configure / meson: Move check for drm.h to meson.build
[qemu/ar7.git] / target / hppa / op_helper.c
blob7ae31e1a15453a476d1702632790893748a886c9
1 /*
2 * Helpers for HPPA instructions.
4 * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "exec/cpu_ldst.h"
25 #include "qemu/timer.h"
26 #include "sysemu/runstate.h"
27 #include "fpu/softfloat.h"
28 #include "trace.h"
30 void QEMU_NORETURN HELPER(excp)(CPUHPPAState *env, int excp)
32 CPUState *cs = env_cpu(env);
34 cs->exception_index = excp;
35 cpu_loop_exit(cs);
38 void QEMU_NORETURN hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra)
40 CPUState *cs = env_cpu(env);
42 cs->exception_index = excp;
43 cpu_loop_exit_restore(cs, ra);
46 void HELPER(tsv)(CPUHPPAState *env, target_ureg cond)
48 if (unlikely((target_sreg)cond < 0)) {
49 hppa_dynamic_excp(env, EXCP_OVERFLOW, GETPC());
53 void HELPER(tcond)(CPUHPPAState *env, target_ureg cond)
55 if (unlikely(cond)) {
56 hppa_dynamic_excp(env, EXCP_COND, GETPC());
60 static void atomic_store_3(CPUHPPAState *env, target_ulong addr, uint32_t val,
61 uint32_t mask, uintptr_t ra)
63 #ifdef CONFIG_USER_ONLY
64 uint32_t old, new, cmp;
66 uint32_t *haddr = g2h(addr - 1);
67 old = *haddr;
68 while (1) {
69 new = (old & ~mask) | (val & mask);
70 cmp = qatomic_cmpxchg(haddr, old, new);
71 if (cmp == old) {
72 return;
74 old = cmp;
76 #else
77 /* FIXME -- we can do better. */
78 cpu_loop_exit_atomic(env_cpu(env), ra);
79 #endif
82 static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ureg val,
83 bool parallel, uintptr_t ra)
85 switch (addr & 3) {
86 case 3:
87 cpu_stb_data_ra(env, addr, val, ra);
88 break;
89 case 2:
90 cpu_stw_data_ra(env, addr, val, ra);
91 break;
92 case 1:
93 /* The 3 byte store must appear atomic. */
94 if (parallel) {
95 atomic_store_3(env, addr, val, 0x00ffffffu, ra);
96 } else {
97 cpu_stb_data_ra(env, addr, val >> 16, ra);
98 cpu_stw_data_ra(env, addr + 1, val, ra);
100 break;
101 default:
102 cpu_stl_data_ra(env, addr, val, ra);
103 break;
107 void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ureg val)
109 do_stby_b(env, addr, val, false, GETPC());
112 void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr,
113 target_ureg val)
115 do_stby_b(env, addr, val, true, GETPC());
118 static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ureg val,
119 bool parallel, uintptr_t ra)
121 switch (addr & 3) {
122 case 3:
123 /* The 3 byte store must appear atomic. */
124 if (parallel) {
125 atomic_store_3(env, addr - 3, val, 0xffffff00u, ra);
126 } else {
127 cpu_stw_data_ra(env, addr - 3, val >> 16, ra);
128 cpu_stb_data_ra(env, addr - 1, val >> 8, ra);
130 break;
131 case 2:
132 cpu_stw_data_ra(env, addr - 2, val >> 16, ra);
133 break;
134 case 1:
135 cpu_stb_data_ra(env, addr - 1, val >> 24, ra);
136 break;
137 default:
138 /* Nothing is stored, but protection is checked and the
139 cacheline is marked dirty. */
140 probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra);
141 break;
145 void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ureg val)
147 do_stby_e(env, addr, val, false, GETPC());
150 void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr,
151 target_ureg val)
153 do_stby_e(env, addr, val, true, GETPC());
156 void HELPER(ldc_check)(target_ulong addr)
158 if (unlikely(addr & 0xf)) {
159 qemu_log_mask(LOG_GUEST_ERROR,
160 "Undefined ldc to unaligned address mod 16: "
161 TARGET_FMT_lx "\n", addr);
165 target_ureg HELPER(probe)(CPUHPPAState *env, target_ulong addr,
