2 * device quirks for PCI devices
4 * Copyright Red Hat, Inc. 2012-2015
7 * Alex Williamson <alex.williamson@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "exec/memop.h"
15 #include "qemu/units.h"
16 #include "qemu/error-report.h"
17 #include "qemu/main-loop.h"
18 #include "qemu/module.h"
19 #include "qemu/range.h"
20 #include "qapi/error.h"
21 #include "qapi/visitor.h"
22 #include <sys/ioctl.h>
24 #include "hw/nvram/fw_cfg.h"
25 #include "hw/qdev-properties.h"
29 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
30 static bool vfio_pci_is(VFIOPCIDevice
*vdev
, uint32_t vendor
, uint32_t device
)
32 return (vendor
== PCI_ANY_ID
|| vendor
== vdev
->vendor_id
) &&
33 (device
== PCI_ANY_ID
|| device
== vdev
->device_id
);
36 static bool vfio_is_vga(VFIOPCIDevice
*vdev
)
38 PCIDevice
*pdev
= &vdev
->pdev
;
39 uint16_t class = pci_get_word(pdev
->config
+ PCI_CLASS_DEVICE
);
41 return class == PCI_CLASS_DISPLAY_VGA
;
45 * List of device ids/vendor ids for which to disable
46 * option rom loading. This avoids the guest hangs during rom
47 * execution as noticed with the BCM 57810 card for lack of a
48 * more better way to handle such issues.
49 * The user can still override by specifying a romfile or
51 * Please see https://bugs.launchpad.net/qemu/+bug/1284874
52 * for an analysis of the 57810 card hang. When adding
53 * a new vendor id/device id combination below, please also add
54 * your card/environment details and information that could
55 * help in debugging to the bug tracking this issue
61 { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
64 bool vfio_blacklist_opt_rom(VFIOPCIDevice
*vdev
)
68 for (i
= 0 ; i
< ARRAY_SIZE(romblacklist
); i
++) {
69 if (vfio_pci_is(vdev
, romblacklist
[i
].vendor
, romblacklist
[i
].device
)) {
70 trace_vfio_quirk_rom_blacklisted(vdev
->vbasedev
.name
,
71 romblacklist
[i
].vendor
,
72 romblacklist
[i
].device
);
80 * Device specific region quirks (mostly backdoors to PCI config space)
84 * The generic window quirks operate on an address and data register,
85 * vfio_generic_window_address_quirk handles the address register and
86 * vfio_generic_window_data_quirk handles the data register. These ops
87 * pass reads and writes through to hardware until a value matching the
88 * stored address match/mask is written. When this occurs, the data
89 * register access emulated PCI config space for the device rather than
90 * passing through accesses. This enables devices where PCI config space
91 * is accessible behind a window register to maintain the virtualization
92 * provided through vfio.
94 typedef struct VFIOConfigWindowMatch
{
97 } VFIOConfigWindowMatch
;
99 typedef struct VFIOConfigWindowQuirk
{
100 struct VFIOPCIDevice
*vdev
;
102 uint32_t address_val
;
104 uint32_t address_offset
;
105 uint32_t data_offset
;
110 MemoryRegion
*addr_mem
;
111 MemoryRegion
*data_mem
;
114 VFIOConfigWindowMatch matches
[];
115 } VFIOConfigWindowQuirk
;
117 static uint64_t vfio_generic_window_quirk_address_read(void *opaque
,
121 VFIOConfigWindowQuirk
*window
= opaque
;
122 VFIOPCIDevice
*vdev
= window
->vdev
;
124 return vfio_region_read(&vdev
->bars
[window
->bar
].region
,
125 addr
+ window
->address_offset
, size
);
128 static void vfio_generic_window_quirk_address_write(void *opaque
, hwaddr addr
,
132 VFIOConfigWindowQuirk
*window
= opaque
;
133 VFIOPCIDevice
*vdev
= window
->vdev
;
136 window
->window_enabled
= false;
138 vfio_region_write(&vdev
->bars
[window
->bar
].region
,
139 addr
+ window
->address_offset
, data
, size
);
141 for (i
= 0; i
< window
->nr_matches
; i
++) {
142 if ((data
& ~window
->matches
[i
].mask
) == window
->matches
[i
].match
) {
143 window
->window_enabled
= true;
144 window
->address_val
= data
& window
->matches
[i
].mask
;
145 trace_vfio_quirk_generic_window_address_write(vdev
->vbasedev
.name
,
146 memory_region_name(window
->addr_mem
), data
);
152 static const MemoryRegionOps vfio_generic_window_address_quirk
= {
153 .read
= vfio_generic_window_quirk_address_read
,
154 .write
= vfio_generic_window_quirk_address_write
,
155 .endianness
= DEVICE_LITTLE_ENDIAN
,
158 static uint64_t vfio_generic_window_quirk_data_read(void *opaque
,
159 hwaddr addr
, unsigned size
)
161 VFIOConfigWindowQuirk
*window
= opaque
;
162 VFIOPCIDevice
*vdev
= window
->vdev
;
165 /* Always read data reg, discard if window enabled */
166 data
= vfio_region_read(&vdev
->bars
[window
->bar
].region
,
167 addr
+ window
->data_offset
, size
);
169 if (window
->window_enabled
) {
170 data
= vfio_pci_read_config(&vdev
->pdev
, window
->address_val
, size
);
171 trace_vfio_quirk_generic_window_data_read(vdev
->vbasedev
.name
,
172 memory_region_name(window
->data_mem
), data
);
178 static void vfio_generic_window_quirk_data_write(void *opaque
, hwaddr addr
,
179 uint64_t data
, unsigned size
)
181 VFIOConfigWindowQuirk
*window
= opaque
;
182 VFIOPCIDevice
*vdev
= window
->vdev
;
184 if (window
->window_enabled
) {
185 vfio_pci_write_config(&vdev
->pdev
, window
->address_val
, data
, size
);
186 trace_vfio_quirk_generic_window_data_write(vdev
->vbasedev
.name
,
187 memory_region_name(window
->data_mem
), data
);
191 vfio_region_write(&vdev
->bars
[window
->bar
].region
,
192 addr
+ window
->data_offset
, data
, size
);
195 static const MemoryRegionOps vfio_generic_window_data_quirk
= {
196 .read
= vfio_generic_window_quirk_data_read
,
197 .write
= vfio_generic_window_quirk_data_write
,
198 .endianness
= DEVICE_LITTLE_ENDIAN
,
202 * The generic mirror quirk handles devices which expose PCI config space
203 * through a region within a BAR. When enabled, reads and writes are
204 * redirected through to emulated PCI config space. XXX if PCI config space
205 * used memory regions, this could just be an alias.
207 typedef struct VFIOConfigMirrorQuirk
{
208 struct VFIOPCIDevice
*vdev
;
213 } VFIOConfigMirrorQuirk
;
215 static uint64_t vfio_generic_quirk_mirror_read(void *opaque
,
216 hwaddr addr
, unsigned size
)
218 VFIOConfigMirrorQuirk
*mirror
= opaque
;
219 VFIOPCIDevice
*vdev
= mirror
->vdev
;
222 /* Read and discard in case the hardware cares */
223 (void)vfio_region_read(&vdev
->bars
[mirror
->bar
].region
,
224 addr
+ mirror
->offset
, size
);
226 data
= vfio_pci_read_config(&vdev
->pdev
, addr
, size
);
227 trace_vfio_quirk_generic_mirror_read(vdev
->vbasedev
.name
,
228 memory_region_name(mirror
->mem
),
233 static void vfio_generic_quirk_mirror_write(void *opaque
, hwaddr addr
,
234 uint64_t data
, unsigned size
)
236 VFIOConfigMirrorQuirk
*mirror
= opaque
;
237 VFIOPCIDevice
*vdev
= mirror
->vdev
;
239 vfio_pci_write_config(&vdev
->pdev
, addr
, data
, size
);
240 trace_vfio_quirk_generic_mirror_write(vdev
->vbasedev
.name
,
241 memory_region_name(mirror
->mem
),
245 static const MemoryRegionOps vfio_generic_mirror_quirk
= {
246 .read
= vfio_generic_quirk_mirror_read
,
247 .write
= vfio_generic_quirk_mirror_write
,
248 .endianness
= DEVICE_LITTLE_ENDIAN
,
251 /* Is range1 fully contained within range2? */
252 static bool vfio_range_contained(uint64_t first1
, uint64_t len1
,
253 uint64_t first2
, uint64_t len2
) {
254 return (first1
>= first2
&& first1
+ len1
<= first2
+ len2
);
257 #define PCI_VENDOR_ID_ATI 0x1002
260 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
261 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always
262 * BAR4 (older cards like the X550 used BAR1, but we don't care to support
263 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the
264 * I/O port BAR address. Originally this was coded to return the virtual BAR
265 * address only if the physical register read returns the actual BAR address,
266 * but users have reported greater success if we return the virtual address
269 static uint64_t vfio_ati_3c3_quirk_read(void *opaque
,
270 hwaddr addr
, unsigned size
)
272 VFIOPCIDevice
*vdev
= opaque
;
273 uint64_t data
= vfio_pci_read_config(&vdev
->pdev
,
274 PCI_BASE_ADDRESS_4
+ 1, size
);
276 trace_vfio_quirk_ati_3c3_read(vdev
->vbasedev
.name
, data
);
281 static const MemoryRegionOps vfio_ati_3c3_quirk
= {
282 .read
= vfio_ati_3c3_quirk_read
,
283 .endianness
= DEVICE_LITTLE_ENDIAN
,
286 static VFIOQuirk
*vfio_quirk_alloc(int nr_mem
)
288 VFIOQuirk
*quirk
= g_new0(VFIOQuirk
, 1);
289 QLIST_INIT(&quirk
->ioeventfds
);
290 quirk
->mem
= g_new0(MemoryRegion
, nr_mem
);
291 quirk
->nr_mem
= nr_mem
;
296 static void vfio_ioeventfd_exit(VFIOPCIDevice
*vdev
, VFIOIOEventFD
*ioeventfd
)
298 QLIST_REMOVE(ioeventfd
, next
);
299 memory_region_del_eventfd(ioeventfd
->mr
, ioeventfd
->addr
, ioeventfd
->size
,
300 true, ioeventfd
->data
, &ioeventfd
->e
);
302 if (ioeventfd
->vfio
) {
303 struct vfio_device_ioeventfd vfio_ioeventfd
;
305 vfio_ioeventfd
.argsz
= sizeof(vfio_ioeventfd
);
306 vfio_ioeventfd
.flags
= ioeventfd
->size
;
307 vfio_ioeventfd
.data
= ioeventfd
->data
;
308 vfio_ioeventfd
.offset
= ioeventfd
->region
->fd_offset
+
309 ioeventfd
->region_addr
;
310 vfio_ioeventfd
.fd
= -1;
312 if (ioctl(vdev
->vbasedev
.fd
, VFIO_DEVICE_IOEVENTFD
, &vfio_ioeventfd
)) {
313 error_report("Failed to remove vfio ioeventfd for %s+0x%"
314 HWADDR_PRIx
"[%d]:0x%"PRIx64
" (%m)",
315 memory_region_name(ioeventfd
->mr
), ioeventfd
->addr
,
316 ioeventfd
->size
, ioeventfd
->data
);
319 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd
->e
),
323 event_notifier_cleanup(&ioeventfd
->e
);
324 trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd
->mr
),
325 (uint64_t)ioeventfd
->addr
, ioeventfd
->size
,
330 static void vfio_drop_dynamic_eventfds(VFIOPCIDevice
*vdev
, VFIOQuirk
*quirk
)
332 VFIOIOEventFD
*ioeventfd
, *tmp
;
334 QLIST_FOREACH_SAFE(ioeventfd
, &quirk
->ioeventfds
, next
, tmp
) {
335 if (ioeventfd
->dynamic
) {
336 vfio_ioeventfd_exit(vdev
, ioeventfd
);
341 static void vfio_ioeventfd_handler(void *opaque
)
343 VFIOIOEventFD
*ioeventfd
= opaque
;
345 if (event_notifier_test_and_clear(&ioeventfd
->e
)) {
346 vfio_region_write(ioeventfd
->region
, ioeventfd
->region_addr
,
347 ioeventfd
->data
, ioeventfd
->size
);
348 trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd
->mr
),
349 (uint64_t)ioeventfd
->addr
, ioeventfd
->size
,
354 static VFIOIOEventFD
*vfio_ioeventfd_init(VFIOPCIDevice
*vdev
,
355 MemoryRegion
*mr
, hwaddr addr
,
356 unsigned size
, uint64_t data
,
358 hwaddr region_addr
, bool dynamic
)
360 VFIOIOEventFD
*ioeventfd
;
362 if (vdev
->no_kvm_ioeventfd
) {
366 ioeventfd
= g_malloc0(sizeof(*ioeventfd
));
368 if (event_notifier_init(&ioeventfd
->e
, 0)) {
374 * MemoryRegion and relative offset, plus additional ioeventfd setup
375 * parameters for configuring and later tearing down KVM ioeventfd.
