trace: expand mem_info:size_shift to 4 bits
[qemu/ar7.git] / hw / ssi / aspeed_smc.c
blobf0c7bbbad302d2a7037d7a6889e89c6d9433adab
1 /*
2 * ASPEED AST2400 SMC Controller (SPI Flash Only)
4 * Copyright (C) 2016 IBM Corp.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
32 #include "exec/address-spaces.h"
33 #include "qemu/units.h"
35 #include "hw/irq.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/ssi/aspeed_smc.h"
39 /* CE Type Setting Register */
40 #define R_CONF (0x00 / 4)
41 #define CONF_LEGACY_DISABLE (1 << 31)
42 #define CONF_ENABLE_W4 20
43 #define CONF_ENABLE_W3 19
44 #define CONF_ENABLE_W2 18
45 #define CONF_ENABLE_W1 17
46 #define CONF_ENABLE_W0 16
47 #define CONF_FLASH_TYPE4 8
48 #define CONF_FLASH_TYPE3 6
49 #define CONF_FLASH_TYPE2 4
50 #define CONF_FLASH_TYPE1 2
51 #define CONF_FLASH_TYPE0 0
52 #define CONF_FLASH_TYPE_NOR 0x0
53 #define CONF_FLASH_TYPE_NAND 0x1
54 #define CONF_FLASH_TYPE_SPI 0x2 /* AST2600 is SPI only */
56 /* CE Control Register */
57 #define R_CE_CTRL (0x04 / 4)
58 #define CTRL_EXTENDED4 4 /* 32 bit addressing for SPI */
59 #define CTRL_EXTENDED3 3 /* 32 bit addressing for SPI */
60 #define CTRL_EXTENDED2 2 /* 32 bit addressing for SPI */
61 #define CTRL_EXTENDED1 1 /* 32 bit addressing for SPI */
62 #define CTRL_EXTENDED0 0 /* 32 bit addressing for SPI */
64 /* Interrupt Control and Status Register */
65 #define R_INTR_CTRL (0x08 / 4)
66 #define INTR_CTRL_DMA_STATUS (1 << 11)
67 #define INTR_CTRL_CMD_ABORT_STATUS (1 << 10)
68 #define INTR_CTRL_WRITE_PROTECT_STATUS (1 << 9)
69 #define INTR_CTRL_DMA_EN (1 << 3)
70 #define INTR_CTRL_CMD_ABORT_EN (1 << 2)
71 #define INTR_CTRL_WRITE_PROTECT_EN (1 << 1)
73 /* CEx Control Register */
74 #define R_CTRL0 (0x10 / 4)
75 #define CTRL_IO_QPI (1 << 31)
76 #define CTRL_IO_QUAD_DATA (1 << 30)
77 #define CTRL_IO_DUAL_DATA (1 << 29)
78 #define CTRL_IO_DUAL_ADDR_DATA (1 << 28) /* Includes dummies */
79 #define CTRL_IO_QUAD_ADDR_DATA (1 << 28) /* Includes dummies */
80 #define CTRL_CMD_SHIFT 16
81 #define CTRL_CMD_MASK 0xff
82 #define CTRL_DUMMY_HIGH_SHIFT 14
83 #define CTRL_AST2400_SPI_4BYTE (1 << 13)
84 #define CE_CTRL_CLOCK_FREQ_SHIFT 8
85 #define CE_CTRL_CLOCK_FREQ_MASK 0xf
86 #define CE_CTRL_CLOCK_FREQ(div) \
87 (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
88 #define CTRL_DUMMY_LOW_SHIFT 6 /* 2 bits [7:6] */
89 #define CTRL_CE_STOP_ACTIVE (1 << 2)
90 #define CTRL_CMD_MODE_MASK 0x3
91 #define CTRL_READMODE 0x0
92 #define CTRL_FREADMODE 0x1
93 #define CTRL_WRITEMODE 0x2
94 #define CTRL_USERMODE 0x3
95 #define R_CTRL1 (0x14 / 4)
96 #define R_CTRL2 (0x18 / 4)
97 #define R_CTRL3 (0x1C / 4)
98 #define R_CTRL4 (0x20 / 4)
100 /* CEx Segment Address Register */
101 #define R_SEG_ADDR0 (0x30 / 4)
102 #define SEG_END_SHIFT 24 /* 8MB units */
103 #define SEG_END_MASK 0xff
104 #define SEG_START_SHIFT 16 /* address bit [A29-A23] */
105 #define SEG_START_MASK 0xff
106 #define R_SEG_ADDR1 (0x34 / 4)
107 #define R_SEG_ADDR2 (0x38 / 4)
108 #define R_SEG_ADDR3 (0x3C / 4)
109 #define R_SEG_ADDR4 (0x40 / 4)
111 /* Misc Control Register #1 */
112 #define R_MISC_CTRL1 (0x50 / 4)
114 /* SPI dummy cycle data */
115 #define R_DUMMY_DATA (0x54 / 4)
117 /* DMA Control/Status Register */
118 #define R_DMA_CTRL (0x80 / 4)
119 #define DMA_CTRL_DELAY_MASK 0xf
120 #define DMA_CTRL_DELAY_SHIFT 8
121 #define DMA_CTRL_FREQ_MASK 0xf
122 #define DMA_CTRL_FREQ_SHIFT 4
123 #define DMA_CTRL_CALIB (1 << 3)
124 #define DMA_CTRL_CKSUM (1 << 2)
125 #define DMA_CTRL_WRITE (1 << 1)
126 #define DMA_CTRL_ENABLE (1 << 0)
128 /* DMA Flash Side Address */
129 #define R_DMA_FLASH_ADDR (0x84 / 4)
131 /* DMA DRAM Side Address */
132 #define R_DMA_DRAM_ADDR (0x88 / 4)
134 /* DMA Length Register */
135 #define R_DMA_LEN (0x8C / 4)
137 /* Checksum Calculation Result */
138 #define R_DMA_CHECKSUM (0x90 / 4)
140 /* Misc Control Register #2 */
141 #define R_TIMINGS (0x94 / 4)
143 /* SPI controller registers and bits (AST2400) */
144 #define R_SPI_CONF (0x00 / 4)
145 #define SPI_CONF_ENABLE_W0 0
146 #define R_SPI_CTRL0 (0x4 / 4)
147 #define R_SPI_MISC_CTRL (0x10 / 4)
148 #define R_SPI_TIMINGS (0x14 / 4)
150 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
151 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
153 #define ASPEED_SOC_SMC_FLASH_BASE 0x10000000
154 #define ASPEED_SOC_FMC_FLASH_BASE 0x20000000
155 #define ASPEED_SOC_SPI_FLASH_BASE 0x30000000
156 #define ASPEED_SOC_SPI2_FLASH_BASE 0x38000000
159 * DMA DRAM addresses should be 4 bytes aligned and the valid address
160 * range is 0x40000000 - 0x5FFFFFFF (AST2400)
161 * 0x80000000 - 0xBFFFFFFF (AST2500)
163 * DMA flash addresses should be 4 bytes aligned and the valid address
164 * range is 0x20000000 - 0x2FFFFFFF.
