qemu-tech.texi: Remove "QEMU compared to other emulators" section
[qemu/ar7.git] / target / i386 / kvm.c
blob6899061b4e17c592ad46bff2858cabf964130e74
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include "standard-headers/asm-x86/kvm_para.h"
23 #include "cpu.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/hw_accel.h"
26 #include "sysemu/kvm_int.h"
27 #include "kvm_i386.h"
28 #include "hyperv.h"
29 #include "hyperv-proto.h"
31 #include "exec/gdbstub.h"
32 #include "qemu/host-utils.h"
33 #include "qemu/config-file.h"
34 #include "qemu/error-report.h"
35 #include "hw/i386/pc.h"
36 #include "hw/i386/apic.h"
37 #include "hw/i386/apic_internal.h"
38 #include "hw/i386/apic-msidef.h"
39 #include "hw/i386/intel_iommu.h"
40 #include "hw/i386/x86-iommu.h"
42 #include "hw/pci/pci.h"
43 #include "hw/pci/msi.h"
44 #include "hw/pci/msix.h"
45 #include "migration/blocker.h"
46 #include "exec/memattrs.h"
47 #include "trace.h"
49 //#define DEBUG_KVM
51 #ifdef DEBUG_KVM
52 #define DPRINTF(fmt, ...) \
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54 #else
55 #define DPRINTF(fmt, ...) \
56 do { } while (0)
57 #endif
59 #define MSR_KVM_WALL_CLOCK 0x11
60 #define MSR_KVM_SYSTEM_TIME 0x12
62 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
63 * 255 kvm_msr_entry structs */
64 #define MSR_BUF_SIZE 4096
66 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
67 KVM_CAP_INFO(SET_TSS_ADDR),
68 KVM_CAP_INFO(EXT_CPUID),
69 KVM_CAP_INFO(MP_STATE),
70 KVM_CAP_LAST_INFO
73 static bool has_msr_star;
74 static bool has_msr_hsave_pa;
75 static bool has_msr_tsc_aux;
76 static bool has_msr_tsc_adjust;
77 static bool has_msr_tsc_deadline;
78 static bool has_msr_feature_control;
79 static bool has_msr_misc_enable;
80 static bool has_msr_smbase;
81 static bool has_msr_bndcfgs;
82 static int lm_capable_kernel;
83 static bool has_msr_hv_hypercall;
84 static bool has_msr_hv_crash;
85 static bool has_msr_hv_reset;
86 static bool has_msr_hv_vpindex;
87 static bool hv_vpindex_settable;
88 static bool has_msr_hv_runtime;
89 static bool has_msr_hv_synic;
90 static bool has_msr_hv_stimer;
91 static bool has_msr_hv_frequencies;
92 static bool has_msr_hv_reenlightenment;
93 static bool has_msr_xss;
94 static bool has_msr_spec_ctrl;
95 static bool has_msr_virt_ssbd;
96 static bool has_msr_smi_count;
97 static bool has_msr_arch_capabs;
99 static uint32_t has_architectural_pmu_version;
100 static uint32_t num_architectural_pmu_gp_counters;
101 static uint32_t num_architectural_pmu_fixed_counters;
103 static int has_xsave;
104 static int has_xcrs;
105 static int has_pit_state2;
107 static bool has_msr_mcg_ext_ctl;
109 static struct kvm_cpuid2 *cpuid_cache;
110 static struct kvm_msr_list *kvm_feature_msrs;
112 int kvm_has_pit_state2(void)
114 return has_pit_state2;
117 bool kvm_has_smm(void)
119 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
122 bool kvm_has_adjust_clock_stable(void)
124 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
126 return (ret == KVM_CLOCK_TSC_STABLE);
129 bool kvm_allows_irq0_override(void)
131 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
134 static bool kvm_x2apic_api_set_flags(uint64_t flags)
136 KVMState *s = KVM_STATE(current_machine->accelerator);
138 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
141 #define MEMORIZE(fn, _result) \
142 ({ \
143 static bool _memorized; \
145 if (_memorized) { \
146 return _result; \
148 _memorized = true; \
149 _result = fn; \
152 static bool has_x2apic_api;
154 bool kvm_has_x2apic_api(void)
156 return has_x2apic_api;
159 bool kvm_enable_x2apic(void)
161 return MEMORIZE(
162 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
163 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
164 has_x2apic_api);
167 bool kvm_hv_vpindex_settable(void)
169 return hv_vpindex_settable;
172 static int kvm_get_tsc(CPUState *cs)
174 X86CPU *cpu = X86_CPU(cs);
175 CPUX86State *env = &cpu->env;
176 struct {
177 struct kvm_msrs info;
178 struct kvm_msr_entry entries[1];
179 } msr_data;
180 int ret;
182 if (env->tsc_valid) {
183 return 0;
186 msr_data.info.nmsrs = 1;
187 msr_data.entries[0].index = MSR_IA32_TSC;
188 env->tsc_valid = !runstate_is_running();
190 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
191 if (ret < 0) {
192 return ret;
195 assert(ret == 1);
196 env->tsc = msr_data.entries[0].data;
197 return 0;
200 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
202 kvm_get_tsc(cpu);
205 void kvm_synchronize_all_tsc(void)
207 CPUState *cpu;
209 if (kvm_enabled()) {
210 CPU_FOREACH(cpu) {
211 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
216 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
218 struct kvm_cpuid2 *cpuid;
219 int r, size;
221 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
222 cpuid = g_malloc0(size);
223 cpuid->nent = max;
224 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
225 if (r == 0 && cpuid->nent >= max) {
226 r = -E2BIG;
228 if (r < 0) {
229 if (r == -E2BIG) {
230 g_free(cpuid);
231 return NULL;
232 } else {
233 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
234 strerror(-r));
235 exit(1);
238 return cpuid;
241 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
242 * for all entries.
244 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
246 struct kvm_cpuid2 *cpuid;
247 int max = 1;
249 if (cpuid_cache != NULL) {
250 return cpuid_cache;
252 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
253 max *= 2;
255 cpuid_cache = cpuid;
256 return cpuid;
259 static const struct kvm_para_features {
260 int cap;
261 int feature;
262 } para_features[] = {
263 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
264 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
265 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
266 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
269 static int get_para_features(KVMState *s)
271 int i, features = 0;
273 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
274 if (kvm_check_extension(s, para_features[i].cap)) {
275 features |= (1 << para_features[i].feature);
279 return features;
282 static bool host_tsx_blacklisted(void)
284 int family, model, stepping;\
285 char vendor[CPUID_VENDOR_SZ + 1];
287 host_vendor_fms(vendor, &family, &model, &stepping);
289 /* Check if we are running on a Haswell host known to have broken TSX */
290 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
291 (family == 6) &&
292 ((model == 63 && stepping < 4) ||
293 model == 60 || model == 69 || model == 70);
296 /* Returns the value for a specific register on the cpuid entry
298 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
300 uint32_t ret = 0;
301 switch (reg) {
302 case R_EAX:
303 ret = entry->eax;
304 break;
305 case R_EBX:
306 ret = entry->ebx;
307 break;
308 case R_ECX:
309 ret = entry->ecx;
310 break;
311 case R_EDX:
312 ret = entry->edx;
313 break;
315 return ret;
318 /* Find matching entry for function/index on kvm_cpuid2 struct
320 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
321 uint32_t function,
322 uint32_t index)
324 int i;
325 for (i = 0; i < cpuid->nent; ++i) {
326 if (cpuid->entries[i].function == function &&
327 cpuid->entries[i].index == index) {
328 return &cpuid->entries[i];
331 /* not found: */
332 return NULL;
335 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
336 uint32_t index, int reg)
338 struct kvm_cpuid2 *cpuid;
339 uint32_t ret = 0;
340 uint32_t cpuid_1_edx;
341 bool found = false;
343 cpuid = get_supported_cpuid(s);
345 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
346 if (entry) {
347 found = true;
348 ret = cpuid_entry_get_reg(entry, reg);
351 /* Fixups for the data returned by KVM, below */
353 if (function == 1 && reg == R_EDX) {
354 /* KVM before 2.6.30 misreports the following features */
355 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
356 } else if (function == 1 && reg == R_ECX) {
357 /* We can set the hypervisor flag, even if KVM does not return it on
358 * GET_SUPPORTED_CPUID
360 ret |= CPUID_EXT_HYPERVISOR;
361 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
362 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
363 * and the irqchip is in the kernel.
365 if (kvm_irqchip_in_kernel() &&
366 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
367 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
370 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
371 * without the in-kernel irqchip
373 if (!kvm_irqchip_in_kernel()) {
374 ret &= ~CPUID_EXT_X2APIC;
377 if (enable_cpu_pm) {
378 int disable_exits = kvm_check_extension(s,
379 KVM_CAP_X86_DISABLE_EXITS);
381 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
382 ret |= CPUID_EXT_MONITOR;
385 } else if (function == 6 && reg == R_EAX) {
386 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
387 } else if (function == 7 && index == 0 && reg == R_EBX) {
388 if (host_tsx_blacklisted()) {
389 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
391 } else if (function == 7 && index == 0 && reg == R_EDX) {
393 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
394 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
395 * returned by KVM_GET_MSR_INDEX_LIST.
397 if (!has_msr_arch_capabs) {
398 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
400 } else if (function == 0x80000001 && reg == R_ECX) {
402 * It's safe to enable TOPOEXT even if it's not returned by
403 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
404 * us to keep CPU models including TOPOEXT runnable on older kernels.
406 ret |= CPUID_EXT3_TOPOEXT;
407 } else if (function == 0x80000001 && reg == R_EDX) {
408 /* On Intel, kvm returns cpuid according to the Intel spec,
409 * so add missing bits according to the AMD spec:
411 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
412 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
413 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
414 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
415 * be enabled without the in-kernel irqchip
417 if (!kvm_irqchip_in_kernel()) {
418 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
420 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
421 ret |= 1U << KVM_HINTS_REALTIME;
422 found = 1;
425 /* fallback for older kernels */
426 if ((function == KVM_CPUID_FEATURES) && !found) {
427 ret = get_para_features(s);
430 return ret;
433 uint32_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
435 struct {
436 struct kvm_msrs info;
437 struct kvm_msr_entry entries[1];
438 } msr_data;
439 uint32_t ret;
441 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
442 return 0;
445 /* Check if requested MSR is supported feature MSR */
446 int i;
447 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
448 if (kvm_feature_msrs->indices[i] == index) {
449 break;
451 if (i == kvm_feature_msrs->nmsrs) {
452 return 0; /* if the feature MSR is not supported, simply return 0 */
455 msr_data.info.nmsrs = 1;
456 msr_data.entries[0].index = index;
458 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
459 if (ret != 1) {
460 error_report("KVM get MSR (index=0x%x) feature failed, %s",
461 index, strerror(-ret));
462 exit(1);
465 return msr_data.entries[0].data;
469 typedef struct HWPoisonPage {
470 ram_addr_t ram_addr;
471 QLIST_ENTRY(HWPoisonPage) list;
472 } HWPoisonPage;
474 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
475 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
477 static void kvm_unpoison_all(void *param)
479 HWPoisonPage *page, *next_page;
481 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
482 QLIST_REMOVE(page, list);
483 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
484 g_free(page);
488 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
490 HWPoisonPage *page;
492 QLIST_FOREACH(page, &hwpoison_page_list, list) {
493 if (page->ram_addr == ram_addr) {
494 return;
497 page = g_new(HWPoisonPage, 1);
498 page->ram_addr = ram_addr;
499 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
502 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
503 int *max_banks)
505 int r;
507 r = kvm_check_extension(s, KVM_CAP_MCE);
508 if (r > 0) {
509 *max_banks = r;
510 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
512 return -ENOSYS;
515 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
517 CPUState *cs = CPU(cpu);
518 CPUX86State *env = &cpu->env;
519 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
520 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
521 uint64_t mcg_status = MCG_STATUS_MCIP;
522 int flags = 0;
524 if (code == BUS_MCEERR_AR) {
525 status |= MCI_STATUS_AR | 0x134;
526 mcg_status |= MCG_STATUS_EIPV;
527 } else {
528 status |= 0xc0;
529 mcg_status |= MCG_STATUS_RIPV;
532 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
533 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
534 * guest kernel back into env->mcg_ext_ctl.