166 uint32_t level, uint32_t want)
168 #ifdef CONFIG_USER_ONLY
169 return page_check_range(addr, 1, want);
170 #else
171 int prot, excp;
172 hwaddr phys;
174 trace_hppa_tlb_probe(addr, level, want);
175 /* Fail if the requested privilege level is higher than current. */
176 if (level < (env->iaoq_f & 3)) {
177 return 0;
180 excp = hppa_get_physical_address(env, addr, level, 0, &phys, &prot);
181 if (excp >= 0) {
182 if (env->psw & PSW_Q) {
183 /* ??? Needs tweaking for hppa64. */
184 env->cr[CR_IOR] = addr;
185 env->cr[CR_ISR] = addr >> 32;
187 if (excp == EXCP_DTLB_MISS) {
188 excp = EXCP_NA_DTLB_MISS;
190 hppa_dynamic_excp(env, excp, GETPC());
192 return (want & prot) != 0;
193 #endif
196 void HELPER(loaded_fr0)(CPUHPPAState *env)
198 uint32_t shadow = env->fr[0] >> 32;
199 int rm, d;
201 env->fr0_shadow = shadow;
203 switch (extract32(shadow, 9, 2)) {
204 default:
205 rm = float_round_nearest_even;
206 break;
207 case 1:
208 rm = float_round_to_zero;
209 break;
210 case 2:
211 rm = float_round_up;
212 break;
213 case 3:
214 rm = float_round_down;
215 break;
217 set_float_rounding_mode(rm, &env->fp_status);
219 d = extract32(shadow, 5, 1);
220 set_flush_to_zero(d, &env->fp_status);
221 set_flush_inputs_to_zero(d, &env->fp_status);
224 void cpu_hppa_loaded_fr0(CPUHPPAState *env)
226 helper_loaded_fr0(env);
229 #define CONVERT_BIT(X, SRC, DST) \
230 ((SRC) > (DST) \
231 ? (X) / ((SRC) / (DST)) & (DST) \
232 : ((X) & (SRC)) * ((DST) / (SRC)))
234 static void update_fr0_op(CPUHPPAState *env, uintptr_t ra)
236 uint32_t soft_exp = get_float_exception_flags(&env->fp_status);
237 uint32_t hard_exp = 0;
238 uint32_t shadow = env->fr0_shadow;
240 if (likely(soft_exp == 0)) {
241 env->fr[0] = (uint64_t)shadow << 32;
242 return;
244 set_float_exception_flags(0, &env->fp_status);
246 hard_exp |= CONVERT_BIT(soft_exp, float_flag_inexact, 1u << 0);
247 hard_exp |= CONVERT_BIT(soft_exp, float_flag_underflow, 1u << 1);
248 hard_exp |= CONVERT_BIT(soft_exp, float_flag_overflow, 1u << 2);
249 hard_exp |= CONVERT_BIT(soft_exp, float_flag_divbyzero, 1u << 3);
250 hard_exp |= CONVERT_BIT(soft_exp, float_flag_invalid, 1u << 4);
251 shadow |= hard_exp << (32 - 5);
252 env->fr0_shadow = shadow;
253 env->fr[0] = (uint64_t)shadow << 32;
255 if (hard_exp & shadow) {
256 hppa_dynamic_excp(env, EXCP_ASSIST, ra);
260 float32 HELPER(fsqrt_s)(CPUHPPAState *env, float32 arg)
262 float32 ret = float32_sqrt(arg, &env->fp_status);
263 update_fr0_op(env, GETPC());
264 return ret;
267 float32 HELPER(frnd_s)(CPUHPPAState *env, float32 arg)
269 float32 ret = float32_round_to_int(arg, &env->fp_status);
270 update_fr0_op(env, GETPC());
271 return ret;
274 float32 HELPER(fadd_s)(CPUHPPAState *env, float32 a, float32 b)
276 float32 ret = float32_add(a, b, &env->fp_status);
277 update_fr0_op(env, GETPC());
278 return ret;
281 float32 HELPER(fsub_s)(CPUHPPAState *env, float32 a, float32 b)
283 float32 ret = float32_sub(a, b, &env->fp_status);
284 update_fr0_op(env, GETPC());
285 return ret;
288 float32 HELPER(fmpy_s)(CPUHPPAState *env, float32 a, float32 b)
290 float32 ret = float32_mul(a, b, &env->fp_status);
291 update_fr0_op(env, GETPC());
292 return ret;
295 float32 HELPER(fdiv_s)(CPUHPPAState *env, float32 a, float32 b)
297 float32 ret = float32_div(a, b, &env->fp_status);
298 update_fr0_op(env, GETPC());
299 return ret;
302 float64 HELPER(fsqrt_d)(CPUHPPAState *env, float64 arg)
304 float64 ret = float64_sqrt(arg, &env->fp_status);
305 update_fr0_op(env, GETPC());
