(unsigned long guest_base
,
392 unsigned long guest_size
)
394 unsigned long real_start
, test_page_addr
;
396 /* We need to check that we can force a fault on access to the
397 * commpage at 0xffff0fxx
399 test_page_addr
= guest_base
+ (0xffff0f00 & qemu_host_page_mask
);
401 /* If the commpage lies within the already allocated guest space,
402 * then there is no way we can allocate it.
404 * You may be thinking that that this check is redundant because
405 * we already validated the guest size against MAX_RESERVED_VA;
406 * but if qemu_host_page_mask is unusually large, then
407 * test_page_addr may be lower.
409 if (test_page_addr
>= guest_base
410 && test_page_addr
< (guest_base
+ guest_size
)) {
414 /* Note it needs to be writeable to let us initialise it */
415 real_start
= (unsigned long)
416 mmap((void *)test_page_addr
, qemu_host_page_size
,
417 PROT_READ
| PROT_WRITE
,
418 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
420 /* If we can't map it then try another address */
421 if (real_start
== -1ul) {
425 if (real_start
!= test_page_addr
) {
426 /* OS didn't put the page where we asked - unmap and reject */
427 munmap((void *)real_start
, qemu_host_page_size
);
431 /* Leave the page mapped
432 * Populate it (mmap should have left it all 0'd)
435 /* Kernel helper versions */
436 __put_user(5, (uint32_t *)g2h(0xffff0ffcul
));
438 /* Now it's populated make it RO */
439 if (mprotect((void *)test_page_addr
, qemu_host_page_size
, PROT_READ
)) {
440 perror("Protecting guest commpage");
444 return 1; /* All good */
447 #define ELF_HWCAP get_elf_hwcap()
448 #define ELF_HWCAP2 get_elf_hwcap2()
450 static uint32_t get_elf_hwcap(void)
452 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
455 hwcaps
|= ARM_HWCAP_ARM_SWP
;
456 hwcaps
|= ARM_HWCAP_ARM_HALF
;
457 hwcaps
|= ARM_HWCAP_ARM_THUMB
;
458 hwcaps
|= ARM_HWCAP_ARM_FAST_MULT
;
460 /* probe for the extra features */
461 #define GET_FEATURE(feat, hwcap) \
462 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
464 #define GET_FEATURE_ID(feat, hwcap) \
465 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
467 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
468 GET_FEATURE(ARM_FEATURE_V5
, ARM_HWCAP_ARM_EDSP
);
469 GET_FEATURE(ARM_FEATURE_VFP
, ARM_HWCAP_ARM_VFP
);
470 GET_FEATURE(ARM_FEATURE_IWMMXT
, ARM_HWCAP_ARM_IWMMXT
);
471 GET_FEATURE(ARM_FEATURE_THUMB2EE
, ARM_HWCAP_ARM_THUMBEE
);
472 GET_FEATURE(ARM_FEATURE_NEON
, ARM_HWCAP_ARM_NEON
);
473 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPv3
);
474 GET_FEATURE(ARM_FEATURE_V6K
, ARM_HWCAP_ARM_TLS
);
475 GET_FEATURE(ARM_FEATURE_VFP4
, ARM_HWCAP_ARM_VFPv4
);
476 GET_FEATURE_ID(arm_div
, ARM_HWCAP_ARM_IDIVA
);
477 GET_FEATURE_ID(thumb_div
, ARM_HWCAP_ARM_IDIVT
);
478 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
479 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
480 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
481 * to our VFP_FP16 feature bit.
483 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPD32
);
484 GET_FEATURE(ARM_FEATURE_LPAE
, ARM_HWCAP_ARM_LPAE
);
489 static uint32_t get_elf_hwcap2(void)
491 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
494 GET_FEATURE_ID(aa32_aes
, ARM_HWCAP2_ARM_AES
);
495 GET_FEATURE_ID(aa32_pmull
, ARM_HWCAP2_ARM_PMULL
);
496 GET_FEATURE_ID(aa32_sha1
, ARM_HWCAP2_ARM_SHA1
);
497 GET_FEATURE_ID(aa32_sha2
, ARM_HWCAP2_ARM_SHA2
);
498 GET_FEATURE_ID(aa32_crc32
, ARM_HWCAP2_ARM_CRC32
);
503 #undef GET_FEATURE_ID
505 #define ELF_PLATFORM get_elf_platform()
507 static const char *get_elf_platform(void)
509 CPUARMState
*env
= thread_cpu
->env_ptr
;
511 #ifdef TARGET_WORDS_BIGENDIAN
517 if (arm_feature(env
, ARM_FEATURE_V8
)) {
519 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
520 if (arm_feature(env
, ARM_FEATURE_M
)) {
525 } else if (arm_feature(env
, ARM_FEATURE_V6
)) {
527 } else if (arm_feature(env
, ARM_FEATURE_V5
)) {
537 /* 64 bit ARM definitions */
538 #define ELF_START_MMAP 0x80000000
540 #define ELF_ARCH EM_AARCH64
541 #define ELF_CLASS ELFCLASS64
542 #ifdef TARGET_WORDS_BIGENDIAN
543 # define ELF_PLATFORM "aarch64_be"
545 # define ELF_PLATFORM "aarch64"
548 static inline void init_thread(struct target_pt_regs
*regs
,
549 struct image_info
*infop
)
551 abi_long stack
= infop
->start_stack
;
552 memset(regs
, 0, sizeof(*regs
));
554 regs
->pc
= infop
->entry
& ~0x3ULL
;
559 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
561 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
562 const CPUARMState
*env
)
566 for (i
= 0; i
< 32; i
++) {
567 (*regs
)[i
] = tswapreg(env
->xregs
[i
]);
569 (*regs
)[32] = tswapreg(env
->pc
);
570 (*regs
)[33] = tswapreg(pstate_read((CPUARMState
*)env
));
573 #define USE_ELF_CORE_DUMP
574 #define ELF_EXEC_PAGESIZE 4096
577 ARM_HWCAP_A64_FP
= 1 << 0,
578 ARM_HWCAP_A64_ASIMD
= 1 << 1,
579 ARM_HWCAP_A64_EVTSTRM
= 1 << 2,
580 ARM_HWCAP_A64_AES
= 1 << 3,
581 ARM_HWCAP_A64_PMULL
= 1 << 4,
582 ARM_HWCAP_A64_SHA1
= 1 << 5,
583 ARM_HWCAP_A64_SHA2
= 1 << 6,
584 ARM_HWCAP_A64_CRC32
= 1 << 7,
585 ARM_HWCAP_A64_ATOMICS
= 1 << 8,
586 ARM_HWCAP_A64_FPHP
= 1 << 9,
587 ARM_HWCAP_A64_ASIMDHP
= 1 << 10,
588 ARM_HWCAP_A64_CPUID
= 1 << 11,
589 ARM_HWCAP_A64_ASIMDRDM
= 1 << 12,
590 ARM_HWCAP_A64_JSCVT
= 1 << 13,
591 ARM_HWCAP_A64_FCMA
= 1 << 14,
592 ARM_HWCAP_A64_LRCPC
= 1 << 15,
593 ARM_HWCAP_A64_DCPOP
= 1 << 16,
594 ARM_HWCAP_A64_SHA3
= 1 << 17,
595 ARM_HWCAP_A64_SM3
= 1 << 18,
596 ARM_HWCAP_A64_SM4
= 1 << 19,
597 ARM_HWCAP_A64_ASIMDDP
= 1 << 20,
598 ARM_HWCAP_A64_SHA512
= 1 << 21,
599 ARM_HWCAP_A64_SVE
= 1 << 22,
600 ARM_HWCAP_A64_ASIMDFHM
= 1 << 23,
601 ARM_HWCAP_A64_DIT
= 1 << 24,
602 ARM_HWCAP_A64_USCAT
= 1 << 25,
603 ARM_HWCAP_A64_ILRCPC
= 1 << 26,
604 ARM_HWCAP_A64_FLAGM
= 1 << 27,
605 ARM_HWCAP_A64_SSBS
= 1 << 28,
606 ARM_HWCAP_A64_SB
= 1 << 29,
607 ARM_HWCAP_A64_PACA
= 1 << 30,
608 ARM_HWCAP_A64_PACG
= 1UL << 31,
611 #define ELF_HWCAP get_elf_hwcap()
613 static uint32_t get_elf_hwcap(void)
615 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
618 hwcaps
|= ARM_HWCAP_A64_FP
;
619 hwcaps
|= ARM_HWCAP_A64_ASIMD
;
620 hwcaps
|= ARM_HWCAP_A64_CPUID
;
622 /* probe for the extra features */
623 #define GET_FEATURE_ID(feat, hwcap) \
624 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
626 GET_FEATURE_ID(aa64_aes
, ARM_HWCAP_A64_AES
);
627 GET_FEATURE_ID(aa64_pmull
, ARM_HWCAP_A64_PMULL
);
628 GET_FEATURE_ID(aa64_sha1
, ARM_HWCAP_A64_SHA1
);
629 GET_FEATURE_ID(aa64_sha256
, ARM_HWCAP_A64_SHA2
);
630 GET_FEATURE_ID(aa64_sha512
, ARM_HWCAP_A64_SHA512
);
631 GET_FEATURE_ID(aa64_crc32
, ARM_HWCAP_A64_CRC32
);
632 GET_FEATURE_ID(aa64_sha3
, ARM_HWCAP_A64_SHA3
);
633 GET_FEATURE_ID(aa64_sm3
, ARM_HWCAP_A64_SM3
);
634 GET_FEATURE_ID(aa64_sm4
, ARM_HWCAP_A64_SM4
);
635 GET_FEATURE_ID(aa64_fp16
, ARM_HWCAP_A64_FPHP
| ARM_HWCAP_A64_ASIMDHP
);
636 GET_FEATURE_ID(aa64_atomics
, ARM_HWCAP_A64_ATOMICS
);
637 GET_FEATURE_ID(aa64_rdm
, ARM_HWCAP_A64_ASIMDRDM
);
638 GET_FEATURE_ID(aa64_dp
, ARM_HWCAP_A64_ASIMDDP
);
639 GET_FEATURE_ID(aa64_fcma
, ARM_HWCAP_A64_FCMA
);
640 GET_FEATURE_ID(aa64_sve
, ARM_HWCAP_A64_SVE
);
641 GET_FEATURE_ID(aa64_pauth
, ARM_HWCAP_A64_PACA
| ARM_HWCAP_A64_PACG
);
642 GET_FEATURE_ID(aa64_fhm
, ARM_HWCAP_A64_ASIMDFHM
);
643 GET_FEATURE_ID(aa64_jscvt
, ARM_HWCAP_A64_JSCVT
);
644 GET_FEATURE_ID(aa64_sb
, ARM_HWCAP_A64_SB
);
645 GET_FEATURE_ID(aa64_condm_4
, ARM_HWCAP_A64_FLAGM
);
647 #undef GET_FEATURE_ID
652 #endif /* not TARGET_AARCH64 */
653 #endif /* TARGET_ARM */
656 #ifdef TARGET_SPARC64
658 #define ELF_START_MMAP 0x80000000
659 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
660 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
662 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
664 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
667 #define ELF_CLASS ELFCLASS64
668 #define ELF_ARCH EM_SPARCV9
670 #define STACK_BIAS 2047
672 static inline void init_thread(struct target_pt_regs
*regs
,
673 struct image_info
*infop
)
678 regs
->pc
= infop
->entry
;
679 regs
->npc
= regs
->pc
+ 4;
682 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
684 if (personality(infop
->personality
) == PER_LINUX32
)
685 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
687 regs
->u_regs
[14] = infop
->start_stack
- 16 * 8 - STACK_BIAS
;
692 #define ELF_START_MMAP 0x80000000
693 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
694 | HWCAP_SPARC_MULDIV)
696 #define ELF_CLASS ELFCLASS32
697 #define ELF_ARCH EM_SPARC
699 static inline void init_thread(struct target_pt_regs
*regs
,
700 struct image_info
*infop
)
703 regs
->pc
= infop
->entry
;
704 regs
->npc
= regs
->pc
+ 4;
706 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
714 #define ELF_MACHINE PPC_ELF_MACHINE
715 #define ELF_START_MMAP 0x80000000
717 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
719 #define elf_check_arch(x) ( (x) == EM_PPC64 )
721 #define ELF_CLASS ELFCLASS64
725 #define ELF_CLASS ELFCLASS32
729 #define ELF_ARCH EM_PPC
731 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
732 See arch/powerpc/include/asm/cputable.h. */
734 QEMU_PPC_FEATURE_32
= 0x80000000,
735 QEMU_PPC_FEATURE_64
= 0x40000000,
736 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
737 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
738 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
739 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
740 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
741 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
742 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
743 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
744 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
745 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
746 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
747 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
748 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
749 QEMU_PPC_FEATURE_CELL
= 0x00010000,
750 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
751 QEMU_PPC_FEATURE_SMT
= 0x00004000,
752 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
753 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
754 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
755 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
756 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
757 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