536 cpu_synchronize_state(cs);
537 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
538 mcg_status |= MCG_STATUS_LMCE;
539 flags = 0;
542 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
543 (MCM_ADDR_PHYS << 6) | 0xc, flags);
546 static void hardware_memory_error(void)
548 fprintf(stderr, "Hardware memory error!\n");
549 exit(1);
552 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
554 X86CPU *cpu = X86_CPU(c);
555 CPUX86State *env = &cpu->env;
556 ram_addr_t ram_addr;
557 hwaddr paddr;
559 /* If we get an action required MCE, it has been injected by KVM
560 * while the VM was running. An action optional MCE instead should
561 * be coming from the main thread, which qemu_init_sigbus identifies
562 * as the "early kill" thread.
564 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
566 if ((env->mcg_cap & MCG_SER_P) && addr) {
567 ram_addr = qemu_ram_addr_from_host(addr);
568 if (ram_addr != RAM_ADDR_INVALID &&
569 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
570 kvm_hwpoison_page_add(ram_addr);
571 kvm_mce_inject(cpu, paddr, code);
572 return;
575 fprintf(stderr, "Hardware memory error for memory used by "
576 "QEMU itself instead of guest system!\n");
579 if (code == BUS_MCEERR_AR) {
580 hardware_memory_error();
583 /* Hope we are lucky for AO MCE */
586 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
588 CPUX86State *env = &cpu->env;
590 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
591 unsigned int bank, bank_num = env->mcg_cap & 0xff;
592 struct kvm_x86_mce mce;
594 env->exception_injected = -1;
597 * There must be at least one bank in use if an MCE is pending.
598 * Find it and use its values for the event injection.
600 for (bank = 0; bank < bank_num; bank++) {
601 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
602 break;
605 assert(bank < bank_num);
607 mce.bank = bank;
608 mce.status = env->mce_banks[bank * 4 + 1];
609 mce.mcg_status = env->mcg_status;
610 mce.addr = env->mce_banks[bank * 4 + 2];
611 mce.misc = env->mce_banks[bank * 4 + 3];
613 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
615 return 0;
618 static void cpu_update_state(void *opaque, int running, RunState state)
620 CPUX86State *env = opaque;
622 if (running) {
623 env->tsc_valid = false;
627 unsigned long kvm_arch_vcpu_id(CPUState *cs)
629 X86CPU *cpu = X86_CPU(cs);
630 return cpu->apic_id;
633 #ifndef KVM_CPUID_SIGNATURE_NEXT
634 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
635 #endif
637 static bool hyperv_hypercall_available(X86CPU *cpu)
639 return cpu->hyperv_vapic ||
640 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
643 static bool hyperv_enabled(X86CPU *cpu)
645 CPUState *cs = CPU(cpu);
646 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
647 (hyperv_hypercall_available(cpu) ||
648 cpu->hyperv_time ||
649 cpu->hyperv_relaxed_timing ||
650 cpu->hyperv_crash ||
651 cpu->hyperv_reset ||
652 cpu->hyperv_vpindex ||
653 cpu->hyperv_runtime ||
654 cpu->hyperv_synic ||
655 cpu->hyperv_stimer ||
656 cpu->hyperv_reenlightenment ||
657 cpu->hyperv_tlbflush ||
658 cpu->hyperv_ipi);
661 static int kvm_arch_set_tsc_khz(CPUState *cs)
663 X86CPU *cpu = X86_CPU(cs);
664 CPUX86State *env = &cpu->env;
665 int r;
667 if (!env->tsc_khz) {
668 return 0;
671 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
672 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
673 -ENOTSUP;
674 if (r < 0) {
675 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
676 * TSC frequency doesn't match the one we want.
678 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
679 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
680 -ENOTSUP;
681 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
682 warn_report("TSC frequency mismatch between "
683 "VM (%" PRId64 " kHz) and host (%d kHz), "
684 "and TSC scaling unavailable",
685 env->tsc_khz, cur_freq);
686 return r;
690 return 0;
693 static bool tsc_is_stable_and_known(CPUX86State *env)
695 if (!env->tsc_khz) {
696 return false;
698 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
699 || env->user_tsc_khz;
702 static int hyperv_handle_properties(CPUState *cs)
704 X86CPU *cpu = X86_CPU(cs);
705 CPUX86State *env = &cpu->env;
707 if (cpu->hyperv_relaxed_timing) {
708 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
710 if (cpu->hyperv_vapic) {
711 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
712 env->features[FEAT_HYPERV_EAX] |= HV_APIC_ACCESS_AVAILABLE;
714 if (cpu->hyperv_time) {
715 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) <= 0) {
716 fprintf(stderr, "Hyper-V clocksources "
717 "(requested by 'hv-time' cpu flag) "
718 "are not supported by kernel\n");
719 return -ENOSYS;
721 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
722 env->features[FEAT_HYPERV_EAX] |= HV_TIME_REF_COUNT_AVAILABLE;
723 env->features[FEAT_HYPERV_EAX] |= HV_REFERENCE_TSC_AVAILABLE;
725 if (cpu->hyperv_frequencies) {
726 if (!has_msr_hv_frequencies) {
727 fprintf(stderr, "Hyper-V frequency MSRs "
728 "(requested by 'hv-frequencies' cpu flag) "
729 "are not supported by kernel\n");
730 return -ENOSYS;
732 env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_FREQUENCY_MSRS;
733 env->features[FEAT_HYPERV_EDX] |= HV_FREQUENCY_MSRS_AVAILABLE;
735 if (cpu->hyperv_crash) {
736 if (!has_msr_hv_crash) {
737 fprintf(stderr, "Hyper-V crash MSRs "
738 "(requested by 'hv-crash' cpu flag) "
739 "are not supported by kernel\n");
740 return -ENOSYS;
742 env->features[FEAT_HYPERV_EDX] |= HV_GUEST_CRASH_MSR_AVAILABLE;
744 if (cpu->hyperv_reenlightenment) {
745 if (!has_msr_hv_reenlightenment) {
746 fprintf(stderr,
747 "Hyper-V Reenlightenment MSRs "
748 "(requested by 'hv-reenlightenment' cpu flag) "
749 "are not supported by kernel\n");
750 return -ENOSYS;
752 env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
754 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
755 if (cpu->hyperv_reset) {
756 if (!has_msr_hv_reset) {
757 fprintf(stderr, "Hyper-V reset MSR "
758 "(requested by 'hv-reset' cpu flag) "
759 "is not supported by kernel\n");
760 return -ENOSYS;
762 env->features[FEAT_HYPERV_EAX] |= HV_RESET_AVAILABLE;
764 if (cpu->hyperv_vpindex) {
765 if (!has_msr_hv_vpindex) {
766 fprintf(stderr, "Hyper-V VP_INDEX MSR "
767 "(requested by 'hv-vpindex' cpu flag) "
768 "is not supported by kernel\n");
769 return -ENOSYS;
771 env->features[FEAT_HYPERV_EAX] |= HV_VP_INDEX_AVAILABLE;
773 if (cpu->hyperv_runtime) {
774 if (!has_msr_hv_runtime) {
775 fprintf(stderr, "Hyper-V VP_RUNTIME MSR "
776 "(requested by 'hv-runtime' cpu flag) "
777 "is not supported by kernel\n");
778 return -ENOSYS;
780 env->features[FEAT_HYPERV_EAX] |= HV_VP_RUNTIME_AVAILABLE;
782 if (cpu->hyperv_synic) {
783 unsigned int cap = KVM_CAP_HYPERV_SYNIC;
784 if (!cpu->hyperv_synic_kvm_only) {
785 if (!cpu->hyperv_vpindex) {
786 fprintf(stderr, "Hyper-V SynIC "
787 "(requested by 'hv-synic' cpu flag) "
788 "requires Hyper-V VP_INDEX ('hv-vpindex')\n");
789 return -ENOSYS;
791 cap = KVM_CAP_HYPERV_SYNIC2;
794 if (!has_msr_hv_synic || !kvm_check_extension(cs->kvm_state, cap)) {
795 fprintf(stderr, "Hyper-V SynIC (requested by 'hv-synic' cpu flag) "
796 "is not supported by kernel\n");
797 return -ENOSYS;
800 env->features[FEAT_HYPERV_EAX] |= HV_SYNIC_AVAILABLE;
802 if (cpu->hyperv_stimer) {
803 if (!has_msr_hv_stimer) {
804 fprintf(stderr, "Hyper-V timers aren't supported by kernel\n");
805 return -ENOSYS;
807 env->features[FEAT_HYPERV_EAX] |= HV_SYNTIMERS_AVAILABLE;
809 if (cpu->hyperv_relaxed_timing) {
810 env->features[FEAT_HV_RECOMM_EAX] |= HV_RELAXED_TIMING_RECOMMENDED;
812 if (cpu->hyperv_vapic) {
813 env->features[FEAT_HV_RECOMM_EAX] |= HV_APIC_ACCESS_RECOMMENDED;
815 if (cpu->hyperv_tlbflush) {
816 if (kvm_check_extension(cs->kvm_state,
817 KVM_CAP_HYPERV_TLBFLUSH) <= 0) {
818 fprintf(stderr, "Hyper-V TLB flush support "
819 "(requested by 'hv-tlbflush' cpu flag) "
820 " is not supported by kernel\n");
821 return -ENOSYS;
823 env->features[FEAT_HV_RECOMM_EAX] |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
824 env->features[FEAT_HV_RECOMM_EAX] |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
826 if (cpu->hyperv_ipi) {
827 if (kvm_check_extension(cs->kvm_state,
828 KVM_CAP_HYPERV_SEND_IPI) <= 0) {
829 fprintf(stderr, "Hyper-V IPI send support "
830 "(requested by 'hv-ipi' cpu flag) "
831 " is not supported by kernel\n");
832 return -ENOSYS;
834 env->features[FEAT_HV_RECOMM_EAX] |= HV_CLUSTER_IPI_RECOMMENDED;
835 env->features[FEAT_HV_RECOMM_EAX] |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
837 if (cpu->hyperv_evmcs) {
838 uint16_t evmcs_version;
840 if (kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
841 (uintptr_t)&evmcs_version)) {
842 fprintf(stderr, "Hyper-V Enlightened VMCS "
843 "(requested by 'hv-evmcs' cpu flag) "
844 "is not supported by kernel\n");
845 return -ENOSYS;
847 env->features[FEAT_HV_RECOMM_EAX] |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
848 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
851 return 0;
854 static int hyperv_init_vcpu(X86CPU *cpu)
856 CPUState *cs = CPU(cpu);
857 int ret;
859 if (cpu->hyperv_vpindex && !hv_vpindex_settable) {
861 * the kernel doesn't support setting vp_index; assert that its value
862 * is in sync
864 struct {
865 struct kvm_msrs info;
866 struct kvm_msr_entry entries[1];
867 } msr_data = {
868 .info.nmsrs = 1,
869 .entries[0].index = HV_X64_MSR_VP_INDEX,
872 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
873 if (ret < 0) {
874 return ret;
876 assert(ret == 1);
878 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
879 error_report("kernel's vp_index != QEMU's vp_index");
880 return -ENXIO;
884 if (cpu->hyperv_synic) {
885 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
886 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
887 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
888 if (ret < 0) {
889 error_report("failed to turn on HyperV SynIC in KVM: %s",
890 strerror(-ret));
891 return ret;
894 if (!cpu->hyperv_synic_kvm_only) {
895 ret = hyperv_x86_synic_add(cpu);
896 if (ret < 0) {
897 error_report("failed to create HyperV SynIC: %s",
898 strerror(-ret));
899 return ret;
904 return 0;
907 static Error *invtsc_mig_blocker;
908 static Error *vmx_mig_blocker;
910 #define KVM_MAX_CPUID_ENTRIES 100
912 int kvm_arch_init_vcpu(CPUState *cs)
914 struct {
915 struct kvm_cpuid2 cpuid;
916 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
917 } cpuid_data;
919 * The kernel defines these structs with padding fields so there
920 * should be no extra padding in our cpuid_data struct.