166 * DMA length is from 4 bytes to 32MB
167 * 0: 4 bytes
168 * 0x7FFFFF: 32M bytes
170 #define DMA_DRAM_ADDR(s, val) ((s)->sdram_base | \
171 ((val) & (s)->ctrl->dma_dram_mask))
172 #define DMA_FLASH_ADDR(s, val) ((s)->ctrl->flash_window_base | \
173 ((val) & (s)->ctrl->dma_flash_mask))
174 #define DMA_LENGTH(val) ((val) & 0x01FFFFFC)
176 /* Flash opcodes. */
177 #define SPI_OP_READ 0x03 /* Read data bytes (low frequency) */
179 #define SNOOP_OFF 0xFF
180 #define SNOOP_START 0x0
183 * Default segments mapping addresses and size for each slave per
184 * controller. These can be changed when board is initialized with the
185 * Segment Address Registers.
187 static const AspeedSegments aspeed_segments_legacy[] = {
188 { 0x10000000, 32 * 1024 * 1024 },
191 static const AspeedSegments aspeed_segments_fmc[] = {
192 { 0x20000000, 64 * 1024 * 1024 }, /* start address is readonly */
193 { 0x24000000, 32 * 1024 * 1024 },
194 { 0x26000000, 32 * 1024 * 1024 },
195 { 0x28000000, 32 * 1024 * 1024 },
196 { 0x2A000000, 32 * 1024 * 1024 }
199 static const AspeedSegments aspeed_segments_spi[] = {
200 { 0x30000000, 64 * 1024 * 1024 },
203 static const AspeedSegments aspeed_segments_ast2500_fmc[] = {
204 { 0x20000000, 128 * 1024 * 1024 }, /* start address is readonly */
205 { 0x28000000, 32 * 1024 * 1024 },
206 { 0x2A000000, 32 * 1024 * 1024 },
209 static const AspeedSegments aspeed_segments_ast2500_spi1[] = {
210 { 0x30000000, 32 * 1024 * 1024 }, /* start address is readonly */
211 { 0x32000000, 96 * 1024 * 1024 }, /* end address is readonly */
214 static const AspeedSegments aspeed_segments_ast2500_spi2[] = {
215 { 0x38000000, 32 * 1024 * 1024 }, /* start address is readonly */
216 { 0x3A000000, 96 * 1024 * 1024 }, /* end address is readonly */
218 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
219 const AspeedSegments *seg);
220 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s, uint32_t reg,
221 AspeedSegments *seg);
224 * AST2600 definitions
226 #define ASPEED26_SOC_FMC_FLASH_BASE 0x20000000
227 #define ASPEED26_SOC_SPI_FLASH_BASE 0x30000000
228 #define ASPEED26_SOC_SPI2_FLASH_BASE 0x50000000
230 static const AspeedSegments aspeed_segments_ast2600_fmc[] = {
231 { 0x0, 128 * MiB }, /* start address is readonly */
232 { 0x0, 0 }, /* disabled */
233 { 0x0, 0 }, /* disabled */
236 static const AspeedSegments aspeed_segments_ast2600_spi1[] = {
237 { 0x0, 128 * MiB }, /* start address is readonly */
238 { 0x0, 0 }, /* disabled */
241 static const AspeedSegments aspeed_segments_ast2600_spi2[] = {
242 { 0x0, 128 * MiB }, /* start address is readonly */
243 { 0x0, 0 }, /* disabled */
244 { 0x0, 0 }, /* disabled */
247 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
248 const AspeedSegments *seg);
249 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
250 uint32_t reg, AspeedSegments *seg);
252 static const AspeedSMCController controllers[] = {
254 .name = "aspeed.smc-ast2400",
255 .r_conf = R_CONF,
256 .r_ce_ctrl = R_CE_CTRL,
257 .r_ctrl0 = R_CTRL0,
258 .r_timings = R_TIMINGS,
259 .conf_enable_w0 = CONF_ENABLE_W0,
260 .max_slaves = 5,
261 .segments = aspeed_segments_legacy,
262 .flash_window_base = ASPEED_SOC_SMC_FLASH_BASE,
263 .flash_window_size = 0x6000000,
264 .has_dma = false,
265 .nregs = ASPEED_SMC_R_SMC_MAX,
266 .segment_to_reg = aspeed_smc_segment_to_reg,
267 .reg_to_segment = aspeed_smc_reg_to_segment,
268 }, {
269 .name = "aspeed.fmc-ast2400",
270 .r_conf = R_CONF,
271 .r_ce_ctrl = R_CE_CTRL,
272 .r_ctrl0 = R_CTRL0,
273 .r_timings = R_TIMINGS,
274 .conf_enable_w0 = CONF_ENABLE_W0,
275 .max_slaves = 5,
276 .segments = aspeed_segments_fmc,
277 .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
278 .flash_window_size = 0x10000000,
279 .has_dma = true,
280 .dma_flash_mask = 0x0FFFFFFC,
281 .dma_dram_mask = 0x1FFFFFFC,
282 .nregs = ASPEED_SMC_R_MAX,
283 .segment_to_reg = aspeed_smc_segment_to_reg,
