configure: Add support for tcmalloc
[qemu/ar7.git] / translate-all.c
blob85f034642dd58d1dd6d33851dc71657254010068
1 /*
2 * Host code generation
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <sys/types.h>
23 #include <sys/mman.h>
24 #endif
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <string.h>
29 #include <inttypes.h>
31 #include "config.h"
33 #include "qemu-common.h"
34 #define NO_CPU_IO_DEFS
35 #include "cpu.h"
36 #include "trace.h"
37 #include "disas/disas.h"
38 #include "tcg.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42 #include <sys/param.h>
43 #if __FreeBSD_version >= 700104
44 #define HAVE_KINFO_GETVMMAP
45 #define sigqueue sigqueue_freebsd /* avoid redefinition */
46 #include <sys/time.h>
47 #include <sys/proc.h>
48 #include <machine/profile.h>
49 #define _KERNEL
50 #include <sys/user.h>
51 #undef _KERNEL
52 #undef sigqueue
53 #include <libutil.h>
54 #endif
55 #endif
56 #else
57 #include "exec/address-spaces.h"
58 #endif
60 #include "exec/cputlb.h"
61 #include "translate-all.h"
62 #include "qemu/timer.h"
64 //#define DEBUG_TB_INVALIDATE
65 //#define DEBUG_FLUSH
66 /* make various TB consistency checks */
67 //#define DEBUG_TB_CHECK
69 #if !defined(CONFIG_USER_ONLY)
70 /* TB consistency checks only implemented for usermode emulation. */
71 #undef DEBUG_TB_CHECK
72 #endif
74 #define SMC_BITMAP_USE_THRESHOLD 10
76 typedef struct PageDesc {
77 /* list of TBs intersecting this ram page */
78 TranslationBlock *first_tb;
79 /* in order to optimize self modifying code, we count the number
80 of lookups we do to a given page to use a bitmap */
81 unsigned int code_write_count;
82 uint8_t *code_bitmap;
83 #if defined(CONFIG_USER_ONLY)
84 unsigned long flags;
85 #endif
86 } PageDesc;
88 /* In system mode we want L1_MAP to be based on ram offsets,
89 while in user mode we want it to be based on virtual addresses. */
90 #if !defined(CONFIG_USER_ONLY)
91 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
92 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
93 #else
94 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
95 #endif
96 #else
97 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
98 #endif
100 /* Size of the L2 (and L3, etc) page tables. */
101 #define V_L2_BITS 10
102 #define V_L2_SIZE (1 << V_L2_BITS)
104 /* The bits remaining after N lower levels of page tables. */
105 #define V_L1_BITS_REM \
106 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
108 #if V_L1_BITS_REM < 4
109 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
110 #else
111 #define V_L1_BITS V_L1_BITS_REM
112 #endif
114 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
116 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
118 uintptr_t qemu_real_host_page_size;
119 uintptr_t qemu_host_page_size;
120 uintptr_t qemu_host_page_mask;
122 /* This is a multi-level map on the virtual address space.
123 The bottom level has pointers to PageDesc. */
124 static void *l1_map[V_L1_SIZE];
126 /* code generation context */
127 TCGContext tcg_ctx;
129 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
130 tb_page_addr_t phys_page2);
131 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
133 void cpu_gen_init(void)
135 tcg_context_init(&tcg_ctx);
138 /* return non zero if the very first instruction is invalid so that
139 the virtual CPU can trigger an exception.
141 '*gen_code_size_ptr' contains the size of the generated code (host
142 code).
144 int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
146 TCGContext *s = &tcg_ctx;
147 tcg_insn_unit *gen_code_buf;
148 int gen_code_size;
149 #ifdef CONFIG_PROFILER
150 int64_t ti;
151 #endif
153 #ifdef CONFIG_PROFILER
154 s->tb_count1++; /* includes aborted translations because of
155 exceptions */
156 ti = profile_getclock();
157 #endif
158 tcg_func_start(s);
160 gen_intermediate_code(env, tb);
162 trace_translate_block(tb, tb->pc, tb->tc_ptr);
164 /* generate machine code */
165 gen_code_buf = tb->tc_ptr;
166 tb->tb_next_offset[0] = 0xffff;
167 tb->tb_next_offset[1] = 0xffff;
168 s->tb_next_offset = tb->tb_next_offset;
169 #ifdef USE_DIRECT_JUMP
170 s->tb_jmp_offset = tb->tb_jmp_offset;
171 s->tb_next = NULL;
172 #else
173 s->tb_jmp_offset = NULL;
174 s->tb_next = tb->tb_next;
175 #endif
177 #ifdef CONFIG_PROFILER
178 s->tb_count++;
179 s->interm_time += profile_getclock() - ti;
180 s->code_time -= profile_getclock();
181 #endif
182 gen_code_size = tcg_gen_code(s, gen_code_buf);
183 *gen_code_size_ptr = gen_code_size;
184 #ifdef CONFIG_PROFILER
185 s->code_time += profile_getclock();
186 s->code_in_len += tb->size;
187 s->code_out_len += gen_code_size;
188 #endif
190 #ifdef DEBUG_DISAS
191 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
192 qemu_log("OUT: [size=%d]\n", gen_code_size);
193 log_disas(tb->tc_ptr, gen_code_size);
194 qemu_log("\n");
195 qemu_log_flush();
197 #endif
198 return 0;
201 /* The cpu state corresponding to 'searched_pc' is restored.