922 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
923 sizeof(struct kvm_cpuid2) +
924 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
926 X86CPU *cpu = X86_CPU(cs);
927 CPUX86State *env = &cpu->env;
928 uint32_t limit, i, j, cpuid_i;
929 uint32_t unused;
930 struct kvm_cpuid_entry2 *c;
931 uint32_t signature[3];
932 int kvm_base = KVM_CPUID_SIGNATURE;
933 int r;
934 Error *local_err = NULL;
936 memset(&cpuid_data, 0, sizeof(cpuid_data));
938 cpuid_i = 0;
940 r = kvm_arch_set_tsc_khz(cs);
941 if (r < 0) {
942 goto fail;
945 /* vcpu's TSC frequency is either specified by user, or following
946 * the value used by KVM if the former is not present. In the
947 * latter case, we query it from KVM and record in env->tsc_khz,
948 * so that vcpu's TSC frequency can be migrated later via this field.
950 if (!env->tsc_khz) {
951 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
952 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
953 -ENOTSUP;
954 if (r > 0) {
955 env->tsc_khz = r;
959 /* Paravirtualization CPUIDs */
960 if (hyperv_enabled(cpu)) {
961 c = &cpuid_data.entries[cpuid_i++];
962 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
963 if (!cpu->hyperv_vendor_id) {
964 memcpy(signature, "Microsoft Hv", 12);
965 } else {
966 size_t len = strlen(cpu->hyperv_vendor_id);
968 if (len > 12) {
969 error_report("hv-vendor-id truncated to 12 characters");
970 len = 12;
972 memset(signature, 0, 12);
973 memcpy(signature, cpu->hyperv_vendor_id, len);
975 c->eax = cpu->hyperv_evmcs ?
976 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
977 c->ebx = signature[0];
978 c->ecx = signature[1];
979 c->edx = signature[2];
981 c = &cpuid_data.entries[cpuid_i++];
982 c->function = HV_CPUID_INTERFACE;
983 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
984 c->eax = signature[0];
985 c->ebx = 0;
986 c->ecx = 0;
987 c->edx = 0;
989 c = &cpuid_data.entries[cpuid_i++];
990 c->function = HV_CPUID_VERSION;
991 c->eax = 0x00001bbc;
992 c->ebx = 0x00060001;
994 c = &cpuid_data.entries[cpuid_i++];
995 c->function = HV_CPUID_FEATURES;
996 r = hyperv_handle_properties(cs);
997 if (r) {
998 return r;
1000 c->eax = env->features[FEAT_HYPERV_EAX];
1001 c->ebx = env->features[FEAT_HYPERV_EBX];
1002 c->edx = env->features[FEAT_HYPERV_EDX];
1004 c = &cpuid_data.entries[cpuid_i++];
1005 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1007 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1008 c->ebx = cpu->hyperv_spinlock_attempts;
1010 c = &cpuid_data.entries[cpuid_i++];
1011 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1013 c->eax = cpu->hv_max_vps;
1014 c->ebx = 0x40;
1016 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1017 has_msr_hv_hypercall = true;
1019 if (cpu->hyperv_evmcs) {
1020 __u32 function;
1022 /* Create zeroed 0x40000006..0x40000009 leaves */
1023 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1024 function < HV_CPUID_NESTED_FEATURES; function++) {
1025 c = &cpuid_data.entries[cpuid_i++];
1026 c->function = function;
1029 c = &cpuid_data.entries[cpuid_i++];
1030 c->function = HV_CPUID_NESTED_FEATURES;
1031 c->eax = env->features[FEAT_HV_NESTED_EAX];
1035 if (cpu->expose_kvm) {
1036 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1037 c = &cpuid_data.entries[cpuid_i++];
1038 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1039 c->eax = KVM_CPUID_FEATURES | kvm_base;
1040 c->ebx = signature[0];
1041 c->ecx = signature[1];
1042 c->edx = signature[2];
1044 c = &cpuid_data.entries[cpuid_i++];
1045 c->function = KVM_CPUID_FEATURES | kvm_base;
1046 c->eax = env->features[FEAT_KVM];
1047 c->edx = env->features[FEAT_KVM_HINTS];
1050 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1052 for (i = 0; i <= limit; i++) {
1053 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1054 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1055 abort();
1057 c = &cpuid_data.entries[cpuid_i++];
1059 switch (i) {
1060 case 2: {
1061 /* Keep reading function 2 till all the input is received */
1062 int times;
1064 c->function = i;
1065 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1066 KVM_CPUID_FLAG_STATE_READ_NEXT;
1067 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1068 times = c->eax & 0xff;
1070 for (j = 1; j < times; ++j) {
1071 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1072 fprintf(stderr, "cpuid_data is full, no space for "
1073 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1074 abort();
1076 c = &cpuid_data.entries[cpuid_i++];
1077 c->function = i;
1078 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1079 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1081 break;
1083 case 4:
1084 case 0xb:
1085 case 0xd:
1086 for (j = 0; ; j++) {
1087 if (i == 0xd && j == 64) {
1088 break;
1090 c->function = i;
1091 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1092 c->index = j;
1093 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1095 if (i == 4 && c->eax == 0) {
1096 break;
1098 if (i == 0xb && !(c->ecx & 0xff00)) {
1099 break;
1101 if (i == 0xd && c->eax == 0) {
1102 continue;
1104 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1105 fprintf(stderr, "cpuid_data is full, no space for "
1106 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1107 abort();
1109 c = &cpuid_data.entries[cpuid_i++];
1111 break;
1112 case 0x14: {
1113 uint32_t times;
1115 c->function = i;
1116 c->index = 0;
1117 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1118 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1119 times = c->eax;
1121 for (j = 1; j <= times; ++j) {
1122 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1123 fprintf(stderr, "cpuid_data is full, no space for "
1124 "cpuid(eax:0x14,ecx:0x%x)\n", j);
1125 abort();
1127 c = &cpuid_data.entries[cpuid_i++];
1128 c->function = i;
1129 c->index = j;
1130 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1131 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1133 break;
1135 default:
1136 c->function = i;
1137 c->flags = 0;
1138 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1139 break;
1143 if (limit >= 0x0a) {
1144 uint32_t eax, edx;
1146 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1148 has_architectural_pmu_version = eax & 0xff;
1149 if (has_architectural_pmu_version > 0) {
1150 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1152 /* Shouldn't be more than 32, since that's the number of bits
1153 * available in EBX to tell us _which_ counters are available.
1154 * Play it safe.
1156 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1157 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1160 if (has_architectural_pmu_version > 1) {
1161 num_architectural_pmu_fixed_counters = edx & 0x1f;
1163 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1164 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1170 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1172 for (i = 0x80000000; i <= limit; i++) {
1173 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1174 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1175 abort();
1177 c = &cpuid_data.entries[cpuid_i++];
1179 switch (i) {
1180 case 0x8000001d:
1181 /* Query for all AMD cache information leaves */
1182 for (j = 0; ; j++) {
1183 c->function = i;
1184 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1185 c->index = j;
1186 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1188 if (c->eax == 0) {
1189 break;
1191 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1192 fprintf(stderr, "cpuid_data is full, no space for "
1193 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1194 abort();
1196 c = &cpuid_data.entries[cpuid_i++];
1198 break;
1199 default:
1200 c->function = i;
1201 c->flags = 0;
1202 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1203 break;
1207 /* Call Centaur's CPUID instructions they are supported. */
1208 if (env->cpuid_xlevel2 > 0) {
1209 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1211 for (i = 0xC0000000; i <= limit; i++) {
1212 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1213 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1214 abort();
1216 c = &cpuid_data.entries[cpuid_i++];
1218 c->function = i;
1219 c->flags = 0;
1220 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1224 cpuid_data.cpuid.nent = cpuid_i;
1226 if (((env->cpuid_version >> 8)&0xF) >= 6
1227 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1228 (CPUID_MCE | CPUID_MCA)
1229 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1230 uint64_t mcg_cap, unsupported_caps;
1231 int banks;
1232 int ret;
1234 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1235 if (ret < 0) {
1236 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1237 return ret;
1240 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1241 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1242 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1243 return -ENOTSUP;
1246 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1247 if (unsupported_caps) {
1248 if (unsupported_caps & MCG_LMCE_P) {
1249 error_report("kvm: LMCE not supported");
1250 return -ENOTSUP;
1252 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1253 unsupported_caps);
1256 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1257 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1258 if (ret < 0) {
1259 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1260 return ret;
1264 qemu_add_vm_change_state_handler(cpu_update_state, env);
1266 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1267 if (c) {
1268 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1269 !!(c->ecx & CPUID_EXT_SMX);
1272 if ((env->features[FEAT_1_ECX] & CPUID_EXT_VMX) && !vmx_mig_blocker) {
1273 error_setg(&vmx_mig_blocker,
1274 "Nested VMX virtualization does not support live migration yet");
1275 r = migrate_add_blocker(vmx_mig_blocker, &local_err);
1276 if (local_err) {
1277 error_report_err(local_err);
1278 error_free(vmx_mig_blocker);
1279 return r;
1283 if (env->mcg_cap & MCG_LMCE_P) {
1284 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1287 if (!env->user_tsc_khz) {
1288 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1289 invtsc_mig_blocker == NULL) {
1290 error_setg(&invtsc_mig_blocker,
1291 "State blocked by non-migratable CPU device"
1292 " (invtsc flag)");
1293 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1294 if (local_err) {
1295 error_report_err(local_err);
1296 error_free(invtsc_mig_blocker);
1297 return r;
1302 if (cpu->vmware_cpuid_freq
1303 /* Guests depend on 0x40000000 to detect this feature, so only expose
1304 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1305 && cpu->expose_kvm
1306 && kvm_base == KVM_CPUID_SIGNATURE
1307 /* TSC clock must be stable and known for this feature. */
1308 && tsc_is_stable_and_known(env)) {
1310 c = &cpuid_data.entries[cpuid_i++];
1311 c->function = KVM_CPUID_SIGNATURE | 0x10;
1312 c->eax = env->tsc_khz;
1313 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1314 * APIC_BUS_CYCLE_NS */
1315 c->ebx = 1000000;
1316 c->ecx = c->edx = 0;
1318 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1319 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1322 cpuid_data.cpuid.nent = cpuid_i;
1324 cpuid_data.cpuid.padding = 0;
1325 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1326 if (r) {
1327 goto fail;
1330 if (has_xsave) {
1331 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1333 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1335 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1336 has_msr_tsc_aux = false;
1339 r = hyperv_init_vcpu(cpu);
1340 if (r) {
1341 goto fail;
1344 return 0;
1346 fail:
1347 migrate_del_blocker(invtsc_mig_blocker);
1348 return r;
1351 void kvm_arch_reset_vcpu(X86CPU *cpu)
1353 CPUX86State *env = &cpu->env;
1355 env->xcr0 = 1;
1356 if (kvm_irqchip_in_kernel()) {
1357 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1358 KVM_MP_STATE_UNINITIALIZED;
1359 } else {
1360 env->mp_state = KVM_MP_STATE_RUNNABLE;
1363 if (cpu->hyperv_synic) {
1364 int i;
1365 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1366 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1369 hyperv_x86_synic_reset(cpu);
1373 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1375 CPUX86State *env = &cpu->env;
1377 /* APs get directly into wait-for-SIPI state. */
1378 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1379 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1383 static int kvm_get_supported_feature_msrs(KVMState *s)
1385 int ret = 0;
1387 if (kvm_feature_msrs != NULL) {
1388 return 0;
1391 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1392 return 0;
1395 struct kvm_msr_list msr_list;
1397 msr_list.nmsrs = 0;
1398 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1399 if (ret < 0 && ret != -E2BIG) {
1400 error_report("Fetch KVM feature MSR list failed: %s",
1401 strerror(-ret));
1402 return ret;
1405 assert(msr_list.nmsrs > 0);
1406 kvm_feature_msrs = (struct kvm_msr_list *) \
1407 g_malloc0(sizeof(msr_list) +
1408 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1410 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1411 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1413 if (ret < 0) {
1414 error_report("Fetch KVM feature MSR list failed: %s",
1415 strerror(-ret));
1416 g_free(kvm_feature_msrs);
1417 kvm_feature_msrs = NULL;
1418 return ret;
1421 return 0;
1424 static int kvm_get_supported_msrs(KVMState *s)
1426 static int kvm_supported_msrs;
1427 int ret = 0;
1429 /* first time */
1430 if (kvm_supported_msrs == 0) {
1431 struct kvm_msr_list msr_list, *kvm_msr_list;
1433 kvm_supported_msrs = -1;
1435 /* Obtain MSR list from KVM. These are the MSRs that we must
1436 * save/restore */
1437 msr_list.nmsrs = 0;
1438 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1439 if (ret < 0 && ret != -E2BIG) {
1440 return ret;
1442 /* Old kernel modules had a bug and could write beyond the provided
1443 memory. Allocate at least a safe amount of 1K. */
1444 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1445 msr_list.nmsrs *
1446 sizeof(msr_list.indices[0])));
1448 kvm_msr_list->nmsrs = msr_list.nmsrs;
1449 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1450 if (ret >= 0) {
1451 int i;
1453 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1454 switch (kvm_msr_list->indices[i]) {
1455 case MSR_STAR:
1456 has_msr_star = true;
1457 break;