284 .reg_to_segment = aspeed_smc_reg_to_segment,
285 }, {
286 .name = "aspeed.spi1-ast2400",
287 .r_conf = R_SPI_CONF,
288 .r_ce_ctrl = 0xff,
289 .r_ctrl0 = R_SPI_CTRL0,
290 .r_timings = R_SPI_TIMINGS,
291 .conf_enable_w0 = SPI_CONF_ENABLE_W0,
292 .max_slaves = 1,
293 .segments = aspeed_segments_spi,
294 .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
295 .flash_window_size = 0x10000000,
296 .has_dma = false,
297 .nregs = ASPEED_SMC_R_SPI_MAX,
298 .segment_to_reg = aspeed_smc_segment_to_reg,
299 .reg_to_segment = aspeed_smc_reg_to_segment,
300 }, {
301 .name = "aspeed.fmc-ast2500",
302 .r_conf = R_CONF,
303 .r_ce_ctrl = R_CE_CTRL,
304 .r_ctrl0 = R_CTRL0,
305 .r_timings = R_TIMINGS,
306 .conf_enable_w0 = CONF_ENABLE_W0,
307 .max_slaves = 3,
308 .segments = aspeed_segments_ast2500_fmc,
309 .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
310 .flash_window_size = 0x10000000,
311 .has_dma = true,
312 .dma_flash_mask = 0x0FFFFFFC,
313 .dma_dram_mask = 0x3FFFFFFC,
314 .nregs = ASPEED_SMC_R_MAX,
315 .segment_to_reg = aspeed_smc_segment_to_reg,
316 .reg_to_segment = aspeed_smc_reg_to_segment,
317 }, {
318 .name = "aspeed.spi1-ast2500",
319 .r_conf = R_CONF,
320 .r_ce_ctrl = R_CE_CTRL,
321 .r_ctrl0 = R_CTRL0,
322 .r_timings = R_TIMINGS,
323 .conf_enable_w0 = CONF_ENABLE_W0,
324 .max_slaves = 2,
325 .segments = aspeed_segments_ast2500_spi1,
326 .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
327 .flash_window_size = 0x8000000,
328 .has_dma = false,
329 .nregs = ASPEED_SMC_R_MAX,
330 .segment_to_reg = aspeed_smc_segment_to_reg,
331 .reg_to_segment = aspeed_smc_reg_to_segment,
332 }, {
333 .name = "aspeed.spi2-ast2500",
334 .r_conf = R_CONF,
335 .r_ce_ctrl = R_CE_CTRL,
336 .r_ctrl0 = R_CTRL0,
337 .r_timings = R_TIMINGS,
338 .conf_enable_w0 = CONF_ENABLE_W0,
339 .max_slaves = 2,
340 .segments = aspeed_segments_ast2500_spi2,
341 .flash_window_base = ASPEED_SOC_SPI2_FLASH_BASE,
342 .flash_window_size = 0x8000000,
343 .has_dma = false,
344 .nregs = ASPEED_SMC_R_MAX,
345 .segment_to_reg = aspeed_smc_segment_to_reg,
346 .reg_to_segment = aspeed_smc_reg_to_segment,
347 }, {
348 .name = "aspeed.fmc-ast2600",
349 .r_conf = R_CONF,
350 .r_ce_ctrl = R_CE_CTRL,
351 .r_ctrl0 = R_CTRL0,
352 .r_timings = R_TIMINGS,
353 .conf_enable_w0 = CONF_ENABLE_W0,
354 .max_slaves = 3,
355 .segments = aspeed_segments_ast2600_fmc,
356 .flash_window_base = ASPEED26_SOC_FMC_FLASH_BASE,
357 .flash_window_size = 0x10000000,
358 .has_dma = true,
359 .nregs = ASPEED_SMC_R_MAX,
360 .segment_to_reg = aspeed_2600_smc_segment_to_reg,
361 .reg_to_segment = aspeed_2600_smc_reg_to_segment,
362 }, {
363 .name = "aspeed.spi1-ast2600",
364 .r_conf = R_CONF,
365 .r_ce_ctrl = R_CE_CTRL,
366 .r_ctrl0 = R_CTRL0,
367 .r_timings = R_TIMINGS,
368 .conf_enable_w0 = CONF_ENABLE_W0,
369 .max_slaves = 2,
370 .segments = aspeed_segments_ast2600_spi1,
371 .flash_window_base = ASPEED26_SOC_SPI_FLASH_BASE,
372 .flash_window_size = 0x10000000,
373 .has_dma = false,
374 .nregs = ASPEED_SMC_R_MAX,
375 .segment_to_reg = aspeed_2600_smc_segment_to_reg,
376 .reg_to_segment = aspeed_2600_smc_reg_to_segment,
377 }, {
378 .name = "aspeed.spi2-ast2600",
379 .r_conf = R_CONF,
380 .r_ce_ctrl = R_CE_CTRL,
381 .r_ctrl0 = R_CTRL0,
382 .r_timings = R_TIMINGS,
383 .conf_enable_w0 = CONF_ENABLE_W0,
384 .max_slaves = 3,
385 .segments = aspeed_segments_ast2600_spi2,
386 .flash_window_base = ASPEED26_SOC_SPI2_FLASH_BASE,
387 .flash_window_size = 0x10000000,
388 .has_dma = false,
389 .nregs = ASPEED_SMC_R_MAX,
390 .segment_to_reg = aspeed_2600_smc_segment_to_reg,
391 .reg_to_segment = aspeed_2600_smc_reg_to_segment,
396 * The Segment Registers of the AST2400 and AST2500 have a 8MB
397 * unit. The address range of a flash SPI slave is encoded with
398 * absolute addresses which should be part of the overall controller
399 * window.