203 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
204 uintptr_t searched_pc)
206 CPUArchState *env = cpu->env_ptr;
207 TCGContext *s = &tcg_ctx;
208 int j;
209 uintptr_t tc_ptr;
210 #ifdef CONFIG_PROFILER
211 int64_t ti;
212 #endif
214 #ifdef CONFIG_PROFILER
215 ti = profile_getclock();
216 #endif
217 tcg_func_start(s);
219 gen_intermediate_code_pc(env, tb);
221 if (tb->cflags & CF_USE_ICOUNT) {
222 /* Reset the cycle counter to the start of the block. */
223 cpu->icount_decr.u16.low += tb->icount;
224 /* Clear the IO flag. */
225 cpu->can_do_io = 0;
228 /* find opc index corresponding to search_pc */
229 tc_ptr = (uintptr_t)tb->tc_ptr;
230 if (searched_pc < tc_ptr)
231 return -1;
233 s->tb_next_offset = tb->tb_next_offset;
234 #ifdef USE_DIRECT_JUMP
235 s->tb_jmp_offset = tb->tb_jmp_offset;
236 s->tb_next = NULL;
237 #else
238 s->tb_jmp_offset = NULL;
239 s->tb_next = tb->tb_next;
240 #endif
241 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
242 searched_pc - tc_ptr);
243 if (j < 0)
244 return -1;
245 /* now find start of instruction before */
246 while (s->gen_opc_instr_start[j] == 0) {
247 j--;
249 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
251 restore_state_to_opc(env, tb, j);
253 #ifdef CONFIG_PROFILER
254 s->restore_time += profile_getclock() - ti;
255 s->restore_count++;
256 #endif
257 return 0;
260 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
262 TranslationBlock *tb;
264 tb = tb_find_pc(retaddr);
265 if (tb) {
266 cpu_restore_state_from_tb(cpu, tb, retaddr);
267 if (tb->cflags & CF_NOCACHE) {
268 /* one-shot translation, invalidate it immediately */
269 cpu->current_tb = NULL;
270 tb_phys_invalidate(tb, -1);
271 tb_free(tb);
273 return true;
275 return false;
278 #ifdef _WIN32
279 static __attribute__((unused)) void map_exec(void *addr, long size)
281 DWORD old_protect;
282 VirtualProtect(addr, size,
283 PAGE_EXECUTE_READWRITE, &old_protect);
285 #else
286 static __attribute__((unused)) void map_exec(void *addr, long size)
288 unsigned long start, end, page_size;
290 page_size = getpagesize();
291 start = (unsigned long)addr;
292 start &= ~(page_size - 1);
294 end = (unsigned long)addr + size;
295 end += page_size - 1;
296 end &= ~(page_size - 1);
298 mprotect((void *)start, end - start,
299 PROT_READ | PROT_WRITE | PROT_EXEC);
301 #endif
303 void page_size_init(void)
305 /* NOTE: we can always suppose that qemu_host_page_size >=
306 TARGET_PAGE_SIZE */
307 qemu_real_host_page_size = getpagesize();
308 if (qemu_host_page_size == 0) {
309 qemu_host_page_size = qemu_real_host_page_size;
311 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
312 qemu_host_page_size = TARGET_PAGE_SIZE;
314 qemu_host_page_mask = ~(qemu_host_page_size - 1);
317 static void page_init(void)
319 page_size_init();
320 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
322 #ifdef HAVE_KINFO_GETVMMAP
323 struct kinfo_vmentry *freep;
324 int i, cnt;
326 freep = kinfo_getvmmap(getpid(), &cnt);
327 if (freep) {
328 mmap_lock();
329 for (i = 0; i < cnt; i++) {
330 unsigned long startaddr, endaddr;
332 startaddr = freep[i].kve_start;
333 endaddr = freep[i].kve_end;
334 if (h2g_valid(startaddr)) {
335 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
337 if (h2g_valid(endaddr)) {
338 endaddr = h2g(endaddr);
339 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
340 } else {
341 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
342 endaddr = ~0ul;
343 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
344 #endif
348 free(freep);
349 mmap_unlock();
351 #else
352 FILE *f;
354 last_brk = (unsigned long)sbrk(0);
356 f = fopen("/compat/linux/proc/self/maps", "r");
357 if (f) {
358 mmap_lock();
360 do {
361 unsigned long startaddr, endaddr;
362 int n;
364 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
366 if (n == 2 && h2g_valid(startaddr)) {
367 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
369 if (h2g_valid(endaddr)) {
370 endaddr = h2g(endaddr);
371 } else {
372 endaddr = ~0ul;
374 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
376 } while (!feof(f));
378 fclose(f);
379 mmap_unlock();
381 #endif
383 #endif
386 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
388 PageDesc *pd;
389 void **lp;
390 int i;
392 /* Level 1. Always allocated. */
393 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
395 /* Level 2..N-1. */
396 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
397 void **p = *lp;
399 if (p == NULL) {
400 if (!alloc) {
401 return NULL;
403 p = g_new0(void *, V_L2_SIZE);
404 *lp = p;
407 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
410 pd = *lp;
411 if (pd == NULL) {
412 if (!alloc) {
413 return NULL;
415 pd = g_new0(PageDesc, V_L2_SIZE);
416 *lp = pd;
419 return pd + (index & (V_L2_SIZE - 1));
422 static inline PageDesc *page_find(tb_page_addr_t index)
424 return page_find_alloc(index, 0);
427 #if !defined(CONFIG_USER_ONLY)
428 #define mmap_lock() do { } while (0)
429 #define mmap_unlock() do { } while (0)
430 #endif
432 #if defined(CONFIG_USER_ONLY)
433 /* Currently it is not recommended to allocate big chunks of data in
434 user mode. It will change when a dedicated libc will be used. */
435 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
436 region in which the guest needs to run. Revisit this. */
437 #define USE_STATIC_CODE_GEN_BUFFER
438 #endif
440 /* ??? Should configure for this, not list operating systems here. */
441 #if (defined(__linux__) \
442 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
443 || defined(__DragonFly__) || defined(__OpenBSD__) \
444 || defined(__NetBSD__))
445 # define USE_MMAP
446 #endif
448 /* Minimum size of the code gen buffer. This number is randomly chosen,
449 but not so small that we can't have a fair number of TB's live. */
450 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
452 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
453 indicated, this is constrained by the range of direct branches on the
454 host cpu, as used by the TCG implementation of goto_tb. */
455 #if defined(__x86_64__)
456 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
457 #elif defined(__sparc__)
458 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
459 #elif defined(__aarch64__)
460 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
461 #elif defined(__arm__)
462 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
463 #elif defined(__s390x__)
464 /* We have a +- 4GB range on the branches; leave some slop. */
465 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
466 #elif defined(__mips__)
467 /* We have a 256MB branch region, but leave room to make sure the
468 main executable is also within that region. */
469 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
470 #else
471 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
472 #endif
474 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
476 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
477 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
478 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
480 static inline size_t size_code_gen_buffer(size_t tb_size)
482 /* Size the buffer. */
483 if (tb_size == 0) {
484 #ifdef USE_STATIC_CODE_GEN_BUFFER
485 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
486 #else
487 /* ??? Needs adjustments. */
488 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
489 static buffer, we could size this on RESERVED_VA, on the text
490 segment size of the executable, or continue to use the default. */
491 tb_size = (unsigned long)(ram_size / 4);
492 #endif
494 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
495 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
497 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
498 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
500 tcg_ctx.code_gen_buffer_size = tb_size;
501 return tb_size;
504 #ifdef __mips__
505 /* In order to use J and JAL within the code_gen_buffer, we require
506 that the buffer not cross a 256MB boundary. */
507 static inline bool cross_256mb(void *addr, size_t size)
509 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
512 /* We weren't able to allocate a buffer without crossing that boundary,
513 so make do with the larger portion of the buffer that doesn't cross.