1458 case MSR_VM_HSAVE_PA:
1459 has_msr_hsave_pa = true;
1460 break;
1461 case MSR_TSC_AUX:
1462 has_msr_tsc_aux = true;
1463 break;
1464 case MSR_TSC_ADJUST:
1465 has_msr_tsc_adjust = true;
1466 break;
1467 case MSR_IA32_TSCDEADLINE:
1468 has_msr_tsc_deadline = true;
1469 break;
1470 case MSR_IA32_SMBASE:
1471 has_msr_smbase = true;
1472 break;
1473 case MSR_SMI_COUNT:
1474 has_msr_smi_count = true;
1475 break;
1476 case MSR_IA32_MISC_ENABLE:
1477 has_msr_misc_enable = true;
1478 break;
1479 case MSR_IA32_BNDCFGS:
1480 has_msr_bndcfgs = true;
1481 break;
1482 case MSR_IA32_XSS:
1483 has_msr_xss = true;
1484 break;
1485 case HV_X64_MSR_CRASH_CTL:
1486 has_msr_hv_crash = true;
1487 break;
1488 case HV_X64_MSR_RESET:
1489 has_msr_hv_reset = true;
1490 break;
1491 case HV_X64_MSR_VP_INDEX:
1492 has_msr_hv_vpindex = true;
1493 break;
1494 case HV_X64_MSR_VP_RUNTIME:
1495 has_msr_hv_runtime = true;
1496 break;
1497 case HV_X64_MSR_SCONTROL:
1498 has_msr_hv_synic = true;
1499 break;
1500 case HV_X64_MSR_STIMER0_CONFIG:
1501 has_msr_hv_stimer = true;
1502 break;
1503 case HV_X64_MSR_TSC_FREQUENCY:
1504 has_msr_hv_frequencies = true;
1505 break;
1506 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1507 has_msr_hv_reenlightenment = true;
1508 break;
1509 case MSR_IA32_SPEC_CTRL:
1510 has_msr_spec_ctrl = true;
1511 break;
1512 case MSR_VIRT_SSBD:
1513 has_msr_virt_ssbd = true;
1514 break;
1515 case MSR_IA32_ARCH_CAPABILITIES:
1516 has_msr_arch_capabs = true;
1517 break;
1522 g_free(kvm_msr_list);
1525 return ret;
1528 static Notifier smram_machine_done;
1529 static KVMMemoryListener smram_listener;
1530 static AddressSpace smram_address_space;
1531 static MemoryRegion smram_as_root;
1532 static MemoryRegion smram_as_mem;
1534 static void register_smram_listener(Notifier *n, void *unused)
1536 MemoryRegion *smram =
1537 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1539 /* Outer container... */
1540 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1541 memory_region_set_enabled(&smram_as_root, true);
1543 /* ... with two regions inside: normal system memory with low
1544 * priority, and...
1546 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1547 get_system_memory(), 0, ~0ull);
1548 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1549 memory_region_set_enabled(&smram_as_mem, true);
1551 if (smram) {
1552 /* ... SMRAM with higher priority */
1553 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1554 memory_region_set_enabled(smram, true);
1557 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1558 kvm_memory_listener_register(kvm_state, &smram_listener,
1559 &smram_address_space, 1);
1562 int kvm_arch_init(MachineState *ms, KVMState *s)
1564 uint64_t identity_base = 0xfffbc000;
1565 uint64_t shadow_mem;
1566 int ret;
1567 struct utsname utsname;
1569 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1570 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1571 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1573 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
1575 ret = kvm_get_supported_msrs(s);
1576 if (ret < 0) {
1577 return ret;
1580 kvm_get_supported_feature_msrs(s);
1582 uname(&utsname);
1583 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
1586 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1587 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1588 * Since these must be part of guest physical memory, we need to allocate
1589 * them, both by setting their start addresses in the kernel and by
1590 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1592 * Older KVM versions may not support setting the identity map base. In
1593 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1594 * size.
1596 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
1597 /* Allows up to 16M BIOSes. */
1598 identity_base = 0xfeffc000;
1600 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
1601 if (ret < 0) {
1602 return ret;
1606 /* Set TSS base one page after EPT identity map. */
1607 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
1608 if (ret < 0) {
1609 return ret;
1612 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1613 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
1614 if (ret < 0) {
1615 fprintf(stderr, "e820_add_entry() table is full\n");
1616 return ret;
1618 qemu_register_reset(kvm_unpoison_all, NULL);
1620 shadow_mem = machine_kvm_shadow_mem(ms);
1621 if (shadow_mem != -1) {
1622 shadow_mem /= 4096;
1623 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
1624 if (ret < 0) {
1625 return ret;
1629 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
1630 object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
1631 pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
1632 smram_machine_done.notify = register_smram_listener;
1633 qemu_add_machine_init_done_notifier(&smram_machine_done);
1636 if (enable_cpu_pm) {
1637 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
1638 int ret;
1640 /* Work around for kernel header with a typo. TODO: fix header and drop. */
1641 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
1642 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
1643 #endif
1644 if (disable_exits) {
1645 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
1646 KVM_X86_DISABLE_EXITS_HLT |
1647 KVM_X86_DISABLE_EXITS_PAUSE);
1650 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
1651 disable_exits);
1652 if (ret < 0) {
1653 error_report("kvm: guest stopping CPU not supported: %s",
1654 strerror(-ret));
1658 return 0;
1661 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1663 lhs->selector = rhs->selector;
1664 lhs->base = rhs->base;
1665 lhs->limit = rhs->limit;
1666 lhs->type = 3;
1667 lhs->present = 1;
1668 lhs->dpl = 3;
1669 lhs->db = 0;
1670 lhs->s = 1;
1671 lhs->l = 0;
1672 lhs->g = 0;
1673 lhs->avl = 0;
1674 lhs->unusable = 0;
1677 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1679 unsigned flags = rhs->flags;
1680 lhs->selector = rhs->selector;
1681 lhs->base = rhs->base;
1682 lhs->limit = rhs->limit;
1683 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
1684 lhs->present = (flags & DESC_P_MASK) != 0;
1685 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
1686 lhs->db = (flags >> DESC_B_SHIFT) & 1;
1687 lhs->s = (flags & DESC_S_MASK) != 0;
1688 lhs->l = (flags >> DESC_L_SHIFT) & 1;
1689 lhs->g = (flags & DESC_G_MASK) != 0;
1690 lhs->avl = (flags & DESC_AVL_MASK) != 0;
1691 lhs->unusable = !lhs->present;
1692 lhs->padding = 0;
1695 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
1697 lhs->selector = rhs->selector;
1698 lhs->base = rhs->base;
1699 lhs->limit = rhs->limit;
1700 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
1701 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
1702 (rhs->dpl << DESC_DPL_SHIFT) |
1703 (rhs->db << DESC_B_SHIFT) |
1704 (rhs->s * DESC_S_MASK) |
1705 (rhs->l << DESC_L_SHIFT) |
1706 (rhs->g * DESC_G_MASK) |
1707 (rhs->avl * DESC_AVL_MASK);
1710 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
1712 if (set) {
1713 *kvm_reg = *qemu_reg;
1714 } else {
1715 *qemu_reg = *kvm_reg;
1719 static int kvm_getput_regs(X86CPU *cpu, int set)
1721 CPUX86State *env = &cpu->env;
1722 struct kvm_regs regs;
1723 int ret = 0;
1725 if (!set) {
1726 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
1727 if (ret < 0) {
1728 return ret;
1732 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
1733 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
1734 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
1735 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
1736 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
1737 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
1738 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
1739 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
1740 #ifdef TARGET_X86_64
1741 kvm_getput_reg(&regs.r8, &env->regs[8], set);
1742 kvm_getput_reg(&regs.r9, &env->regs[9], set);
1743 kvm_getput_reg(&regs.r10, &env->regs[10], set);
1744 kvm_getput_reg(&regs.r11, &env->regs[11], set);
1745 kvm_getput_reg(&regs.r12, &env->regs[12], set);
1746 kvm_getput_reg(&regs.r13, &env->regs[13], set);
1747 kvm_getput_reg(&regs.r14, &env->regs[14], set);
1748 kvm_getput_reg(&regs.r15, &env->regs[15], set);
1749 #endif
1751 kvm_getput_reg(&regs.rflags, &env->eflags, set);
1752 kvm_getput_reg(&regs.rip, &env->eip, set);
1754 if (set) {
1755 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
1758 return ret;
1761 static int kvm_put_fpu(X86CPU *cpu)
1763 CPUX86State *env = &cpu->env;
1764 struct kvm_fpu fpu;
1765 int i;
1767 memset(&fpu, 0, sizeof fpu);
1768 fpu.fsw = env->fpus & ~(7 << 11);
1769 fpu.fsw |= (env->fpstt & 7) << 11;
1770 fpu.fcw = env->fpuc;
1771 fpu.last_opcode = env->fpop;
1772 fpu.last_ip = env->fpip;
1773 fpu.last_dp = env->fpdp;
1774 for (i = 0; i < 8; ++i) {
1775 fpu.ftwx |= (!env->fptags[i]) << i;
1777 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
1778 for (i = 0; i < CPU_NB_REGS; i++) {
1779 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
1780 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
1782 fpu.mxcsr = env->mxcsr;
1784 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
1787 #define XSAVE_FCW_FSW 0
1788 #define XSAVE_FTW_FOP 1
1789 #define XSAVE_CWD_RIP 2
1790 #define XSAVE_CWD_RDP 4
1791 #define XSAVE_MXCSR 6
1792 #define XSAVE_ST_SPACE 8
1793 #define XSAVE_XMM_SPACE 40
1794 #define XSAVE_XSTATE_BV 128
1795 #define XSAVE_YMMH_SPACE 144
1796 #define XSAVE_BNDREGS 240
1797 #define XSAVE_BNDCSR 256
1798 #define XSAVE_OPMASK 272
1799 #define XSAVE_ZMM_Hi256 288
1800 #define XSAVE_Hi16_ZMM 416
1801 #define XSAVE_PKRU 672
1803 #define XSAVE_BYTE_OFFSET(word_offset) \
1804 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
1806 #define ASSERT_OFFSET(word_offset, field) \
1807 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1808 offsetof(X86XSaveArea, field))
1810 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
1811 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
1812 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
1813 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
1814 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
1815 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
1816 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
1817 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
1818 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
1819 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
1820 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
1821 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
1822 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
1823 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
1824 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
1826 static int kvm_put_xsave(X86CPU *cpu)
1828 CPUX86State *env = &cpu->env;
1829 X86XSaveArea *xsave = env->xsave_buf;
1831 if (!has_xsave) {
1832 return kvm_put_fpu(cpu);
1834 x86_cpu_xsave_all_areas(cpu, xsave);
1836 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
1839 static int kvm_put_xcrs(X86CPU *cpu)
1841 CPUX86State *env = &cpu->env;
1842 struct kvm_xcrs xcrs = {};
1844 if (!has_xcrs) {
1845 return 0;
1848 xcrs.nr_xcrs = 1;
1849 xcrs.flags = 0;
1850 xcrs.xcrs[0].xcr = 0;
1851 xcrs.xcrs[0].value = env->xcr0;
1852 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
1855 static int kvm_put_sregs(X86CPU *cpu)
1857 CPUX86State *env = &cpu->env;
1858 struct kvm_sregs sregs;
1860 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1861 if (env->interrupt_injected >= 0) {
1862 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1863 (uint64_t)1 << (env->interrupt_injected % 64);
1866 if ((env->eflags & VM_MASK)) {
1867 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1868 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1869 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1870 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1871 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1872 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1873 } else {
1874 set_seg(&sregs.cs, &env->segs[R_CS]);
1875 set_seg(&sregs.ds, &env->segs[R_DS]);
1876 set_seg(&sregs.es, &env->segs[R_ES]);
1877 set_seg(&sregs.fs, &env->segs[R_FS]);
1878 set_seg(&sregs.gs, &env->segs[R_GS]);
1879 set_seg(&sregs.ss, &env->segs[R_SS]);
1882 set_seg(&sregs.tr, &env->tr);
1883 set_seg(&sregs.ldt, &env->ldt);
1885 sregs.idt.limit = env->idt.limit;
1886 sregs.idt.base = env->idt.base;
1887 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1888 sregs.gdt.limit = env->gdt.limit;
1889 sregs.gdt.base = env->gdt.base;
1890 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1892 sregs.cr0 = env->cr[0];
1893 sregs.cr2 = env->cr[2];
1894 sregs.cr3 = env->cr[3];
1895 sregs.cr4 = env->cr[4];
1897 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1898 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
1900 sregs.efer = env->efer;
1902 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1905 static void kvm_msr_buf_reset(X86CPU *cpu)
1907 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
1910 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
1912 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
1913 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
1914 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
1916 assert((void *)(entry + 1) <= limit);
1918 entry->index = index;
1919 entry->reserved = 0;
1920 entry->data = value;
1921 msrs->nmsrs++;
1924 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
1926 kvm_msr_buf_reset(cpu);
1927 kvm_msr_entry_add(cpu, index, value);
1929 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
1932 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
1934 int ret;
1936 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
1937 assert(ret == 1);
1940 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1942 CPUX86State *env = &cpu->env;
1943 int ret;
1945 if (!has_msr_tsc_deadline) {
1946 return 0;
1949 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1950 if (ret < 0) {
1951 return ret;
1954 assert(ret == 1);
1955 return 0;
1959 * Provide a separate write service for the feature control MSR in order to
1960 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1961 * before writing any other state because forcibly leaving nested mode
1962 * invalidates the VCPU state.