401 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
402 const AspeedSegments *seg)
404 uint32_t reg = 0;
405 reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
406 reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
407 return reg;
410 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
411 uint32_t reg, AspeedSegments *seg)
413 seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
414 seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
418 * The Segment Registers of the AST2600 have a 1MB unit. The address
419 * range of a flash SPI slave is encoded with offsets in the overall
420 * controller window. The previous SoC AST2400 and AST2500 used
421 * absolute addresses. Only bits [27:20] are relevant and the end
422 * address is an upper bound limit.
424 #define AST2600_SEG_ADDR_MASK 0x0ff00000
426 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
427 const AspeedSegments *seg)
429 uint32_t reg = 0;
431 /* Disabled segments have a nil register */
432 if (!seg->size) {
433 return 0;
436 reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
437 reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
438 return reg;
441 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
442 uint32_t reg, AspeedSegments *seg)
444 uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
445 uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
447 seg->addr = s->ctrl->flash_window_base + start_offset;
448 seg->size = end_offset + MiB - start_offset;
451 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
452 const AspeedSegments *new,
453 int cs)
455 AspeedSegments seg;
456 int i;
458 for (i = 0; i < s->ctrl->max_slaves; i++) {
459 if (i == cs) {
460 continue;
463 s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
465 if (new->addr + new->size > seg.addr &&
466 new->addr < seg.addr + seg.size) {
467 qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment CS%d [ 0x%"
468 HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
469 "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
470 s->ctrl->name, cs, new->addr, new->addr + new->size,
471 i, seg.addr, seg.addr + seg.size);
472 return true;
475 return false;
478 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
479 uint64_t new)
481 AspeedSMCFlash *fl = &s->flashes[cs];
482 AspeedSegments seg;
484 s->ctrl->reg_to_segment(s, new, &seg);
486 /* The start address of CS0 is read-only */
487 if (cs == 0 && seg.addr != s->ctrl->flash_window_base) {
488 qemu_log_mask(LOG_GUEST_ERROR,
489 "%s: Tried to change CS0 start address to 0x%"
490 HWADDR_PRIx "\n", s->ctrl->name, seg.addr);
491 seg.addr = s->ctrl->flash_window_base;
492 new = s->ctrl->segment_to_reg(s, &seg);
496 * The end address of the AST2500 spi controllers is also
497 * read-only.
499 if ((s->ctrl->segments == aspeed_segments_ast2500_spi1 ||
500 s->ctrl->segments == aspeed_segments_ast2500_spi2) &&
501 cs == s->ctrl->max_slaves &&
502 seg.addr + seg.size != s->ctrl->segments[cs].addr +
503 s->ctrl->segments[cs].size) {
504 qemu_log_mask(LOG_GUEST_ERROR,
505 "%s: Tried to change CS%d end address to 0x%"
506 HWADDR_PRIx "\n", s->ctrl->name, cs, seg.addr + seg.size);
507 seg.size = s->ctrl->segments[cs].addr + s->ctrl->segments[cs].size -
508 seg.addr;
509 new = s->ctrl->segment_to_reg(s, &seg);
512 /* Keep the segment in the overall flash window */
513 if (seg.addr + seg.size <= s->ctrl->flash_window_base ||
514 seg.addr > s->ctrl->flash_window_base + s->ctrl->flash_window_size) {
515 qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is invalid : "
516 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
517 s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
518 return;
521 /* Check start address vs. alignment */
522 if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
523 qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is not "
524 "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
525 s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
528 /* And segments should not overlap (in the specs) */
529 aspeed_smc_flash_overlap(s, &seg, cs);
531 /* All should be fine now to move the region */
532 memory_region_transaction_begin();
533 memory_region_set_size(&fl->mmio, seg.size);
534 memory_region_set_address(&fl->mmio, seg.addr - s->ctrl->flash_window_base);
535 memory_region_set_enabled(&fl->mmio, true);
536 memory_region_transaction_commit();
538 s->regs[R_SEG_ADDR0 + cs] = new;
541 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
542 unsigned size)
544 qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u"
545 PRIx64 "\n", __func__, addr, size);
546 return 0;
549 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
550 uint64_t data, unsigned size)
552 qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u: 0x%"
553 PRIx64 "\n", __func__, addr, size, data);
556 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
557 .read = aspeed_smc_flash_default_read,
558 .write = aspeed_smc_flash_default_write,
559 .endianness = DEVICE_LITTLE_ENDIAN,
560 .valid = {
561 .min_access_size = 1,
562 .max_access_size = 4,
566 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
568 const AspeedSMCState *s = fl->controller;
570 return s->regs[s->r_ctrl0 + fl->id] & CTRL_CMD_MODE_MASK;
573 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
575 const AspeedSMCState *s = fl->controller;
577 return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->id));
580 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