758 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
759 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
761 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
762 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
764 /* Feature definitions in AT_HWCAP2. */
765 QEMU_PPC_FEATURE2_ARCH_2_07
= 0x80000000, /* ISA 2.07 */
766 QEMU_PPC_FEATURE2_HAS_HTM
= 0x40000000, /* Hardware Transactional Memory */
767 QEMU_PPC_FEATURE2_HAS_DSCR
= 0x20000000, /* Data Stream Control Register */
768 QEMU_PPC_FEATURE2_HAS_EBB
= 0x10000000, /* Event Base Branching */
769 QEMU_PPC_FEATURE2_HAS_ISEL
= 0x08000000, /* Integer Select */
770 QEMU_PPC_FEATURE2_HAS_TAR
= 0x04000000, /* Target Address Register */
771 QEMU_PPC_FEATURE2_ARCH_3_00
= 0x00800000, /* ISA 3.00 */
774 #define ELF_HWCAP get_elf_hwcap()
776 static uint32_t get_elf_hwcap(void)
778 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
779 uint32_t features
= 0;
781 /* We don't have to be terribly complete here; the high points are
782 Altivec/FP/SPE support. Anything else is just a bonus. */
783 #define GET_FEATURE(flag, feature) \
784 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
785 #define GET_FEATURE2(flags, feature) \
787 if ((cpu->env.insns_flags2 & flags) == flags) { \
788 features |= feature; \
791 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
792 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
793 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
794 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
795 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
796 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
797 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
798 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
799 GET_FEATURE2(PPC2_DFP
, QEMU_PPC_FEATURE_HAS_DFP
);
800 GET_FEATURE2(PPC2_VSX
, QEMU_PPC_FEATURE_HAS_VSX
);
801 GET_FEATURE2((PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
| PPC2_ATOMIC_ISA206
|
802 PPC2_FP_CVT_ISA206
| PPC2_FP_TST_ISA206
),
803 QEMU_PPC_FEATURE_ARCH_2_06
);
810 #define ELF_HWCAP2 get_elf_hwcap2()
812 static uint32_t get_elf_hwcap2(void)
814 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
815 uint32_t features
= 0;
817 #define GET_FEATURE(flag, feature) \
818 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
819 #define GET_FEATURE2(flag, feature) \
820 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
822 GET_FEATURE(PPC_ISEL
, QEMU_PPC_FEATURE2_HAS_ISEL
);
823 GET_FEATURE2(PPC2_BCTAR_ISA207
, QEMU_PPC_FEATURE2_HAS_TAR
);
824 GET_FEATURE2((PPC2_BCTAR_ISA207
| PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
|
825 PPC2_ISA207S
), QEMU_PPC_FEATURE2_ARCH_2_07
);
826 GET_FEATURE2(PPC2_ISA300
, QEMU_PPC_FEATURE2_ARCH_3_00
);
835 * The requirements here are:
836 * - keep the final alignment of sp (sp & 0xf)
837 * - make sure the 32-bit value at the first 16 byte aligned position of
838 * AUXV is greater than 16 for glibc compatibility.
839 * AT_IGNOREPPC is used for that.
840 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
841 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
843 #define DLINFO_ARCH_ITEMS 5
844 #define ARCH_DLINFO \
846 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
848 * Handle glibc compatibility: these magic entries must \
849 * be at the lowest addresses in the final auxv. \
851 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
852 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
853 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
854 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
855 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
858 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
860 _regs
->gpr
[1] = infop
->start_stack
;
861 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
862 if (get_ppc64_abi(infop
) < 2) {
864 get_user_u64(val
, infop
->entry
+ 8);
865 _regs
->gpr
[2] = val
+ infop
->load_bias
;
866 get_user_u64(val
, infop
->entry
);
867 infop
->entry
= val
+ infop
->load_bias
;
869 _regs
->gpr
[12] = infop
->entry
; /* r12 set to global entry address */
872 _regs
->nip
= infop
->entry
;
875 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
877 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
879 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUPPCState
*env
)
882 target_ulong ccr
= 0;
884 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
885 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
888 (*regs
)[32] = tswapreg(env
->nip
);
889 (*regs
)[33] = tswapreg(env
->msr
);
890 (*regs
)[35] = tswapreg(env
->ctr
);
891 (*regs
)[36] = tswapreg(env
->lr
);
892 (*regs
)[37] = tswapreg(env
->xer
);
894 for (i
= 0; i
< ARRAY_SIZE(env
->crf
); i
++) {
895 ccr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
897 (*regs
)[38] = tswapreg(ccr
);
900 #define USE_ELF_CORE_DUMP
901 #define ELF_EXEC_PAGESIZE 4096
907 #define ELF_START_MMAP 0x80000000
910 #define ELF_CLASS ELFCLASS64
912 #define ELF_CLASS ELFCLASS32
914 #define ELF_ARCH EM_MIPS
916 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
918 static inline void init_thread(struct target_pt_regs
*regs
,
919 struct image_info
*infop
)
921 regs
->cp0_status
= 2 << CP0St_KSU
;
922 regs
->cp0_epc
= infop
->entry
;
923 regs
->regs
[29] = infop
->start_stack
;
926 /* See linux kernel: arch/mips/include/asm/elf.h. */
928 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
930 /* See linux kernel: arch/mips/include/asm/reg.h. */
937 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
938 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
939 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
940 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
941 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
942 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
943 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
944 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
947 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
948 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMIPSState
*env
)
952 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
955 (*regs
)[TARGET_EF_R0
] = 0;
957 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
958 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->active_tc
.gpr
[i
]);
961 (*regs
)[TARGET_EF_R26
] = 0;
962 (*regs
)[TARGET_EF_R27
] = 0;
963 (*regs
)[TARGET_EF_LO
] = tswapreg(env
->active_tc
.LO
[0]);
964 (*regs
)[TARGET_EF_HI
] = tswapreg(env
->active_tc
.HI
[0]);
965 (*regs
)[TARGET_EF_CP0_EPC
] = tswapreg(env
->active_tc
.PC
);
966 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapreg(env
->CP0_BadVAddr
);
967 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapreg(env
->CP0_Status
);
968 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapreg(env
->CP0_Cause
);
971 #define USE_ELF_CORE_DUMP
972 #define ELF_EXEC_PAGESIZE 4096
974 /* See arch/mips/include/uapi/asm/hwcap.h. */
976 HWCAP_MIPS_R6
= (1 << 0),
977 HWCAP_MIPS_MSA
= (1 << 1),
980 #define ELF_HWCAP get_elf_hwcap()
982 static uint32_t get_elf_hwcap(void)
984 MIPSCPU
*cpu
= MIPS_CPU(thread_cpu
);
987 #define GET_FEATURE(flag, hwcap) \
988 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
990 GET_FEATURE(ISA_MIPS32R6
| ISA_MIPS64R6
, HWCAP_MIPS_R6
);
991 GET_FEATURE(ASE_MSA
, HWCAP_MIPS_MSA
);
998 #endif /* TARGET_MIPS */
1000 #ifdef TARGET_MICROBLAZE
1002 #define ELF_START_MMAP 0x80000000
1004 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1006 #define ELF_CLASS ELFCLASS32
1007 #define ELF_ARCH EM_MICROBLAZE
1009 static inline void init_thread(struct target_pt_regs
*regs
,
1010 struct image_info
*infop
)
1012 regs
->pc
= infop
->entry
;
1013 regs
->r1
= infop
->start_stack
;
1017 #define ELF_EXEC_PAGESIZE 4096
1019 #define USE_ELF_CORE_DUMP
1021 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1023 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1024 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMBState
*env
)
1028 for (i
= 0; i
< 32; i
++) {
1029 (*regs
)[pos
++] = tswapreg(env
->regs
[i
]);
1032 for (i
= 0; i
< 6; i
++) {
1033 (*regs
)[pos
++] = tswapreg(env
->sregs
[i
]);
1037 #endif /* TARGET_MICROBLAZE */
1041 #define ELF_START_MMAP 0x80000000
1043 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1045 #define ELF_CLASS ELFCLASS32
1046 #define ELF_ARCH EM_ALTERA_NIOS2
1048 static void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1050 regs
->ea
= infop
->entry
;
1051 regs
->sp
= infop
->start_stack
;
1052 regs
->estatus
= 0x3;
1055 #define ELF_EXEC_PAGESIZE 4096
1057 #define USE_ELF_CORE_DUMP
1059 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1061 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1062 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1063 const CPUNios2State
*env
)
1068 for (i
= 1; i
< 8; i
++) /* r0-r7 */
1069 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1071 for (i
= 8; i
< 16; i
++) /* r8-r15 */
1072 (*regs
)[i
] = tswapreg(env
->regs
[i
- 8]);
1074 for (i
= 16; i
< 24; i
++) /* r16-r23 */
1075 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1076 (*regs
)[24] = -1; /* R_ET */
1077 (*regs
)[25] = -1; /* R_BT */
1078 (*regs
)[26] = tswapreg(env
->regs
[R_GP
]);
1079 (*regs
)[27] = tswapreg(env
->regs
[R_SP
]);
1080 (*regs
)[28] = tswapreg(env
->regs
[R_FP
]);
1081 (*regs
)[29] = tswapreg(env
->regs
[R_EA
]);
1082 (*regs
)[30] = -1; /* R_SSTATUS */
1083 (*regs
)[31] = tswapreg(env
->regs
[R_RA
]);
1085 (*regs
)[32] = tswapreg(env
->regs
[R_PC
]);
1087 (*regs
)[33] = -1; /* R_STATUS */
1088 (*regs
)[34] = tswapreg(env
->regs
[CR_ESTATUS
]);
1090 for (i
= 35; i
< 49; i
++) /* ... */
1094 #endif /* TARGET_NIOS2 */
1096 #ifdef TARGET_OPENRISC
1098 #define ELF_START_MMAP 0x08000000
1100 #define ELF_ARCH EM_OPENRISC
1101 #define ELF_CLASS ELFCLASS32
1102 #define ELF_DATA ELFDATA2MSB
1104 static inline void init_thread(struct target_pt_regs
*regs
,
1105 struct image_info
*infop
)
1107 regs
->pc
= infop
->entry
;
1108 regs
->gpr
[1] = infop
->start_stack
;
1111 #define USE_ELF_CORE_DUMP
1112 #define ELF_EXEC_PAGESIZE 8192
1114 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1115 #define ELF_NREG 34 /* gprs and pc, sr */
1116 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1118 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1119 const CPUOpenRISCState
*env
)
1123 for (i
= 0; i
< 32; i
++) {
1124 (*regs
)[i