514 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
515 static inline void *split_cross_256mb(void *buf1, size_t size1)
517 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
518 size_t size2 = buf1 + size1 - buf2;
520 size1 = buf2 - buf1;
521 if (size1 < size2) {
522 size1 = size2;
523 buf1 = buf2;
526 tcg_ctx.code_gen_buffer_size = size1;
527 return buf1;
529 #endif
531 #ifdef USE_STATIC_CODE_GEN_BUFFER
532 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
533 __attribute__((aligned(CODE_GEN_ALIGN)));
535 static inline void *alloc_code_gen_buffer(void)
537 void *buf = static_code_gen_buffer;
538 #ifdef __mips__
539 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
540 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
542 #endif
543 map_exec(buf, tcg_ctx.code_gen_buffer_size);
544 return buf;
546 #elif defined(USE_MMAP)
547 static inline void *alloc_code_gen_buffer(void)
549 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
550 uintptr_t start = 0;
551 void *buf;
553 /* Constrain the position of the buffer based on the host cpu.
554 Note that these addresses are chosen in concert with the
555 addresses assigned in the relevant linker script file. */
556 # if defined(__PIE__) || defined(__PIC__)
557 /* Don't bother setting a preferred location if we're building
558 a position-independent executable. We're more likely to get
559 an address near the main executable if we let the kernel
560 choose the address. */
561 # elif defined(__x86_64__) && defined(MAP_32BIT)
562 /* Force the memory down into low memory with the executable.
563 Leave the choice of exact location with the kernel. */
564 flags |= MAP_32BIT;
565 /* Cannot expect to map more than 800MB in low memory. */
566 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
567 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
569 # elif defined(__sparc__)
570 start = 0x40000000ul;
571 # elif defined(__s390x__)
572 start = 0x90000000ul;
573 # elif defined(__mips__)
574 /* ??? We ought to more explicitly manage layout for softmmu too. */
575 # ifdef CONFIG_USER_ONLY
576 start = 0x68000000ul;
577 # elif _MIPS_SIM == _ABI64
578 start = 0x128000000ul;
579 # else
580 start = 0x08000000ul;
581 # endif
582 # endif
584 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
585 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
586 if (buf == MAP_FAILED) {
587 return NULL;
590 #ifdef __mips__
591 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
592 /* Try again, with the original still mapped, to avoid re-acquiring
593 that 256mb crossing. This time don't specify an address. */
594 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
595 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
596 flags, -1, 0);
597 if (buf2 != MAP_FAILED) {
598 if (!cross_256mb(buf2, size1)) {
599 /* Success! Use the new buffer. */
600 munmap(buf, size1);
601 return buf2;
603 /* Failure. Work with what we had. */
604 munmap(buf2, size1);
607 /* Split the original buffer. Free the smaller half. */
608 buf2 = split_cross_256mb(buf, size1);
609 size2 = tcg_ctx.code_gen_buffer_size;
610 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
611 return buf2;
613 #endif
615 return buf;
617 #else
618 static inline void *alloc_code_gen_buffer(void)
620 void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
622 if (buf == NULL) {
623 return NULL;
626 #ifdef __mips__
627 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
628 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
629 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
630 /* Success! Use the new buffer. */
631 free(buf);
632 buf = buf2;
633 } else {
634 /* Failure. Work with what we had. Since this is malloc
635 and not mmap, we can't free the other half. */
636 free(buf2);
637 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
640 #endif
642 map_exec(buf, tcg_ctx.code_gen_buffer_size);
643 return buf;
645 #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
647 static inline void code_gen_alloc(size_t tb_size)
649 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
650 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
651 if (tcg_ctx.code_gen_buffer == NULL) {
652 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
653 exit(1);
656 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
657 QEMU_MADV_HUGEPAGE);
659 /* Steal room for the prologue at the end of the buffer. This ensures
660 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
661 from TB's to the prologue are going to be in range. It also means
662 that we don't need to mark (additional) portions of the data segment
663 as executable. */
664 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
665 tcg_ctx.code_gen_buffer_size - 1024;
666 tcg_ctx.code_gen_buffer_size -= 1024;
668 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
669 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
670 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
671 CODE_GEN_AVG_BLOCK_SIZE;
672 tcg_ctx.tb_ctx.tbs =
673 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
676 /* Must be called before using the QEMU cpus. 'tb_size' is the size
677 (in bytes) allocated to the translation buffer. Zero means default
678 size. */
679 void tcg_exec_init(unsigned long tb_size)
681 cpu_gen_init();
682 code_gen_alloc(tb_size);
683 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
684 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
685 page_init();
686 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
687 /* There's no guest base to take into account, so go ahead and
688 initialize the prologue now. */
689 tcg_prologue_init(&tcg_ctx);
690 #endif
693 bool tcg_enabled(void)
695 return tcg_ctx.code_gen_buffer != NULL;
698 /* Allocate a new translation block. Flush the translation buffer if
699 too many translation blocks or too much generated code. */
700 static TranslationBlock *tb_alloc(target_ulong pc)
702 TranslationBlock *tb;
704 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
705 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
706 tcg_ctx.code_gen_buffer_max_size) {
707 return NULL;
709 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
710 tb->pc = pc;
711 tb->cflags = 0;
712 return tb;
715 void tb_free(TranslationBlock *tb)
717 /* In practice this is mostly used for single use temporary TB
718 Ignore the hard cases and just back up if this TB happens to
719 be the last one generated. */
720 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
721 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
722 tcg_ctx.code_gen_ptr = tb->tc_ptr;
723 tcg_ctx.tb_ctx.nb_tbs--;
727 static inline void invalidate_page_bitmap(PageDesc *p)
729 if (p->code_bitmap) {
730 g_free(p->code_bitmap);
731 p->code_bitmap = NULL;
733 p->code_write_count = 0;
736 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
737 static void page_flush_tb_1(int level, void **lp)
739 int i;
741 if (*lp == NULL) {
742 return;
744 if (level == 0) {
745 PageDesc *pd = *lp;
747 for (i = 0; i < V_L2_SIZE; ++i) {
748 pd[i].first_tb = NULL;
749 invalidate_page_bitmap(pd + i);
751 } else {
752 void **pp = *lp;
754 for (i = 0; i < V_L2_SIZE; ++i) {
755 page_flush_tb_1(level - 1, pp + i);
760 static void page_flush_tb(void)
762 int i;
764 for (i = 0; i < V_L1_SIZE; i++) {
765 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
769 /* flush all the translation blocks */
770 /* XXX: tb_flush is currently not thread safe */
771 void tb_flush(CPUArchState *env1)
773 CPUState *cpu = ENV_GET_CPU(env1);
775 #if defined(DEBUG_FLUSH)