582 const AspeedSMCState *s = fl->controller;
583 int cmd = (s->regs[s->r_ctrl0 + fl->id] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
586 * In read mode, the default SPI command is READ (0x3). In other
587 * modes, the command should necessarily be defined
589 * TODO: add support for READ4 (0x13) on AST2600
591 if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
592 cmd = SPI_OP_READ;
595 if (!cmd) {
596 qemu_log_mask(LOG_GUEST_ERROR, "%s: no command defined for mode %d\n",
597 __func__, aspeed_smc_flash_mode(fl));
600 return cmd;
603 static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl)
605 const AspeedSMCState *s = fl->controller;
607 if (s->ctrl->segments == aspeed_segments_spi) {
608 return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE;
609 } else {
610 return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->id));
614 static inline bool aspeed_smc_is_ce_stop_active(const AspeedSMCFlash *fl)
616 const AspeedSMCState *s = fl->controller;
618 return s->regs[s->r_ctrl0 + fl->id] & CTRL_CE_STOP_ACTIVE;
621 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
623 AspeedSMCState *s = fl->controller;
625 s->regs[s->r_ctrl0 + fl->id] &= ~CTRL_CE_STOP_ACTIVE;
626 qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
629 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
631 AspeedSMCState *s = fl->controller;
633 s->regs[s->r_ctrl0 + fl->id] |= CTRL_CE_STOP_ACTIVE;
634 qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
637 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
638 uint32_t addr)
640 const AspeedSMCState *s = fl->controller;
641 AspeedSegments seg;
643 s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->id], &seg);
644 if ((addr % seg.size) != addr) {
645 qemu_log_mask(LOG_GUEST_ERROR,
646 "%s: invalid address 0x%08x for CS%d segment : "
647 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
648 s->ctrl->name, addr, fl->id, seg.addr,
649 seg.addr + seg.size);
650 addr %= seg.size;
653 return addr;
656 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
658 const AspeedSMCState *s = fl->controller;
659 uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->id];
660 uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
661 uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
662 uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
664 if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
665 dummies /= 2;
668 return dummies;
671 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
673 const AspeedSMCState *s = fl->controller;
674 uint8_t cmd = aspeed_smc_flash_cmd(fl);
675 int i;
677 /* Flash access can not exceed CS segment */
678 addr = aspeed_smc_check_segment_addr(fl, addr);
680 ssi_transfer(s->spi, cmd);
682 if (aspeed_smc_flash_is_4byte(fl)) {
683 ssi_transfer(s->spi, (addr >> 24) & 0xff);
685 ssi_transfer(s->spi, (addr >> 16) & 0xff);
686 ssi_transfer(s->spi, (addr >> 8) & 0xff);
687 ssi_transfer(s->spi, (addr & 0xff));
690 * Use fake transfers to model dummy bytes. The value should
691 * be configured to some non-zero value in fast read mode and
692 * zero in read mode. But, as the HW allows inconsistent
693 * settings, let's check for fast read mode.
695 if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
696 for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
697 ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
702 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
704 AspeedSMCFlash *fl = opaque;
705 AspeedSMCState *s = fl->controller;
706 uint64_t ret = 0;
707 int i;
709 switch (aspeed_smc_flash_mode(fl)) {
710 case CTRL_USERMODE:
711 for (i = 0; i < size; i++) {
712 ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
714 break;
715 case CTRL_READMODE:
716 case CTRL_FREADMODE:
717 aspeed_smc_flash_select(fl);
718 aspeed_smc_flash_setup(fl, addr);
720 for (i = 0; i < size; i++) {
721 ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
724 aspeed_smc_flash_unselect(fl);
725 break;
726 default:
727 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
728 __func__, aspeed_smc_flash_mode(fl));
731 return ret;
735 * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
736 * common include header.
738 typedef enum {
739 READ = 0x3, READ_4 = 0x13,
740 FAST_READ = 0xb, FAST_READ_4 = 0x0c,
741 DOR = 0x3b, DOR_4 = 0x3c,
742 QOR = 0x6b, QOR_4 = 0x6c,
743 DIOR = 0xbb, DIOR_4 = 0xbc,
744 QIOR = 0xeb, QIOR_4 = 0xec,
746 PP = 0x2, PP_4 = 0x12,
747 DPP = 0xa2,
748 QPP = 0x32, QPP_4 = 0x34,
749 } FlashCMD;
751 static int aspeed_smc_num_dummies(uint8_t command)
753 switch (command) { /* check for dummies */
754 case READ: /* no dummy bytes/cycles */
755 case PP:
756 case DPP:
757 case QPP:
758 case READ_4:
759 case PP_4:
760 case QPP_4:
761 return 0;
762 case FAST_READ:
763 case DOR:
764 case QOR:
765 case DOR_4:
766 case QOR_4:
767 return 1;
768 case DIOR:
769 case FAST_READ_4:
770 case DIOR_4:
771 return 2;
772 case QIOR:
773 case QIOR_4:
774 return 4;
775 default:
776 return -1;
780 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl, uint64_t data,
781 unsigned size)
783 AspeedSMCState *s = fl->controller;
784 uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
786 if (s->snoop_index == SNOOP_OFF) {
787 return false; /* Do nothing */
789 } else if (s->snoop_index == SNOOP_START) {
790 uint8_t cmd = data & 0xff;
791 int ndummies = aspeed_smc_num_dummies(cmd);
794 * No dummy cycles are expected with the current command. Turn
795 * off snooping and let the transfer proceed normally.