378 ioeventfd
->addr
= addr
;
379 ioeventfd
->size
= size
;
380 ioeventfd
->data
= data
;
381 ioeventfd
->dynamic
= dynamic
;
383 * VFIORegion and relative offset for implementing the userspace
384 * handler. data & size fields shared for both uses.
386 ioeventfd
->region
= region
;
387 ioeventfd
->region_addr
= region_addr
;
389 if (!vdev
->no_vfio_ioeventfd
) {
390 struct vfio_device_ioeventfd vfio_ioeventfd
;
392 vfio_ioeventfd
.argsz
= sizeof(vfio_ioeventfd
);
393 vfio_ioeventfd
.flags
= ioeventfd
->size
;
394 vfio_ioeventfd
.data
= ioeventfd
->data
;
395 vfio_ioeventfd
.offset
= ioeventfd
->region
->fd_offset
+
396 ioeventfd
->region_addr
;
397 vfio_ioeventfd
.fd
= event_notifier_get_fd(&ioeventfd
->e
);
399 ioeventfd
->vfio
= !ioctl(vdev
->vbasedev
.fd
,
400 VFIO_DEVICE_IOEVENTFD
, &vfio_ioeventfd
);
403 if (!ioeventfd
->vfio
) {
404 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd
->e
),
405 vfio_ioeventfd_handler
, NULL
, ioeventfd
);
408 memory_region_add_eventfd(ioeventfd
->mr
, ioeventfd
->addr
, ioeventfd
->size
,
409 true, ioeventfd
->data
, &ioeventfd
->e
);
410 trace_vfio_ioeventfd_init(memory_region_name(mr
), (uint64_t)addr
,
411 size
, data
, ioeventfd
->vfio
);
416 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice
*vdev
)
421 * As long as the BAR is >= 256 bytes it will be aligned such that the
422 * lower byte is always zero. Filter out anything else, if it exists.
424 if (!vfio_pci_is(vdev
, PCI_VENDOR_ID_ATI
, PCI_ANY_ID
) ||
425 !vdev
->bars
[4].ioport
|| vdev
->bars
[4].region
.size
< 256) {
429 quirk
= vfio_quirk_alloc(1);
431 memory_region_init_io(quirk
->mem
, OBJECT(vdev
), &vfio_ati_3c3_quirk
, vdev
,
432 "vfio-ati-3c3-quirk", 1);
433 memory_region_add_subregion(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
].mem
,
434 3 /* offset 3 bytes from 0x3c0 */, quirk
->mem
);
436 QLIST_INSERT_HEAD(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
].quirks
,
439 trace_vfio_quirk_ati_3c3_probe(vdev
->vbasedev
.name
);
443 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
444 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access
445 * the MMIO space directly, but a window to this space is provided through
446 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the
447 * data register. When the address is programmed to a range of 0x4000-0x4fff
448 * PCI configuration space is available. Experimentation seems to indicate
449 * that read-only may be provided by hardware.
451 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice
*vdev
, int nr
)
454 VFIOConfigWindowQuirk
*window
;
456 /* This windows doesn't seem to be used except by legacy VGA code */
457 if (!vfio_pci_is(vdev
, PCI_VENDOR_ID_ATI
, PCI_ANY_ID
) ||
458 !vdev
->vga
|| nr
!= 4) {
462 quirk
= vfio_quirk_alloc(2);
463 window
= quirk
->data
= g_malloc0(sizeof(*window
) +
464 sizeof(VFIOConfigWindowMatch
));
466 window
->address_offset
= 0;
467 window
->data_offset
= 4;
468 window
->nr_matches
= 1;
469 window
->matches
[0].match
= 0x4000;
470 window
->matches
[0].mask
= vdev
->config_size
- 1;
472 window
->addr_mem
= &quirk
->mem
[0];
473 window
->data_mem
= &quirk
->mem
[1];
475 memory_region_init_io(window
->addr_mem
, OBJECT(vdev
),
476 &vfio_generic_window_address_quirk
, window
,
477 "vfio-ati-bar4-window-address-quirk", 4);
478 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
479 window
->address_offset
,
480 window
->addr_mem
, 1);
482 memory_region_init_io(window
->data_mem
, OBJECT(vdev
),
483 &vfio_generic_window_data_quirk
, window
,
484 "vfio-ati-bar4-window-data-quirk", 4);
485 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
487 window
->data_mem
, 1);
489 QLIST_INSERT_HEAD(&vdev
->bars
[nr
].quirks
, quirk
, next
);
491 trace_vfio_quirk_ati_bar4_probe(vdev
->vbasedev
.name
);
495 * Trap the BAR2 MMIO mirror to config space as well.
497 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice
*vdev
, int nr
)
500 VFIOConfigMirrorQuirk
*mirror
;
502 /* Only enable on newer devices where BAR2 is 64bit */
503 if (!vfio_pci_is(vdev
, PCI_VENDOR_ID_ATI
, PCI_ANY_ID
) ||
504 !vdev
->vga
|| nr
!= 2 || !vdev
->bars
[2].mem64
) {
508 quirk
= vfio_quirk_alloc(1);
509 mirror
= quirk
->data
= g_malloc0(sizeof(*mirror
));
510 mirror
->mem
= quirk
->mem
;
512 mirror
->offset
= 0x4000;
515 memory_region_init_io(mirror
->mem
, OBJECT(vdev
),
516 &vfio_generic_mirror_quirk
, mirror
,
517 "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE
);
518 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
519 mirror
->offset
, mirror
->mem
, 1);
521 QLIST_INSERT_HEAD(&vdev
->bars
[nr
].quirks
, quirk
, next
);
523 trace_vfio_quirk_ati_bar2_probe(vdev
->vbasedev
.name
);
527 * Older ATI/AMD cards like the X550 have a similar window to that above.
528 * I/O port BAR1 provides a window to a mirror of PCI config space located
529 * in BAR2 at offset 0xf00. We don't care to support such older cards, but
530 * note it for future reference.
534 * Nvidia has several different methods to get to config space, the
535 * nouveu project has several of these documented here:
536 * https://github.com/pathscale/envytools/tree/master/hwdocs
538 * The first quirk is actually not documented in envytools and is found
539 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an
540 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access
541 * the mirror of PCI config space found at BAR0 offset 0x1800. The access
542 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is
543 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738
544 * is written for a write to 0x3d4. The BAR0 offset is then accessible
545 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards
546 * that use the I/O port BAR5 window but it doesn't hurt to leave it.