] = tswapreg(cpu_get_gpr(env
, i
));
1126 (*regs
)[32] = tswapreg(env
->pc
);
1127 (*regs
)[33] = tswapreg(cpu_get_sr(env
));
1130 #define ELF_PLATFORM NULL
1132 #endif /* TARGET_OPENRISC */
1136 #define ELF_START_MMAP 0x80000000
1138 #define ELF_CLASS ELFCLASS32
1139 #define ELF_ARCH EM_SH
1141 static inline void init_thread(struct target_pt_regs
*regs
,
1142 struct image_info
*infop
)
1144 /* Check other registers XXXXX */
1145 regs
->pc
= infop
->entry
;
1146 regs
->regs
[15] = infop
->start_stack
;
1149 /* See linux kernel: arch/sh/include/asm/elf.h. */
1151 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1153 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1158 TARGET_REG_GBR
= 19,
1159 TARGET_REG_MACH
= 20,
1160 TARGET_REG_MACL
= 21,
1161 TARGET_REG_SYSCALL
= 22
1164 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1165 const CPUSH4State
*env
)
1169 for (i
= 0; i
< 16; i
++) {
1170 (*regs
)[i
] = tswapreg(env
->gregs
[i
]);
1173 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1174 (*regs
)[TARGET_REG_PR
] = tswapreg(env
->pr
);
1175 (*regs
)[TARGET_REG_SR
] = tswapreg(env
->sr
);
1176 (*regs
)[TARGET_REG_GBR
] = tswapreg(env
->gbr
);
1177 (*regs
)[TARGET_REG_MACH
] = tswapreg(env
->mach
);
1178 (*regs
)[TARGET_REG_MACL
] = tswapreg(env
->macl
);
1179 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
1182 #define USE_ELF_CORE_DUMP
1183 #define ELF_EXEC_PAGESIZE 4096
1186 SH_CPU_HAS_FPU
= 0x0001, /* Hardware FPU support */
1187 SH_CPU_HAS_P2_FLUSH_BUG
= 0x0002, /* Need to flush the cache in P2 area */
1188 SH_CPU_HAS_MMU_PAGE_ASSOC
= 0x0004, /* SH3: TLB way selection bit support */
1189 SH_CPU_HAS_DSP
= 0x0008, /* SH-DSP: DSP support */
1190 SH_CPU_HAS_PERF_COUNTER
= 0x0010, /* Hardware performance counters */
1191 SH_CPU_HAS_PTEA
= 0x0020, /* PTEA register */
1192 SH_CPU_HAS_LLSC
= 0x0040, /* movli.l/movco.l */
1193 SH_CPU_HAS_L2_CACHE
= 0x0080, /* Secondary cache / URAM */
1194 SH_CPU_HAS_OP32
= 0x0100, /* 32-bit instruction support */
1195 SH_CPU_HAS_PTEAEX
= 0x0200, /* PTE ASID Extension support */
1198 #define ELF_HWCAP get_elf_hwcap()
1200 static uint32_t get_elf_hwcap(void)
1202 SuperHCPU
*cpu
= SUPERH_CPU(thread_cpu
);
1205 hwcap
|= SH_CPU_HAS_FPU
;
1207 if (cpu
->env
.features
& SH_FEATURE_SH4A
) {
1208 hwcap
|= SH_CPU_HAS_LLSC
;
1218 #define ELF_START_MMAP 0x80000000
1220 #define ELF_CLASS ELFCLASS32
1221 #define ELF_ARCH EM_CRIS
1223 static inline void init_thread(struct target_pt_regs
*regs
,
1224 struct image_info
*infop
)
1226 regs
->erp
= infop
->entry
;
1229 #define ELF_EXEC_PAGESIZE 8192
1235 #define ELF_START_MMAP 0x80000000
1237 #define ELF_CLASS ELFCLASS32
1238 #define ELF_ARCH EM_68K
1240 /* ??? Does this need to do anything?
1241 #define ELF_PLAT_INIT(_r) */
1243 static inline void init_thread(struct target_pt_regs
*regs
,
1244 struct image_info
*infop
)
1246 regs
->usp
= infop
->start_stack
;
1248 regs
->pc
= infop
->entry
;
1251 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1253 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1255 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUM68KState
*env
)
1257 (*regs
)[0] = tswapreg(env
->dregs
[1]);
1258 (*regs
)[1] = tswapreg(env
->dregs
[2]);
1259 (*regs
)[2] = tswapreg(env
->dregs
[3]);
1260 (*regs
)[3] = tswapreg(env
->dregs
[4]);
1261 (*regs
)[4] = tswapreg(env
->dregs
[5]);
1262 (*regs
)[5] = tswapreg(env
->dregs
[6]);
1263 (*regs
)[6] = tswapreg(env
->dregs
[7]);
1264 (*regs
)[7] = tswapreg(env
->aregs
[0]);
1265 (*regs
)[8] = tswapreg(env
->aregs
[1]);
1266 (*regs
)[9] = tswapreg(env
->aregs
[2]);
1267 (*regs
)[10] = tswapreg(env
->aregs
[3]);
1268 (*regs
)[11] = tswapreg(env
->aregs
[4]);
1269 (*regs
)[12] = tswapreg(env
->aregs
[5]);
1270 (*regs
)[13] = tswapreg(env
->aregs
[6]);
1271 (*regs
)[14] = tswapreg(env
->dregs
[0]);
1272 (*regs
)[15] = tswapreg(env
->aregs
[7]);
1273 (*regs
)[16] = tswapreg(env
->dregs
[0]); /* FIXME: orig_d0 */
1274 (*regs
)[17] = tswapreg(env
->sr
);
1275 (*regs
)[18] = tswapreg(env
->pc
);
1276 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
1279 #define USE_ELF_CORE_DUMP
1280 #define ELF_EXEC_PAGESIZE 8192
1286 #define ELF_START_MMAP (0x30000000000ULL)
1288 #define ELF_CLASS ELFCLASS64
1289 #define ELF_ARCH EM_ALPHA
1291 static inline void init_thread(struct target_pt_regs
*regs
,
1292 struct image_info
*infop
)
1294 regs
->pc
= infop
->entry
;
1296 regs
->usp
= infop
->start_stack
;
1299 #define ELF_EXEC_PAGESIZE 8192
1301 #endif /* TARGET_ALPHA */
1305 #define ELF_START_MMAP (0x20000000000ULL)
1307 #define ELF_CLASS ELFCLASS64
1308 #define ELF_DATA ELFDATA2MSB
1309 #define ELF_ARCH EM_S390
1313 #define ELF_HWCAP get_elf_hwcap()
1315 #define GET_FEATURE(_feat, _hwcap) \
1316 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1318 static uint32_t get_elf_hwcap(void)
1321 * Let's assume we always have esan3 and zarch.
1322 * 31-bit processes can use 64-bit registers (high gprs).
1324 uint32_t hwcap
= HWCAP_S390_ESAN3
| HWCAP_S390_ZARCH
| HWCAP_S390_HIGH_GPRS
;
1326 GET_FEATURE(S390_FEAT_STFLE
, HWCAP_S390_STFLE
);
1327 GET_FEATURE(S390_FEAT_MSA
, HWCAP_S390_MSA
);
1328 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT
, HWCAP_S390_LDISP
);
1329 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE
, HWCAP_S390_EIMM
);
1330 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3
) &&
1331 s390_has_feat(S390_FEAT_ETF3_ENH
)) {
1332 hwcap
|= HWCAP_S390_ETF3EH
;
1334 GET_FEATURE(S390_FEAT_VECTOR
, HWCAP_S390_VXRS
);
1339 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1341 regs
->psw
.addr
= infop
->entry
;
1342 regs
->psw
.mask
= PSW_MASK_64
| PSW_MASK_32
;
1343 regs
->gprs
[15] = infop
->start_stack
;
1346 #endif /* TARGET_S390X */
1348 #ifdef TARGET_TILEGX
1350 /* 42 bits real used address, a half for user mode */
1351 #define ELF_START_MMAP (0x00000020000000000ULL)
1353 #define elf_check_arch(x) ((x) == EM_TILEGX)
1355 #define ELF_CLASS ELFCLASS64
1356 #define ELF_DATA ELFDATA2LSB
1357 #define ELF_ARCH EM_TILEGX
1359 static inline void init_thread(struct target_pt_regs
*regs
,
1360 struct image_info
*infop
)
1362 regs
->pc
= infop
->entry
;
1363 regs
->sp
= infop
->start_stack
;
1367 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1369 #endif /* TARGET_TILEGX */
1373 #define ELF_START_MMAP 0x80000000
1374 #define ELF_ARCH EM_RISCV
1376 #ifdef TARGET_RISCV32
1377 #define ELF_CLASS ELFCLASS32
1379 #define ELF_CLASS ELFCLASS64
1382 static inline void init_thread(struct target_pt_regs
*regs
,
1383 struct image_info
*infop
)
1385 regs
->sepc
= infop
->entry
;
1386 regs
->sp
= infop
->start_stack
;
1389 #define ELF_EXEC_PAGESIZE 4096
1391 #endif /* TARGET_RISCV */
1395 #define ELF_START_MMAP 0x80000000
1396 #define ELF_CLASS ELFCLASS32
1397 #define ELF_ARCH EM_PARISC
1398 #define ELF_PLATFORM "PARISC"
1399 #define STACK_GROWS_DOWN 0
1400 #define STACK_ALIGNMENT 64
1402 static inline void init_thread(struct target_pt_regs
*regs
,
1403 struct image_info
*infop
)
1405 regs
->iaoq
[0] = infop
->entry
;
1406 regs
->iaoq
[1] = infop
->entry
+ 4;
1408 regs
->gr
[24] = infop
->arg_start
;
1409 regs
->gr
[25] = (infop
->arg_end
- infop
->arg_start
) / sizeof(abi_ulong
);
1410 /* The top-of-stack contains a linkage buffer. */
1411 regs
->gr
[30] = infop
->start_stack
+ 64;
1412 regs
->gr
[31] = infop
->entry
;
1415 #endif /* TARGET_HPPA */
1417 #ifdef TARGET_XTENSA
1419 #define ELF_START_MMAP 0x20000000
1421 #define ELF_CLASS ELFCLASS32
1422 #define ELF_ARCH EM_XTENSA
1424 static inline void init_thread(struct target_pt_regs
*regs
,
1425 struct image_info
*infop
)
1427 regs
->windowbase
= 0;
1428 regs
->windowstart
= 1;
1429 regs
->areg
[1] = infop
->start_stack
;
1430 regs
->pc
= infop
->entry
;
1433 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1434 #define ELF_NREG 128
1435 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1444 TARGET_REG_WINDOWSTART
,
1445 TARGET_REG_WINDOWBASE
,
1446 TARGET_REG_THREADPTR
,
1447 TARGET_REG_AR0
= 64,
1450 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1451 const CPUXtensaState
*env
)
1455 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1456 (*regs
)[TARGET_REG_PS
] = tswapreg(env
->sregs
[PS
] & ~PS_EXCM
);
1457 (*regs
)[TARGET_REG_LBEG
] = tswapreg(env
->sregs
[LBEG
]);
1458 (*regs
)[TARGET_REG_LEND
] = tswapreg(env
->sregs
[LEND
]);
1459 (*regs
)[TARGET_REG_LCOUNT
] = tswapreg(env
->sregs
[LCOUNT
]);
1460 (*regs
)[TARGET_REG_SAR
] = tswapreg(env
->sregs
[SAR
]);
1461 (*regs
)[TARGET_REG_WINDOWSTART
] = tswapreg(env
->sregs
[WINDOW_START
]);
1462 (*regs
)[TARGET_REG_WINDOWBASE
] = tswapreg(env
->sregs
[WINDOW_BASE
]);
1463 (*regs
)[TARGET_REG_THREADPTR
] = tswapreg(env
->uregs
[THREADPTR
]);
1464 xtensa_sync_phys_from_window((CPUXtensaState
*)env
);
1465 for (i
= 0; i
< env
->config
->nareg
; ++i
) {
1466 (*regs
)[TARGET_REG_AR0
+ i
] = tswapreg(env
->phys_regs
[i
]);
1470 #define USE_ELF_CORE_DUMP
1471 #define ELF_EXEC_PAGESIZE 4096
1473 #endif /* TARGET_XTENSA */
1475 #ifndef ELF_PLATFORM
1476 #define ELF_PLATFORM (NULL)
1480 #define ELF_MACHINE ELF_ARCH
1483 #ifndef elf_check_arch
1484 #define elf_check_arch(x) ((x) == ELF_ARCH)
1491 #ifndef STACK_GROWS_DOWN
1492 #define STACK_GROWS_DOWN 1
1495 #ifndef STACK_ALIGNMENT
1496 #define STACK_ALIGNMENT 16
1501 #define ELF_CLASS ELFCLASS32
1503 #define bswaptls(ptr) bswap32s(ptr)
1510 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
1511 unsigned int a_text
; /* length of text, in bytes */
1512 unsigned int a_data
; /* length of data, in bytes */
1513 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
1514 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
1515 unsigned int a_entry
; /* start address */
1516 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
1517 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
1521 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1527 /* Necessary parameters */
1528 #define TARGET_ELF_EXEC_PAGESIZE \
1529 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1530 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1531 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1532 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1533 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1534 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1536 #define DLINFO_ITEMS 15
1538 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