797 if (ndummies <= 0) {
798 s->snoop_index = SNOOP_OFF;
799 return false;
802 s->snoop_dummies = ndummies * 8;
804 } else if (s->snoop_index >= addr_width + 1) {
806 /* The SPI transfer has reached the dummy cycles sequence */
807 for (; s->snoop_dummies; s->snoop_dummies--) {
808 ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
811 /* If no more dummy cycles are expected, turn off snooping */
812 if (!s->snoop_dummies) {
813 s->snoop_index = SNOOP_OFF;
814 } else {
815 s->snoop_index += size;
819 * Dummy cycles have been faked already. Ignore the current
820 * SPI transfer
822 return true;
825 s->snoop_index += size;
826 return false;
829 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
830 unsigned size)
832 AspeedSMCFlash *fl = opaque;
833 AspeedSMCState *s = fl->controller;
834 int i;
836 if (!aspeed_smc_is_writable(fl)) {
837 qemu_log_mask(LOG_GUEST_ERROR, "%s: flash is not writable at 0x%"
838 HWADDR_PRIx "\n", __func__, addr);
839 return;
842 switch (aspeed_smc_flash_mode(fl)) {
843 case CTRL_USERMODE:
844 if (aspeed_smc_do_snoop(fl, data, size)) {
845 break;
848 for (i = 0; i < size; i++) {
849 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
851 break;
852 case CTRL_WRITEMODE:
853 aspeed_smc_flash_select(fl);
854 aspeed_smc_flash_setup(fl, addr);
856 for (i = 0; i < size; i++) {
857 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
860 aspeed_smc_flash_unselect(fl);
861 break;
862 default:
863 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
864 __func__, aspeed_smc_flash_mode(fl));
868 static const MemoryRegionOps aspeed_smc_flash_ops = {
869 .read = aspeed_smc_flash_read,
870 .write = aspeed_smc_flash_write,
871 .endianness = DEVICE_LITTLE_ENDIAN,
872 .valid = {
873 .min_access_size = 1,
874 .max_access_size = 4,
878 static void aspeed_smc_flash_update_cs(AspeedSMCFlash *fl)
880 AspeedSMCState *s = fl->controller;
882 s->snoop_index = aspeed_smc_is_ce_stop_active(fl) ? SNOOP_OFF : SNOOP_START;
884 qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
887 static void aspeed_smc_reset(DeviceState *d)
889 AspeedSMCState *s = ASPEED_SMC(d);
890 int i;
892 memset(s->regs, 0, sizeof s->regs);
894 /* Unselect all slaves */
895 for (i = 0; i < s->num_cs; ++i) {
896 s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
897 qemu_set_irq(s->cs_lines[i], true);
900 /* setup default segment register values for all */
901 for (i = 0; i < s->ctrl->max_slaves; ++i) {
902 s->regs[R_SEG_ADDR0 + i] =
903 s->ctrl->segment_to_reg(s, &s->ctrl->segments[i]);
906 /* HW strapping flash type for the AST2600 controllers */
907 if (s->ctrl->segments == aspeed_segments_ast2600_fmc) {
908 /* flash type is fixed to SPI for all */
909 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
910 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
911 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2);
914 /* HW strapping flash type for FMC controllers */
915 if (s->ctrl->segments == aspeed_segments_ast2500_fmc) {
916 /* flash type is fixed to SPI for CE0 and CE1 */
917 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
918 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
921 /* HW strapping for AST2400 FMC controllers (SCU70). Let's use the
922 * configuration of the palmetto-bmc machine */
923 if (s->ctrl->segments == aspeed_segments_fmc) {
924 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
927 s->snoop_index = SNOOP_OFF;
928 s->snoop_dummies = 0;
931 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
933 AspeedSMCState *s = ASPEED_SMC(opaque);
935 addr >>= 2;
937 if (addr == s->r_conf ||
938 addr == s->r_timings ||
939 addr == s->r_ce_ctrl ||
940 addr == R_INTR_CTRL ||
941 addr == R_DUMMY_DATA ||
942 (s->ctrl->has_dma && addr == R_DMA_CTRL) ||
943 (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) ||
944 (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) ||
945 (s->ctrl->has_dma && addr == R_DMA_LEN) ||
946 (s->ctrl->has_dma && addr == R_DMA_CHECKSUM) ||
947 (addr >= R_SEG_ADDR0 && addr < R_SEG_ADDR0 + s->ctrl->max_slaves) ||
948 (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->ctrl->max_slaves)) {
949 return s->regs[addr];
950 } else {
951 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
952 __func__, addr);
953 return -1;
957 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
959 /* HCLK/1 .. HCLK/16 */
960 const uint8_t hclk_divisors[] = {
961 15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
963 int i;
965 for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
966 if (hclk_mask == hclk_divisors[i]) {
967 return i + 1;
971 qemu_log_mask(LOG_GUEST_ERROR, "invalid HCLK mask %x", hclk_mask);
972 return 0;
976 * When doing calibration, the SPI clock rate in the CE0 Control
977 * Register and the read delay cycles in the Read Timing Compensation
978 * Register are set using bit[11:4] of the DMA Control Register.
980 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
982 uint8_t delay =
983 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
984 uint8_t hclk_mask =
985 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
986 uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
987 uint32_t hclk_shift = (hclk_div - 1) << 2;
988 uint8_t cs;
991 * The Read Timing Compensation Register values apply to all CS on
992 * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
994 if (hclk_div && hclk_div < 6) {
995 s->regs[s->r_timings] &= ~(0xf << hclk_shift);
996 s->regs[s->r_timings] |= delay << hclk_shift;
1000 * TODO: compute the CS from the DMA address and the segment
1001 * registers. This is not really a problem for now because the
1002 * Timing Register values apply to all CS and software uses CS0 to
1003 * do calibration.
1005 cs = 0;
1006 s->regs[s->r_ctrl0 + cs] &=
1007 ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
1008 s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
1012 * Emulate read errors in the DMA Checksum Register for high
1013 * frequencies and optimistic settings of the Read Timing Compensation
1014 * Register. This will help in tuning the SPI timing calibration
1015 * algorithm.
1017 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
1019 uint8_t delay =
1020 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1021 uint8_t hclk_mask =
1022 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1025 * Typical values of a palmetto-bmc machine.