548 typedef enum {NONE
= 0, SELECT
, WINDOW
, READ
, WRITE
} VFIONvidia3d0State
;
549 static const char *nv3d0_states
[] = { "NONE", "SELECT",
550 "WINDOW", "READ", "WRITE" };
552 typedef struct VFIONvidia3d0Quirk
{
554 VFIONvidia3d0State state
;
556 } VFIONvidia3d0Quirk
;
558 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque
,
559 hwaddr addr
, unsigned size
)
561 VFIONvidia3d0Quirk
*quirk
= opaque
;
562 VFIOPCIDevice
*vdev
= quirk
->vdev
;
566 return vfio_vga_read(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
],
570 static void vfio_nvidia_3d4_quirk_write(void *opaque
, hwaddr addr
,
571 uint64_t data
, unsigned size
)
573 VFIONvidia3d0Quirk
*quirk
= opaque
;
574 VFIOPCIDevice
*vdev
= quirk
->vdev
;
575 VFIONvidia3d0State old_state
= quirk
->state
;
581 if (old_state
== NONE
) {
582 quirk
->state
= SELECT
;
583 trace_vfio_quirk_nvidia_3d0_state(vdev
->vbasedev
.name
,
584 nv3d0_states
[quirk
->state
]);
588 if (old_state
== WINDOW
) {
590 trace_vfio_quirk_nvidia_3d0_state(vdev
->vbasedev
.name
,
591 nv3d0_states
[quirk
->state
]);
595 if (old_state
== WINDOW
) {
596 quirk
->state
= WRITE
;
597 trace_vfio_quirk_nvidia_3d0_state(vdev
->vbasedev
.name
,
598 nv3d0_states
[quirk
->state
]);
603 vfio_vga_write(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
],
604 addr
+ 0x14, data
, size
);
607 static const MemoryRegionOps vfio_nvidia_3d4_quirk
= {
608 .read
= vfio_nvidia_3d4_quirk_read
,
609 .write
= vfio_nvidia_3d4_quirk_write
,
610 .endianness
= DEVICE_LITTLE_ENDIAN
,
613 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque
,
614 hwaddr addr
, unsigned size
)
616 VFIONvidia3d0Quirk
*quirk
= opaque
;
617 VFIOPCIDevice
*vdev
= quirk
->vdev
;
618 VFIONvidia3d0State old_state
= quirk
->state
;
619 uint64_t data
= vfio_vga_read(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
],
624 if (old_state
== READ
&&
625 (quirk
->offset
& ~(PCI_CONFIG_SPACE_SIZE
- 1)) == 0x1800) {
626 uint8_t offset
= quirk
->offset
& (PCI_CONFIG_SPACE_SIZE
- 1);
628 data
= vfio_pci_read_config(&vdev
->pdev
, offset
, size
);
629 trace_vfio_quirk_nvidia_3d0_read(vdev
->vbasedev
.name
,
636 static void vfio_nvidia_3d0_quirk_write(void *opaque
, hwaddr addr
,
637 uint64_t data
, unsigned size
)
639 VFIONvidia3d0Quirk
*quirk
= opaque
;
640 VFIOPCIDevice
*vdev
= quirk
->vdev
;
641 VFIONvidia3d0State old_state
= quirk
->state
;
645 if (old_state
== SELECT
) {
646 quirk
->offset
= (uint32_t)data
;
647 quirk
->state
= WINDOW
;
648 trace_vfio_quirk_nvidia_3d0_state(vdev
->vbasedev
.name
,
649 nv3d0_states
[quirk
->state
]);
650 } else if (old_state
== WRITE
) {
651 if ((quirk
->offset
& ~(PCI_CONFIG_SPACE_SIZE
- 1)) == 0x1800) {
652 uint8_t offset
= quirk
->offset
& (PCI_CONFIG_SPACE_SIZE
- 1);
654 vfio_pci_write_config(&vdev
->pdev
, offset
, data
, size
);
655 trace_vfio_quirk_nvidia_3d0_write(vdev
->vbasedev
.name
,
661 vfio_vga_write(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
],
662 addr
+ 0x10, data
, size
);
665 static const MemoryRegionOps vfio_nvidia_3d0_quirk
= {
666 .read
= vfio_nvidia_3d0_quirk_read
,
667 .write
= vfio_nvidia_3d0_quirk_write
,
668 .endianness
= DEVICE_LITTLE_ENDIAN
,
671 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice
*vdev
)
674 VFIONvidia3d0Quirk
*data
;
676 if (vdev
->no_geforce_quirks
||
677 !vfio_pci_is(vdev
, PCI_VENDOR_ID_NVIDIA
, PCI_ANY_ID
) ||
678 !vdev
->bars
[1].region
.size
) {
682 quirk
= vfio_quirk_alloc(2);
683 quirk
->data
= data
= g_malloc0(sizeof(*data
));
686 memory_region_init_io(&quirk
->mem
[0], OBJECT(vdev
), &vfio_nvidia_3d4_quirk
,
687 data
, "vfio-nvidia-3d4-quirk", 2);
688 memory_region_add_subregion(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
].mem
,
689 0x14 /* 0x3c0 + 0x14 */, &quirk
->mem
[0]);
691 memory_region_init_io(&quirk
->mem
[1], OBJECT(vdev
), &vfio_nvidia_3d0_quirk
,
692 data
, "vfio-nvidia-3d0-quirk", 2);
693 memory_region_add_subregion(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
].mem
,
694 0x10 /* 0x3c0 + 0x10 */, &quirk
->mem
[1]);
696 QLIST_INSERT_HEAD(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
].quirks
,
699 trace_vfio_quirk_nvidia_3d0_probe(vdev
->vbasedev
.name
);
703 * The second quirk is documented in envytools. The I/O port BAR5 is just
704 * a set of address/data ports to the MMIO BARs. The BAR we care about is
705 * again BAR0. This backdoor is apparently a bit newer than the one above
706 * so we need to not only trap 256 bytes @0x1800, but all of PCI config
707 * space, including extended space is available at the 4k @0x88000.
709 typedef struct VFIONvidiaBAR5Quirk
{
712 MemoryRegion
*addr_mem
;
713 MemoryRegion
*data_mem
;
715 VFIOConfigWindowQuirk window
; /* last for match data */
716 } VFIONvidiaBAR5Quirk
;
718 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk
*bar5
)
720 VFIOPCIDevice
*vdev
= bar5
->window
.vdev
;
722 if (((bar5
->master
& bar5
->enable
) & 0x1) == bar5
->enabled
) {
726 bar5
->enabled
= !bar5
->enabled
;
727 trace_vfio_quirk_nvidia_bar5_state(vdev
->vbasedev
.name
,
728 bar5
->enabled
? "Enable" : "Disable");
729 memory_region_set_enabled(bar5
->addr_mem
, bar5
->enabled
);
730 memory_region_set_enabled(bar5
->data_mem
, bar5
->enabled
);
733 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque
,
734 hwaddr addr
, unsigned size
)
736 VFIONvidiaBAR5Quirk
*bar5
= opaque
;
737 VFIOPCIDevice
*vdev
= bar5
->window
.vdev
;
739 return vfio_region_read(&vdev
->bars
[5].region
, addr
, size
);
742 static void vfio_nvidia_bar5_quirk_master_write(void *opaque
, hwaddr addr
,
743 uint64_t data
, unsigned size
)
745 VFIONvidiaBAR5Quirk
*bar5
= opaque
;
746 VFIOPCIDevice
*vdev
= bar5
->window
.vdev
;
748 vfio_region_write(&vdev
->bars
[5].region
, addr
, data
, size
);
751 vfio_nvidia_bar5_enable(bar5
);
754 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master
= {
755 .read
= vfio_nvidia_bar5_quirk_master_read
,
756 .write
= vfio_nvidia_bar5_quirk_master_write
,
757 .endianness
= DEVICE_LITTLE_ENDIAN
,
760 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque
,
761 hwaddr addr
, unsigned size
)
763 VFIONvidiaBAR5Quirk
*bar5
= opaque
;
764 VFIOPCIDevice
*vdev
= bar5
->window
.vdev
;
766 return vfio_region_read(&vdev
->bars
[5].region
, addr
+ 4, size
);
769 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque
, hwaddr addr
,
770 uint64_t data
, unsigned size
)
772 VFIONvidiaBAR5Quirk
*bar5
= opaque
;
773 VFIOPCIDevice
*vdev
= bar5
->window
.vdev
;
775 vfio_region_write(&vdev
->bars
[5].region
, addr
+ 4, data
, size
);
778 vfio_nvidia_bar5_enable(bar5
);
781 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable
= {
782 .read
= vfio_nvidia_bar5_quirk_enable_read
,
783 .write
= vfio_nvidia_bar5_quirk_enable_write
,
784 .endianness
= DEVICE_LITTLE_ENDIAN
,
787 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice
*vdev
, int nr
)
790 VFIONvidiaBAR5Quirk
*bar5
;
791 VFIOConfigWindowQuirk
*window
;
793 if (vdev
->no_geforce_quirks
||
794 !vfio_pci_is(vdev
, PCI_VENDOR_ID_NVIDIA
, PCI_ANY_ID
) ||
795 !vdev
->vga
|| nr
!= 5 || !vdev
->bars
[5].ioport
) {
799 quirk
= vfio_quirk_alloc(4);
800 bar5
= quirk
->data
= g_malloc0(sizeof(*bar5
) +
801 (sizeof(VFIOConfigWindowMatch
) * 2));
802 window
= &bar5
->window
;
805 window
->address_offset
= 0x8;
806 window
->data_offset
= 0xc;
807 window
->nr_matches
= 2;
808 window
->matches
[0].match
= 0x1800;
809 window
->matches
[0].mask
= PCI_CONFIG_SPACE_SIZE
- 1;
810 window
->matches
[1].match
= 0x88000;
811 window
->matches
[1].mask
= vdev
->config_size
- 1;
813 window
->addr_mem
= bar5
->addr_mem
= &quirk
->mem
[0];
814 window
->data_mem
= bar5
->data_mem
= &quirk
->mem
[1];
816 memory_region_init_io(window
->addr_mem
, OBJECT(vdev
),
817 &vfio_generic_window_address_quirk
, window
,
818 "vfio-nvidia-bar5-window-address-quirk", 4);
819 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
820 window
->address_offset
,
821 window
->addr_mem
, 1);
822 memory_region_set_enabled(window
->addr_mem
, false);
824 memory_region_init_io(window
->data_mem
, OBJECT(vdev
),
825 &vfio_generic_window_data_quirk
, window
,
826 "vfio-nvidia-bar5-window-data-quirk", 4);
827 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
829 window
->data_mem
, 1);
830 memory_region_set_enabled(window
->data_mem
, false);
832 memory_region_init_io(&quirk
->mem
[2], OBJECT(vdev
),
833 &vfio_nvidia_bar5_quirk_master
, bar5
,
834 "vfio-nvidia-bar5-master-quirk", 4);
835 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
836 0, &quirk
->mem
[2], 1);
838 memory_region_init_io(&quirk
->mem
[3], OBJECT(vdev
),
839 &vfio_nvidia_bar5_quirk_enable
, bar5
,
840 "vfio-nvidia-bar5-enable-quirk", 4);
841 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
842 4, &quirk
->mem
[3], 1);
844 QLIST_INSERT_HEAD(&vdev
->bars
[nr
].quirks
, quirk
, next
);
846 trace_vfio_quirk_nvidia_bar5_probe(vdev
->vbasedev
.name
);
849 typedef struct LastDataSet
{
858 #define MAX_DYN_IOEVENTFD 10
859 #define HITS_FOR_IOEVENTFD 10
862 * Finally, BAR0 itself. We want to redirect any accesses to either
863 * 0x1800 or 0x88000 through the PCI config space access functions.
865 static void vfio_nvidia_quirk_mirror_write(void *opaque
, hwaddr addr
,
866 uint64_t data
, unsigned size
)
868 VFIOConfigMirrorQuirk
*mirror
= opaque
;
869 VFIOPCIDevice
*vdev
= mirror
->vdev
;
870 PCIDevice
*pdev
= &vdev
->pdev
;
871 LastDataSet
*last
= (LastDataSet
*)&mirror
->data
;
873 vfio_generic_quirk_mirror_write(opaque
, addr
, data
, size
);
876 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
877 * MSI capability ID register. Both the ID and next register are
878 * read-only, so we allow writes covering either of those to real hw.