306 return ret;
309 float64 HELPER(frnd_d)(CPUHPPAState *env, float64 arg)
311 float64 ret = float64_round_to_int(arg, &env->fp_status);
312 update_fr0_op(env, GETPC());
313 return ret;
316 float64 HELPER(fadd_d)(CPUHPPAState *env, float64 a, float64 b)
318 float64 ret = float64_add(a, b, &env->fp_status);
319 update_fr0_op(env, GETPC());
320 return ret;
323 float64 HELPER(fsub_d)(CPUHPPAState *env, float64 a, float64 b)
325 float64 ret = float64_sub(a, b, &env->fp_status);
326 update_fr0_op(env, GETPC());
327 return ret;
330 float64 HELPER(fmpy_d)(CPUHPPAState *env, float64 a, float64 b)
332 float64 ret = float64_mul(a, b, &env->fp_status);
333 update_fr0_op(env, GETPC());
334 return ret;
337 float64 HELPER(fdiv_d)(CPUHPPAState *env, float64 a, float64 b)
339 float64 ret = float64_div(a, b, &env->fp_status);
340 update_fr0_op(env, GETPC());
341 return ret;
344 float64 HELPER(fcnv_s_d)(CPUHPPAState *env, float32 arg)
346 float64 ret = float32_to_float64(arg, &env->fp_status);
347 update_fr0_op(env, GETPC());
348 return ret;
351 float32 HELPER(fcnv_d_s)(CPUHPPAState *env, float64 arg)
353 float32 ret = float64_to_float32(arg, &env->fp_status);
354 update_fr0_op(env, GETPC());
355 return ret;
358 float32 HELPER(fcnv_w_s)(CPUHPPAState *env, int32_t arg)
360 float32 ret = int32_to_float32(arg, &env->fp_status);
361 update_fr0_op(env, GETPC());
362 return ret;
365 float32 HELPER(fcnv_dw_s)(CPUHPPAState *env, int64_t arg)
367 float32 ret = int64_to_float32(arg, &env->fp_status);
368 update_fr0_op(env, GETPC());
369 return ret;
372 float64 HELPER(fcnv_w_d)(CPUHPPAState *env, int32_t arg)
374 float64 ret = int32_to_float64(arg, &env->fp_status);
375 update_fr0_op(env, GETPC());
376 return ret;
379 float64 HELPER(fcnv_dw_d)(CPUHPPAState *env, int64_t arg)
381 float64 ret = int64_to_float64(arg, &env->fp_status);
382 update_fr0_op(env, GETPC());
383 return ret;
386 int32_t HELPER(fcnv_s_w)(CPUHPPAState *env, float32 arg)
388 int32_t ret = float32_to_int32(arg, &env->fp_status);
389 update_fr0_op(env, GETPC());
390 return ret;
393 int32_t HELPER(fcnv_d_w)(CPUHPPAState *env, float64 arg)
395 int32_t ret = float64_to_int32(arg, &env->fp_status);
396 update_fr0_op(env, GETPC());
397 return ret;
400 int64_t HELPER(fcnv_s_dw)(CPUHPPAState *env, float32 arg)
402 int64_t ret = float32_to_int64(arg, &env->fp_status);
403 update_fr0_op(env, GETPC());
404 return ret;
407 int64_t HELPER(fcnv_d_dw)(CPUHPPAState *env, float64 arg)
409 int64_t ret = float64_to_int64(arg, &env->fp_status);
410 update_fr0_op(env, GETPC());
411 return ret;
414 int32_t HELPER(fcnv_t_s_w)(CPUHPPAState *env, float32 arg)
416 int32_t ret = float32_to_int32_round_to_zero(arg, &env->fp_status);
417 update_fr0_op(env, GETPC());
418 return ret;
421 int32_t HELPER(fcnv_t_d_w)(CPUHPPAState *env, float64 arg)
423 int32_t ret = float64_to_int32_round_to_zero(arg, &env->fp_status);
424 update_fr0_op(env, GETPC());
425 return ret;
428 int64_t HELPER(fcnv_t_s_dw)(CPUHPPAState *env, float32 arg)
430 int64_t ret = float32_to_int64_round_to_zero(arg, &env->fp_status);
431 update_fr0_op(env, GETPC());
432 return ret;
435 int64_t HELPER(fcnv_t_d_dw)(CPUHPPAState *env, float64 arg)
437 int64_t ret = float64_to_int64_round_to_zero(arg, &env->fp_status);
438 update_fr0_op(env, GETPC());
439 return ret;
442 float32 HELPER(fcnv_uw_s)(CPUHPPAState *env, uint32_t arg)
444 float32 ret = uint32_to_float32(arg, &env->fp_status);
445 update_fr0_op(env, GETPC());
446 return ret;