1027 switch (aspeed_smc_hclk_divisor(hclk_mask)) {
1028 case 4 ... 16:
1029 return false;
1030 case 3: /* at least one HCLK cycle delay */
1031 return (delay & 0x7) < 1;
1032 case 2: /* at least two HCLK cycle delay */
1033 return (delay & 0x7) < 2;
1034 case 1: /* (> 100MHz) is above the max freq of the controller */
1035 return true;
1036 default:
1037 g_assert_not_reached();
1042 * Accumulate the result of the reads to provide a checksum that will
1043 * be used to validate the read timing settings.
1045 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
1047 MemTxResult result;
1048 uint32_t data;
1050 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1051 qemu_log_mask(LOG_GUEST_ERROR,
1052 "%s: invalid direction for DMA checksum\n", __func__);
1053 return;
1056 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
1057 aspeed_smc_dma_calibration(s);
1060 while (s->regs[R_DMA_LEN]) {
1061 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1062 MEMTXATTRS_UNSPECIFIED, &result);
1063 if (result != MEMTX_OK) {
1064 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1065 __func__, s->regs[R_DMA_FLASH_ADDR]);
1066 return;
1070 * When the DMA is on-going, the DMA registers are updated
1071 * with the current working addresses and length.
1073 s->regs[R_DMA_CHECKSUM] += data;
1074 s->regs[R_DMA_FLASH_ADDR] += 4;
1075 s->regs[R_DMA_LEN] -= 4;
1078 if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
1079 s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
1084 static void aspeed_smc_dma_rw(AspeedSMCState *s)
1086 MemTxResult result;
1087 uint32_t data;
1089 while (s->regs[R_DMA_LEN]) {
1090 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1091 data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1092 MEMTXATTRS_UNSPECIFIED, &result);
1093 if (result != MEMTX_OK) {
1094 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM read failed @%08x\n",
1095 __func__, s->regs[R_DMA_DRAM_ADDR]);
1096 return;
1099 address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1100 data, MEMTXATTRS_UNSPECIFIED, &result);
1101 if (result != MEMTX_OK) {
1102 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash write failed @%08x\n",
1103 __func__, s->regs[R_DMA_FLASH_ADDR]);
1104 return;
1106 } else {
1107 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1108 MEMTXATTRS_UNSPECIFIED, &result);
1109 if (result != MEMTX_OK) {
1110 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1111 __func__, s->regs[R_DMA_FLASH_ADDR]);
1112 return;
1115 address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1116 data, MEMTXATTRS_UNSPECIFIED, &result);
1117 if (result != MEMTX_OK) {
1118 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM write failed @%08x\n",
1119 __func__, s->regs[R_DMA_DRAM_ADDR]);
1120 return;
1125 * When the DMA is on-going, the DMA registers are updated
1126 * with the current working addresses and length.
1128 s->regs[R_DMA_FLASH_ADDR] += 4;
1129 s->regs[R_DMA_DRAM_ADDR] += 4;
1130 s->regs[R_DMA_LEN] -= 4;
1131 s->regs[R_DMA_CHECKSUM] += data;
1135 static void aspeed_smc_dma_stop(AspeedSMCState *s)
1138 * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
1139 * engine is idle
1141 s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
1142 s->regs[R_DMA_CHECKSUM] = 0;
1145 * Lower the DMA irq in any case. The IRQ control register could
1146 * have been cleared before disabling the DMA.
1148 qemu_irq_lower(s->irq);
1152 * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
1153 * can start even if the result of the previous was not collected.
1155 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
1157 return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
1158 !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
1161 static void aspeed_smc_dma_done(AspeedSMCState *s)
1163 s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
1164 if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
1165 qemu_irq_raise(s->irq);
1169 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint64_t dma_ctrl)
1171 if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
1172 s->regs[R_DMA_CTRL] = dma_ctrl;
1174 aspeed_smc_dma_stop(s);
1175 return;
1178 if (aspeed_smc_dma_in_progress(s)) {
1179 qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA in progress\n", __func__);
1180 return;
1183 s->regs[R_DMA_CTRL] = dma_ctrl;
1185 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
1186 aspeed_smc_dma_checksum(s);
1187 } else {
1188 aspeed_smc_dma_rw(s);
1191 aspeed_smc_dma_done(s);
1194 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1195 unsigned int size)
1197 AspeedSMCState *s = ASPEED_SMC(opaque);
1198 uint32_t value = data;
1200 addr >>= 2;
1202 if (addr == s->r_conf ||
1203 addr == s->r_timings ||
1204 addr == s->r_ce_ctrl) {
1205 s->regs[addr] = value;
1206 } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
1207 int cs = addr - s->r_ctrl0;
1208 s->regs[addr] = value;
1209 aspeed_smc_flash_update_cs(&s->flashes[cs]);
1210 } else if (addr >= R_SEG_ADDR0 &&
1211 addr < R_SEG_ADDR0 + s->ctrl->max_slaves) {
1212 int cs = addr - R_SEG_ADDR0;
1214 if (value != s->regs[R_SEG_ADDR0 + cs]) {
1215 aspeed_smc_flash_set_segment(s, cs, value);
1217 } else if (addr == R_DUMMY_DATA) {
1218 s->regs[addr] = value & 0xff;
1219 } else if (addr == R_INTR_CTRL) {
1220 s->regs[addr] = value;
1221 } else if (s->ctrl->has_dma && addr == R_DMA_CTRL) {
1222 aspeed_smc_dma_ctrl(s, value);
1223 } else if (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) {