1964 static int kvm_put_msr_feature_control(X86CPU *cpu)
1966 int ret;
1968 if (!has_msr_feature_control) {
1969 return 0;
1972 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
1973 cpu->env.msr_ia32_feature_control);
1974 if (ret < 0) {
1975 return ret;
1978 assert(ret == 1);
1979 return 0;
1982 static int kvm_put_msrs(X86CPU *cpu, int level)
1984 CPUX86State *env = &cpu->env;
1985 int i;
1986 int ret;
1988 kvm_msr_buf_reset(cpu);
1990 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1991 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1992 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1993 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
1994 if (has_msr_star) {
1995 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
1997 if (has_msr_hsave_pa) {
1998 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2000 if (has_msr_tsc_aux) {
2001 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2003 if (has_msr_tsc_adjust) {
2004 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2006 if (has_msr_misc_enable) {
2007 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2008 env->msr_ia32_misc_enable);
2010 if (has_msr_smbase) {
2011 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2013 if (has_msr_smi_count) {
2014 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2016 if (has_msr_bndcfgs) {
2017 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2019 if (has_msr_xss) {
2020 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2022 if (has_msr_spec_ctrl) {
2023 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2025 if (has_msr_virt_ssbd) {
2026 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2029 #ifdef TARGET_X86_64
2030 if (lm_capable_kernel) {
2031 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2032 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2033 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2034 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2036 #endif
2038 /* If host supports feature MSR, write down. */
2039 if (has_msr_arch_capabs) {
2040 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2041 env->features[FEAT_ARCH_CAPABILITIES]);
2045 * The following MSRs have side effects on the guest or are too heavy
2046 * for normal writeback. Limit them to reset or full state updates.
2048 if (level >= KVM_PUT_RESET_STATE) {
2049 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2050 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2051 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2052 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2053 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2055 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2056 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2058 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2059 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2061 if (has_architectural_pmu_version > 0) {
2062 if (has_architectural_pmu_version > 1) {
2063 /* Stop the counter. */
2064 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2065 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2068 /* Set the counter values. */
2069 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2070 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2071 env->msr_fixed_counters[i]);
2073 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2074 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2075 env->msr_gp_counters[i]);
2076 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2077 env->msr_gp_evtsel[i]);
2079 if (has_architectural_pmu_version > 1) {
2080 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2081 env->msr_global_status);
2082 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2083 env->msr_global_ovf_ctrl);
2085 /* Now start the PMU. */
2086 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2087 env->msr_fixed_ctr_ctrl);
2088 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2089 env->msr_global_ctrl);
2093 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2094 * only sync them to KVM on the first cpu
2096 if (current_cpu == first_cpu) {
2097 if (has_msr_hv_hypercall) {
2098 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2099 env->msr_hv_guest_os_id);
2100 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2101 env->msr_hv_hypercall);
2103 if (cpu->hyperv_time) {
2104 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2105 env->msr_hv_tsc);
2107 if (cpu->hyperv_reenlightenment) {
2108 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2109 env->msr_hv_reenlightenment_control);
2110 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2111 env->msr_hv_tsc_emulation_control);
2112 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2113 env->msr_hv_tsc_emulation_status);
2116 if (cpu->hyperv_vapic) {
2117 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2118 env->msr_hv_vapic);
2120 if (has_msr_hv_crash) {
2121 int j;
2123 for (j = 0; j < HV_CRASH_PARAMS; j++)
2124 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2125 env->msr_hv_crash_params[j]);
2127 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2129 if (has_msr_hv_runtime) {
2130 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2132 if (cpu->hyperv_vpindex && hv_vpindex_settable) {
2133 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2134 hyperv_vp_index(CPU(cpu)));
2136 if (cpu->hyperv_synic) {
2137 int j;
2139 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2141 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2142 env->msr_hv_synic_control);
2143 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2144 env->msr_hv_synic_evt_page);
2145 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2146 env->msr_hv_synic_msg_page);
2148 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2149 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2150 env->msr_hv_synic_sint[j]);
2153 if (has_msr_hv_stimer) {
2154 int j;
2156 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2157 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2158 env->msr_hv_stimer_config[j]);
2161 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2162 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2163 env->msr_hv_stimer_count[j]);
2166 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2167 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2169 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2170 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2171 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2172 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2173 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2174 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2175 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2176 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2177 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2178 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2179 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2180 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2181 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2182 /* The CPU GPs if we write to a bit above the physical limit of
2183 * the host CPU (and KVM emulates that)
2185 uint64_t mask = env->mtrr_var[i].mask;
2186 mask &= phys_mask;
2188 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2189 env->mtrr_var[i].base);
2190 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2193 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2194 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2195 0x14, 1, R_EAX) & 0x7;
2197 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2198 env->msr_rtit_ctrl);
2199 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2200 env->msr_rtit_status);
2201 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2202 env->msr_rtit_output_base);
2203 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2204 env->msr_rtit_output_mask);
2205 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2206 env->msr_rtit_cr3_match);
2207 for (i = 0; i < addr_num; i++) {
2208 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2209 env->msr_rtit_addrs[i]);
2213 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2214 * kvm_put_msr_feature_control. */
2216 if (env->mcg_cap) {
2217 int i;
2219 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2220 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
2221 if (has_msr_mcg_ext_ctl) {
2222 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2224 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2225 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
2229 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2230 if (ret < 0) {
2231 return ret;
2234 if (ret < cpu->kvm_msr_buf->nmsrs) {
2235 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2236 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2237 (uint32_t)e->index, (uint64_t)e->data);
2240 assert(ret == cpu->kvm_msr_buf->nmsrs);
2241 return 0;
2245 static int kvm_get_fpu(X86CPU *cpu)
2247 CPUX86State *env = &cpu->env;
2248 struct kvm_fpu fpu;
2249 int i, ret;
2251 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
2252 if (ret < 0) {
2253 return ret;
2256 env->fpstt = (fpu.fsw >> 11) & 7;
2257 env->fpus = fpu.fsw;
2258 env->fpuc = fpu.fcw;
2259 env->fpop = fpu.last_opcode;
2260 env->fpip = fpu.last_ip;
2261 env->fpdp = fpu.last_dp;
2262 for (i = 0; i < 8; ++i) {
2263 env->fptags[i] = !((fpu.ftwx >> i) & 1);
2265 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
2266 for (i = 0; i < CPU_NB_REGS; i++) {
2267 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
2268 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
2270 env->mxcsr = fpu.mxcsr;
2272 return 0;
2275 static int kvm_get_xsave(X86CPU *cpu)
2277 CPUX86State *env = &cpu->env;
2278 X86XSaveArea *xsave = env->xsave_buf;
2279 int ret;
2281 if (!has_xsave) {
2282 return kvm_get_fpu(cpu);
2285 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
2286 if (ret < 0) {
2287 return ret;
2289 x86_cpu_xrstor_all_areas(cpu, xsave);
2291 return 0;
2294 static int kvm_get_xcrs(X86CPU *cpu)
2296 CPUX86State *env = &cpu->env;
2297 int i, ret;
2298 struct kvm_xcrs xcrs;
2300 if (!has_xcrs) {
2301 return 0;
2304 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
2305 if (ret < 0) {
2306 return ret;
2309 for (i = 0; i < xcrs.nr_xcrs; i++) {
2310 /* Only support xcr0 now */
2311 if (xcrs.xcrs[i].xcr == 0) {
2312 env->xcr0 = xcrs.xcrs[i].value;
2313 break;
2316 return 0;
2319 static int kvm_get_sregs(X86CPU *cpu)
2321 CPUX86State *env = &cpu->env;
2322 struct kvm_sregs sregs;
2323 int bit, i, ret;
2325 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
2326 if (ret < 0) {
2327 return ret;
2330 /* There can only be one pending IRQ set in the bitmap at a time, so try
2331 to find it and save its number instead (-1 for none). */
2332 env->interrupt_injected = -1;
2333 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
2334 if (sregs.interrupt_bitmap[i]) {
2335 bit = ctz64(sregs.interrupt_bitmap[i]);
2336 env->interrupt_injected = i * 64 + bit;
2337 break;
2341 get_seg(&env->segs[R_CS], &sregs.cs);
2342 get_seg(&env->segs[R_DS], &sregs.ds);
2343 get_seg(&env->segs[R_ES], &sregs.es);
2344 get_seg(&env->segs[R_FS], &sregs.fs);
2345 get_seg(&env->segs[R_GS], &sregs.gs);
2346 get_seg(&env->segs[R_SS], &sregs.ss);
2348 get_seg(&env->tr, &sregs.tr);
2349 get_seg(&env->ldt, &sregs.ldt);
2351 env->idt.limit = sregs.idt.limit;
2352 env->idt.base = sregs.idt.base;
2353 env->gdt.limit = sregs.gdt.limit;
2354 env->gdt.base = sregs.gdt.base;
2356 env->cr[0] = sregs.cr0;
2357 env->cr[2] = sregs.cr2;
2358 env->cr[3] = sregs.cr3;
2359 env->cr[4] = sregs.cr4;
2361 env->efer = sregs.efer;
2363 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
2364 x86_update_hflags(env);
2366 return 0;
2369 static int kvm_get_msrs(X86CPU *cpu)
2371 CPUX86State *env = &cpu->env;
2372 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
2373 int ret, i;
2374 uint64_t mtrr_top_bits;
2376 kvm_msr_buf_reset(cpu);
2378 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
2379 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
2380 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
2381 kvm_msr_entry_add(cpu, MSR_PAT, 0);
2382 if (has_msr_star) {
2383 kvm_msr_entry_add(cpu, MSR_STAR, 0);
2385 if (has_msr_hsave_pa) {
2386 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
2388 if (has_msr_tsc_aux) {
2389 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
2391 if (has_msr_tsc_adjust) {
2392 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
2394 if (has_msr_tsc_deadline) {
2395 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
2397 if (has_msr_misc_enable) {
2398 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
2400 if (has_msr_smbase) {
2401 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
2403 if (has_msr_smi_count) {
2404 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
2406 if (has_msr_feature_control) {
2407 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
2409 if (has_msr_bndcfgs) {
2410 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
2412 if (has_msr_xss) {
2413 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
2415 if (has_msr_spec_ctrl) {
2416 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
2418 if (has_msr_virt_ssbd) {
2419 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
2421 if (!env->tsc_valid) {
2422 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
2423 env->tsc_valid = !runstate_is_running();
2426 #ifdef TARGET_X86_64
2427 if (lm_capable_kernel) {
2428 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
2429 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
2430 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
2431 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
2433 #endif
2434 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
2435 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
2436 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2437 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