880 if ((pdev
->cap_present
& QEMU_PCI_CAP_MSI
) &&
881 vfio_range_contained(addr
, size
, pdev
->msi_cap
, PCI_MSI_FLAGS
)) {
882 vfio_region_write(&vdev
->bars
[mirror
->bar
].region
,
883 addr
+ mirror
->offset
, data
, size
);
884 trace_vfio_quirk_nvidia_bar0_msi_ack(vdev
->vbasedev
.name
);
888 * Automatically add an ioeventfd to handle any repeated write with the
889 * same data and size above the standard PCI config space header. This is
890 * primarily expected to accelerate the MSI-ACK behavior, such as noted
891 * above. Current hardware/drivers should trigger an ioeventfd at config
892 * offset 0x704 (region offset 0x88704), with data 0x0, size 4.
894 * The criteria of 10 successive hits is arbitrary but reliably adds the
895 * MSI-ACK region. Note that as some writes are bypassed via the ioeventfd,
896 * the remaining ones have a greater chance of being seen successively.
897 * To avoid the pathological case of burning up all of QEMU's open file
898 * handles, arbitrarily limit this algorithm from adding no more than 10
899 * ioeventfds, print an error if we would have added an 11th, and then
902 if (!vdev
->no_kvm_ioeventfd
&&
903 addr
>= PCI_STD_HEADER_SIZEOF
&& last
->added
<= MAX_DYN_IOEVENTFD
) {
904 if (addr
!= last
->addr
|| data
!= last
->data
|| size
!= last
->size
) {
909 } else if (++last
->hits
>= HITS_FOR_IOEVENTFD
) {
910 if (last
->added
< MAX_DYN_IOEVENTFD
) {
911 VFIOIOEventFD
*ioeventfd
;
912 ioeventfd
= vfio_ioeventfd_init(vdev
, mirror
->mem
, addr
, size
,
913 data
, &vdev
->bars
[mirror
->bar
].region
,
914 mirror
->offset
+ addr
, true);
916 VFIOQuirk
*quirk
= last
->quirk
;
918 QLIST_INSERT_HEAD(&quirk
->ioeventfds
, ioeventfd
, next
);
923 warn_report("NVIDIA ioeventfd queue full for %s, unable to "
924 "accelerate 0x%"HWADDR_PRIx
", data 0x%"PRIx64
", "
925 "size %u", vdev
->vbasedev
.name
, addr
, data
, size
);
931 static const MemoryRegionOps vfio_nvidia_mirror_quirk
= {
932 .read
= vfio_generic_quirk_mirror_read
,
933 .write
= vfio_nvidia_quirk_mirror_write
,
934 .endianness
= DEVICE_LITTLE_ENDIAN
,
937 static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice
*vdev
, VFIOQuirk
*quirk
)
939 VFIOConfigMirrorQuirk
*mirror
= quirk
->data
;
940 LastDataSet
*last
= (LastDataSet
*)&mirror
->data
;
942 last
->addr
= last
->data
= last
->size
= last
->hits
= last
->added
= 0;
944 vfio_drop_dynamic_eventfds(vdev
, quirk
);
947 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice
*vdev
, int nr
)
950 VFIOConfigMirrorQuirk
*mirror
;
953 if (vdev
->no_geforce_quirks
||
954 !vfio_pci_is(vdev
, PCI_VENDOR_ID_NVIDIA
, PCI_ANY_ID
) ||
955 !vfio_is_vga(vdev
) || nr
!= 0) {
959 quirk
= vfio_quirk_alloc(1);
960 quirk
->reset
= vfio_nvidia_bar0_quirk_reset
;
961 mirror
= quirk
->data
= g_malloc0(sizeof(*mirror
) + sizeof(LastDataSet
));
962 mirror
->mem
= quirk
->mem
;
964 mirror
->offset
= 0x88000;
966 last
= (LastDataSet
*)&mirror
->data
;
969 memory_region_init_io(mirror
->mem
, OBJECT(vdev
),
970 &vfio_nvidia_mirror_quirk
, mirror
,
971 "vfio-nvidia-bar0-88000-mirror-quirk",
973 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
974 mirror
->offset
, mirror
->mem
, 1);
976 QLIST_INSERT_HEAD(&vdev
->bars
[nr
].quirks
, quirk
, next
);
978 /* The 0x1800 offset mirror only seems to get used by legacy VGA */
980 quirk
= vfio_quirk_alloc(1);
981 quirk
->reset
= vfio_nvidia_bar0_quirk_reset
;
982 mirror
= quirk
->data
= g_malloc0(sizeof(*mirror
) + sizeof(LastDataSet
));
983 mirror
->mem
= quirk
->mem
;
985 mirror
->offset
= 0x1800;
987 last
= (LastDataSet
*)&mirror
->data
;
990 memory_region_init_io(mirror
->mem
, OBJECT(vdev
),
991 &vfio_nvidia_mirror_quirk
, mirror
,
992 "vfio-nvidia-bar0-1800-mirror-quirk",
993 PCI_CONFIG_SPACE_SIZE
);
994 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
995 mirror
->offset
, mirror
->mem
, 1);
997 QLIST_INSERT_HEAD(&vdev
->bars
[nr
].quirks
, quirk
, next
);
1000 trace_vfio_quirk_nvidia_bar0_probe(vdev
->vbasedev
.name
);
1004 * TODO - Some Nvidia devices provide config access to their companion HDA
1005 * device and even to their parent bridge via these config space mirrors.
1006 * Add quirks for those regions.
1009 #define PCI_VENDOR_ID_REALTEK 0x10ec
1012 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2
1013 * offset 0x70 there is a dword data register, offset 0x74 is a dword address
1014 * register. According to the Linux r8169 driver, the MSI-X table is addressed
1015 * when the "type" portion of the address register is set to 0x1. This appears
1016 * to be bits 16:30. Bit 31 is both a write indicator and some sort of
1017 * "address latched" indicator. Bits 12:15 are a mask field, which we can
1018 * ignore because the MSI-X table should always be accessed as a dword (full
1019 * mask). Bits 0:11 is offset within the type.
1023 * Read from MSI-X table offset 0
1024 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
1025 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
1026 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
1028 * Write 0xfee00000 to MSI-X table offset 0
1029 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
1030 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
1031 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
1033 typedef struct VFIOrtl8168Quirk
{
1034 VFIOPCIDevice
*vdev
;
1040 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque
,
1041 hwaddr addr
, unsigned size
)
1043 VFIOrtl8168Quirk
*rtl
= opaque
;
1044 VFIOPCIDevice
*vdev
= rtl
->vdev
;
1045 uint64_t data
= vfio_region_read(&vdev
->bars
[2].region
, addr
+ 0x74, size
);
1048 data
= rtl
->addr
^ 0x80000000U
; /* latch/complete */
1049 trace_vfio_quirk_rtl8168_fake_latch(vdev
->vbasedev
.name
, data
);
1055 static void vfio_rtl8168_quirk_address_write(void *opaque
, hwaddr addr
,
1056 uint64_t data
, unsigned size
)
1058 VFIOrtl8168Quirk
*rtl
= opaque
;
1059 VFIOPCIDevice
*vdev
= rtl
->vdev
;
1061 rtl
->enabled
= false;
1063 if ((data
& 0x7fff0000) == 0x10000) { /* MSI-X table */
1064 rtl
->enabled
= true;
1065 rtl
->addr
= (uint32_t)data
;
1067 if (data
& 0x80000000U
) { /* Do write */
1068 if (vdev
->pdev
.cap_present
& QEMU_PCI_CAP_MSIX
) {
1069 hwaddr offset
= data
& 0xfff;
1070 uint64_t val
= rtl
->data
;
1072 trace_vfio_quirk_rtl8168_msix_write(vdev
->vbasedev
.name
,
1073 (uint16_t)offset
, val
);
1075 /* Write to the proper guest MSI-X table instead */
1076 memory_region_dispatch_write(&vdev
->pdev
.msix_table_mmio
,
1078 size_memop(size
) | MO_LE
,
1079 MEMTXATTRS_UNSPECIFIED
);
1081 return; /* Do not write guest MSI-X data to hardware */
1085 vfio_region_write(&vdev
->bars
[2].region
, addr
+ 0x74, data
, size
);
1088 static const MemoryRegionOps vfio_rtl_address_quirk
= {
1089 .read
= vfio_rtl8168_quirk_address_read
,
1090 .write
= vfio_rtl8168_quirk_address_write
,
1092 .min_access_size
= 4,
1093 .max_access_size
= 4,
1096 .endianness
= DEVICE_LITTLE_ENDIAN
,
1099 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque
,
1100 hwaddr addr
, unsigned size
)
1102 VFIOrtl8168Quirk
*rtl
= opaque
;
1103 VFIOPCIDevice
*vdev
= rtl
->vdev
;
1104 uint64_t data
= vfio_region_read(&vdev
->bars
[2].region
, addr
+ 0x70, size
);
1106 if (rtl
->enabled
&& (vdev
->pdev
.cap_present
& QEMU_PCI_CAP_MSIX
)) {
1107 hwaddr offset
= rtl
->addr
& 0xfff;
1108 memory_region_dispatch_read(&vdev
->pdev
.msix_table_mmio
, offset
,
1109 &data
, size_memop(size
) | MO_LE
,
1110 MEMTXATTRS_UNSPECIFIED
);
1111 trace_vfio_quirk_rtl8168_msix_read(vdev
->vbasedev
.name
, offset
, data
);
1117 static void vfio_rtl8168_quirk_data_write(void *opaque
, hwaddr addr
,
1118 uint64_t data
, unsigned size
)
1120 VFIOrtl8168Quirk
*rtl
= opaque
;
1121 VFIOPCIDevice
*vdev
= rtl
->vdev
;
1123 rtl
->data
= (uint32_t)data
;
1125 vfio_region_write(&vdev
->bars
[2].region
, addr
+ 0x70, data
, size
);
1128 static const MemoryRegionOps vfio_rtl_data_quirk
= {
1129 .read
= vfio_rtl8168_quirk_data_read
,
1130 .write
= vfio_rtl8168_quirk_data_write
,
1132 .min_access_size
= 4,
1133 .max_access_size
= 4,
1136 .endianness
= DEVICE_LITTLE_ENDIAN
,
1139 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice
*vdev
, int nr
)
1142 VFIOrtl8168Quirk
*rtl
;
1144 if (!vfio_pci_is(vdev
, PCI_VENDOR_ID_REALTEK
, 0x8168) || nr
!= 2) {
1148 quirk
= vfio_quirk_alloc(2);
1149 quirk
->data
= rtl
= g_malloc0(sizeof(*rtl
));
1152 memory_region_init_io(&quirk
->mem
[0], OBJECT(vdev
),
1153 &vfio_rtl_address_quirk
, rtl
,
1154 "vfio-rtl8168-window-address-quirk", 4);
1155 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
1156 0x74, &quirk
->mem
[0], 1);
1158 memory_region_init_io(&quirk
->mem
[1], OBJECT(vdev
),
1159 &vfio_rtl_data_quirk
, rtl
,
1160 "vfio-rtl8168-window-data-quirk", 4);
1161 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
1162 0x70, &quirk
->mem
[1], 1);
1164 QLIST_INSERT_HEAD(&vdev
->bars
[nr
].quirks
, quirk
, next
);
1166 trace_vfio_quirk_rtl8168_probe(vdev
->vbasedev
.name
);
1172 * Obviously IGD is not a discrete device, this is evidenced not only by it
1173 * being integrated into the CPU, but by the various chipset and BIOS
1174 * dependencies that it brings along with it. Intel is trying to move away
1175 * from this and Broadwell and newer devices can run in what Intel calls
1176 * "Universal Pass-Through" mode, or UPT. Theoretically in UPT mode, nothing
1177 * more is required beyond assigning the IGD device to a VM. There are
1178 * however support limitations to this mode. It only supports IGD as a
1179 * secondary graphics device in the VM and it doesn't officially support any
1182 * The code here attempts to enable what we'll call legacy mode assignment,
1183 * IGD retains most of the capabilities we expect for it to have on bare
1184 * metal. To enable this mode, the IGD device must be assigned to the VM
1185 * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA
1186 * support, we must have VM BIOS support for reserving and populating some
1187 * of the required tables, and we need to tweak the chipset with revisions
1188 * and IDs and an LPC/ISA bridge device. The intention is to make all of
1189 * this happen automatically by installing the device at the correct VM PCI
1190 * bus address. If any of the conditions are not met, we cross our fingers
1191 * and hope the user knows better.