776 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
777 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
778 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
779 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
780 tcg_ctx.tb_ctx.nb_tbs : 0);
781 #endif
782 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
783 > tcg_ctx.code_gen_buffer_size) {
784 cpu_abort(cpu, "Internal error: code buffer overflow\n");
786 tcg_ctx.tb_ctx.nb_tbs = 0;
788 CPU_FOREACH(cpu) {
789 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
792 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
793 page_flush_tb();
795 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
796 /* XXX: flush processor icache at this point if cache flush is
797 expensive */
798 tcg_ctx.tb_ctx.tb_flush_count++;
801 #ifdef DEBUG_TB_CHECK
803 static void tb_invalidate_check(target_ulong address)
805 TranslationBlock *tb;
806 int i;
808 address &= TARGET_PAGE_MASK;
809 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
810 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
811 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
812 address >= tb->pc + tb->size)) {
813 printf("ERROR invalidate: address=" TARGET_FMT_lx
814 " PC=%08lx size=%04x\n",
815 address, (long)tb->pc, tb->size);
821 /* verify that all the pages have correct rights for code */
822 static void tb_page_check(void)
824 TranslationBlock *tb;
825 int i, flags1, flags2;
827 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
828 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
829 tb = tb->phys_hash_next) {
830 flags1 = page_get_flags(tb->pc);
831 flags2 = page_get_flags(tb->pc + tb->size - 1);
832 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
833 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
834 (long)tb->pc, tb->size, flags1, flags2);
840 #endif
842 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
844 TranslationBlock *tb1;
846 for (;;) {
847 tb1 = *ptb;
848 if (tb1 == tb) {
849 *ptb = tb1->phys_hash_next;
850 break;
852 ptb = &tb1->phys_hash_next;
856 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
858 TranslationBlock *tb1;
859 unsigned int n1;
861 for (;;) {
862 tb1 = *ptb;
863 n1 = (uintptr_t)tb1 & 3;
864 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
865 if (tb1 == tb) {
866 *ptb = tb1->page_next[n1];
867 break;
869 ptb = &tb1->page_next[n1];
873 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
875 TranslationBlock *tb1, **ptb;
876 unsigned int n1;
878 ptb = &tb->jmp_next[n];
879 tb1 = *ptb;
880 if (tb1) {
881 /* find tb(n) in circular list */
882 for (;;) {
883 tb1 = *ptb;
884 n1 = (uintptr_t)tb1 & 3;
885 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
886 if (n1 == n && tb1 == tb) {
887 break;
889 if (n1 == 2) {
890 ptb = &tb1->jmp_first;
891 } else {
892 ptb = &tb1->jmp_next[n1];
895 /* now we can suppress tb(n) from the list */
896 *ptb = tb->jmp_next[n];
898 tb->jmp_next[n] = NULL;
902 /* reset the jump entry 'n' of a TB so that it is not chained to
903 another TB */
904 static inline void tb_reset_jump(TranslationBlock *tb, int n)
906 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
909 /* invalidate one TB */
910 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
912 CPUState *cpu;
913 PageDesc *p;
914 unsigned int h, n1;
915 tb_page_addr_t phys_pc;
916 TranslationBlock *tb1, *tb2;
918 /* remove the TB from the hash list */
919 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
920 h = tb_phys_hash_func(phys_pc);
921 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
923 /* remove the TB from the page list */
924 if (tb->page_addr[0] != page_addr) {
925 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
926 tb_page_remove(&p->first_tb, tb);
927 invalidate_page_bitmap(p);
929 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
930 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
931 tb_page_remove(&p->first_tb, tb);
932 invalidate_page_bitmap(p);
935 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
937 /* remove the TB from the hash list */
938 h = tb_jmp_cache_hash_func(tb->pc);
939 CPU_FOREACH(cpu) {
940 if (cpu->tb_jmp_cache[h] == tb) {
941 cpu->tb_jmp_cache[h] = NULL;
945 /* suppress this TB from the two jump lists */
946 tb_jmp_remove(tb, 0);
947 tb_jmp_remove(tb, 1);
949 /* suppress any remaining jumps to this TB */
950 tb1 = tb->jmp_first;
951 for (;;) {
952 n1 = (uintptr_t)tb1 & 3;
953 if (n1 == 2) {
954 break;
956 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
957 tb2 = tb1->jmp_next[n1];
958 tb_reset_jump(tb1, n1);
959 tb1->jmp_next[n1] = NULL;
960 tb1 = tb2;
962 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
964 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
967 static inline void set_bits(uint8_t *tab, int start, int len)
969 int end, mask, end1;
971 end = start + len;
972 tab += start >> 3;
973 mask = 0xff << (start & 7);
974 if ((start & ~7) == (end & ~7)) {
975 if (start < end) {
976 mask &= ~(0xff << (end & 7));
977 *tab |= mask;
979 } else {
980 *tab++ |= mask;
981 start = (start + 8) & ~7;
982 end1 = end & ~7;
983 while (start < end1) {
984 *tab++ = 0xff;
985 start += 8;
987 if (start < end) {
988 mask = ~(0xff << (end & 7));
989 *tab |= mask;
994 static void build_page_bitmap(PageDesc *p)
996 int n, tb_start, tb_end;
997 TranslationBlock *tb;
999 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
1001 tb = p->first_tb;
1002 while (tb != NULL) {
1003 n = (uintptr_t)tb & 3;
1004 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1005 /* NOTE: this is subtle as a TB may span two physical pages */
1006 if (n == 0) {
1007 /* NOTE: tb_end may be after the end of the page, but
1008 it is not a problem */
1009 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1010 tb_end = tb_start + tb->size;
1011 if (tb_end > TARGET_PAGE_SIZE) {
1012 tb_end = TARGET_PAGE_SIZE;
1014 } else {
1015 tb_start = 0;
1016 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1018 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1019 tb = tb->page_next[n];
1023 TranslationBlock *tb_gen_code(CPUState *cpu,
1024 target_ulong pc, target_ulong cs_base,
1025 int flags, int cflags)
1027 CPUArchState *env = cpu->env_ptr;
1028 TranslationBlock *tb;
1029 tb_page_addr_t phys_pc, phys_page2;
1030 target_ulong virt_page2;
1031 int code_gen_size;
1033 phys_pc = get_page_addr_code(env, pc);
1034 if (use_icount) {
1035 cflags |= CF_USE_ICOUNT;
1037 tb = tb_alloc(pc);
1038 if (!tb) {
1039 /* flush must be done */
1040 tb_flush(env);
1041 /* cannot fail at this point */
1042 tb = tb_alloc(pc);
1043 /* Don't forget to invalidate previous TB info. */
1044 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1046 tb->tc_ptr = tcg_ctx.code_gen_ptr;
1047 tb->cs_base = cs_base;
1048 tb->flags = flags;
1049 tb->cflags = cflags;
1050 cpu_gen_code(env, tb, &code_gen_size);
1051 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1052 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1054 /* check next page if needed */
1055 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1056 phys_page2 = -1;
1057 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1058 phys_page2 = get_page_addr_code(env, virt_page2);
1060 tb_link_page(tb, phys_pc, phys_page2);
1061 return tb;
1065 * Invalidate all TBs which intersect with the target physical address range
1066 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1067 * 'is_cpu_write_access' should be true if called from a real cpu write
1068 * access: the virtual CPU will exit the current TB if code is modified inside
1069 * this TB.