2439 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2440 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
2442 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2443 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
2445 if (has_architectural_pmu_version > 0) {
2446 if (has_architectural_pmu_version > 1) {
2447 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2448 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2449 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
2450 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
2452 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2453 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
2455 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2456 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
2457 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
2461 if (env->mcg_cap) {
2462 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
2463 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
2464 if (has_msr_mcg_ext_ctl) {
2465 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
2467 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2468 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
2472 if (has_msr_hv_hypercall) {
2473 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
2474 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
2476 if (cpu->hyperv_vapic) {
2477 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
2479 if (cpu->hyperv_time) {
2480 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
2482 if (cpu->hyperv_reenlightenment) {
2483 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
2484 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
2485 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
2487 if (has_msr_hv_crash) {
2488 int j;
2490 for (j = 0; j < HV_CRASH_PARAMS; j++) {
2491 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
2494 if (has_msr_hv_runtime) {
2495 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
2497 if (cpu->hyperv_synic) {
2498 uint32_t msr;
2500 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
2501 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
2502 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
2503 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
2504 kvm_msr_entry_add(cpu, msr, 0);
2507 if (has_msr_hv_stimer) {
2508 uint32_t msr;
2510 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
2511 msr++) {
2512 kvm_msr_entry_add(cpu, msr, 0);
2515 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2516 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
2517 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
2518 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
2519 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
2520 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
2521 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
2522 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
2523 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
2524 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
2525 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
2526 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
2527 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
2528 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2529 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
2530 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
2534 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2535 int addr_num =
2536 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
2538 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
2539 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
2540 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
2541 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
2542 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
2543 for (i = 0; i < addr_num; i++) {
2544 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
2548 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
2549 if (ret < 0) {
2550 return ret;
2553 if (ret < cpu->kvm_msr_buf->nmsrs) {
2554 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2555 error_report("error: failed to get MSR 0x%" PRIx32,
2556 (uint32_t)e->index);
2559 assert(ret == cpu->kvm_msr_buf->nmsrs);
2561 * MTRR masks: Each mask consists of 5 parts
2562 * a 10..0: must be zero
2563 * b 11 : valid bit
2564 * c n-1.12: actual mask bits
2565 * d 51..n: reserved must be zero
2566 * e 63.52: reserved must be zero
2568 * 'n' is the number of physical bits supported by the CPU and is
2569 * apparently always <= 52. We know our 'n' but don't know what
2570 * the destinations 'n' is; it might be smaller, in which case
2571 * it masks (c) on loading. It might be larger, in which case
2572 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
2573 * we're migrating to.
2576 if (cpu->fill_mtrr_mask) {
2577 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
2578 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
2579 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
2580 } else {
2581 mtrr_top_bits = 0;
2584 for (i = 0; i < ret; i++) {
2585 uint32_t index = msrs[i].index;
2586 switch (index) {
2587 case MSR_IA32_SYSENTER_CS:
2588 env->sysenter_cs = msrs[i].data;
2589 break;
2590 case MSR_IA32_SYSENTER_ESP:
2591 env->sysenter_esp = msrs[i].data;
2592 break;
2593 case MSR_IA32_SYSENTER_EIP:
2594 env->sysenter_eip = msrs[i].data;
2595 break;
2596 case MSR_PAT:
2597 env->pat = msrs[i].data;
2598 break;
2599 case MSR_STAR:
2600 env->star = msrs[i].data;
2601 break;
2602 #ifdef TARGET_X86_64
2603 case MSR_CSTAR:
2604 env->cstar = msrs[i].data;
2605 break;
2606 case MSR_KERNELGSBASE:
2607 env->kernelgsbase = msrs[i].data;
2608 break;
2609 case MSR_FMASK:
2610 env->fmask = msrs[i].data;
2611 break;
2612 case MSR_LSTAR:
2613 env->lstar = msrs[i].data;
2614 break;
2615 #endif
2616 case MSR_IA32_TSC:
2617 env->tsc = msrs[i].data;
2618 break;
2619 case MSR_TSC_AUX:
2620 env->tsc_aux = msrs[i].data;
2621 break;
2622 case MSR_TSC_ADJUST:
2623 env->tsc_adjust = msrs[i].data;
2624 break;
2625 case MSR_IA32_TSCDEADLINE:
2626 env->tsc_deadline = msrs[i].data;
2627 break;
2628 case MSR_VM_HSAVE_PA:
2629 env->vm_hsave = msrs[i].data;
2630 break;
2631 case MSR_KVM_SYSTEM_TIME:
2632 env->system_time_msr = msrs[i].data;
2633 break;
2634 case MSR_KVM_WALL_CLOCK:
2635 env->wall_clock_msr = msrs[i].data;
2636 break;
2637 case MSR_MCG_STATUS:
2638 env->mcg_status = msrs[i].data;
2639 break;
2640 case MSR_MCG_CTL:
2641 env->mcg_ctl = msrs[i].data;
2642 break;
2643 case MSR_MCG_EXT_CTL:
2644 env->mcg_ext_ctl = msrs[i].data;
2645 break;
2646 case MSR_IA32_MISC_ENABLE:
2647 env->msr_ia32_misc_enable = msrs[i].data;
2648 break;
2649 case MSR_IA32_SMBASE:
2650 env->smbase = msrs[i].data;
2651 break;
2652 case MSR_SMI_COUNT:
2653 env->msr_smi_count = msrs[i].data;
2654 break;
2655 case MSR_IA32_FEATURE_CONTROL:
2656 env->msr_ia32_feature_control = msrs[i].data;
2657 break;
2658 case MSR_IA32_BNDCFGS:
2659 env->msr_bndcfgs = msrs[i].data;
2660 break;
2661 case MSR_IA32_XSS:
2662 env->xss = msrs[i].data;
2663 break;
2664 default:
2665 if (msrs[i].index >= MSR_MC0_CTL &&
2666 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
2667 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
2669 break;
2670 case MSR_KVM_ASYNC_PF_EN:
2671 env->async_pf_en_msr = msrs[i].data;
2672 break;
2673 case MSR_KVM_PV_EOI_EN:
2674 env->pv_eoi_en_msr = msrs[i].data;
2675 break;
2676 case MSR_KVM_STEAL_TIME:
2677 env->steal_time_msr = msrs[i].data;
2678 break;
2679 case MSR_CORE_PERF_FIXED_CTR_CTRL:
2680 env->msr_fixed_ctr_ctrl = msrs[i].data;
2681 break;
2682 case MSR_CORE_PERF_GLOBAL_CTRL:
2683 env->msr_global_ctrl = msrs[i].data;
2684 break;
2685 case MSR_CORE_PERF_GLOBAL_STATUS:
2686 env->msr_global_status = msrs[i].data;
2687 break;
2688 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
2689 env->msr_global_ovf_ctrl = msrs[i].data;
2690 break;
2691 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
2692 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
2693 break;
2694 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
2695 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
2696 break;
2697 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
2698 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
2699 break;
2700 case HV_X64_MSR_HYPERCALL:
2701 env->msr_hv_hypercall = msrs[i].data;
2702 break;
2703 case HV_X64_MSR_GUEST_OS_ID:
2704 env->msr_hv_guest_os_id = msrs[i].data;
2705 break;
2706 case HV_X64_MSR_APIC_ASSIST_PAGE:
2707 env->msr_hv_vapic = msrs[i].data;
2708 break;
2709 case HV_X64_MSR_REFERENCE_TSC:
2710 env->msr_hv_tsc = msrs[i].data;
2711 break;
2712 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2713 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
2714 break;
2715 case HV_X64_MSR_VP_RUNTIME:
2716 env->msr_hv_runtime = msrs[i].data;
2717 break;
2718 case HV_X64_MSR_SCONTROL:
2719 env->msr_hv_synic_control = msrs[i].data;
2720 break;
2721 case HV_X64_MSR_SIEFP:
2722 env->msr_hv_synic_evt_page = msrs[i].data;
2723 break;
2724 case HV_X64_MSR_SIMP:
2725 env->msr_hv_synic_msg_page = msrs[i].data;
2726 break;
2727 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
2728 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
2729 break;
2730 case HV_X64_MSR_STIMER0_CONFIG:
2731 case HV_X64_MSR_STIMER1_CONFIG:
2732 case HV_X64_MSR_STIMER2_CONFIG:
2733 case HV_X64_MSR_STIMER3_CONFIG:
2734 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
2735 msrs[i].data;
2736 break;
2737 case HV_X64_MSR_STIMER0_COUNT:
2738 case HV_X64_MSR_STIMER1_COUNT:
2739 case HV_X64_MSR_STIMER2_COUNT:
2740 case HV_X64_MSR_STIMER3_COUNT:
2741 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
2742 msrs[i].data;
2743 break;
2744 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2745 env->msr_hv_reenlightenment_control = msrs[i].data;
2746 break;
2747 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2748 env->msr_hv_tsc_emulation_control = msrs[i].data;
2749 break;
2750 case HV_X64_MSR_TSC_EMULATION_STATUS:
2751 env->msr_hv_tsc_emulation_status = msrs[i].data;
2752 break;
2753 case MSR_MTRRdefType:
2754 env->mtrr_deftype = msrs[i].data;
2755 break;
2756 case MSR_MTRRfix64K_00000:
2757 env->mtrr_fixed[0] = msrs[i].data;
2758 break;
2759 case MSR_MTRRfix16K_80000:
2760 env->mtrr_fixed[1] = msrs[i].data;
2761 break;
2762 case MSR_MTRRfix16K_A0000:
2763 env->mtrr_fixed[2] = msrs[i].data;
2764 break;
2765 case MSR_MTRRfix4K_C0000:
2766 env->mtrr_fixed[3] = msrs[i].data;
2767 break;
2768 case MSR_MTRRfix4K_C8000:
2769 env->mtrr_fixed[4] = msrs[i].data;
2770 break;
2771 case MSR_MTRRfix4K_D0000:
2772 env->mtrr_fixed[5] = msrs[i].data;
2773 break;
2774 case MSR_MTRRfix4K_D8000:
2775 env->mtrr_fixed[6] = msrs[i].data;
2776 break;
2777 case MSR_MTRRfix4K_E0000:
2778 env->mtrr_fixed[7] = msrs[i].data;
2779 break;
2780 case MSR_MTRRfix4K_E8000:
2781 env->mtrr_fixed[8] = msrs[i].data;
2782 break;
2783 case MSR_MTRRfix4K_F0000:
2784 env->mtrr_fixed[9] = msrs[i].data;
2785 break;
2786 case MSR_MTRRfix4K_F8000:
2787 env->mtrr_fixed[10] = msrs[i].data;
2788 break;
2789 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
2790 if (index & 1) {
2791 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
2792 mtrr_top_bits;
2793 } else {
2794 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
2796 break;
2797 case MSR_IA32_SPEC_CTRL:
2798 env->spec_ctrl = msrs[i].data;
2799 break;
2800 case MSR_VIRT_SSBD:
2801 env->virt_ssbd = msrs[i].data;
2802 break;
2803 case MSR_IA32_RTIT_CTL:
2804 env->msr_rtit_ctrl = msrs[i].data;
2805 break;
2806 case MSR_IA32_RTIT_STATUS:
2807 env->msr_rtit_status = msrs[i].data;
2808 break;
2809 case MSR_IA32_RTIT_OUTPUT_BASE:
2810 env->msr_rtit_output_base = msrs[i].data;
2811 break;
2812 case MSR_IA32_RTIT_OUTPUT_MASK:
2813 env->msr_rtit_output_mask = msrs[i].data;
2814 break;
2815 case MSR_IA32_RTIT_CR3_MATCH:
2816 env->msr_rtit_cr3_match = msrs[i].data;
2817 break;
2818 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2819 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
2820 break;
2824 return 0;
2827 static int kvm_put_mp_state(X86CPU *cpu)
2829 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
2831 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2834 static int kvm_get_mp_state(X86CPU *cpu)
2836 CPUState *cs = CPU(cpu);
2837 CPUX86State *env = &cpu->env;
2838 struct kvm_mp_state mp_state;
2839 int ret;
2841 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
2842 if (ret < 0) {
2843 return ret;
2845 env->mp_state = mp_state.mp_state;
2846 if (kvm_irqchip_in_kernel()) {
2847 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
2849 return 0;
2852 static int kvm_get_apic(X86CPU *cpu)
2854 DeviceState *apic = cpu->apic_state;
2855 struct kvm_lapic_state kapic;
2856 int ret;
2858 if (apic && kvm_irqchip_in_kernel()) {
2859 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
2860 if (ret < 0) {
2861 return ret;
2864 kvm_get_apic_state(apic, &kapic);
2866 return 0;
2869 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
2871 CPUState *cs = CPU(cpu);
2872 CPUX86State *env = &cpu->env;
2873 struct kvm_vcpu_events events = {};
2875 if (!kvm_has_vcpu_events()) {
2876 return 0;
2879 events.exception.injected = (env->exception_injected >= 0);
2880 events.exception.nr = env->exception_injected;
2881 events.exception.has_error_code = env->has_error_code;
2882 events.exception.error_code = env->error_code;
2884 events.interrupt.injected = (env->interrupt_injected >= 0);
2885 events.interrupt.nr = env->interrupt_injected;
2886 events.interrupt.soft = env->soft_interrupt;
2888 events.nmi.injected = env->nmi_injected;
2889 events.nmi.pending = env->nmi_pending;
2890 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
2892 events.sipi_vector = env->sipi_vector;
2893 events.flags = 0;
2895 if (has_msr_smbase) {
2896 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
2897 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
2898 if (kvm_irqchip_in_kernel()) {
2899 /* As soon as these are moved to the kernel, remove them
2900 * from cs->interrupt_request.