1193 * NB - It is possible to enable physical outputs in UPT mode by supplying
1194 * an OpRegion table. We don't do this by default because the guest driver
1195 * behaves differently if an OpRegion is provided and no monitor is attached
1196 * vs no OpRegion and a monitor being attached or not. Effectively, if a
1197 * headless setup is desired, the OpRegion gets in the way of that.
1201 * This presumes the device is already known to be an Intel VGA device, so we
1202 * take liberties in which device ID bits match which generation. This should
1203 * not be taken as an indication that all the devices are supported, or even
1204 * supportable, some of them don't even support VT-d.
1205 * See linux:include/drm/i915_pciids.h for IDs.
1207 static int igd_gen(VFIOPCIDevice
*vdev
)
1209 if ((vdev
->device_id
& 0xfff) == 0xa84) {
1210 return 8; /* Broxton */
1213 switch (vdev
->device_id
& 0xff00) {
1214 /* Old, untested, unavailable, unknown */
1224 /* SandyBridge, IvyBridge, ValleyView, Haswell */
1232 /* BroadWell, CherryView, SkyLake, KabyLake */
1240 return 8; /* Assume newer is compatible */
1243 typedef struct VFIOIGDQuirk
{
1244 struct VFIOPCIDevice
*vdev
;
1249 #define IGD_GMCH 0x50 /* Graphics Control Register */
1250 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */
1251 #define IGD_ASLS 0xfc /* ASL Storage Register */
1254 * The OpRegion includes the Video BIOS Table, which seems important for
1255 * telling the driver what sort of outputs it has. Without this, the device
1256 * may work in the guest, but we may not get output. This also requires BIOS
1257 * support to reserve and populate a section of guest memory sufficient for
1258 * the table and to write the base address of that memory to the ASLS register
1259 * of the IGD device.
1261 int vfio_pci_igd_opregion_init(VFIOPCIDevice
*vdev
,
1262 struct vfio_region_info
*info
, Error
**errp
)
1266 vdev
->igd_opregion
= g_malloc0(info
->size
);
1267 ret
= pread(vdev
->vbasedev
.fd
, vdev
->igd_opregion
,
1268 info
->size
, info
->offset
);
1269 if (ret
!= info
->size
) {
1270 error_setg(errp
, "failed to read IGD OpRegion");
1271 g_free(vdev
->igd_opregion
);
1272 vdev
->igd_opregion
= NULL
;
1277 * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
1278 * allocate 32bit reserved memory for, copy these contents into, and write
1279 * the reserved memory base address to the device ASLS register at 0xFC.
1280 * Alignment of this reserved region seems flexible, but using a 4k page
1281 * alignment seems to work well. This interface assumes a single IGD
1282 * device, which may be at VM address 00:02.0 in legacy mode or another
1283 * address in UPT mode.
1285 * NB, there may be future use cases discovered where the VM should have
1286 * direct interaction with the host OpRegion, in which case the write to
1287 * the ASLS register would trigger MemoryRegion setup to enable that.
1289 fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
1290 vdev
->igd_opregion
, info
->size
);
1292 trace_vfio_pci_igd_opregion_enabled(vdev
->vbasedev
.name
);
1294 pci_set_long(vdev
->pdev
.config
+ IGD_ASLS
, 0);
1295 pci_set_long(vdev
->pdev
.wmask
+ IGD_ASLS
, ~0);
1296 pci_set_long(vdev
->emulated_config_bits
+ IGD_ASLS
, ~0);
1302 * The rather short list of registers that we copy from the host devices.
1303 * The LPC/ISA bridge values are definitely needed to support the vBIOS, the
1304 * host bridge values may or may not be needed depending on the guest OS.
1305 * Since we're only munging revision and subsystem values on the host bridge,
1306 * we don't require our own device. The LPC/ISA bridge needs to be our very
1314 static const IGDHostInfo igd_host_bridge_infos
[] = {
1315 {PCI_REVISION_ID
, 2},
1316 {PCI_SUBSYSTEM_VENDOR_ID
, 2},
1317 {PCI_SUBSYSTEM_ID
, 2},
1320 static const IGDHostInfo igd_lpc_bridge_infos
[] = {
1323 {PCI_REVISION_ID
, 2},
1324 {PCI_SUBSYSTEM_VENDOR_ID
, 2},
1325 {PCI_SUBSYSTEM_ID
, 2},
1328 static int vfio_pci_igd_copy(VFIOPCIDevice
*vdev
, PCIDevice
*pdev
,
1329 struct vfio_region_info
*info
,
1330 const IGDHostInfo
*list
, int len
)
1334 for (i
= 0; i
< len
; i
++) {
1335 ret
= pread(vdev
->vbasedev
.fd
, pdev
->config
+ list
[i
].offset
,
1336 list
[i
].len
, info
->offset
+ list
[i
].offset
);
1337 if (ret
!= list
[i
].len
) {
1338 error_report("IGD copy failed: %m");
1347 * Stuff a few values into the host bridge.
1349 static int vfio_pci_igd_host_init(VFIOPCIDevice
*vdev
,
1350 struct vfio_region_info
*info
)
1353 PCIDevice
*host_bridge
;
1356 bus
= pci_device_root_bus(&vdev
->pdev
);
1357 host_bridge
= pci_find_device(bus
, 0, PCI_DEVFN(0, 0));
1360 error_report("Can't find host bridge");
1364 ret
= vfio_pci_igd_copy(vdev
, host_bridge
, info
, igd_host_bridge_infos
,
1365 ARRAY_SIZE(igd_host_bridge_infos
));
1367 trace_vfio_pci_igd_host_bridge_enabled(vdev
->vbasedev
.name
);
1374 * IGD LPC/ISA bridge support code. The vBIOS needs this, but we can't write
1375 * arbitrary values into just any bridge, so we must create our own. We try
1376 * to handle if the user has created it for us, which they might want to do
1377 * to enable multifunction so we don't occupy the whole PCI slot.
1379 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice
*pdev
, Error
**errp
)
1381 if (pdev
->devfn
!= PCI_DEVFN(0x1f, 0)) {
1382 error_setg(errp
, "VFIO dummy ISA/LPC bridge must have address 1f.0");
1386 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass
*klass
, void *data
)
1388 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1389 PCIDeviceClass
*k
= PCI_DEVICE_CLASS(klass
);
1391 set_bit(DEVICE_CATEGORY_BRIDGE
, dc
->categories
);
1392 dc
->desc
= "VFIO dummy ISA/LPC bridge for IGD assignment";
1393 dc
->hotpluggable
= false;
1394 k
->realize
= vfio_pci_igd_lpc_bridge_realize
;
1395 k
->class_id
= PCI_CLASS_BRIDGE_ISA
;
1398 static TypeInfo vfio_pci_igd_lpc_bridge_info
= {
1399 .name
= "vfio-pci-igd-lpc-bridge",
1400 .parent
= TYPE_PCI_DEVICE
,
1401 .class_init
= vfio_pci_igd_lpc_bridge_class_init
,
1402 .interfaces
= (InterfaceInfo
[]) {
1403 { INTERFACE_CONVENTIONAL_PCI_DEVICE
},
1408 static void vfio_pci_igd_register_types(void)
1410 type_register_static(&vfio_pci_igd_lpc_bridge_info
);
1413 type_init(vfio_pci_igd_register_types
)
1415 static int vfio_pci_igd_lpc_init(VFIOPCIDevice
*vdev
,
1416 struct vfio_region_info
*info
)
1418 PCIDevice
*lpc_bridge
;
1421 lpc_bridge
= pci_find_device(pci_device_root_bus(&vdev
->pdev
),
1422 0, PCI_DEVFN(0x1f, 0));
1424 lpc_bridge
= pci_create_simple(pci_device_root_bus(&vdev
->pdev
),
1425 PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge");
1428 ret
= vfio_pci_igd_copy(vdev
, lpc_bridge
, info
, igd_lpc_bridge_infos
,
1429 ARRAY_SIZE(igd_lpc_bridge_infos
));
1431 trace_vfio_pci_igd_lpc_bridge_enabled(vdev
->vbasedev
.name
);
1438 * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE
1439 * entry, older IGDs use 2MB and 32bit. Each PTE maps a 4k page. Therefore
1440 * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index
1441 * for programming the GTT.
1443 * See linux:include/drm/i915_drm.h for shift and mask values.
1445 static int vfio_igd_gtt_max(VFIOPCIDevice
*vdev
)
1447 uint32_t gmch
= vfio_pci_read_config(&vdev
->pdev
, IGD_GMCH
, sizeof(gmch
));
1448 int ggms
, gen
= igd_gen(vdev
);
1450 gmch
= vfio_pci_read_config(&vdev
->pdev
, IGD_GMCH
, sizeof(gmch
));
1451 ggms
= (gmch
>> (gen
< 8 ? 8 : 6)) & 0x3;
1458 return (ggms
/ (4 * KiB
)) * (gen
< 8 ? 4 : 8);
1462 * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes.
1463 * Somehow the host stolen memory range is used for this, but how the ROM gets
1464 * it is a mystery, perhaps it's hardcoded into the ROM. Thankfully though, it
1465 * reprograms the GTT through the IOBAR where we can trap it and transpose the
1466 * programming to the VM allocated buffer. That buffer gets reserved by the VM
1467 * firmware via the fw_cfg entry added below. Here we're just monitoring the
1468 * IOBAR address and data registers to detect a write sequence targeting the
1469 * GTTADR. This code is developed by observed behavior and doesn't have a
1470 * direct spec reference, unfortunately.