1224 s->regs[addr] = DMA_DRAM_ADDR(s, value);
1225 } else if (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) {
1226 s->regs[addr] = DMA_FLASH_ADDR(s, value);
1227 } else if (s->ctrl->has_dma && addr == R_DMA_LEN) {
1228 s->regs[addr] = DMA_LENGTH(value);
1229 } else {
1230 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1231 __func__, addr);
1232 return;
1236 static const MemoryRegionOps aspeed_smc_ops = {
1237 .read = aspeed_smc_read,
1238 .write = aspeed_smc_write,
1239 .endianness = DEVICE_LITTLE_ENDIAN,
1240 .valid.unaligned = true,
1245 * Initialize the custom address spaces for DMAs
1247 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1249 char *name;
1251 if (!s->dram_mr) {
1252 error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1253 return;
1256 name = g_strdup_printf("%s-dma-flash", s->ctrl->name);
1257 address_space_init(&s->flash_as, &s->mmio_flash, name);
1258 g_free(name);
1260 name = g_strdup_printf("%s-dma-dram", s->ctrl->name);
1261 address_space_init(&s->dram_as, s->dram_mr, name);
1262 g_free(name);
1265 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1267 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1268 AspeedSMCState *s = ASPEED_SMC(dev);
1269 AspeedSMCClass *mc = ASPEED_SMC_GET_CLASS(s);
1270 int i;
1271 char name[32];
1272 hwaddr offset = 0;
1274 s->ctrl = mc->ctrl;
1276 /* keep a copy under AspeedSMCState to speed up accesses */
1277 s->r_conf = s->ctrl->r_conf;
1278 s->r_ce_ctrl = s->ctrl->r_ce_ctrl;
1279 s->r_ctrl0 = s->ctrl->r_ctrl0;
1280 s->r_timings = s->ctrl->r_timings;
1281 s->conf_enable_w0 = s->ctrl->conf_enable_w0;
1283 /* Enforce some real HW limits */
1284 if (s->num_cs > s->ctrl->max_slaves) {
1285 qemu_log_mask(LOG_GUEST_ERROR, "%s: num_cs cannot exceed: %d\n",
1286 __func__, s->ctrl->max_slaves);
1287 s->num_cs = s->ctrl->max_slaves;
1290 /* DMA irq. Keep it first for the initialization in the SoC */
1291 sysbus_init_irq(sbd, &s->irq);
1293 s->spi = ssi_create_bus(dev, "spi");
1295 /* Setup cs_lines for slaves */
1296 s->cs_lines = g_new0(qemu_irq, s->num_cs);
1297 ssi_auto_connect_slaves(dev, s->cs_lines, s->spi);
1299 for (i = 0; i < s->num_cs; ++i) {
1300 sysbus_init_irq(sbd, &s->cs_lines[i]);
1303 /* The memory region for the controller registers */
1304 memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1305 s->ctrl->name, s->ctrl->nregs * 4);
1306 sysbus_init_mmio(sbd, &s->mmio);
1309 * The container memory region representing the address space
1310 * window in which the flash modules are mapped. The size and
1311 * address depends on the SoC model and controller type.
1313 snprintf(name, sizeof(name), "%s.flash", s->ctrl->name);
1315 memory_region_init_io(&s->mmio_flash, OBJECT(s),
1316 &aspeed_smc_flash_default_ops, s, name,
1317 s->ctrl->flash_window_size);
1318 sysbus_init_mmio(sbd, &s->mmio_flash);
1320 s->flashes = g_new0(AspeedSMCFlash, s->ctrl->max_slaves);
1323 * Let's create a sub memory region for each possible slave. All
1324 * have a configurable memory segment in the overall flash mapping
1325 * window of the controller but, there is not necessarily a flash
1326 * module behind to handle the memory accesses. This depends on
1327 * the board configuration.
1329 for (i = 0; i < s->ctrl->max_slaves; ++i) {
1330 AspeedSMCFlash *fl = &s->flashes[i];
1332 snprintf(name, sizeof(name), "%s.%d", s->ctrl->name, i);
1334 fl->id = i;
1335 fl->controller = s;
1336 fl->size = s->ctrl->segments[i].size;
1337 memory_region_init_io(&fl->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1338 fl, name, fl->size);
1339 memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1340 offset += fl->size;
1343 /* DMA support */
1344 if (s->ctrl->has_dma) {
1345 aspeed_smc_dma_setup(s, errp);
1349 static const VMStateDescription vmstate_aspeed_smc = {
1350 .name = "aspeed.smc",
1351 .version_id = 2,
1352 .minimum_version_id = 2,
1353 .fields = (VMStateField[]) {
1354 VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1355 VMSTATE_UINT8(snoop_index, AspeedSMCState),
1356 VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1357 VMSTATE_END_OF_LIST()
1361 static Property aspeed_smc_properties[] = {
1362 DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
1363 DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1364 DEFINE_PROP_UINT64("sdram-base", AspeedSMCState, sdram_base, 0),
1365 DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1366 TYPE_MEMORY_REGION, MemoryRegion *),
1367 DEFINE_PROP_END_OF_LIST(),
1370 static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1372 DeviceClass *dc = DEVICE_CLASS(klass);
1373 AspeedSMCClass *mc = ASPEED_SMC_CLASS(klass);
1375 dc->realize = aspeed_smc_realize;
1376 dc->reset = aspeed_smc_reset;
1377 dc->props = aspeed_smc_properties;
1378 dc->vmsd = &vmstate_aspeed_smc;
1379 mc->ctrl = data;
1382 static const TypeInfo aspeed_smc_info = {
1383 .name = TYPE_ASPEED_SMC,
1384 .parent = TYPE_SYS_BUS_DEVICE,
1385 .instance_size = sizeof(AspeedSMCState),
1386 .class_size = sizeof(AspeedSMCClass),
1387 .abstract = true,
1390 static void aspeed_smc_register_types(void)
1392 int i;
1394 type_register_static(&aspeed_smc_info);
1395 for (i = 0; i < ARRAY_SIZE(controllers); ++i) {
1396 TypeInfo ti = {
1397 .name = controllers[i].name,
1398 .parent = TYPE_ASPEED_SMC,
1399 .class_init = aspeed_smc_class_init,
1400 .class_data = (void *)&controllers[i],
1402 type_register(&ti);
1406 type_init(aspeed_smc_register_types)