2902 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
2903 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
2904 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
2905 } else {
2906 /* Keep these in cs->interrupt_request. */
2907 events.smi.pending = 0;
2908 events.smi.latched_init = 0;
2910 /* Stop SMI delivery on old machine types to avoid a reboot
2911 * on an inward migration of an old VM.
2913 if (!cpu->kvm_no_smi_migration) {
2914 events.flags |= KVM_VCPUEVENT_VALID_SMM;
2918 if (level >= KVM_PUT_RESET_STATE) {
2919 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
2920 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
2921 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
2925 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
2928 static int kvm_get_vcpu_events(X86CPU *cpu)
2930 CPUX86State *env = &cpu->env;
2931 struct kvm_vcpu_events events;
2932 int ret;
2934 if (!kvm_has_vcpu_events()) {
2935 return 0;
2938 memset(&events, 0, sizeof(events));
2939 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
2940 if (ret < 0) {
2941 return ret;
2943 env->exception_injected =
2944 events.exception.injected ? events.exception.nr : -1;
2945 env->has_error_code = events.exception.has_error_code;
2946 env->error_code = events.exception.error_code;
2948 env->interrupt_injected =
2949 events.interrupt.injected ? events.interrupt.nr : -1;
2950 env->soft_interrupt = events.interrupt.soft;
2952 env->nmi_injected = events.nmi.injected;
2953 env->nmi_pending = events.nmi.pending;
2954 if (events.nmi.masked) {
2955 env->hflags2 |= HF2_NMI_MASK;
2956 } else {
2957 env->hflags2 &= ~HF2_NMI_MASK;
2960 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
2961 if (events.smi.smm) {
2962 env->hflags |= HF_SMM_MASK;
2963 } else {
2964 env->hflags &= ~HF_SMM_MASK;
2966 if (events.smi.pending) {
2967 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2968 } else {
2969 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2971 if (events.smi.smm_inside_nmi) {
2972 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
2973 } else {
2974 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
2976 if (events.smi.latched_init) {
2977 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2978 } else {
2979 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2983 env->sipi_vector = events.sipi_vector;
2985 return 0;
2988 static int kvm_guest_debug_workarounds(X86CPU *cpu)
2990 CPUState *cs = CPU(cpu);
2991 CPUX86State *env = &cpu->env;
2992 int ret = 0;
2993 unsigned long reinject_trap = 0;
2995 if (!kvm_has_vcpu_events()) {
2996 if (env->exception_injected == 1) {
2997 reinject_trap = KVM_GUESTDBG_INJECT_DB;
2998 } else if (env->exception_injected == 3) {
2999 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3001 env->exception_injected = -1;
3005 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3006 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3007 * by updating the debug state once again if single-stepping is on.
3008 * Another reason to call kvm_update_guest_debug here is a pending debug
3009 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3010 * reinject them via SET_GUEST_DEBUG.
3012 if (reinject_trap ||
3013 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3014 ret = kvm_update_guest_debug(cs, reinject_trap);
3016 return ret;
3019 static int kvm_put_debugregs(X86CPU *cpu)
3021 CPUX86State *env = &cpu->env;
3022 struct kvm_debugregs dbgregs;
3023 int i;
3025 if (!kvm_has_debugregs()) {
3026 return 0;
3029 for (i = 0; i < 4; i++) {
3030 dbgregs.db[i] = env->dr[i];
3032 dbgregs.dr6 = env->dr[6];
3033 dbgregs.dr7 = env->dr[7];
3034 dbgregs.flags = 0;
3036 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3039 static int kvm_get_debugregs(X86CPU *cpu)
3041 CPUX86State *env = &cpu->env;
3042 struct kvm_debugregs dbgregs;
3043 int i, ret;
3045 if (!kvm_has_debugregs()) {
3046 return 0;
3049 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3050 if (ret < 0) {
3051 return ret;
3053 for (i = 0; i < 4; i++) {
3054 env->dr[i] = dbgregs.db[i];
3056 env->dr[4] = env->dr[6] = dbgregs.dr6;
3057 env->dr[5] = env->dr[7] = dbgregs.dr7;
3059 return 0;
3062 int kvm_arch_put_registers(CPUState *cpu, int level)
3064 X86CPU *x86_cpu = X86_CPU(cpu);
3065 int ret;
3067 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
3069 if (level >= KVM_PUT_RESET_STATE) {
3070 ret = kvm_put_msr_feature_control(x86_cpu);
3071 if (ret < 0) {
3072 return ret;
3076 if (level == KVM_PUT_FULL_STATE) {
3077 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3078 * because TSC frequency mismatch shouldn't abort migration,
3079 * unless the user explicitly asked for a more strict TSC
3080 * setting (e.g. using an explicit "tsc-freq" option).
3082 kvm_arch_set_tsc_khz(cpu);
3085 ret = kvm_getput_regs(x86_cpu, 1);
3086 if (ret < 0) {
3087 return ret;
3089 ret = kvm_put_xsave(x86_cpu);
3090 if (ret < 0) {
3091 return ret;
3093 ret = kvm_put_xcrs(x86_cpu);
3094 if (ret < 0) {
3095 return ret;
3097 ret = kvm_put_sregs(x86_cpu);
3098 if (ret < 0) {
3099 return ret;
3101 /* must be before kvm_put_msrs */
3102 ret = kvm_inject_mce_oldstyle(x86_cpu);
3103 if (ret < 0) {
3104 return ret;
3106 ret = kvm_put_msrs(x86_cpu, level);
3107 if (ret < 0) {
3108 return ret;
3110 ret = kvm_put_vcpu_events(x86_cpu, level);
3111 if (ret < 0) {
3112 return ret;
3114 if (level >= KVM_PUT_RESET_STATE) {
3115 ret = kvm_put_mp_state(x86_cpu);
3116 if (ret < 0) {
3117 return ret;
3121 ret = kvm_put_tscdeadline_msr(x86_cpu);
3122 if (ret < 0) {
3123 return ret;
3125 ret = kvm_put_debugregs(x86_cpu);
3126 if (ret < 0) {
3127 return ret;
3129 /* must be last */
3130 ret = kvm_guest_debug_workarounds(x86_cpu);
3131 if (ret < 0) {
3132 return ret;
3134 return 0;
3137 int kvm_arch_get_registers(CPUState *cs)
3139 X86CPU *cpu = X86_CPU(cs);
3140 int ret;
3142 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
3144 ret = kvm_get_vcpu_events(cpu);
3145 if (ret < 0) {
3146 goto out;
3149 * KVM_GET_MPSTATE can modify CS and RIP, call it before
3150 * KVM_GET_REGS and KVM_GET_SREGS.
3152 ret = kvm_get_mp_state(cpu);
3153 if (ret < 0) {
3154 goto out;
3156 ret = kvm_getput_regs(cpu, 0);
3157 if (ret < 0) {
3158 goto out;
3160 ret = kvm_get_xsave(cpu);
3161 if (ret < 0) {
3162 goto out;
3164 ret = kvm_get_xcrs(cpu);
3165 if (ret < 0) {
3166 goto out;
3168 ret = kvm_get_sregs(cpu);
3169 if (ret < 0) {
3170 goto out;
3172 ret = kvm_get_msrs(cpu);
3173 if (ret < 0) {
3174 goto out;
3176 ret = kvm_get_apic(cpu);
3177 if (ret < 0) {
3178 goto out;
3180 ret = kvm_get_debugregs(cpu);
3181 if (ret < 0) {
3182 goto out;
3184 ret = 0;
3185 out:
3186 cpu_sync_bndcs_hflags(&cpu->env);
3187 return ret;
3190 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
3192 X86CPU *x86_cpu = X86_CPU(cpu);
3193 CPUX86State *env = &x86_cpu->env;
3194 int ret;
3196 /* Inject NMI */
3197 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
3198 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
3199 qemu_mutex_lock_iothread();
3200 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
3201 qemu_mutex_unlock_iothread();
3202 DPRINTF("injected NMI\n");
3203 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
3204 if (ret < 0) {
3205 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
3206 strerror(-ret));
3209 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
3210 qemu_mutex_lock_iothread();
3211 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
3212 qemu_mutex_unlock_iothread();
3213 DPRINTF("injected SMI\n");
3214 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
3215 if (ret < 0) {
3216 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
3217 strerror(-ret));
3222 if (!kvm_pic_in_kernel()) {
3223 qemu_mutex_lock_iothread();
3226 /* Force the VCPU out of its inner loop to process any INIT requests
3227 * or (for userspace APIC, but it is cheap to combine the checks here)
3228 * pending TPR access reports.