1540 memcpy(to
, from
, n
);
1544 static void bswap_ehdr(struct elfhdr
*ehdr
)
1546 bswap16s(&ehdr
->e_type
); /* Object file type */
1547 bswap16s(&ehdr
->e_machine
); /* Architecture */
1548 bswap32s(&ehdr
->e_version
); /* Object file version */
1549 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
1550 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
1551 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
1552 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
1553 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
1554 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
1555 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
1556 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
1557 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
1558 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
1561 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
1564 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
1565 bswap32s(&phdr
->p_type
); /* Segment type */
1566 bswap32s(&phdr
->p_flags
); /* Segment flags */
1567 bswaptls(&phdr
->p_offset
); /* Segment file offset */
1568 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
1569 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
1570 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
1571 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
1572 bswaptls(&phdr
->p_align
); /* Segment alignment */
1576 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
1579 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
1580 bswap32s(&shdr
->sh_name
);
1581 bswap32s(&shdr
->sh_type
);
1582 bswaptls(&shdr
->sh_flags
);
1583 bswaptls(&shdr
->sh_addr
);
1584 bswaptls(&shdr
->sh_offset
);
1585 bswaptls(&shdr
->sh_size
);
1586 bswap32s(&shdr
->sh_link
);
1587 bswap32s(&shdr
->sh_info
);
1588 bswaptls(&shdr
->sh_addralign
);
1589 bswaptls(&shdr
->sh_entsize
);
1593 static void bswap_sym(struct elf_sym
*sym
)
1595 bswap32s(&sym
->st_name
);
1596 bswaptls(&sym
->st_value
);
1597 bswaptls(&sym
->st_size
);
1598 bswap16s(&sym
->st_shndx
);
1602 static void bswap_mips_abiflags(Mips_elf_abiflags_v0
*abiflags
)
1604 bswap16s(&abiflags
->version
);
1605 bswap32s(&abiflags
->ases
);
1606 bswap32s(&abiflags
->isa_ext
);
1607 bswap32s(&abiflags
->flags1
);
1608 bswap32s(&abiflags
->flags2
);
1612 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
1613 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
1614 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
1615 static inline void bswap_sym(struct elf_sym
*sym
) { }
1617 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0
*abiflags
) { }
1621 #ifdef USE_ELF_CORE_DUMP
1622 static int elf_core_dump(int, const CPUArchState
*);
1623 #endif /* USE_ELF_CORE_DUMP */
1624 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
);
1626 /* Verify the portions of EHDR within E_IDENT for the target.
1627 This can be performed before bswapping the entire header. */
1628 static bool elf_check_ident(struct elfhdr
*ehdr
)
1630 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
1631 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
1632 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
1633 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
1634 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
1635 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
1636 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
1639 /* Verify the portions of EHDR outside of E_IDENT for the target.
1640 This has to wait until after bswapping the header. */
1641 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
1643 return (elf_check_arch(ehdr
->e_machine
)
1644 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
1645 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
1646 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
1650 * 'copy_elf_strings()' copies argument/envelope strings from user
1651 * memory to free pages in kernel mem. These are in a format ready
1652 * to be put directly into the top of new user memory.
1655 static abi_ulong
copy_elf_strings(int argc
, char **argv
, char *scratch
,
1656 abi_ulong p
, abi_ulong stack_limit
)
1663 return 0; /* bullet-proofing */
1666 if (STACK_GROWS_DOWN
) {
1667 int offset
= ((p
- 1) % TARGET_PAGE_SIZE
) + 1;
1668 for (i
= argc
- 1; i
>= 0; --i
) {
1671 fprintf(stderr
, "VFS: argc is wrong");
1674 len
= strlen(tmp
) + 1;
1677 if (len
> (p
- stack_limit
)) {
1681 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
1682 tmp
-= bytes_to_copy
;
1684 offset
-= bytes_to_copy
;
1685 len
-= bytes_to_copy
;
1687 memcpy_fromfs(scratch
+ offset
, tmp
, bytes_to_copy
);
1690 memcpy_to_target(p
, scratch
, top
- p
);
1692 offset
= TARGET_PAGE_SIZE
;
1697 memcpy_to_target(p
, scratch
+ offset
, top
- p
);
1700 int remaining
= TARGET_PAGE_SIZE
- (p
% TARGET_PAGE_SIZE
);
1701 for (i
= 0; i
< argc
; ++i
) {
1704 fprintf(stderr
, "VFS: argc is wrong");
1707 len
= strlen(tmp
) + 1;
1708 if (len
> (stack_limit
- p
)) {
1712 int bytes_to_copy
= (len
> remaining
) ? remaining
: len
;
1714 memcpy_fromfs(scratch
+ (p
- top
), tmp
, bytes_to_copy
);
1716 tmp
+= bytes_to_copy
;
1717 remaining
-= bytes_to_copy
;
1719 len
-= bytes_to_copy
;
1721 if (remaining
== 0) {
1722 memcpy_to_target(top
, scratch
, p
- top
);
1724 remaining
= TARGET_PAGE_SIZE
;
1729 memcpy_to_target(top
, scratch
, p
- top
);
1736 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1737 * argument/environment space. Newer kernels (>2.6.33) allow more,
1738 * dependent on stack size, but guarantee at least 32 pages for
1739 * backwards compatibility.
1741 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1743 static abi_ulong
setup_arg_pages(struct linux_binprm
*bprm
,
1744 struct image_info
*info
)
1746 abi_ulong size
, error
, guard
;
1748 size
= guest_stack_size
;
1749 if (size
< STACK_LOWER_LIMIT
) {
1750 size
= STACK_LOWER_LIMIT
;
1752 guard
= TARGET_PAGE_SIZE
;
1753 if (guard
< qemu_real_host_page_size
) {
1754 guard
= qemu_real_host_page_size
;
1757 error
= target_mmap(0, size
+ guard
, PROT_READ
| PROT_WRITE
,
1758 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1760 perror("mmap stack");
1764 /* We reserve one extra page at the top of the stack as guard. */
1765 if (STACK_GROWS_DOWN
) {
1766 target_mprotect(error
, guard
, PROT_NONE
);
1767 info
->stack_limit
= error
+ guard
;
1768 return info
->stack_limit
+ size
- sizeof(void *);
1770 target_mprotect(error
+ size
, guard
, PROT_NONE
);
1771 info
->stack_limit
= error
+ size
;
1776 /* Map and zero the bss. We need to explicitly zero any fractional pages
1777 after the data section (i.e. bss). */
1778 static void zero_bss(abi_ulong elf_bss
, abi_ulong last_bss
, int prot
)
1780 uintptr_t host_start
, host_map_start
, host_end
;
1782 last_bss
= TARGET_PAGE_ALIGN(last_bss
);
1784 /* ??? There is confusion between qemu_real_host_page_size and
1785 qemu_host_page_size here and elsewhere in target_mmap, which
1786 may lead to the end of the data section mapping from the file
1787 not being mapped. At least there was an explicit test and
1788 comment for that here, suggesting that "the file size must
1789 be known". The comment probably pre-dates the introduction
1790 of the fstat system call in target_mmap which does in fact
1791 find out the size. What isn't clear is if the workaround
1792 here is still actually needed. For now, continue with it,
1793 but merge it with the "normal" mmap that would allocate the bss. */
1795 host_start
= (uintptr_t) g2h(elf_bss
);
1796 host_end
= (uintptr_t) g2h(last_bss
);
1797 host_map_start
= REAL_HOST_PAGE_ALIGN(host_start
);
1799 if (host_map_start
< host_end
) {
1800 void *p
= mmap((void *)host_map_start
, host_end
- host_map_start
,
1801 prot
, MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1802 if (p
== MAP_FAILED
) {
1803 perror("cannot mmap brk");
1808 /* Ensure that the bss page(s) are valid */
1809 if ((page_get_flags(last_bss
-1) & prot
) != prot
) {
1810 page_set_flags(elf_bss
& TARGET_PAGE_MASK
, last_bss
, prot
| PAGE_VALID
);
1813 if (host_start
< host_map_start
) {
1814 memset((void *)host_start
, 0, host_map_start
- host_start
);
1819 static int elf_is_fdpic(struct elfhdr
*exec
)
1821 return exec
->e_ident
[EI_OSABI
] == ELFOSABI_ARM_FDPIC
;
1824 /* Default implementation, always false. */
1825 static int elf_is_fdpic(struct elfhdr
*exec
)
1831 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
1834 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
1836 /* elf32_fdpic_loadseg */
1840 put_user_u32(loadsegs
[n
].addr
, sp
+0);
1841 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
1842 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
1845 /* elf32_fdpic_loadmap */
1847 put_user_u16(0, sp
+0); /* version */
1848 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
1850 info
->personality
= PER_LINUX_FDPIC
;
1851 info
->loadmap_addr
= sp
;
1856 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
1857 struct elfhdr
*exec
,
1858 struct image_info
*info
,
1859 struct image_info
*interp_info
)
1862 abi_ulong u_argc
, u_argv
, u_envp
, u_auxv
;
1865 abi_ulong u_rand_bytes
;
1866 uint8_t k_rand_bytes
[16];
1867 abi_ulong u_platform
;
1868 const char *k_platform
;
1869 const int n
= sizeof(elf_addr_t
);
1873 /* Needs to be before we load the env/argc/... */
1874 if (elf_is_fdpic(exec
)) {
1875 /* Need 4 byte alignment for these structs */
1877 sp
= loader_build_fdpic_loadmap(info
, sp
);
1878 info
->other_info
= interp_info
;
1880 interp_info
->other_info
= info
;
1881 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
1882 info
->interpreter_loadmap_addr
= interp_info
->loadmap_addr
;
1883 info
->interpreter_pt_dynamic_addr
= interp_info
->pt_dynamic_addr
;
1885 info
->interpreter_loadmap_addr
= 0;
1886 info
->interpreter_pt_dynamic_addr
= 0;
1891 k_platform
= ELF_PLATFORM
;
1893 size_t len
= strlen(k_platform
) + 1;
1894 if (STACK_GROWS_DOWN
) {
1895 sp
-= (len
+ n
- 1) & ~(n
- 1);
1897 /* FIXME - check return value of memcpy_to_target() for failure */
1898 memcpy_to_target(sp
, k_platform
, len
);
1900 memcpy_to_target(sp
, k_platform
, len
);
1906 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1907 * the argv and envp pointers.
1909 if (STACK_GROWS_DOWN
) {
1910 sp
= QEMU_ALIGN_DOWN(sp
, 16);
1912 sp
= QEMU_ALIGN_UP(sp
, 16);
1916 * Generate 16 random bytes for userspace PRNG seeding.