1472 static uint64_t vfio_igd_quirk_data_read(void *opaque
,
1473 hwaddr addr
, unsigned size
)
1475 VFIOIGDQuirk
*igd
= opaque
;
1476 VFIOPCIDevice
*vdev
= igd
->vdev
;
1480 return vfio_region_read(&vdev
->bars
[4].region
, addr
+ 4, size
);
1483 static void vfio_igd_quirk_data_write(void *opaque
, hwaddr addr
,
1484 uint64_t data
, unsigned size
)
1486 VFIOIGDQuirk
*igd
= opaque
;
1487 VFIOPCIDevice
*vdev
= igd
->vdev
;
1488 uint64_t val
= data
;
1489 int gen
= igd_gen(vdev
);
1492 * Programming the GGMS starts at index 0x1 and uses every 4th index (ie.
1493 * 0x1, 0x5, 0x9, 0xd,...). For pre-Gen8 each 4-byte write is a whole PTE
1494 * entry, with 0th bit enable set. For Gen8 and up, PTEs are 64bit, so
1495 * entries 0x5 & 0xd are the high dword, in our case zero. Each PTE points
1496 * to a 4k page, which we translate to a page from the VM allocated region,
1497 * pointed to by the BDSM register. If this is not set, we fail.
1499 * We trap writes to the full configured GTT size, but we typically only
1500 * see the vBIOS writing up to (nearly) the 1MB barrier. In fact it often
1501 * seems to miss the last entry for an even 1MB GTT. Doing a gratuitous
1502 * write of that last entry does work, but is hopefully unnecessary since
1503 * we clear the previous GTT on initialization.
1505 if ((igd
->index
% 4 == 1) && igd
->index
< vfio_igd_gtt_max(vdev
)) {
1506 if (gen
< 8 || (igd
->index
% 8 == 1)) {
1509 base
= pci_get_long(vdev
->pdev
.config
+ IGD_BDSM
);
1511 hw_error("vfio-igd: Guest attempted to program IGD GTT before "
1512 "BIOS reserved stolen memory. Unsupported BIOS?");
1515 val
= data
- igd
->bdsm
+ base
;
1517 val
= 0; /* upper 32bits of pte, we only enable below 4G PTEs */
1520 trace_vfio_pci_igd_bar4_write(vdev
->vbasedev
.name
,
1521 igd
->index
, data
, val
);
1524 vfio_region_write(&vdev
->bars
[4].region
, addr
+ 4, val
, size
);
1529 static const MemoryRegionOps vfio_igd_data_quirk
= {
1530 .read
= vfio_igd_quirk_data_read
,
1531 .write
= vfio_igd_quirk_data_write
,
1532 .endianness
= DEVICE_LITTLE_ENDIAN
,
1535 static uint64_t vfio_igd_quirk_index_read(void *opaque
,
1536 hwaddr addr
, unsigned size
)
1538 VFIOIGDQuirk
*igd
= opaque
;
1539 VFIOPCIDevice
*vdev
= igd
->vdev
;
1543 return vfio_region_read(&vdev
->bars
[4].region
, addr
, size
);
1546 static void vfio_igd_quirk_index_write(void *opaque
, hwaddr addr
,
1547 uint64_t data
, unsigned size
)
1549 VFIOIGDQuirk
*igd
= opaque
;
1550 VFIOPCIDevice
*vdev
= igd
->vdev
;
1554 vfio_region_write(&vdev
->bars
[4].region
, addr
, data
, size
);
1557 static const MemoryRegionOps vfio_igd_index_quirk
= {
1558 .read
= vfio_igd_quirk_index_read
,
1559 .write
= vfio_igd_quirk_index_write
,
1560 .endianness
= DEVICE_LITTLE_ENDIAN
,
1563 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice
*vdev
, int nr
)
1565 struct vfio_region_info
*rom
= NULL
, *opregion
= NULL
,
1566 *host
= NULL
, *lpc
= NULL
;
1569 PCIDevice
*lpc_bridge
;
1570 int i
, ret
, ggms_mb
, gms_mb
= 0, gen
;
1571 uint64_t *bdsm_size
;
1573 uint16_t cmd_orig
, cmd
;
1577 * This must be an Intel VGA device at address 00:02.0 for us to even
1578 * consider enabling legacy mode. The vBIOS has dependencies on the
1581 if (!vfio_pci_is(vdev
, PCI_VENDOR_ID_INTEL
, PCI_ANY_ID
) ||
1582 !vfio_is_vga(vdev
) || nr
!= 4 ||
1583 &vdev
->pdev
!= pci_find_device(pci_device_root_bus(&vdev
->pdev
),
1584 0, PCI_DEVFN(0x2, 0))) {
1589 * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we
1590 * can stuff host values into, so if there's already one there and it's not
1591 * one we can hack on, legacy mode is no-go. Sorry Q35.
1593 lpc_bridge
= pci_find_device(pci_device_root_bus(&vdev
->pdev
),
1594 0, PCI_DEVFN(0x1f, 0));
1595 if (lpc_bridge
&& !object_dynamic_cast(OBJECT(lpc_bridge
),
1596 "vfio-pci-igd-lpc-bridge")) {
1597 error_report("IGD device %s cannot support legacy mode due to existing "
1598 "devices at address 1f.0", vdev
->vbasedev
.name
);
1603 * IGD is not a standard, they like to change their specs often. We
1604 * only attempt to support back to SandBridge and we hope that newer
1605 * devices maintain compatibility with generation 8.
1607 gen
= igd_gen(vdev
);
1608 if (gen
!= 6 && gen
!= 8) {
1609 error_report("IGD device %s is unsupported in legacy mode, "
1610 "try SandyBridge or newer", vdev
->vbasedev
.name
);
1615 * Most of what we're doing here is to enable the ROM to run, so if
1616 * there's no ROM, there's no point in setting up this quirk.
1617 * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support.
1619 ret
= vfio_get_region_info(&vdev
->vbasedev
,
1620 VFIO_PCI_ROM_REGION_INDEX
, &rom
);
1621 if ((ret
|| !rom
->size
) && !vdev
->pdev
.romfile
) {
1622 error_report("IGD device %s has no ROM, legacy mode disabled",
1623 vdev
->vbasedev
.name
);
1628 * Ignore the hotplug corner case, mark the ROM failed, we can't
1629 * create the devices we need for legacy mode in the hotplug scenario.
1631 if (vdev
->pdev
.qdev
.hotplugged
) {
1632 error_report("IGD device %s hotplugged, ROM disabled, "
1633 "legacy mode disabled", vdev
->vbasedev
.name
);
1634 vdev
->rom_read_failed
= true;
1639 * Check whether we have all the vfio device specific regions to
1640 * support legacy mode (added in Linux v4.6). If not, bail.
1642 ret
= vfio_get_dev_region_info(&vdev
->vbasedev
,
1643 VFIO_REGION_TYPE_PCI_VENDOR_TYPE
| PCI_VENDOR_ID_INTEL
,
1644 VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION
, &opregion
);
1646 error_report("IGD device %s does not support OpRegion access,"
1647 "legacy mode disabled", vdev
->vbasedev
.name
);
1651 ret
= vfio_get_dev_region_info(&vdev
->vbasedev
,
1652 VFIO_REGION_TYPE_PCI_VENDOR_TYPE
| PCI_VENDOR_ID_INTEL
,
1653 VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG
, &host
);
1655 error_report("IGD device %s does not support host bridge access,"
1656 "legacy mode disabled", vdev
->vbasedev
.name
);
1660 ret
= vfio_get_dev_region_info(&vdev
->vbasedev
,
1661 VFIO_REGION_TYPE_PCI_VENDOR_TYPE
| PCI_VENDOR_ID_INTEL
,
1662 VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG
, &lpc
);
1664 error_report("IGD device %s does not support LPC bridge access,"
1665 "legacy mode disabled", vdev
->vbasedev
.name
);
1669 gmch
= vfio_pci_read_config(&vdev
->pdev
, IGD_GMCH
, 4);
1672 * If IGD VGA Disable is clear (expected) and VGA is not already enabled,
1673 * try to enable it. Probably shouldn't be using legacy mode without VGA,
1674 * but also no point in us enabling VGA if disabled in hardware.
1676 if (!(gmch
& 0x2) && !vdev
->vga
&& vfio_populate_vga(vdev
, &err
)) {
1677 error_reportf_err(err
, VFIO_MSG_PREFIX
, vdev
->vbasedev
.name
);
1678 error_report("IGD device %s failed to enable VGA access, "
1679 "legacy mode disabled", vdev
->vbasedev
.name
);
1683 /* Create our LPC/ISA bridge */
1684 ret
= vfio_pci_igd_lpc_init(vdev
, lpc
);
1686 error_report("IGD device %s failed to create LPC bridge, "
1687 "legacy mode disabled", vdev
->vbasedev
.name
);
1691 /* Stuff some host values into the VM PCI host bridge */
1692 ret
= vfio_pci_igd_host_init(vdev
, host
);
1694 error_report("IGD device %s failed to modify host bridge, "
1695 "legacy mode disabled", vdev
->vbasedev
.name
);
1699 /* Setup OpRegion access */
1700 ret
= vfio_pci_igd_opregion_init(vdev
, opregion
, &err
);
1702 error_append_hint(&err
, "IGD legacy mode disabled\n");
1703 error_reportf_err(err
, VFIO_MSG_PREFIX
, vdev
->vbasedev
.name
);
1707 /* Setup our quirk to munge GTT addresses to the VM allocated buffer */
1708 quirk
= vfio_quirk_alloc(2);
1709 igd
= quirk
->data
= g_malloc0(sizeof(*igd
));
1712 igd
->bdsm
= vfio_pci_read_config(&vdev
->pdev
, IGD_BDSM
, 4);
1713 igd
->bdsm
&= ~((1 * MiB
) - 1); /* 1MB aligned */
1715 memory_region_init_io(&quirk
->mem
[0], OBJECT(vdev
), &vfio_igd_index_quirk
,
1716 igd
, "vfio-igd-index-quirk", 4);
1717 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
1718 0, &quirk
->mem
[0], 1);
1720 memory_region_init_io(&quirk
->mem
[1], OBJECT(vdev
), &vfio_igd_data_quirk
,
1721 igd
, "vfio-igd-data-quirk", 4);
1722 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
1723 4, &quirk
->mem
[1], 1);
1725 QLIST_INSERT_HEAD(&vdev
->bars
[nr
].quirks
, quirk
, next
);
1727 /* Determine the size of stolen memory needed for GTT */
1728 ggms_mb
= (gmch
>> (gen
< 8 ? 8 : 6)) & 0x3;
1730 ggms_mb
= 1 << ggms_mb
;
1734 * Assume we have no GMS memory, but allow it to be overrided by device
1735 * option (experimental). The spec doesn't actually allow zero GMS when
1736 * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused,
1737 * so let's not waste VM memory for it.