1071 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1072 int is_cpu_write_access)
1074 while (start < end) {
1075 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1076 start &= TARGET_PAGE_MASK;
1077 start += TARGET_PAGE_SIZE;
1082 * Invalidate all TBs which intersect with the target physical address range
1083 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1084 * 'is_cpu_write_access' should be true if called from a real cpu write
1085 * access: the virtual CPU will exit the current TB if code is modified inside
1086 * this TB.
1088 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1089 int is_cpu_write_access)
1091 TranslationBlock *tb, *tb_next, *saved_tb;
1092 CPUState *cpu = current_cpu;
1093 #if defined(TARGET_HAS_PRECISE_SMC)
1094 CPUArchState *env = NULL;
1095 #endif
1096 tb_page_addr_t tb_start, tb_end;
1097 PageDesc *p;
1098 int n;
1099 #ifdef TARGET_HAS_PRECISE_SMC
1100 int current_tb_not_found = is_cpu_write_access;
1101 TranslationBlock *current_tb = NULL;
1102 int current_tb_modified = 0;
1103 target_ulong current_pc = 0;
1104 target_ulong current_cs_base = 0;
1105 int current_flags = 0;
1106 #endif /* TARGET_HAS_PRECISE_SMC */
1108 p = page_find(start >> TARGET_PAGE_BITS);
1109 if (!p) {
1110 return;
1112 if (!p->code_bitmap &&
1113 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1114 is_cpu_write_access) {
1115 /* build code bitmap */
1116 build_page_bitmap(p);
1118 #if defined(TARGET_HAS_PRECISE_SMC)
1119 if (cpu != NULL) {
1120 env = cpu->env_ptr;
1122 #endif
1124 /* we remove all the TBs in the range [start, end[ */
1125 /* XXX: see if in some cases it could be faster to invalidate all
1126 the code */
1127 tb = p->first_tb;
1128 while (tb != NULL) {
1129 n = (uintptr_t)tb & 3;
1130 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1131 tb_next = tb->page_next[n];
1132 /* NOTE: this is subtle as a TB may span two physical pages */
1133 if (n == 0) {
1134 /* NOTE: tb_end may be after the end of the page, but
1135 it is not a problem */
1136 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1137 tb_end = tb_start + tb->size;
1138 } else {
1139 tb_start = tb->page_addr[1];
1140 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1142 if (!(tb_end <= start || tb_start >= end)) {
1143 #ifdef TARGET_HAS_PRECISE_SMC
1144 if (current_tb_not_found) {
1145 current_tb_not_found = 0;
1146 current_tb = NULL;
1147 if (cpu->mem_io_pc) {
1148 /* now we have a real cpu fault */
1149 current_tb = tb_find_pc(cpu->mem_io_pc);
1152 if (current_tb == tb &&
1153 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1154 /* If we are modifying the current TB, we must stop
1155 its execution. We could be more precise by checking
1156 that the modification is after the current PC, but it
1157 would require a specialized function to partially
1158 restore the CPU state */
1160 current_tb_modified = 1;
1161 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1162 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1163 &current_flags);
1165 #endif /* TARGET_HAS_PRECISE_SMC */
1166 /* we need to do that to handle the case where a signal
1167 occurs while doing tb_phys_invalidate() */
1168 saved_tb = NULL;
1169 if (cpu != NULL) {
1170 saved_tb = cpu->current_tb;
1171 cpu->current_tb = NULL;
1173 tb_phys_invalidate(tb, -1);
1174 if (cpu != NULL) {
1175 cpu->current_tb = saved_tb;
1176 if (cpu->interrupt_request && cpu->current_tb) {
1177 cpu_interrupt(cpu, cpu->interrupt_request);
1181 tb = tb_next;
1183 #if !defined(CONFIG_USER_ONLY)
1184 /* if no code remaining, no need to continue to use slow writes */
1185 if (!p->first_tb) {
1186 invalidate_page_bitmap(p);
1187 if (is_cpu_write_access) {
1188 tlb_unprotect_code_phys(cpu, start, cpu->mem_io_vaddr);
1191 #endif
1192 #ifdef TARGET_HAS_PRECISE_SMC
1193 if (current_tb_modified) {
1194 /* we generate a block containing just the instruction
1195 modifying the memory. It will ensure that it cannot modify
1196 itself */
1197 cpu->current_tb = NULL;
1198 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1199 cpu_resume_from_signal(cpu, NULL);
1201 #endif
1204 /* len must be <= 8 and start must be a multiple of len */
1205 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1207 PageDesc *p;
1208 int offset, b;
1210 #if 0
1211 if (1) {
1212 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1213 cpu_single_env->mem_io_vaddr, len,
1214 cpu_single_env->eip,
1215 cpu_single_env->eip +
1216 (intptr_t)cpu_single_env->segs[R_CS].base);
1218 #endif
1219 p = page_find(start >> TARGET_PAGE_BITS);
1220 if (!p) {
1221 return;
1223 if (p->code_bitmap) {
1224 offset = start & ~TARGET_PAGE_MASK;
1225 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1226 if (b & ((1 << len) - 1)) {
1227 goto do_invalidate;
1229 } else {
1230 do_invalidate:
1231 tb_invalidate_phys_page_range(start, start + len, 1);
1235 #if !defined(CONFIG_SOFTMMU)
1236 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1237 uintptr_t pc, void *puc,
1238 bool locked)
1240 TranslationBlock *tb;
1241 PageDesc *p;
1242 int n;
1243 #ifdef TARGET_HAS_PRECISE_SMC
1244 TranslationBlock *current_tb = NULL;
1245 CPUState *cpu = current_cpu;
1246 CPUArchState *env = NULL;
1247 int current_tb_modified = 0;
1248 target_ulong current_pc = 0;
1249 target_ulong current_cs_base = 0;
1250 int current_flags = 0;
1251 #endif
1253 addr &= TARGET_PAGE_MASK;
1254 p = page_find(addr >> TARGET_PAGE_BITS);
1255 if (!p) {
1256 return;
1258 tb = p->first_tb;
1259 #ifdef TARGET_HAS_PRECISE_SMC
1260 if (tb && pc != 0) {
1261 current_tb = tb_find_pc(pc);
1263 if (cpu != NULL) {
1264 env = cpu->env_ptr;
1266 #endif
1267 while (tb != NULL) {
1268 n = (uintptr_t)tb & 3;
1269 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1270 #ifdef TARGET_HAS_PRECISE_SMC