1918 qemu_guest_getrandom_nofail(k_rand_bytes
, sizeof(k_rand_bytes
));
1919 if (STACK_GROWS_DOWN
) {
1922 /* FIXME - check return value of memcpy_to_target() for failure */
1923 memcpy_to_target(sp
, k_rand_bytes
, 16);
1925 memcpy_to_target(sp
, k_rand_bytes
, 16);
1930 size
= (DLINFO_ITEMS
+ 1) * 2;
1933 #ifdef DLINFO_ARCH_ITEMS
1934 size
+= DLINFO_ARCH_ITEMS
* 2;
1939 info
->auxv_len
= size
* n
;
1941 size
+= envc
+ argc
+ 2;
1942 size
+= 1; /* argc itself */
1945 /* Allocate space and finalize stack alignment for entry now. */
1946 if (STACK_GROWS_DOWN
) {
1947 u_argc
= QEMU_ALIGN_DOWN(sp
- size
, STACK_ALIGNMENT
);
1951 sp
= QEMU_ALIGN_UP(sp
+ size
, STACK_ALIGNMENT
);
1954 u_argv
= u_argc
+ n
;
1955 u_envp
= u_argv
+ (argc
+ 1) * n
;
1956 u_auxv
= u_envp
+ (envc
+ 1) * n
;
1957 info
->saved_auxv
= u_auxv
;
1958 info
->arg_start
= u_argv
;
1959 info
->arg_end
= u_argv
+ argc
* n
;
1961 /* This is correct because Linux defines
1962 * elf_addr_t as Elf32_Off / Elf64_Off
1964 #define NEW_AUX_ENT(id, val) do { \
1965 put_user_ual(id, u_auxv); u_auxv += n; \
1966 put_user_ual(val, u_auxv); u_auxv += n; \
1971 * ARCH_DLINFO must come first so platform specific code can enforce
1972 * special alignment requirements on the AUXV if necessary (eg. PPC).
1976 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1977 * on info->auxv_len will trigger.
1979 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
1980 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
1981 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
1982 if ((info
->alignment
& ~qemu_host_page_mask
) != 0) {
1983 /* Target doesn't support host page size alignment */
1984 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(TARGET_PAGE_SIZE
));
1986 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(MAX(TARGET_PAGE_SIZE
,
1987 qemu_host_page_size
)));
1989 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
1990 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
1991 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
1992 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
1993 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
1994 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
1995 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
1996 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
1997 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
1998 NEW_AUX_ENT(AT_RANDOM
, (abi_ulong
) u_rand_bytes
);
1999 NEW_AUX_ENT(AT_SECURE
, (abi_ulong
) qemu_getauxval(AT_SECURE
));
2002 NEW_AUX_ENT(AT_HWCAP2
, (abi_ulong
) ELF_HWCAP2
);
2006 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
2008 NEW_AUX_ENT (AT_NULL
, 0);
2011 /* Check that our initial calculation of the auxv length matches how much
2012 * we actually put into it.
2014 assert(info
->auxv_len
== u_auxv
- info
->saved_auxv
);
2016 put_user_ual(argc
, u_argc
);
2018 p
= info
->arg_strings
;
2019 for (i
= 0; i
< argc
; ++i
) {
2020 put_user_ual(p
, u_argv
);
2022 p
+= target_strlen(p
) + 1;
2024 put_user_ual(0, u_argv
);
2026 p
= info
->env_strings
;
2027 for (i
= 0; i
< envc
; ++i
) {
2028 put_user_ual(p
, u_envp
);
2030 p
+= target_strlen(p
) + 1;
2032 put_user_ual(0, u_envp
);
2037 unsigned long init_guest_space(unsigned long host_start
,
2038 unsigned long host_size
,
2039 unsigned long guest_start
,
2042 /* In order to use host shmat, we must be able to honor SHMLBA. */
2043 unsigned long align
= MAX(SHMLBA
, qemu_host_page_size
);
2044 unsigned long current_start
, aligned_start
;
2047 assert(host_start
|| host_size
);
2049 /* If just a starting address is given, then just verify that
2051 if (host_start
&& !host_size
) {
2052 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2053 if (init_guest_commpage(host_start
, host_size
) != 1) {
2054 return (unsigned long)-1;
2060 /* Setup the initial flags and start address. */
2061 current_start
= host_start
& -align
;
2062 flags
= MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
;
2067 /* Otherwise, a non-zero size region of memory needs to be mapped
2070 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2071 /* On 32-bit ARM, we need to map not just the usable memory, but
2072 * also the commpage. Try to find a suitable place by allocating
2073 * a big chunk for all of it. If host_start, then the naive
2074 * strategy probably does good enough.
2077 unsigned long guest_full_size
, host_full_size
, real_start
;
2080 (0xffff0f00 & qemu_host_page_mask
) + qemu_host_page_size
;
2081 host_full_size
= guest_full_size
- guest_start
;
2082 real_start
= (unsigned long)
2083 mmap(NULL
, host_full_size
, PROT_NONE
, flags
, -1, 0);
2084 if (real_start
== (unsigned long)-1) {
2085 if (host_size
< host_full_size
- qemu_host_page_size
) {
2086 /* We failed to map a continous segment, but we're
2087 * allowed to have a gap between the usable memory and
2088 * the commpage where other things can be mapped.
2089 * This sparseness gives us more flexibility to find
2094 return (unsigned long)-1;
2096 munmap((void *)real_start
, host_full_size
);
2097 if (real_start
& (align
- 1)) {
2098 /* The same thing again, but with extra
2099 * so that we can shift around alignment.
2101 unsigned long real_size
= host_full_size
+ qemu_host_page_size
;
2102 real_start
= (unsigned long)
2103 mmap(NULL
, real_size
, PROT_NONE
, flags
, -1, 0);
2104 if (real_start
== (unsigned long)-1) {
2105 if (host_size
< host_full_size
- qemu_host_page_size
) {
2108 return (unsigned long)-1;
2110 munmap((void *)real_start
, real_size
);
2111 real_start
= ROUND_UP(real_start
, align
);
2113 current_start
= real_start
;
2119 unsigned long real_start
, real_size
, aligned_size
;
2120 aligned_size
= real_size
= host_size
;
2122 /* Do not use mmap_find_vma here because that is limited to the
2123 * guest address space. We are going to make the
2124 * guest address space fit whatever we're given.
2126 real_start
= (unsigned long)
2127 mmap((void *)current_start
, host_size
, PROT_NONE
, flags
, -1, 0);
2128 if (real_start
== (unsigned long)-1) {
2129 return (unsigned long)-1;
2132 /* Check to see if the address is valid. */
2133 if (host_start
&& real_start
!= current_start
) {
2137 /* Ensure the address is properly aligned. */
2138 if (real_start
& (align
- 1)) {
2139 /* Ideally, we adjust like
2141 * pages: [ ][ ][ ][ ][ ]
2147 * But if there is something else mapped right after it,
2148 * then obviously it won't have room to grow, and the
2149 * kernel will put the new larger real someplace else with
2150 * unknown alignment (if we made it to here, then
2151 * fixed=false). Which is why we grow real by a full page
2152 * size, instead of by part of one; so that even if we get
2153 * moved, we can still guarantee alignment. But this does
2154 * mean that there is a padding of < 1 page both before
2155 * and after the aligned range; the "after" could could
2156 * cause problems for ARM emulation where it could butt in
2157 * to where we need to put the commpage.
2159 munmap((void *)real_start
, host_size
);
2160 real_size
= aligned_size
+ qemu_host_page_size
;
2161 real_start
= (unsigned long)
2162 mmap((void *)real_start
, real_size
, PROT_NONE
, flags
, -1, 0);
2163 if (real_start
== (unsigned long)-1) {
2164 return (unsigned long)-1;
2166 aligned_start
= ROUND_UP(real_start
, align
);
2168 aligned_start
= real_start
;
2171 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2172 /* On 32-bit ARM, we need to also be able to map the commpage. */
2173 int valid
= init_guest_commpage(aligned_start
- guest_start
,
2174 aligned_size
+ guest_start
);
2176 munmap((void *)real_start
, real_size
);
2177 return (unsigned long)-1;
2178 } else if (valid
== 0) {
2183 /* If nothing has said `return -1` or `goto try_again` yet,
2184 * then the address we have is good.
2189 /* That address didn't work. Unmap and try a different one.
2190 * The address the host picked because is typically right at
2191 * the top of the host address space and leaves the guest with
2192 * no usable address space. Resort to a linear search. We
2193 * already compensated for mmap_min_addr, so this should not
2194 * happen often. Probably means we got unlucky and host
2195 * address space randomization put a shared library somewhere
2198 * This is probably a good strategy if host_start, but is
2199 * probably a bad strategy if not, which means we got here
2200 * because of trouble with ARM commpage setup.
2202 munmap((void *)real_start
, real_size
);
2203 current_start
+= align
;
2204 if (host_start
== current_start
) {
2205 /* Theoretically possible if host doesn't have any suitably
2206 * aligned areas. Normally the first mmap will fail.
2208 return (unsigned long)-1;
2212 qemu_log_mask(CPU_LOG_PAGE
, "Reserved 0x%lx bytes of guest address space\n", host_size
);
2214 return aligned_start
;
2217 static void probe_guest_base(const char *image_name
,
2218 abi_ulong loaddr
, abi_ulong hiaddr
)
2220 /* Probe for a suitable guest base address, if the user has not set
2221 * it explicitly, and set guest_base appropriately.
2222 * In case of error we will print a suitable message and exit.
2225 if (!have_guest_base
&& !reserved_va
) {
2226 unsigned long host_start
, real_start
, host_size
;
2228 /* Round addresses to page boundaries. */
2229 loaddr
&= qemu_host_page_mask
;
2230 hiaddr
= HOST_PAGE_ALIGN(hiaddr
);
2232 if (loaddr
< mmap_min_addr
) {
2233 host_start
= HOST_PAGE_ALIGN(mmap_min_addr
);
2235 host_start
= loaddr
;
2236 if (host_start
!= loaddr
) {
2237 errmsg
= "Address overflow loading ELF binary";
2241 host_size
= hiaddr
- loaddr
;
2243 /* Setup the initial guest memory space with ranges gleaned from
2244 * the ELF image that is being loaded.
2246 real_start
= init_guest_space(host_start
, host_size
, loaddr
, false);
2247 if (real_start
== (unsigned long)-1) {
2248 errmsg
= "Unable to find space for application";
2251 guest_base
= real_start
- loaddr
;
2253 qemu_log_mask(CPU_LOG_PAGE
, "Relocating guest address space from 0x"
2254 TARGET_ABI_FMT_lx
" to 0x%lx\n",
2255 loaddr
, real_start
);
2260 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
2265 /* Load an ELF image into the address space.
2267 IMAGE_NAME is the filename of the image, to use in error messages.
2268 IMAGE_FD is the open file descriptor for the image.
2270 BPRM_BUF is a copy of the beginning of the file; this of course
2271 contains the elf file header at offset 0. It is assumed that this
2272 buffer is sufficiently aligned to present no problems to the host
2273 in accessing data at aligned offsets within the buffer.