449 float32 HELPER(fcnv_udw_s)(CPUHPPAState *env, uint64_t arg)
451 float32 ret = uint64_to_float32(arg, &env->fp_status);
452 update_fr0_op(env, GETPC());
453 return ret;
456 float64 HELPER(fcnv_uw_d)(CPUHPPAState *env, uint32_t arg)
458 float64 ret = uint32_to_float64(arg, &env->fp_status);
459 update_fr0_op(env, GETPC());
460 return ret;
463 float64 HELPER(fcnv_udw_d)(CPUHPPAState *env, uint64_t arg)
465 float64 ret = uint64_to_float64(arg, &env->fp_status);
466 update_fr0_op(env, GETPC());
467 return ret;
470 uint32_t HELPER(fcnv_s_uw)(CPUHPPAState *env, float32 arg)
472 uint32_t ret = float32_to_uint32(arg, &env->fp_status);
473 update_fr0_op(env, GETPC());
474 return ret;
477 uint32_t HELPER(fcnv_d_uw)(CPUHPPAState *env, float64 arg)
479 uint32_t ret = float64_to_uint32(arg, &env->fp_status);
480 update_fr0_op(env, GETPC());
481 return ret;
484 uint64_t HELPER(fcnv_s_udw)(CPUHPPAState *env, float32 arg)
486 uint64_t ret = float32_to_uint64(arg, &env->fp_status);
487 update_fr0_op(env, GETPC());
488 return ret;
491 uint64_t HELPER(fcnv_d_udw)(CPUHPPAState *env, float64 arg)
493 uint64_t ret = float64_to_uint64(arg, &env->fp_status);
494 update_fr0_op(env, GETPC());
495 return ret;
498 uint32_t HELPER(fcnv_t_s_uw)(CPUHPPAState *env, float32 arg)
500 uint32_t ret = float32_to_uint32_round_to_zero(arg, &env->fp_status);
501 update_fr0_op(env, GETPC());
502 return ret;
505 uint32_t HELPER(fcnv_t_d_uw)(CPUHPPAState *env, float64 arg)
507 uint32_t ret = float64_to_uint32_round_to_zero(arg, &env->fp_status);
508 update_fr0_op(env, GETPC());
509 return ret;
512 uint64_t HELPER(fcnv_t_s_udw)(CPUHPPAState *env, float32 arg)
514 uint64_t ret = float32_to_uint64_round_to_zero(arg, &env->fp_status);
515 update_fr0_op(env, GETPC());
516 return ret;
519 uint64_t HELPER(fcnv_t_d_udw)(CPUHPPAState *env, float64 arg)
521 uint64_t ret = float64_to_uint64_round_to_zero(arg, &env->fp_status);
522 update_fr0_op(env, GETPC());
523 return ret;
526 static void update_fr0_cmp(CPUHPPAState *env, uint32_t y,
527 uint32_t c, FloatRelation r)
529 uint32_t shadow = env->fr0_shadow;
531 switch (r) {
532 case float_relation_greater:
533 c = extract32(c, 4, 1);
534 break;
535 case float_relation_less:
536 c = extract32(c, 3, 1);
537 break;
538 case float_relation_equal:
539 c = extract32(c, 2, 1);
540 break;
541 case float_relation_unordered:
542 c = extract32(c, 1, 1);
543 break;
544 default:
545 g_assert_not_reached();
548 if (y) {
549 /* targeted comparison */
550 /* set fpsr[ca[y - 1]] to current compare */
551 shadow = deposit32(shadow, 21 - (y - 1), 1, c);
552 } else {
553 /* queued comparison */
554 /* shift cq right by one place */
555 shadow = deposit32(shadow, 11, 10, extract32(shadow, 12, 10));
556 /* move fpsr[c] to fpsr[cq[0]] */
557 shadow = deposit32(shadow, 21, 1, extract32(shadow, 26, 1));
558 /* set fpsr[c] to current compare */
559 shadow = deposit32(shadow, 26, 1, c);
562 env->fr0_shadow = shadow;
563 env->fr[0] = (uint64_t)shadow << 32;
566 void HELPER(fcmp_s)(CPUHPPAState *env, float32 a, float32 b,
567 uint32_t y, uint32_t c)
569 FloatRelation r;
570 if (c & 1) {
571 r = float32_compare(a, b, &env->fp_status);
572 } else {
573 r = float32_compare_quiet(a, b, &env->fp_status);
575 update_fr0_op(env, GETPC());
576 update_fr0_cmp(env, y, c, r);
579 void HELPER(fcmp_d)(CPUHPPAState *env, float64 a, float64 b,
580 uint32_t y, uint32_t c)
582 FloatRelation r;
583 if (c & 1) {
584 r = float64_compare(a, b, &env->fp_status);