1271 if (current_tb == tb &&
1272 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1273 /* If we are modifying the current TB, we must stop
1274 its execution. We could be more precise by checking
1275 that the modification is after the current PC, but it
1276 would require a specialized function to partially
1277 restore the CPU state */
1279 current_tb_modified = 1;
1280 cpu_restore_state_from_tb(cpu, current_tb, pc);
1281 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1282 &current_flags);
1284 #endif /* TARGET_HAS_PRECISE_SMC */
1285 tb_phys_invalidate(tb, addr);
1286 tb = tb->page_next[n];
1288 p->first_tb = NULL;
1289 #ifdef TARGET_HAS_PRECISE_SMC
1290 if (current_tb_modified) {
1291 /* we generate a block containing just the instruction
1292 modifying the memory. It will ensure that it cannot modify
1293 itself */
1294 cpu->current_tb = NULL;
1295 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1296 if (locked) {
1297 mmap_unlock();
1299 cpu_resume_from_signal(cpu, puc);
1301 #endif
1303 #endif
1305 /* add the tb in the target page and protect it if necessary */
1306 static inline void tb_alloc_page(TranslationBlock *tb,
1307 unsigned int n, tb_page_addr_t page_addr)
1309 PageDesc *p;
1310 #ifndef CONFIG_USER_ONLY
1311 bool page_already_protected;
1312 #endif
1314 tb->page_addr[n] = page_addr;
1315 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1316 tb->page_next[n] = p->first_tb;
1317 #ifndef CONFIG_USER_ONLY
1318 page_already_protected = p->first_tb != NULL;
1319 #endif
1320 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1321 invalidate_page_bitmap(p);
1323 #if defined(CONFIG_USER_ONLY)
1324 if (p->flags & PAGE_WRITE) {
1325 target_ulong addr;
1326 PageDesc *p2;
1327 int prot;
1329 /* force the host page as non writable (writes will have a
1330 page fault + mprotect overhead) */
1331 page_addr &= qemu_host_page_mask;
1332 prot = 0;
1333 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1334 addr += TARGET_PAGE_SIZE) {
1336 p2 = page_find(addr >> TARGET_PAGE_BITS);
1337 if (!p2) {
1338 continue;
1340 prot |= p2->flags;
1341 p2->flags &= ~PAGE_WRITE;
1343 mprotect(g2h(page_addr), qemu_host_page_size,
1344 (prot & PAGE_BITS) & ~PAGE_WRITE);
1345 #ifdef DEBUG_TB_INVALIDATE
1346 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1347 page_addr);
1348 #endif
1350 #else
1351 /* if some code is already present, then the pages are already
1352 protected. So we handle the case where only the first TB is
1353 allocated in a physical page */
1354 if (!page_already_protected) {
1355 tlb_protect_code(page_addr);
1357 #endif
1360 /* add a new TB and link it to the physical page tables. phys_page2 is
1361 (-1) to indicate that only one page contains the TB. */
1362 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1363 tb_page_addr_t phys_page2)
1365 unsigned int h;
1366 TranslationBlock **ptb;
1368 /* Grab the mmap lock to stop another thread invalidating this TB
1369 before we are done. */
1370 mmap_lock();
1371 /* add in the physical hash table */
1372 h = tb_phys_hash_func(phys_pc);
1373 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1374 tb->phys_hash_next = *ptb;
1375 *ptb = tb;
1377 /* add in the page list */
1378 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1379 if (phys_page2 != -1) {
1380 tb_alloc_page(tb, 1, phys_page2);
1381 } else {
1382 tb->page_addr[1] = -1;
1385 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1386 tb->jmp_next[0] = NULL;
1387 tb->jmp_next[1] = NULL;
1389 /* init original jump addresses */
1390 if (tb->tb_next_offset[0] != 0xffff) {
1391 tb_reset_jump(tb, 0);
1393 if (tb->tb_next_offset[1] != 0xffff) {
1394 tb_reset_jump(tb, 1);
1397 #ifdef DEBUG_TB_CHECK
1398 tb_page_check();
1399 #endif
1400 mmap_unlock();
1403 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1404 tb[1].tc_ptr. Return NULL if not found */
1405 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1407 int m_min, m_max, m;
1408 uintptr_t v;
1409 TranslationBlock *tb;
1411 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1412 return NULL;
1414 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1415 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1416 return NULL;
1418 /* binary search (cf Knuth) */
1419 m_min = 0;
1420 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1421 while (m_min <= m_max) {
1422 m = (m_min + m_max) >> 1;
1423 tb = &tcg_ctx.tb_ctx.tbs[m];
1424 v = (uintptr_t)tb->tc_ptr;
1425 if (v == tc_ptr) {
1426 return tb;
1427 } else if (tc_ptr < v) {
1428 m_max = m - 1;
1429 } else {
1430 m_min = m + 1;
1433 return &tcg_ctx.tb_ctx.tbs[m_max];
1436 #if !defined(CONFIG_USER_ONLY)
1437 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1439 ram_addr_t ram_addr;
1440 MemoryRegion *mr;
1441 hwaddr l = 1;
1443 mr = address_space_translate(as, addr, &addr, &l, false);
1444 if (!(memory_region_is_ram(mr)
1445 || memory_region_is_romd(mr))) {
1446 return;
1448 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1449 + addr;
1450 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1452 #endif /* !defined(CONFIG_USER_ONLY) */
1454 void tb_check_watchpoint(CPUState *cpu)
1456 TranslationBlock *tb;
1458 tb = tb_find_pc(cpu->mem_io_pc);
1459 if (!tb) {
1460 cpu_abort(cpu, "check_watchpoint: could not find TB for pc=%p",
1461 (void *)cpu->mem_io_pc);
1463 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1464 tb_phys_invalidate(tb, -1);
1467 #ifndef CONFIG_USER_ONLY
1468 /* mask must never be zero, except for A20 change call */
1469 static void tcg_handle_interrupt(CPUState *cpu, int mask)
1471 int old_mask;
1473 old_mask = cpu->interrupt_request;
1474 cpu->interrupt_request |= mask;
1477 * If called from iothread context, wake the target cpu in
1478 * case its halted.