2275 On return: INFO values will be filled in, as necessary or available. */
2277 static void load_elf_image(const char *image_name
, int image_fd
,
2278 struct image_info
*info
, char **pinterp_name
,
2279 char bprm_buf
[BPRM_BUF_SIZE
])
2281 struct elfhdr
*ehdr
= (struct elfhdr
*)bprm_buf
;
2282 struct elf_phdr
*phdr
;
2283 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
2287 /* First of all, some simple consistency checks */
2288 errmsg
= "Invalid ELF image for this architecture";
2289 if (!elf_check_ident(ehdr
)) {
2293 if (!elf_check_ehdr(ehdr
)) {
2297 i
= ehdr
->e_phnum
* sizeof(struct elf_phdr
);
2298 if (ehdr
->e_phoff
+ i
<= BPRM_BUF_SIZE
) {
2299 phdr
= (struct elf_phdr
*)(bprm_buf
+ ehdr
->e_phoff
);
2301 phdr
= (struct elf_phdr
*) alloca(i
);
2302 retval
= pread(image_fd
, phdr
, i
, ehdr
->e_phoff
);
2307 bswap_phdr(phdr
, ehdr
->e_phnum
);
2310 info
->pt_dynamic_addr
= 0;
2314 /* Find the maximum size of the image and allocate an appropriate
2315 amount of memory to handle that. */
2316 loaddr
= -1, hiaddr
= 0;
2317 info
->alignment
= 0;
2318 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
2319 if (phdr
[i
].p_type
== PT_LOAD
) {
2320 abi_ulong a
= phdr
[i
].p_vaddr
- phdr
[i
].p_offset
;
2324 a
= phdr
[i
].p_vaddr
+ phdr
[i
].p_memsz
;
2329 info
->alignment
|= phdr
[i
].p_align
;
2334 if (ehdr
->e_type
== ET_DYN
) {
2335 /* The image indicates that it can be loaded anywhere. Find a
2336 location that can hold the memory space required. If the
2337 image is pre-linked, LOADDR will be non-zero. Since we do
2338 not supply MAP_FIXED here we'll use that address if and
2339 only if it remains available. */
2340 load_addr
= target_mmap(loaddr
, hiaddr
- loaddr
, PROT_NONE
,
2341 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
,
2343 if (load_addr
== -1) {
2346 } else if (pinterp_name
!= NULL
) {
2347 /* This is the main executable. Make sure that the low
2348 address does not conflict with MMAP_MIN_ADDR or the
2349 QEMU application itself. */
2350 probe_guest_base(image_name
, loaddr
, hiaddr
);
2352 load_bias
= load_addr
- loaddr
;
2354 if (elf_is_fdpic(ehdr
)) {
2355 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
2356 g_malloc(sizeof(*loadsegs
) * info
->nsegs
);
2358 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
2359 switch (phdr
[i
].p_type
) {
2361 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
2364 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
2365 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
2366 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
2373 info
->load_bias
= load_bias
;
2374 info
->load_addr
= load_addr
;
2375 info
->entry
= ehdr
->e_entry
+ load_bias
;
2376 info
->start_code
= -1;
2378 info
->start_data
= -1;
2381 info
->elf_flags
= ehdr
->e_flags
;
2383 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
2384 struct elf_phdr
*eppnt
= phdr
+ i
;
2385 if (eppnt
->p_type
== PT_LOAD
) {
2386 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
, vaddr_len
;
2389 if (eppnt
->p_flags
& PF_R
) elf_prot
= PROT_READ
;
2390 if (eppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
2391 if (eppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
2393 vaddr
= load_bias
+ eppnt
->p_vaddr
;
2394 vaddr_po
= TARGET_ELF_PAGEOFFSET(vaddr
);
2395 vaddr_ps
= TARGET_ELF_PAGESTART(vaddr
);
2396 vaddr_len
= TARGET_ELF_PAGELENGTH(eppnt
->p_filesz
+ vaddr_po
);
2399 * Some segments may be completely empty without any backing file
2400 * segment, in that case just let zero_bss allocate an empty buffer
2403 if (eppnt
->p_filesz
!= 0) {
2404 error
= target_mmap(vaddr_ps
, vaddr_len
, elf_prot
,
2405 MAP_PRIVATE
| MAP_FIXED
,
2406 image_fd
, eppnt
->p_offset
- vaddr_po
);
2413 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
2414 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
2416 /* If the load segment requests extra zeros (e.g. bss), map it. */
2417 if (vaddr_ef
< vaddr_em
) {
2418 zero_bss(vaddr_ef
, vaddr_em
, elf_prot
);
2421 /* Find the full program boundaries. */
2422 if (elf_prot
& PROT_EXEC
) {
2423 if (vaddr
< info
->start_code
) {
2424 info
->start_code
= vaddr
;
2426 if (vaddr_ef
> info
->end_code
) {
2427 info
->end_code
= vaddr_ef
;
2430 if (elf_prot
& PROT_WRITE
) {
2431 if (vaddr
< info
->start_data
) {
2432 info
->start_data
= vaddr
;
2434 if (vaddr_ef
> info
->end_data
) {
2435 info
->end_data
= vaddr_ef
;
2437 if (vaddr_em
> info
->brk
) {
2438 info
->brk
= vaddr_em
;
2441 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
2444 if (*pinterp_name
) {
2445 errmsg
= "Multiple PT_INTERP entries";
2448 interp_name
= malloc(eppnt
->p_filesz
);
2453 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
2454 memcpy(interp_name
, bprm_buf
+ eppnt
->p_offset
,
2457 retval
= pread(image_fd
, interp_name
, eppnt
->p_filesz
,
2459 if (retval
!= eppnt
->p_filesz
) {
2463 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
2464 errmsg
= "Invalid PT_INTERP entry";
2467 *pinterp_name
= interp_name
;
2469 } else if (eppnt
->p_type
== PT_MIPS_ABIFLAGS
) {
2470 Mips_elf_abiflags_v0 abiflags
;
2471 if (eppnt
->p_filesz
< sizeof(Mips_elf_abiflags_v0
)) {
2472 errmsg
= "Invalid PT_MIPS_ABIFLAGS entry";
2475 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
2476 memcpy(&abiflags
, bprm_buf
+ eppnt
->p_offset
,
2477 sizeof(Mips_elf_abiflags_v0
));
2479 retval
= pread(image_fd
, &abiflags
, sizeof(Mips_elf_abiflags_v0
),
2481 if (retval
!= sizeof(Mips_elf_abiflags_v0
)) {
2485 bswap_mips_abiflags(&abiflags
);
2486 info
->fp_abi
= abiflags
.fp_abi
;
2491 if (info
->end_data
== 0) {
2492 info
->start_data
= info
->end_code
;
2493 info
->end_data
= info
->end_code
;
2494 info
->brk
= info
->end_code
;
2497 if (qemu_log_enabled()) {
2498 load_symbols(ehdr
, image_fd
, load_bias
);
2508 errmsg
= "Incomplete read of file header";
2512 errmsg
= strerror(errno
);
2514 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
2518 static void load_elf_interp(const char *filename
, struct image_info
*info
,
2519 char bprm_buf
[BPRM_BUF_SIZE
])
2523 fd
= open(path(filename
), O_RDONLY
);
2528 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
2532 if (retval
< BPRM_BUF_SIZE
) {
2533 memset(bprm_buf
+ retval
, 0, BPRM_BUF_SIZE
- retval
);
2536 load_elf_image(filename
, fd
, info
, NULL
, bprm_buf
);
2540 fprintf(stderr
, "%s: %s\n", filename
, strerror(errno
));
2544 static int symfind(const void *s0
, const void *s1
)
2546 target_ulong addr
= *(target_ulong
*)s0
;
2547 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
2549 if (addr
< sym
->st_value
) {
2551 } else if (addr
>= sym
->st_value
+ sym
->st_size
) {
2557 static const char *lookup_symbolxx(struct syminfo
*s
, target_ulong orig_addr
)
2559 #if ELF_CLASS == ELFCLASS32
2560 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
2562 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
2566 struct elf_sym
*sym
;
2568 sym
= bsearch(&orig_addr
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
2570 return s
->disas_strtab
+ sym
->st_name
;
2576 /* FIXME: This should use elf_ops.h */
2577 static int symcmp(const void *s0
, const void *s1
)
2579 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
2580 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
2581 return (sym0
->st_value
< sym1
->st_value
)
2583 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
2586 /* Best attempt to load symbols from this ELF object. */
2587 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
)
2589 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
2591 struct elf_shdr
*shdr
;
2592 char *strings
= NULL
;
2593 struct syminfo
*s
= NULL
;
2594 struct elf_sym
*new_syms
, *syms
= NULL
;
2596 shnum
= hdr
->e_shnum
;
2597 i
= shnum
* sizeof(struct elf_shdr
);
2598 shdr
= (struct elf_shdr
*)alloca(i
);
2599 if (pread(fd
, shdr
, i
, hdr
->e_shoff
) != i
) {
2603 bswap_shdr(shdr
, shnum
);
2604 for (i
= 0; i
< shnum
; ++i
) {
2605 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
2607 str_idx
= shdr
[i
].sh_link
;
2612 /* There will be no symbol table if the file was stripped. */
2616 /* Now know where the strtab and symtab are. Snarf them. */
2617 s
= g_try_new(struct syminfo
, 1);
2622 segsz
= shdr
[str_idx
].sh_size
;
2623 s
->disas_strtab
= strings
= g_try_malloc(segsz
);
2625 pread(fd
, strings
, segsz
, shdr
[str_idx
].sh_offset
) != segsz
) {
2629 segsz
= shdr
[sym_idx
].sh_size
;
2630 syms
= g_try_malloc(segsz
);
2631 if (!syms
|| pread(fd
, syms
, segsz
, shdr
[sym_idx
].sh_offset
) != segsz
) {
2635 if (segsz
/ sizeof(struct elf_sym
) > INT_MAX
) {
2636 /* Implausibly large symbol table: give up rather than ploughing
2637 * on with the number of symbols calculation overflowing
2641 nsyms
= segsz
/ sizeof(struct elf_sym
);
2642 for (i
= 0; i
< nsyms
; ) {
2643 bswap_sym(syms
+ i
);
2644 /* Throw away entries which we do not need. */
2645 if (syms
[i
].st_shndx
== SHN_UNDEF
2646 || syms
[i
].st_shndx
>= SHN_LORESERVE
2647 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
2649 syms
[i
] = syms
[nsyms
];
2652 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2653 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2654 syms
[i
].st_value
&= ~(target_ulong
)1;
2656 syms
[i
].st_value
+= load_bias
;
2661 /* No "useful" symbol. */
2666 /* Attempt to free the storage associated with the local symbols
2667 that we threw away. Whether or not this has any effect on the
2668 memory allocation depends on the malloc implementation and how
2669 many symbols we managed to discard. */
2670 new_syms
= g_try_renew(struct elf_sym
, syms
, nsyms
);
2671 if (new_syms
== NULL
) {
2676 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
2678 s
->disas_num_syms
= nsyms
;
2679 #if ELF_CLASS == ELFCLASS32
2680 s
->disas_symtab
.elf32
= syms
;
2682 s
->disas_symtab
.elf64
= syms
;
2684 s
->lookup_symbol
= lookup_symbolxx
;
2696 uint32_t get_elf_eflags(int fd
)
2702 /* Read ELF header */
2703 offset
= lseek(fd
, 0, SEEK_SET
);
2704 if (offset
== (off_t
) -1) {
2707 ret
= read(fd
, &ehdr
, sizeof(ehdr
));
2708 if (ret
< sizeof(ehdr
)) {
2711 offset
= lseek(fd
, offset
, SEEK_SET
);
2712 if (offset
== (off_t
) -1) {
2716 /* Check ELF signature */
2717 if (!elf_check_ident(&ehdr
)) {
2723 if (!elf_check_ehdr(&ehdr
)) {
2727 /* return architecture id */
2728 return ehdr
.e_flags
;
2731 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
)
2733 struct image_info interp_info
;
2734 struct elfhdr elf_ex
;
2735 char *elf_interpreter
= NULL
;
2738 memset(&interp_info
, 0, sizeof(interp_info
));
2740 interp_info
.fp_abi
= MIPS_ABI_FP_UNKNOWN
;
2743 info
->start_mmap
= (abi_ulong
)ELF_START_MMAP
;
2745 load_elf_image(bprm
->filename
, bprm
->fd
, info
,
2746 &elf_interpreter
, bprm
->buf
);
2748 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2749 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2750 when we load the interpreter. */
2751 elf_ex
= *(struct elfhdr
*)bprm
->buf
;
2753 /* Do this so that we can load the interpreter, if need be. We will
2754 change some of these later */
2755 bprm
->p
= setup_arg_pages(bprm
, info
);
2757 scratch
= g_new0(char, TARGET_PAGE_SIZE
);
2758 if (STACK_GROWS_DOWN
) {
2759 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
2760 bprm
->p
, info
->stack_limit
);
2761 info
->file_string
= bprm
->p
;
2762 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
2763 bprm
->p
, info
->stack_limit
);
2764 info
->env_strings
= bprm
->p
;
2765 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
2766 bprm
->p
, info
->stack_limit
);
2767 info
->arg_strings
= bprm
->p
;
2769 info
->arg_strings
= bprm
->p
;
2770 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
2771 bprm
->p
, info
->stack_limit
);
2772 info
->env_strings
= bprm
->p
;
2773 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
2774 bprm
->p
, info
->stack_limit
);
2775 info
->file_string
= bprm
->p
;
2776 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
2777 bprm
->p
, info
->stack_limit
);
2783 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
2787 if (elf_interpreter
) {
2788 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
2790 /* If the program interpreter is one of these two, then assume
2791 an iBCS2 image. Otherwise assume a native linux image. */
2793 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
2794 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
2795 info
->personality
= PER_SVR4
;
2797 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2798 and some applications "depend" upon this behavior. Since
2799 we do not have the power to recompile these, we emulate
2800 the SVr4 behavior. Sigh. */
2801 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
2802 MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
2805 info
->interp_fp_abi
= interp_info
.fp_abi
;
2809 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &elf_ex
,
2810 info
, (elf_interpreter
? &interp_info
: NULL
));
2811 info
->start_stack
= bprm
->p
;
2813 /* If we have an interpreter, set that as the program's entry point.