585 } else {
586 r = float64_compare_quiet(a, b, &env->fp_status);
588 update_fr0_op(env, GETPC());
589 update_fr0_cmp(env, y, c, r);
592 float32 HELPER(fmpyfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
594 float32 ret = float32_muladd(a, b, c, 0, &env->fp_status);
595 update_fr0_op(env, GETPC());
596 return ret;
599 float32 HELPER(fmpynfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
601 float32 ret = float32_muladd(a, b, c, float_muladd_negate_product,
602 &env->fp_status);
603 update_fr0_op(env, GETPC());
604 return ret;
607 float64 HELPER(fmpyfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
609 float64 ret = float64_muladd(a, b, c, 0, &env->fp_status);
610 update_fr0_op(env, GETPC());
611 return ret;
614 float64 HELPER(fmpynfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
616 float64 ret = float64_muladd(a, b, c, float_muladd_negate_product,
617 &env->fp_status);
618 update_fr0_op(env, GETPC());
619 return ret;
622 target_ureg HELPER(read_interval_timer)(void)
624 #ifdef CONFIG_USER_ONLY
625 /* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist.
626 Just pass through the host cpu clock ticks. */
627 return cpu_get_host_ticks();
628 #else
629 /* In system mode we have access to a decent high-resolution clock.
630 In order to make OS-level time accounting work with the cr16,
631 present it with a well-timed clock fixed at 250MHz. */
632 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2;
633 #endif
636 #ifndef CONFIG_USER_ONLY
637 void HELPER(write_interval_timer)(CPUHPPAState *env, target_ureg val)
639 HPPACPU *cpu = env_archcpu(env);
640 uint64_t current = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
641 uint64_t timeout;
643 /* Even in 64-bit mode, the comparator is always 32-bit. But the
644 value we expose to the guest is 1/4 of the speed of the clock,
645 so moosh in 34 bits. */
646 timeout = deposit64(current, 0, 34, (uint64_t)val << 2);
648 /* If the mooshing puts the clock in the past, advance to next round. */
649 if (timeout < current + 1000) {
650 timeout += 1ULL << 34;
653 cpu->env.cr[CR_IT] = timeout;
654 timer_mod(cpu->alarm_timer, timeout);
657 void HELPER(halt)(CPUHPPAState *env)
659 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
660 helper_excp(env, EXCP_HLT);
663 void HELPER(reset)(CPUHPPAState *env)
665 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
666 helper_excp(env, EXCP_HLT);
669 target_ureg HELPER(swap_system_mask)(CPUHPPAState *env, target_ureg nsm)
671 target_ulong psw = env->psw;
673 * Setting the PSW Q bit to 1, if it was not already 1, is an
674 * undefined operation.
676 * However, HP-UX 10.20 does this with the SSM instruction.
677 * Tested this on HP9000/712 and HP9000/785/C3750 and both
678 * machines set the Q bit from 0 to 1 without an exception,
679 * so let this go without comment.
681 env->psw = (psw & ~PSW_SM) | (nsm & PSW_SM);
682 return psw & PSW_SM;
685 void HELPER(rfi)(CPUHPPAState *env)
687 env->iasq_f = (uint64_t)env->cr[CR_IIASQ] << 32;
688 env->iasq_b = (uint64_t)env->cr_back[0] << 32;
689 env->iaoq_f = env->cr[CR_IIAOQ];
690 env->iaoq_b = env->cr_back[1];
691 cpu_hppa_put_psw(env, env->cr[CR_IPSW]);
694 void HELPER(rfi_r)(CPUHPPAState *env)
696 env->gr[1] = env->shadow[0];
697 env->gr[8] = env->shadow[1];
698 env->gr[9] = env->shadow[2];
699 env->gr[16] = env->shadow[3];
700 env->gr[17] = env->shadow[4];
701 env->gr[24] = env->shadow[5];
702 env->gr[25] = env->shadow[6];
703 helper_rfi(env);
705 #endif