1480 if (!qemu_cpu_is_self(cpu)) {
1481 qemu_cpu_kick(cpu);
1482 return;
1485 if (use_icount) {
1486 cpu->icount_decr.u16.high = 0xffff;
1487 if (!cpu_can_do_io(cpu)
1488 && (mask & ~old_mask) != 0) {
1489 cpu_abort(cpu, "Raised interrupt while not in I/O function");
1491 } else {
1492 cpu->tcg_exit_req = 1;
1496 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1498 /* in deterministic execution mode, instructions doing device I/Os
1499 must be at the end of the TB */
1500 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1502 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1503 CPUArchState *env = cpu->env_ptr;
1504 #endif
1505 TranslationBlock *tb;
1506 uint32_t n, cflags;
1507 target_ulong pc, cs_base;
1508 uint64_t flags;
1510 tb = tb_find_pc(retaddr);
1511 if (!tb) {
1512 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1513 (void *)retaddr);
1515 n = cpu->icount_decr.u16.low + tb->icount;
1516 cpu_restore_state_from_tb(cpu, tb, retaddr);
1517 /* Calculate how many instructions had been executed before the fault
1518 occurred. */
1519 n = n - cpu->icount_decr.u16.low;
1520 /* Generate a new TB ending on the I/O insn. */
1521 n++;
1522 /* On MIPS and SH, delay slot instructions can only be restarted if
1523 they were already the first instruction in the TB. If this is not
1524 the first instruction in a TB then re-execute the preceding
1525 branch. */
1526 #if defined(TARGET_MIPS)
1527 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1528 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1529 cpu->icount_decr.u16.low++;
1530 env->hflags &= ~MIPS_HFLAG_BMASK;
1532 #elif defined(TARGET_SH4)
1533 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1534 && n > 1) {
1535 env->pc -= 2;
1536 cpu->icount_decr.u16.low++;
1537 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1539 #endif
1540 /* This should never happen. */
1541 if (n > CF_COUNT_MASK) {
1542 cpu_abort(cpu, "TB too big during recompile");
1545 cflags = n | CF_LAST_IO;
1546 pc = tb->pc;
1547 cs_base = tb->cs_base;
1548 flags = tb->flags;
1549 tb_phys_invalidate(tb, -1);
1550 /* FIXME: In theory this could raise an exception. In practice
1551 we have already translated the block once so it's probably ok. */
1552 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1553 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1554 the first in the TB) then we end up generating a whole new TB and
1555 repeating the fault, which is horribly inefficient.
1556 Better would be to execute just this insn uncached, or generate a
1557 second new TB. */
1558 cpu_resume_from_signal(cpu, NULL);
1561 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1563 unsigned int i;
1565 /* Discard jump cache entries for any tb which might potentially
1566 overlap the flushed page. */
1567 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1568 memset(&cpu->tb_jmp_cache[i], 0,
1569 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1571 i = tb_jmp_cache_hash_page(addr);
1572 memset(&cpu->tb_jmp_cache[i], 0,
1573 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1576 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1578 int i, target_code_size, max_target_code_size;
1579 int direct_jmp_count, direct_jmp2_count, cross_page;
1580 TranslationBlock *tb;
1582 target_code_size = 0;
1583 max_target_code_size = 0;
1584 cross_page = 0;
1585 direct_jmp_count = 0;
1586 direct_jmp2_count = 0;
1587 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1588 tb = &tcg_ctx.tb_ctx.tbs[i];
1589 target_code_size += tb->size;
1590 if (tb->size > max_target_code_size) {
1591 max_target_code_size = tb->size;
1593 if (tb->page_addr[1] != -1) {
1594 cross_page++;
1596 if (tb->tb_next_offset[0] != 0xffff) {
1597 direct_jmp_count++;
1598 if (tb->tb_next_offset[1] != 0xffff) {
1599 direct_jmp2_count++;
1603 /* XXX: avoid using doubles ? */
1604 cpu_fprintf(f, "Translation buffer state:\n");
1605 cpu_fprintf(f, "gen code size %td/%zd\n",
1606 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1607 tcg_ctx.code_gen_buffer_max_size);
1608 cpu_fprintf(f, "TB count %d/%d\n",
1609 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1610 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1611 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1612 tcg_ctx.tb_ctx.nb_tbs : 0,
1613 max_target_code_size);
1614 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1615 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1616 tcg_ctx.code_gen_buffer) /
1617 tcg_ctx.tb_ctx.nb_tbs : 0,
1618 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1619 tcg_ctx.code_gen_buffer) /
1620 target_code_size : 0);
1621 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1622 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1623 tcg_ctx.tb_ctx.nb_tbs : 0);
1624 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1625 direct_jmp_count,
1626 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1627 tcg_ctx.tb_ctx.nb_tbs : 0,
1628 direct_jmp2_count,
1629 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1630 tcg_ctx.tb_ctx.nb_tbs : 0);
1631 cpu_fprintf(f, "\nStatistics:\n");
1632 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1633 cpu_fprintf(f, "TB invalidate count %d\n",
1634 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1635 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1636 tcg_dump_info(f, cpu_fprintf);
1639 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1641 tcg_dump_op_count(f, cpu_fprintf);
1644 #else /* CONFIG_USER_ONLY */
1646 void cpu_interrupt(CPUState *cpu, int mask)
1648 cpu->interrupt_request |= mask;
1649 cpu->tcg_exit_req = 1;
1653 * Walks guest process memory "regions" one by one
1654 * and calls callback function 'fn' for each region.