2814 Copy the load_bias as well, to help PPC64 interpret the entry
2815 point as a function descriptor. Do this after creating elf tables
2816 so that we copy the original program entry point into the AUXV. */
2817 if (elf_interpreter
) {
2818 info
->load_bias
= interp_info
.load_bias
;
2819 info
->entry
= interp_info
.entry
;
2820 free(elf_interpreter
);
2823 #ifdef USE_ELF_CORE_DUMP
2824 bprm
->core_dump
= &elf_core_dump
;
2830 #ifdef USE_ELF_CORE_DUMP
2832 * Definitions to generate Intel SVR4-like core files.
2833 * These mostly have the same names as the SVR4 types with "target_elf_"
2834 * tacked on the front to prevent clashes with linux definitions,
2835 * and the typedef forms have been avoided. This is mostly like
2836 * the SVR4 structure, but more Linuxy, with things that Linux does
2837 * not support and which gdb doesn't really use excluded.
2839 * Fields we don't dump (their contents is zero) in linux-user qemu
2840 * are marked with XXX.
2842 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2844 * Porting ELF coredump for target is (quite) simple process. First you
2845 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2846 * the target resides):
2848 * #define USE_ELF_CORE_DUMP
2850 * Next you define type of register set used for dumping. ELF specification
2851 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2853 * typedef <target_regtype> target_elf_greg_t;
2854 * #define ELF_NREG <number of registers>
2855 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2857 * Last step is to implement target specific function that copies registers
2858 * from given cpu into just specified register set. Prototype is:
2860 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2861 * const CPUArchState *env);
2864 * regs - copy register values into here (allocated and zeroed by caller)
2865 * env - copy registers from here
2867 * Example for ARM target is provided in this file.
2870 /* An ELF note in memory */
2874 size_t namesz_rounded
;
2877 size_t datasz_rounded
;
2882 struct target_elf_siginfo
{
2883 abi_int si_signo
; /* signal number */
2884 abi_int si_code
; /* extra code */
2885 abi_int si_errno
; /* errno */
2888 struct target_elf_prstatus
{
2889 struct target_elf_siginfo pr_info
; /* Info associated with signal */
2890 abi_short pr_cursig
; /* Current signal */
2891 abi_ulong pr_sigpend
; /* XXX */
2892 abi_ulong pr_sighold
; /* XXX */
2893 target_pid_t pr_pid
;
2894 target_pid_t pr_ppid
;
2895 target_pid_t pr_pgrp
;
2896 target_pid_t pr_sid
;
2897 struct target_timeval pr_utime
; /* XXX User time */
2898 struct target_timeval pr_stime
; /* XXX System time */
2899 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
2900 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
2901 target_elf_gregset_t pr_reg
; /* GP registers */
2902 abi_int pr_fpvalid
; /* XXX */
2905 #define ELF_PRARGSZ (80) /* Number of chars for args */
2907 struct target_elf_prpsinfo
{
2908 char pr_state
; /* numeric process state */
2909 char pr_sname
; /* char for pr_state */
2910 char pr_zomb
; /* zombie */
2911 char pr_nice
; /* nice val */
2912 abi_ulong pr_flag
; /* flags */
2913 target_uid_t pr_uid
;
2914 target_gid_t pr_gid
;
2915 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
2917 char pr_fname
[16] QEMU_NONSTRING
; /* filename of executable */
2918 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
2921 /* Here is the structure in which status of each thread is captured. */
2922 struct elf_thread_status
{
2923 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
2924 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
2926 elf_fpregset_t fpu
; /* NT_PRFPREG */
2927 struct task_struct
*thread
;
2928 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
2930 struct memelfnote notes
[1];
2934 struct elf_note_info
{
2935 struct memelfnote
*notes
;
2936 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
2937 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
2939 QTAILQ_HEAD(, elf_thread_status
) thread_list
;
2942 * Current version of ELF coredump doesn't support
2943 * dumping fp regs etc.
2945 elf_fpregset_t
*fpu
;
2946 elf_fpxregset_t
*xfpu
;
2947 int thread_status_size
;
2953 struct vm_area_struct
{
2954 target_ulong vma_start
; /* start vaddr of memory region */
2955 target_ulong vma_end
; /* end vaddr of memory region */
2956 abi_ulong vma_flags
; /* protection etc. flags for the region */
2957 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
2961 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
2962 int mm_count
; /* number of mappings */
2965 static struct mm_struct
*vma_init(void);
2966 static void vma_delete(struct mm_struct
*);
2967 static int vma_add_mapping(struct mm_struct
*, target_ulong
,
2968 target_ulong
, abi_ulong
);
2969 static int vma_get_mapping_count(const struct mm_struct
*);
2970 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
2971 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
2972 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
2973 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
2974 unsigned long flags
);
2976 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
2977 static void fill_note(struct memelfnote
*, const char *, int,
2978 unsigned int, void *);
2979 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
2980 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
2981 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
2982 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
2983 static size_t note_size(const struct memelfnote
*);
2984 static void free_note_info(struct elf_note_info
*);
2985 static int fill_note_info(struct elf_note_info
*, long, const CPUArchState
*);
2986 static void fill_thread_info(struct elf_note_info
*, const CPUArchState
*);
2987 static int core_dump_filename(const TaskState
*, char *, size_t);
2989 static int dump_write(int, const void *, size_t);
2990 static int write_note(struct memelfnote
*, int);
2991 static int write_note_info(struct elf_note_info
*, int);
2994 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
2996 prstatus
->pr_info
.si_signo
= tswap32(prstatus
->pr_info
.si_signo
);
2997 prstatus
->pr_info
.si_code
= tswap32(prstatus
->pr_info
.si_code
);
2998 prstatus
->pr_info
.si_errno
= tswap32(prstatus
->pr_info
.si_errno
);
2999 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
3000 prstatus
->pr_sigpend
= tswapal(prstatus
->pr_sigpend
);
3001 prstatus
->pr_sighold
= tswapal(prstatus
->pr_sighold
);
3002 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
3003 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
3004 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
3005 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
3006 /* cpu times are not filled, so we skip them */
3007 /* regs should be in correct format already */
3008 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
3011 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
3013 psinfo
->pr_flag
= tswapal(psinfo
->pr_flag
);
3014 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
3015 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
3016 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
3017 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
3018 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
3019 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
3022 static void bswap_note(struct elf_note
*en
)
3024 bswap32s(&en
->n_namesz
);
3025 bswap32s(&en
->n_descsz
);
3026 bswap32s(&en
->n_type
);
3029 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
3030 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
3031 static inline void bswap_note(struct elf_note
*en
) { }
3032 #endif /* BSWAP_NEEDED */
3035 * Minimal support for linux memory regions. These are needed
3036 * when we are finding out what memory exactly belongs to
3037 * emulated process. No locks needed here, as long as
3038 * thread that received the signal is stopped.
3041 static struct mm_struct
*vma_init(void)
3043 struct mm_struct
*mm
;
3045 if ((mm
= g_malloc(sizeof (*mm
))) == NULL
)
3049 QTAILQ_INIT(&mm
->mm_mmap
);
3054 static void vma_delete(struct mm_struct
*mm
)
3056 struct vm_area_struct
*vma
;
3058 while ((vma
= vma_first(mm
)) != NULL
) {
3059 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
3065 static int vma_add_mapping(struct mm_struct
*mm
, target_ulong start
,
3066 target_ulong end
, abi_ulong flags
)
3068 struct vm_area_struct
*vma
;
3070 if ((vma
= g_malloc0(sizeof (*vma
))) == NULL
)
3073 vma
->vma_start
= start
;
3075 vma
->vma_flags
= flags
;
3077 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
3083 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
3085 return (QTAILQ_FIRST(&mm
->mm_mmap
));
3088 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
3090 return (QTAILQ_NEXT(vma
, vma_link
));
3093 static int vma_get_mapping_count(const struct mm_struct
*mm
)
3095 return (mm
->mm_count
);
3099 * Calculate file (dump) size of given memory region.
3101 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
3103 /* if we cannot even read the first page, skip it */
3104 if (!access_ok(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
3108 * Usually we don't dump executable pages as they contain
3109 * non-writable code that debugger can read directly from
3110 * target library etc. However, thread stacks are marked
3111 * also executable so we read in first page of given region
3112 * and check whether it contains elf header. If there is
3113 * no elf header, we dump it.