1739 gmch
&= ~((gen
< 8 ? 0x1f : 0xff) << (gen
< 8 ? 3 : 8));
1741 if (vdev
->igd_gms
) {
1742 if (vdev
->igd_gms
<= 0x10) {
1743 gms_mb
= vdev
->igd_gms
* 32;
1744 gmch
|= vdev
->igd_gms
<< (gen
< 8 ? 3 : 8);
1746 error_report("Unsupported IGD GMS value 0x%x", vdev
->igd_gms
);
1752 * Request reserved memory for stolen memory via fw_cfg. VM firmware
1753 * must allocate a 1MB aligned reserved memory region below 4GB with
1754 * the requested size (in bytes) for use by the Intel PCI class VGA
1755 * device at VM address 00:02.0. The base address of this reserved
1756 * memory region must be written to the device BDSM regsiter at PCI
1757 * config offset 0x5C.
1759 bdsm_size
= g_malloc(sizeof(*bdsm_size
));
1760 *bdsm_size
= cpu_to_le64((ggms_mb
+ gms_mb
) * MiB
);
1761 fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size",
1762 bdsm_size
, sizeof(*bdsm_size
));
1764 /* GMCH is read-only, emulated */
1765 pci_set_long(vdev
->pdev
.config
+ IGD_GMCH
, gmch
);
1766 pci_set_long(vdev
->pdev
.wmask
+ IGD_GMCH
, 0);
1767 pci_set_long(vdev
->emulated_config_bits
+ IGD_GMCH
, ~0);
1769 /* BDSM is read-write, emulated. The BIOS needs to be able to write it */
1770 pci_set_long(vdev
->pdev
.config
+ IGD_BDSM
, 0);
1771 pci_set_long(vdev
->pdev
.wmask
+ IGD_BDSM
, ~0);
1772 pci_set_long(vdev
->emulated_config_bits
+ IGD_BDSM
, ~0);
1775 * This IOBAR gives us access to GTTADR, which allows us to write to
1776 * the GTT itself. So let's go ahead and write zero to all the GTT
1777 * entries to avoid spurious DMA faults. Be sure I/O access is enabled
1778 * before talking to the device.
1780 if (pread(vdev
->vbasedev
.fd
, &cmd_orig
, sizeof(cmd_orig
),
1781 vdev
->config_offset
+ PCI_COMMAND
) != sizeof(cmd_orig
)) {
1782 error_report("IGD device %s - failed to read PCI command register",
1783 vdev
->vbasedev
.name
);
1786 cmd
= cmd_orig
| PCI_COMMAND_IO
;
1788 if (pwrite(vdev
->vbasedev
.fd
, &cmd
, sizeof(cmd
),
1789 vdev
->config_offset
+ PCI_COMMAND
) != sizeof(cmd
)) {
1790 error_report("IGD device %s - failed to write PCI command register",
1791 vdev
->vbasedev
.name
);
1794 for (i
= 1; i
< vfio_igd_gtt_max(vdev
); i
+= 4) {
1795 vfio_region_write(&vdev
->bars
[4].region
, 0, i
, 4);
1796 vfio_region_write(&vdev
->bars
[4].region
, 4, 0, 4);
1799 if (pwrite(vdev
->vbasedev
.fd
, &cmd_orig
, sizeof(cmd_orig
),
1800 vdev
->config_offset
+ PCI_COMMAND
) != sizeof(cmd_orig
)) {
1801 error_report("IGD device %s - failed to restore PCI command register",
1802 vdev
->vbasedev
.name
);
1805 trace_vfio_pci_igd_bdsm_enabled(vdev
->vbasedev
.name
, ggms_mb
+ gms_mb
);
1815 * Common quirk probe entry points.
1817 void vfio_vga_quirk_setup(VFIOPCIDevice
*vdev
)
1819 vfio_vga_probe_ati_3c3_quirk(vdev
);
1820 vfio_vga_probe_nvidia_3d0_quirk(vdev
);
1823 void vfio_vga_quirk_exit(VFIOPCIDevice
*vdev
)
1828 for (i
= 0; i
< ARRAY_SIZE(vdev
->vga
->region
); i
++) {
1829 QLIST_FOREACH(quirk
, &vdev
->vga
->region
[i
].quirks
, next
) {
1830 for (j
= 0; j
< quirk
->nr_mem
; j
++) {
1831 memory_region_del_subregion(&vdev
->vga
->region
[i
].mem
,
1838 void vfio_vga_quirk_finalize(VFIOPCIDevice
*vdev
)
1842 for (i
= 0; i
< ARRAY_SIZE(vdev
->vga
->region
); i
++) {
1843 while (!QLIST_EMPTY(&vdev
->vga
->region
[i
].quirks
)) {
1844 VFIOQuirk
*quirk
= QLIST_FIRST(&vdev
->vga
->region
[i
].quirks
);
1845 QLIST_REMOVE(quirk
, next
);
1846 for (j
= 0; j
< quirk
->nr_mem
; j
++) {
1847 object_unparent(OBJECT(&quirk
->mem
[j
]));
1850 g_free(quirk
->data
);
1856 void vfio_bar_quirk_setup(VFIOPCIDevice
*vdev
, int nr
)
1858 vfio_probe_ati_bar4_quirk(vdev
, nr
);
1859 vfio_probe_ati_bar2_quirk(vdev
, nr
);
1860 vfio_probe_nvidia_bar5_quirk(vdev
, nr
);
1861 vfio_probe_nvidia_bar0_quirk(vdev
, nr
);
1862 vfio_probe_rtl8168_bar2_quirk(vdev
, nr
);
1863 vfio_probe_igd_bar4_quirk(vdev
, nr
);
1866 void vfio_bar_quirk_exit(VFIOPCIDevice
*vdev
, int nr
)
1868 VFIOBAR
*bar
= &vdev
->bars
[nr
];
1872 QLIST_FOREACH(quirk
, &bar
->quirks
, next
) {
1873 while (!QLIST_EMPTY(&quirk
->ioeventfds
)) {
1874 vfio_ioeventfd_exit(vdev
, QLIST_FIRST(&quirk
->ioeventfds
));
1877 for (i
= 0; i
< quirk
->nr_mem
; i
++) {
1878 memory_region_del_subregion(bar
->region
.mem
, &quirk
->mem
[i
]);
1883 void vfio_bar_quirk_finalize(VFIOPCIDevice
*vdev
, int nr
)
1885 VFIOBAR
*bar
= &vdev
->bars
[nr
];
1888 while (!QLIST_EMPTY(&bar
->quirks
)) {
1889 VFIOQuirk
*quirk
= QLIST_FIRST(&bar
->quirks
);
1890 QLIST_REMOVE(quirk
, next
);
1891 for (i
= 0; i
< quirk
->nr_mem
; i
++) {
1892 object_unparent(OBJECT(&quirk
->mem
[i
]));
1895 g_free(quirk
->data
);
1903 void vfio_quirk_reset(VFIOPCIDevice
*vdev
)
1907 for (i
= 0; i
< PCI_ROM_SLOT
; i
++) {
1909 VFIOBAR
*bar
= &vdev
->bars
[i
];
1911 QLIST_FOREACH(quirk
, &bar
->quirks
, next
) {
1913 quirk
->reset(vdev
, quirk
);
1920 * AMD Radeon PCI config reset, based on Linux:
1921 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
1922 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
1923 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
1924 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
1925 * IDs: include/drm/drm_pciids.h
1926 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
1928 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the
1929 * hardware that should be fixed on future ASICs. The symptom of this is that
1930 * once the accerlated driver loads, Windows guests will bsod on subsequent
1931 * attmpts to load the driver, such as after VM reset or shutdown/restart. To
1932 * work around this, we do an AMD specific PCI config reset, followed by an SMC
1933 * reset. The PCI config reset only works if SMC firmware is running, so we
1934 * have a dependency on the state of the device as to whether this reset will
1935 * be effective. There are still cases where we won't be able to kick the
1936 * device into working, but this greatly improves the usability overall. The
1937 * config reset magic is relatively common on AMD GPUs, but the setup and SMC
1938 * poking is largely ASIC specific.
1940 static bool vfio_radeon_smc_is_running(VFIOPCIDevice
*vdev
)
1945 * Registers 200h and 204h are index and data registers for accessing
1946 * indirect configuration registers within the device.
1948 vfio_region_write(&vdev
->bars
[5].region
, 0x200, 0x80000004, 4);
1949 clk
= vfio_region_read(&vdev
->bars
[5].region
, 0x204, 4);
1950 vfio_region_write(&vdev
->bars
[5].region
, 0x200, 0x80000370, 4);
1951 pc_c
= vfio_region_read(&vdev
->bars
[5].region
, 0x204, 4);
1953 return (!(clk
& 1) && (0x20100 <= pc_c
));
1957 * The scope of a config reset is controlled by a mode bit in the misc register
1958 * and a fuse, exposed as a bit in another register. The fuse is the default
1959 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
1960 * scope = !(misc ^ fuse), where the resulting scope is defined the same as
1961 * the fuse. A truth table therefore tells us that if misc == fuse, we need
1962 * to flip the value of the bit in the misc register.