1656 struct walk_memory_regions_data {
1657 walk_memory_regions_fn fn;
1658 void *priv;
1659 target_ulong start;
1660 int prot;
1663 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1664 target_ulong end, int new_prot)
1666 if (data->start != -1u) {
1667 int rc = data->fn(data->priv, data->start, end, data->prot);
1668 if (rc != 0) {
1669 return rc;
1673 data->start = (new_prot ? end : -1u);
1674 data->prot = new_prot;
1676 return 0;
1679 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1680 target_ulong base, int level, void **lp)
1682 target_ulong pa;
1683 int i, rc;
1685 if (*lp == NULL) {
1686 return walk_memory_regions_end(data, base, 0);
1689 if (level == 0) {
1690 PageDesc *pd = *lp;
1692 for (i = 0; i < V_L2_SIZE; ++i) {
1693 int prot = pd[i].flags;
1695 pa = base | (i << TARGET_PAGE_BITS);
1696 if (prot != data->prot) {
1697 rc = walk_memory_regions_end(data, pa, prot);
1698 if (rc != 0) {
1699 return rc;
1703 } else {
1704 void **pp = *lp;
1706 for (i = 0; i < V_L2_SIZE; ++i) {
1707 pa = base | ((target_ulong)i <<
1708 (TARGET_PAGE_BITS + V_L2_BITS * level));
1709 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1710 if (rc != 0) {
1711 return rc;
1716 return 0;
1719 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1721 struct walk_memory_regions_data data;
1722 uintptr_t i;
1724 data.fn = fn;
1725 data.priv = priv;
1726 data.start = -1u;
1727 data.prot = 0;
1729 for (i = 0; i < V_L1_SIZE; i++) {
1730 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1731 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1732 if (rc != 0) {
1733 return rc;
1737 return walk_memory_regions_end(&data, 0, 0);
1740 static int dump_region(void *priv, target_ulong start,
1741 target_ulong end, unsigned long prot)
1743 FILE *f = (FILE *)priv;
1745 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1746 " "TARGET_FMT_lx" %c%c%c\n",
1747 start, end, end - start,
1748 ((prot & PAGE_READ) ? 'r' : '-'),
1749 ((prot & PAGE_WRITE) ? 'w' : '-'),
1750 ((prot & PAGE_EXEC) ? 'x' : '-'));
1752 return 0;
1755 /* dump memory mappings */
1756 void page_dump(FILE *f)
1758 const int length = sizeof(target_ulong) * 2;
1759 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1760 length, "start", length, "end", length, "size", "prot");
1761 walk_memory_regions(f, dump_region);
1764 int page_get_flags(target_ulong address)
1766 PageDesc *p;
1768 p = page_find(address >> TARGET_PAGE_BITS);
1769 if (!p) {
1770 return 0;
1772 return p->flags;
1775 /* Modify the flags of a page and invalidate the code if necessary.
1776 The flag PAGE_WRITE_ORG is positioned automatically depending
1777 on PAGE_WRITE. The mmap_lock should already be held. */
1778 void page_set_flags(target_ulong start, target_ulong end, int flags)
1780 target_ulong addr, len;
1782 /* This function should never be called with addresses outside the
1783 guest address space. If this assert fires, it probably indicates
1784 a missing call to h2g_valid. */
1785 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1786 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1787 #endif
1788 assert(start < end);
1790 start = start & TARGET_PAGE_MASK;
1791 end = TARGET_PAGE_ALIGN(end);
1793 if (flags & PAGE_WRITE) {
1794 flags |= PAGE_WRITE_ORG;
1797 for (addr = start, len = end - start;
1798 len != 0;
1799 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1800 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1802 /* If the write protection bit is set, then we invalidate
1803 the code inside. */
1804 if (!(p->flags & PAGE_WRITE) &&
1805 (flags & PAGE_WRITE) &&
1806 p->first_tb) {
1807 tb_invalidate_phys_page(addr, 0, NULL, false);
1809 p->flags = flags;
1813 int page_check_range(target_ulong start, target_ulong len, int flags)
1815 PageDesc *p;
1816 target_ulong end;
1817 target_ulong addr;
1819 /* This function should never be called with addresses outside the
1820 guest address space. If this assert fires, it probably indicates
1821 a missing call to h2g_valid. */
1822 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1823 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1824 #endif
1826 if (len == 0) {
1827 return 0;
1829 if (start + len - 1 < start) {
1830 /* We've wrapped around. */
1831 return -1;
1834 /* must do before we loose bits in the next step */
1835 end = TARGET_PAGE_ALIGN(start + len);
1836 start = start & TARGET_PAGE_MASK;
1838 for (addr = start, len = end - start;
1839 len != 0;
1840 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1841 p = page_find(addr >> TARGET_PAGE_BITS);
1842 if (!p) {
1843 return -1;
1845 if (!(p->flags & PAGE_VALID)) {
1846 return -1;
1849 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1850 return -1;
1852 if (flags & PAGE_WRITE) {
1853 if (!(p->flags & PAGE_WRITE_ORG)) {
1854 return -1;
1856 /* unprotect the page if it was put read-only because it
1857 contains translated code */
1858 if (!(p->flags & PAGE_WRITE)) {
1859 if (!page_unprotect(addr, 0, NULL)) {
1860 return -1;
1865 return 0;
1868 /* called from signal handler: invalidate the code and unprotect the
1869 page. Return TRUE if the fault was successfully handled. */
1870 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1872 unsigned int prot;
1873 PageDesc *p;
1874 target_ulong host_start, host_end, addr;
1876 /* Technically this isn't safe inside a signal handler. However we
1877 know this only ever happens in a synchronous SEGV handler, so in
1878 practice it seems to be ok. */
1879 mmap_lock();
1881 p = page_find(address >> TARGET_PAGE_BITS);
1882 if (!p) {
1883 mmap_unlock();
1884 return 0;
1887 /* if the page was really writable, then we change its
1888 protection back to writable */
1889 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1890 host_start = address & qemu_host_page_mask;
1891 host_end = host_start + qemu_host_page_size;
1893 prot = 0;
1894 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1895 p = page_find(addr >> TARGET_PAGE_BITS);
1896 p->flags |= PAGE_WRITE;
1897 prot |= p->flags;
1899 /* and since the content will be modified, we must invalidate
1900 the corresponding translated code. */
1901 tb_invalidate_phys_page(addr, pc, puc, true);
1902 #ifdef DEBUG_TB_CHECK
1903 tb_invalidate_check(addr);
1904 #endif
1906 mprotect((void *)g2h(host_start), qemu_host_page_size,
1907 prot & PAGE_BITS);
1909 mmap_unlock();
1910 return 1;
1912 mmap_unlock();
1913 return 0;
1915 #endif /* CONFIG_USER_ONLY */