3115 if (vma
->vma_flags
& PROT_EXEC
) {
3116 char page
[TARGET_PAGE_SIZE
];
3118 copy_from_user(page
, vma
->vma_start
, sizeof (page
));
3119 if ((page
[EI_MAG0
] == ELFMAG0
) &&
3120 (page
[EI_MAG1
] == ELFMAG1
) &&
3121 (page
[EI_MAG2
] == ELFMAG2
) &&
3122 (page
[EI_MAG3
] == ELFMAG3
)) {
3124 * Mappings are possibly from ELF binary. Don't dump
3131 return (vma
->vma_end
- vma
->vma_start
);
3134 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
3135 unsigned long flags
)
3137 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
3139 vma_add_mapping(mm
, start
, end
, flags
);
3143 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
3144 unsigned int sz
, void *data
)
3146 unsigned int namesz
;
3148 namesz
= strlen(name
) + 1;
3150 note
->namesz
= namesz
;
3151 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
3154 note
->datasz_rounded
= roundup(sz
, sizeof (int32_t));
3159 * We calculate rounded up note size here as specified by
3162 note
->notesz
= sizeof (struct elf_note
) +
3163 note
->namesz_rounded
+ note
->datasz_rounded
;
3166 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
3169 (void) memset(elf
, 0, sizeof(*elf
));
3171 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
3172 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
3173 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
3174 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
3175 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
3177 elf
->e_type
= ET_CORE
;
3178 elf
->e_machine
= machine
;
3179 elf
->e_version
= EV_CURRENT
;
3180 elf
->e_phoff
= sizeof(struct elfhdr
);
3181 elf
->e_flags
= flags
;
3182 elf
->e_ehsize
= sizeof(struct elfhdr
);
3183 elf
->e_phentsize
= sizeof(struct elf_phdr
);
3184 elf
->e_phnum
= segs
;
3189 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
3191 phdr
->p_type
= PT_NOTE
;
3192 phdr
->p_offset
= offset
;
3195 phdr
->p_filesz
= sz
;
3200 bswap_phdr(phdr
, 1);
3203 static size_t note_size(const struct memelfnote
*note
)
3205 return (note
->notesz
);
3208 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
3209 const TaskState
*ts
, int signr
)
3211 (void) memset(prstatus
, 0, sizeof (*prstatus
));
3212 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
3213 prstatus
->pr_pid
= ts
->ts_tid
;
3214 prstatus
->pr_ppid
= getppid();
3215 prstatus
->pr_pgrp
= getpgrp();
3216 prstatus
->pr_sid
= getsid(0);
3218 bswap_prstatus(prstatus
);
3221 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
3223 char *base_filename
;
3224 unsigned int i
, len
;
3226 (void) memset(psinfo
, 0, sizeof (*psinfo
));
3228 len
= ts
->info
->arg_end
- ts
->info
->arg_start
;
3229 if (len
>= ELF_PRARGSZ
)
3230 len
= ELF_PRARGSZ
- 1;
3231 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_start
, len
))
3233 for (i
= 0; i
< len
; i
++)
3234 if (psinfo
->pr_psargs
[i
] == 0)
3235 psinfo
->pr_psargs
[i
] = ' ';
3236 psinfo
->pr_psargs
[len
] = 0;
3238 psinfo
->pr_pid
= getpid();
3239 psinfo
->pr_ppid
= getppid();
3240 psinfo
->pr_pgrp
= getpgrp();
3241 psinfo
->pr_sid
= getsid(0);
3242 psinfo
->pr_uid
= getuid();
3243 psinfo
->pr_gid
= getgid();
3245 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
3247 * Using strncpy here is fine: at max-length,
3248 * this field is not NUL-terminated.
3250 (void) strncpy(psinfo
->pr_fname
, base_filename
,
3251 sizeof(psinfo
->pr_fname
));
3253 g_free(base_filename
);
3254 bswap_psinfo(psinfo
);
3258 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
3260 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
3261 elf_addr_t orig_auxv
= auxv
;
3263 int len
= ts
->info
->auxv_len
;
3266 * Auxiliary vector is stored in target process stack. It contains
3267 * {type, value} pairs that we need to dump into note. This is not
3268 * strictly necessary but we do it here for sake of completeness.
3271 /* read in whole auxv vector and copy it to memelfnote */
3272 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
3274 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
3275 unlock_user(ptr
, auxv
, len
);
3280 * Constructs name of coredump file. We have following convention
3282 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3284 * Returns 0 in case of success, -1 otherwise (errno is set).
3286 static int core_dump_filename(const TaskState
*ts
, char *buf
,
3290 char *base_filename
= NULL
;
3294 assert(bufsize
>= PATH_MAX
);
3296 if (gettimeofday(&tv
, NULL
) < 0) {
3297 (void) fprintf(stderr
, "unable to get current timestamp: %s",
3302 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
3303 (void) strftime(timestamp
, sizeof (timestamp
), "%Y%m%d-%H%M%S",
3304 localtime_r(&tv
.tv_sec
, &tm
));
3305 (void) snprintf(buf
, bufsize
, "qemu_%s_%s_%d.core",
3306 base_filename
, timestamp
, (int)getpid());
3307 g_free(base_filename
);
3312 static int dump_write(int fd
, const void *ptr
, size_t size
)
3314 const char *bufp
= (const char *)ptr
;
3315 ssize_t bytes_written
, bytes_left
;
3316 struct rlimit dumpsize
;
3320 getrlimit(RLIMIT_CORE
, &dumpsize
);
3321 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
3322 if (errno
== ESPIPE
) { /* not a seekable stream */
3328 if (dumpsize
.rlim_cur
<= pos
) {
3330 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
3333 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
3334 bytes_left
= limit_left
>= size
? size
: limit_left
;
3339 * In normal conditions, single write(2) should do but
3340 * in case of socket etc. this mechanism is more portable.
3343 bytes_written
= write(fd
, bufp
, bytes_left
);
3344 if (bytes_written
< 0) {
3348 } else if (bytes_written
== 0) { /* eof */
3351 bufp
+= bytes_written
;
3352 bytes_left
-= bytes_written
;
3353 } while (bytes_left
> 0);
3358 static int write_note(struct memelfnote
*men
, int fd
)
3362 en
.n_namesz
= men
->namesz
;
3363 en
.n_type
= men
->type
;
3364 en
.n_descsz
= men
->datasz
;
3368 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
3370 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
3372 if (dump_write(fd
, men
->data
, men
->datasz_rounded
) != 0)
3378 static void fill_thread_info(struct elf_note_info
*info
, const CPUArchState
*env
)
3380 CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
3381 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
3382 struct elf_thread_status
*ets
;
3384 ets
= g_malloc0(sizeof (*ets
));
3385 ets
->num_notes
= 1; /* only prstatus is dumped */
3386 fill_prstatus(&ets
->prstatus
, ts
, 0);
3387 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
3388 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
3391 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
3393 info
->notes_size
+= note_size(&ets
->notes
[0]);
3396 static void init_note_info(struct elf_note_info
*info
)
3398 /* Initialize the elf_note_info structure so that it is at
3399 * least safe to call free_note_info() on it. Must be
3400 * called before calling fill_note_info().
3402 memset(info
, 0, sizeof (*info
));
3403 QTAILQ_INIT(&info
->thread_list
);
3406 static int fill_note_info(struct elf_note_info
*info
,
3407 long signr
, const CPUArchState
*env
)
3410 CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
3411 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
3414 info
->notes
= g_new0(struct memelfnote
, NUMNOTES
);
3415 if (info
->notes
== NULL
)
3417 info
->prstatus
= g_malloc0(sizeof (*info
->prstatus
));
3418 if (info
->prstatus
== NULL
)
3420 info
->psinfo
= g_malloc0(sizeof (*info
->psinfo
));
3421 if (info
->prstatus
== NULL
)
3425 * First fill in status (and registers) of current thread
3426 * including process info & aux vector.
3428 fill_prstatus(info
->prstatus
, ts
, signr
);
3429 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
3430 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
3431 sizeof (*info
->prstatus
), info
->prstatus
);
3432 fill_psinfo(info
->psinfo
, ts
);
3433 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
3434 sizeof (*info
->psinfo
), info
->psinfo
);
3435 fill_auxv_note(&info
->notes
[2], ts
);
3438 info
->notes_size
= 0;
3439 for (i
= 0; i
< info
->numnote
; i
++)
3440 info
->notes_size
+= note_size(&info
->notes
[i
]);
3442 /* read and fill status of all threads */
3445 if (cpu
== thread_cpu
) {
3448 fill_thread_info(info
, (CPUArchState
*)cpu
->env_ptr
);
3455 static void free_note_info(struct elf_note_info
*info
)
3457 struct elf_thread_status
*ets
;
3459 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
3460 ets
= QTAILQ_FIRST(&info
->thread_list
);
3461 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
3465 g_free(info
->prstatus
);
3466 g_free(info
->psinfo
);
3467 g_free(info
->notes
);
3470 static int write_note_info(struct elf_note_info
*info
, int fd
)
3472 struct elf_thread_status
*ets
;
3475 /* write prstatus, psinfo and auxv for current thread */
3476 for (i
= 0; i
< info
->numnote
; i
++)
3477 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
3480 /* write prstatus for each thread */
3481 QTAILQ_FOREACH(ets
, &info
->thread_list
, ets_link
) {
3482 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
3490 * Write out ELF coredump.
3492 * See documentation of ELF object file format in:
3493 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3495 * Coredump format in linux is following:
3497 * 0 +----------------------+ \
3498 * | ELF header | ET_CORE |
3499 * +----------------------+ |
3500 * | ELF program headers | |--- headers
3501 * | - NOTE section | |
3502 * | - PT_LOAD sections | |
3503 * +----------------------+ /
3508 * +----------------------+ <-- aligned to target page
3509 * | Process memory dump |
3514 * +----------------------+
3516 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3517 * NT_PRSINFO -> struct elf_prpsinfo
3518 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3520 * Format follows System V format as close as possible. Current
3521 * version limitations are as follows:
3522 * - no floating point registers are dumped
3524 * Function returns 0 in case of success, negative errno otherwise.
3526 * TODO: make this work also during runtime: it should be
3527 * possible to force coredump from running process and then
3528 * continue processing. For example qemu could set up SIGUSR2
3529 * handler (provided that target process haven't registered
3530 * handler for that) that does the dump when signal is received.
3532 static int elf_core_dump(int signr
, const CPUArchState
*env
)
3534 const CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
3535 const TaskState
*ts
= (const TaskState
*)cpu
->opaque
;
3536 struct vm_area_struct
*vma
= NULL
;
3537 char corefile
[PATH_MAX
];
3538 struct elf_note_info info
;
3540 struct elf_phdr phdr
;
3541 struct rlimit dumpsize
;
3542 struct mm_struct
*mm
= NULL
;
3543 off_t offset
= 0, data_offset
= 0;
3547 init_note_info(&info
);
3550 getrlimit(RLIMIT_CORE
, &dumpsize
);
3551 if (dumpsize
.rlim_cur
== 0)
3554 if (core_dump_filename(ts
, corefile
, sizeof (corefile
)) < 0)
3557 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
3558 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
3562 * Walk through target process memory mappings and
3563 * set up structure containing this information. After
3564 * this point vma_xxx functions can be used.
3566 if ((mm
= vma_init()) == NULL
)
3569 walk_memory_regions(mm
, vma_walker
);
3570 segs
= vma_get_mapping_count(mm
);
3573 * Construct valid coredump ELF header. We also
3574 * add one more segment for notes.
3576 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
3577 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
3580 /* fill in the in-memory version of notes */
3581 if (fill_note_info(&info
, signr
, env
) < 0)
3584 offset
+= sizeof (elf
); /* elf header */
3585 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
3587 /* write out notes program header */
3588 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
3590 offset
+= info
.notes_size
;
3591 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
3595 * ELF specification wants data to start at page boundary so
3598 data_offset
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
3601 * Write program headers for memory regions mapped in
3602 * the target process.
3604 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3605 (void) memset(&phdr
, 0, sizeof (phdr
));
3607 phdr
.p_type
= PT_LOAD
;
3608 phdr
.p_offset
= offset
;
3609 phdr
.p_vaddr
= vma
->vma_start
;
3611 phdr
.p_filesz
= vma_dump_size(vma
);
3612 offset
+= phdr
.p_filesz
;
3613 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
3614 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
3615 if (vma
->vma_flags
& PROT_WRITE
)
3616 phdr
.p_flags
|= PF_W
;
3617 if (vma
->vma_flags
& PROT_EXEC
)
3618 phdr
.p_flags
|= PF_X
;
3619 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
3621 bswap_phdr(&phdr
, 1);
3622 if (dump_write(fd
, &phdr
, sizeof(phdr
)) != 0) {
3628 * Next we write notes just after program headers. No
3629 * alignment needed here.
3631 if (write_note_info(&info
, fd
) < 0)
3634 /* align data to page boundary */
3635 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
3639 * Finally we can dump process memory into corefile as well.
3641 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3645 end
= vma
->vma_start
+ vma_dump_size(vma
);
3647 for (addr
= vma
->vma_start
; addr
< end
;
3648 addr
+= TARGET_PAGE_SIZE
) {
3649 char page
[TARGET_PAGE_SIZE
];
3653 * Read in page from target process memory and
3654 * write it to coredump file.
3656 error
= copy_from_user(page
, addr
, sizeof (page
));
3658 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
3663 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
3669 free_note_info(&info
);
3678 #endif /* USE_ELF_CORE_DUMP */
3680 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
3682 init_thread(regs
, infop
);