1964 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice
*vdev
)
1966 uint32_t misc
, fuse
;
1969 vfio_region_write(&vdev
->bars
[5].region
, 0x200, 0xc00c0000, 4);
1970 fuse
= vfio_region_read(&vdev
->bars
[5].region
, 0x204, 4);
1973 vfio_region_write(&vdev
->bars
[5].region
, 0x200, 0xc0000010, 4);
1974 misc
= vfio_region_read(&vdev
->bars
[5].region
, 0x204, 4);
1978 vfio_region_write(&vdev
->bars
[5].region
, 0x204, misc
^ 2, 4);
1979 vfio_region_read(&vdev
->bars
[5].region
, 0x204, 4); /* flush */
1983 static int vfio_radeon_reset(VFIOPCIDevice
*vdev
)
1985 PCIDevice
*pdev
= &vdev
->pdev
;
1989 /* Defer to a kernel implemented reset */
1990 if (vdev
->vbasedev
.reset_works
) {
1991 trace_vfio_quirk_ati_bonaire_reset_skipped(vdev
->vbasedev
.name
);
1995 /* Enable only memory BAR access */
1996 vfio_pci_write_config(pdev
, PCI_COMMAND
, PCI_COMMAND_MEMORY
, 2);
1998 /* Reset only works if SMC firmware is loaded and running */
1999 if (!vfio_radeon_smc_is_running(vdev
)) {
2001 trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev
->vbasedev
.name
);
2005 /* Make sure only the GFX function is reset */
2006 vfio_radeon_set_gfx_only_reset(vdev
);
2008 /* AMD PCI config reset */
2009 vfio_pci_write_config(pdev
, 0x7c, 0x39d5e86b, 4);
2012 /* Read back the memory size to make sure we're out of reset */
2013 for (i
= 0; i
< 100000; i
++) {
2014 if (vfio_region_read(&vdev
->bars
[5].region
, 0x5428, 4) != 0xffffffff) {
2020 trace_vfio_quirk_ati_bonaire_reset_timeout(vdev
->vbasedev
.name
);
2024 vfio_region_write(&vdev
->bars
[5].region
, 0x200, 0x80000000, 4);
2025 data
= vfio_region_read(&vdev
->bars
[5].region
, 0x204, 4);
2027 vfio_region_write(&vdev
->bars
[5].region
, 0x204, data
, 4);
2029 /* Disable SMC clock */
2030 vfio_region_write(&vdev
->bars
[5].region
, 0x200, 0x80000004, 4);
2031 data
= vfio_region_read(&vdev
->bars
[5].region
, 0x204, 4);
2033 vfio_region_write(&vdev
->bars
[5].region
, 0x204, data
, 4);
2035 trace_vfio_quirk_ati_bonaire_reset_done(vdev
->vbasedev
.name
);
2038 /* Restore PCI command register */
2039 vfio_pci_write_config(pdev
, PCI_COMMAND
, 0, 2);
2044 void vfio_setup_resetfn_quirk(VFIOPCIDevice
*vdev
)
2046 switch (vdev
->vendor_id
) {
2048 switch (vdev
->device_id
) {
2050 case 0x6649: /* Bonaire [FirePro W5100] */
2053 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
2054 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
2055 case 0x665d: /* Bonaire [Radeon R7 200 Series] */
2057 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
2058 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
2063 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
2064 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
2069 vdev
->resetfn
= vfio_radeon_reset
;
2070 trace_vfio_quirk_ati_bonaire_reset(vdev
->vbasedev
.name
);
2078 * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify
2079 * devices as a member of a clique. Devices within the same clique ID
2080 * are capable of direct P2P. It's the user's responsibility that this
2081 * is correct. The spec says that this may reside at any unused config
2082 * offset, but reserves and recommends hypervisors place this at C8h.
2083 * The spec also states that the hypervisor should place this capability
2084 * at the end of the capability list, thus next is defined as 0h.
2086 * +----------------+----------------+----------------+----------------+
2087 * | sig 7:0 ('P') | vndr len (8h) | next (0h) | cap id (9h) |
2088 * +----------------+----------------+----------------+----------------+
2089 * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)| sig 23:8 ('P2') |
2090 * +---------------------------------+---------------------------------+
2092 * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf
2094 static void get_nv_gpudirect_clique_id(Object
*obj
, Visitor
*v
,
2095 const char *name
, void *opaque
,
2098 DeviceState
*dev
= DEVICE(obj
);
2099 Property
*prop
= opaque
;
2100 uint8_t *ptr
= qdev_get_prop_ptr(dev
, prop
);
2102 visit_type_uint8(v
, name
, ptr
, errp
);
2105 static void set_nv_gpudirect_clique_id(Object
*obj
, Visitor
*v
,
2106 const char *name
, void *opaque
,
2109 DeviceState
*dev
= DEVICE(obj
);
2110 Property
*prop
= opaque
;
2111 uint8_t value
, *ptr
= qdev_get_prop_ptr(dev
, prop
);
2112 Error
*local_err
= NULL
;
2114 if (dev
->realized
) {
2115 qdev_prop_set_after_realize(dev
, name
, errp
);
2119 visit_type_uint8(v
, name
, &value
, &local_err
);
2121 error_propagate(errp
, local_err
);
2126 error_setg(errp
, "Property %s: valid range 0-15", name
);
2133 const PropertyInfo qdev_prop_nv_gpudirect_clique
= {
2135 .description
= "NVIDIA GPUDirect Clique ID (0 - 15)",
2136 .get
= get_nv_gpudirect_clique_id
,
2137 .set
= set_nv_gpudirect_clique_id
,
2140 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice
*vdev
, Error
**errp
)
2142 PCIDevice
*pdev
= &vdev
->pdev
;
2143 int ret
, pos
= 0xC8;
2145 if (vdev
->nv_gpudirect_clique
== 0xFF) {
2149 if (!vfio_pci_is(vdev
, PCI_VENDOR_ID_NVIDIA
, PCI_ANY_ID
)) {
2150 error_setg(errp
, "NVIDIA GPUDirect Clique ID: invalid device vendor");
2154 if (pci_get_byte(pdev
->config
+ PCI_CLASS_DEVICE
+ 1) !=
2155 PCI_BASE_CLASS_DISPLAY
) {
2156 error_setg(errp
, "NVIDIA GPUDirect Clique ID: unsupported PCI class");
2160 ret
= pci_add_capability(pdev
, PCI_CAP_ID_VNDR
, pos
, 8, errp
);
2162 error_prepend(errp
, "Failed to add NVIDIA GPUDirect cap: ");
2166 memset(vdev
->emulated_config_bits
+ pos
, 0xFF, 8);
2167 pos
+= PCI_CAP_FLAGS
;
2168 pci_set_byte(pdev
->config
+ pos
++, 8);
2169 pci_set_byte(pdev
->config
+ pos
++, 'P');
2170 pci_set_byte(pdev
->config
+ pos
++, '2');
2171 pci_set_byte(pdev
->config
+ pos
++, 'P');
2172 pci_set_byte(pdev
->config
+ pos
++, vdev
->nv_gpudirect_clique
<< 3);
2173 pci_set_byte(pdev
->config
+ pos
, 0);
2178 int vfio_add_virt_caps(VFIOPCIDevice
*vdev
, Error
**errp
)
2182 ret
= vfio_add_nv_gpudirect_cap(vdev
, errp
);
2190 static void vfio_pci_nvlink2_get_tgt(Object
*obj
, Visitor
*v
,
2192 void *opaque
, Error
**errp
)
2194 uint64_t tgt
= (uintptr_t) opaque
;
2195 visit_type_uint64(v
, name
, &tgt
, errp
);
2198 static void vfio_pci_nvlink2_get_link_speed(Object
*obj
, Visitor
*v
,
2200 void *opaque
, Error
**errp
)
2202 uint32_t link_speed
= (uint32_t)(uintptr_t) opaque
;
2203 visit_type_uint32(v
, name
, &link_speed
, errp
);
2206 int vfio_pci_nvidia_v100_ram_init(VFIOPCIDevice
*vdev
, Error
**errp
)
2210 struct vfio_region_info
*nv2reg
= NULL
;
2211 struct vfio_info_cap_header
*hdr
;
2212 struct vfio_region_info_cap_nvlink2_ssatgt
*cap
;
2215 ret
= vfio_get_dev_region_info(&vdev
->vbasedev
,
2216 VFIO_REGION_TYPE_PCI_VENDOR_TYPE
|
2217 PCI_VENDOR_ID_NVIDIA
,
2218 VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM
,
2224 hdr
= vfio_get_region_info_cap(nv2reg
, VFIO_REGION_INFO_CAP_NVLINK2_SSATGT
);
2231 p
= mmap(NULL
, nv2reg
->size
, PROT_READ
| PROT_WRITE
| PROT_EXEC
,
2232 MAP_SHARED
, vdev
->vbasedev
.fd
, nv2reg
->offset
);
2233 if (p
== MAP_FAILED
) {
2238 quirk
= vfio_quirk_alloc(1);
2239 memory_region_init_ram_ptr(&quirk
->mem
[0], OBJECT(vdev
), "nvlink2-mr",
2241 QLIST_INSERT_HEAD(&vdev
->bars
[0].quirks
, quirk
, next
);
2243 object_property_add(OBJECT(vdev
), "nvlink2-tgt", "uint64",
2244 vfio_pci_nvlink2_get_tgt
, NULL
, NULL
,
2245 (void *) (uintptr_t) cap
->tgt
, NULL
);
2246 trace_vfio_pci_nvidia_gpu_setup_quirk(vdev
->vbasedev
.name
, cap
->tgt
,
2254 int vfio_pci_nvlink2_init(VFIOPCIDevice
*vdev
, Error
**errp
)
2258 struct vfio_region_info
*atsdreg
= NULL
;
2259 struct vfio_info_cap_header
*hdr
;
2260 struct vfio_region_info_cap_nvlink2_ssatgt
*captgt
;
2261 struct vfio_region_info_cap_nvlink2_lnkspd
*capspeed
;
2264 ret
= vfio_get_dev_region_info(&vdev
->vbasedev
,
2265 VFIO_REGION_TYPE_PCI_VENDOR_TYPE
|
2267 VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD
,
2273 hdr
= vfio_get_region_info_cap(atsdreg
,
2274 VFIO_REGION_INFO_CAP_NVLINK2_SSATGT
);
2279 captgt
= (void *) hdr
;
2281 hdr
= vfio_get_region_info_cap(atsdreg
,
2282 VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD
);
2287 capspeed
= (void *) hdr
;
2289 /* Some NVLink bridges may not have assigned ATSD */
2290 if (atsdreg
->size
) {
2291 p
= mmap(NULL
, atsdreg
->size
, PROT_READ
| PROT_WRITE
| PROT_EXEC
,
2292 MAP_SHARED
, vdev
->vbasedev
.fd
, atsdreg
->offset
);
2293 if (p
== MAP_FAILED
) {
2298 quirk
= vfio_quirk_alloc(1);
2299 memory_region_init_ram_device_ptr(&quirk
->mem
[0], OBJECT(vdev
),
2300 "nvlink2-atsd-mr", atsdreg
->size
, p
);
2301 QLIST_INSERT_HEAD(&vdev
->bars
[0].quirks
, quirk
, next
);
2304 object_property_add(OBJECT(vdev
), "nvlink2-tgt", "uint64",
2305 vfio_pci_nvlink2_get_tgt
, NULL
, NULL
,
2306 (void *) (uintptr_t) captgt
->tgt
, NULL
);
2307 trace_vfio_pci_nvlink2_setup_quirk_ssatgt(vdev
->vbasedev
.name
, captgt
->tgt
,
2310 object_property_add(OBJECT(vdev
), "nvlink2-link-speed", "uint32",
2311 vfio_pci_nvlink2_get_link_speed
, NULL
, NULL
,
2312 (void *) (uintptr_t) capspeed
->link_speed
, NULL
);
2313 trace_vfio_pci_nvlink2_setup_quirk_lnkspd(vdev
->vbasedev
.name
,
2314 capspeed
->link_speed
);