3230 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
3231 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
3232 !(env->hflags & HF_SMM_MASK)) {
3233 cpu->exit_request = 1;
3235 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
3236 cpu->exit_request = 1;
3240 if (!kvm_pic_in_kernel()) {
3241 /* Try to inject an interrupt if the guest can accept it */
3242 if (run->ready_for_interrupt_injection &&
3243 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
3244 (env->eflags & IF_MASK)) {
3245 int irq;
3247 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
3248 irq = cpu_get_pic_interrupt(env);
3249 if (irq >= 0) {
3250 struct kvm_interrupt intr;
3252 intr.irq = irq;
3253 DPRINTF("injected interrupt %d\n", irq);
3254 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
3255 if (ret < 0) {
3256 fprintf(stderr,
3257 "KVM: injection failed, interrupt lost (%s)\n",
3258 strerror(-ret));
3263 /* If we have an interrupt but the guest is not ready to receive an
3264 * interrupt, request an interrupt window exit. This will
3265 * cause a return to userspace as soon as the guest is ready to
3266 * receive interrupts. */
3267 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
3268 run->request_interrupt_window = 1;
3269 } else {
3270 run->request_interrupt_window = 0;
3273 DPRINTF("setting tpr\n");
3274 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
3276 qemu_mutex_unlock_iothread();
3280 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
3282 X86CPU *x86_cpu = X86_CPU(cpu);
3283 CPUX86State *env = &x86_cpu->env;
3285 if (run->flags & KVM_RUN_X86_SMM) {
3286 env->hflags |= HF_SMM_MASK;
3287 } else {
3288 env->hflags &= ~HF_SMM_MASK;
3290 if (run->if_flag) {
3291 env->eflags |= IF_MASK;
3292 } else {
3293 env->eflags &= ~IF_MASK;
3296 /* We need to protect the apic state against concurrent accesses from
3297 * different threads in case the userspace irqchip is used. */
3298 if (!kvm_irqchip_in_kernel()) {
3299 qemu_mutex_lock_iothread();
3301 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
3302 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
3303 if (!kvm_irqchip_in_kernel()) {
3304 qemu_mutex_unlock_iothread();
3306 return cpu_get_mem_attrs(env);
3309 int kvm_arch_process_async_events(CPUState *cs)
3311 X86CPU *cpu = X86_CPU(cs);
3312 CPUX86State *env = &cpu->env;
3314 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
3315 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
3316 assert(env->mcg_cap);
3318 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
3320 kvm_cpu_synchronize_state(cs);
3322 if (env->exception_injected == EXCP08_DBLE) {
3323 /* this means triple fault */
3324 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3325 cs->exit_request = 1;
3326 return 0;
3328 env->exception_injected = EXCP12_MCHK;
3329 env->has_error_code = 0;
3331 cs->halted = 0;
3332 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
3333 env->mp_state = KVM_MP_STATE_RUNNABLE;
3337 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
3338 !(env->hflags & HF_SMM_MASK)) {
3339 kvm_cpu_synchronize_state(cs);
3340 do_cpu_init(cpu);
3343 if (kvm_irqchip_in_kernel()) {
3344 return 0;
3347 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
3348 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
3349 apic_poll_irq(cpu->apic_state);
3351 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3352 (env->eflags & IF_MASK)) ||
3353 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3354 cs->halted = 0;
3356 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
3357 kvm_cpu_synchronize_state(cs);
3358 do_cpu_sipi(cpu);
3360 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
3361 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
3362 kvm_cpu_synchronize_state(cs);
3363 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
3364 env->tpr_access_type);
3367 return cs->halted;
3370 static int kvm_handle_halt(X86CPU *cpu)
3372 CPUState *cs = CPU(cpu);
3373 CPUX86State *env = &cpu->env;
3375 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3376 (env->eflags & IF_MASK)) &&
3377 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3378 cs->halted = 1;
3379 return EXCP_HLT;
3382 return 0;
3385 static int kvm_handle_tpr_access(X86CPU *cpu)
3387 CPUState *cs = CPU(cpu);
3388 struct kvm_run *run = cs->kvm_run;
3390 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
3391 run->tpr_access.is_write ? TPR_ACCESS_WRITE
3392 : TPR_ACCESS_READ);
3393 return 1;
3396 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3398 static const uint8_t int3 = 0xcc;
3400 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
3401 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
3402 return -EINVAL;
3404 return 0;
3407 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3409 uint8_t int3;
3411 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
3412 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
3413 return -EINVAL;
3415 return 0;
3418 static struct {
3419 target_ulong addr;
3420 int len;
3421 int type;
3422 } hw_breakpoint[4];
3424 static int nb_hw_breakpoint;
3426 static int find_hw_breakpoint(target_ulong addr, int len, int type)
3428 int n;
3430 for (n = 0; n < nb_hw_breakpoint; n++) {
3431 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
3432 (hw_breakpoint[n].len == len || len == -1)) {
3433 return n;
3436 return -1;
3439 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
3440 target_ulong len, int type)
3442 switch (type) {
3443 case GDB_BREAKPOINT_HW:
3444 len = 1;
3445 break;
3446 case GDB_WATCHPOINT_WRITE:
3447 case GDB_WATCHPOINT_ACCESS:
3448 switch (len) {
3449 case 1:
3450 break;
3451 case 2:
3452 case 4:
3453 case 8:
3454 if (addr & (len - 1)) {
3455 return -EINVAL;
3457 break;
3458 default:
3459 return -EINVAL;
3461 break;
3462 default:
3463 return -ENOSYS;
3466 if (nb_hw_breakpoint == 4) {
3467 return -ENOBUFS;
3469 if (find_hw_breakpoint(addr, len, type) >= 0) {
3470 return -EEXIST;
3472 hw_breakpoint[nb_hw_breakpoint].addr = addr;
3473 hw_breakpoint[nb_hw_breakpoint].len = len;
3474 hw_breakpoint[nb_hw_breakpoint].type = type;
3475 nb_hw_breakpoint++;
3477 return 0;
3480 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
3481 target_ulong len, int type)
3483 int n;
3485 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
3486 if (n < 0) {
3487 return -ENOENT;
3489 nb_hw_breakpoint--;
3490 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
3492 return 0;
3495 void kvm_arch_remove_all_hw_breakpoints(void)
3497 nb_hw_breakpoint = 0;
3500 static CPUWatchpoint hw_watchpoint;
3502 static int kvm_handle_debug(X86CPU *cpu,
3503 struct kvm_debug_exit_arch *arch_info)
3505 CPUState *cs = CPU(cpu);
3506 CPUX86State *env = &cpu->env;
3507 int ret = 0;
3508 int n;
3510 if (arch_info->exception == 1) {
3511 if (arch_info->dr6 & (1 << 14)) {
3512 if (cs->singlestep_enabled) {
3513 ret = EXCP_DEBUG;
3515 } else {
3516 for (n = 0; n < 4; n++) {
3517 if (arch_info->dr6 & (1 << n)) {
3518 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
3519 case 0x0:
3520 ret = EXCP_DEBUG;
3521 break;
3522 case 0x1:
3523 ret = EXCP_DEBUG;
3524 cs->watchpoint_hit = &hw_watchpoint;
3525 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3526 hw_watchpoint.flags = BP_MEM_WRITE;
3527 break;
3528 case 0x3:
3529 ret = EXCP_DEBUG;
3530 cs->watchpoint_hit = &hw_watchpoint;
3531 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3532 hw_watchpoint.flags = BP_MEM_ACCESS;
3533 break;
3538 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
3539 ret = EXCP_DEBUG;
3541 if (ret == 0) {
3542 cpu_synchronize_state(cs);
3543 assert(env->exception_injected == -1);
3545 /* pass to guest */
3546 env->exception_injected = arch_info->exception;
3547 env->has_error_code = 0;
3550 return ret;
3553 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
3555 const uint8_t type_code[] = {
3556 [GDB_BREAKPOINT_HW] = 0x0,
3557 [GDB_WATCHPOINT_WRITE] = 0x1,
3558 [GDB_WATCHPOINT_ACCESS] = 0x3
3560 const uint8_t len_code[] = {
3561 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3563 int n;
3565 if (kvm_sw_breakpoints_active(cpu)) {
3566 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
3568 if (nb_hw_breakpoint > 0) {
3569 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
3570 dbg->arch.debugreg[7] = 0x0600;
3571 for (n = 0; n < nb_hw_breakpoint; n++) {
3572 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
3573 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
3574 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
3575 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
3580 static bool host_supports_vmx(void)
3582 uint32_t ecx, unused;
3584 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
3585 return ecx & CPUID_EXT_VMX;
3588 #define VMX_INVALID_GUEST_STATE 0x80000021
3590 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
3592 X86CPU *cpu = X86_CPU(cs);
3593 uint64_t code;
3594 int ret;
3596 switch (run->exit_reason) {
3597 case KVM_EXIT_HLT:
3598 DPRINTF("handle_hlt\n");
3599 qemu_mutex_lock_iothread();
3600 ret = kvm_handle_halt(cpu);
3601 qemu_mutex_unlock_iothread();
3602 break;
3603 case KVM_EXIT_SET_TPR:
3604 ret = 0;
3605 break;
3606 case KVM_EXIT_TPR_ACCESS:
3607 qemu_mutex_lock_iothread();
3608 ret = kvm_handle_tpr_access(cpu);
3609 qemu_mutex_unlock_iothread();
3610 break;
3611 case KVM_EXIT_FAIL_ENTRY:
3612 code = run->fail_entry.hardware_entry_failure_reason;
3613 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
3614 code);
3615 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
3616 fprintf(stderr,
3617 "\nIf you're running a guest on an Intel machine without "
3618 "unrestricted mode\n"
3619 "support, the failure can be most likely due to the guest "
3620 "entering an invalid\n"
3621 "state for Intel VT. For example, the guest maybe running "
3622 "in big real mode\n"
3623 "which is not supported on less recent Intel processors."
3624 "\n\n");
3626 ret = -1;
3627 break;
3628 case KVM_EXIT_EXCEPTION:
3629 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
3630 run->ex.exception, run->ex.error_code);
3631 ret = -1;
3632 break;
3633 case KVM_EXIT_DEBUG:
3634 DPRINTF("kvm_exit_debug\n");
3635 qemu_mutex_lock_iothread();
3636 ret = kvm_handle_debug(cpu, &run->debug.arch);
3637 qemu_mutex_unlock_iothread();
3638 break;
3639 case KVM_EXIT_HYPERV:
3640 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
3641 break;
3642 case KVM_EXIT_IOAPIC_EOI:
3643 ioapic_eoi_broadcast(run->eoi.vector);
3644 ret = 0;
3645 break;
3646 default:
3647 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
3648 ret = -1;
3649 break;
3652 return ret;
3655 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
3657 X86CPU *cpu = X86_CPU(cs);
3658 CPUX86State *env = &cpu->env;
3660 kvm_cpu_synchronize_state(cs);
3661 return !(env->cr[0] & CR0_PE_MASK) ||
3662 ((env->segs[R_CS].selector & 3) != 3);
3665 void kvm_arch_init_irq_routing(KVMState *s)
3667 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
3668 /* If kernel can't do irq routing, interrupt source
3669 * override 0->2 cannot be set up as required by HPET.
3670 * So we have to disable it.
3672 no_hpet = 1;
3674 /* We know at this point that we're using the in-kernel
3675 * irqchip, so we can use irqfds, and on x86 we know
3676 * we can use msi via irqfd and GSI routing.
3678 kvm_msi_via_irqfd_allowed = true;
3679 kvm_gsi_routing_allowed = true;
3681 if (kvm_irqchip_is_split()) {
3682 int i;
3684 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3685 MSI routes for signaling interrupts to the local apics. */
3686 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
3687 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
3688 error_report("Could not enable split IRQ mode.");
3689 exit(1);
3695 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
3697 int ret;
3698 if (machine_kernel_irqchip_split(ms)) {
3699 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
3700 if (ret) {
3701 error_report("Could not enable split irqchip mode: %s",
3702 strerror(-ret));
3703 exit(1);
3704 } else {
3705 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3706 kvm_split_irqchip = true;
3707 return 1;
3709 } else {
3710 return 0;
3714 /* Classic KVM device assignment interface. Will remain x86 only. */
3715 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
3716 uint32_t flags, uint32_t *dev_id)
3718 struct kvm_assigned_pci_dev dev_data = {
3719 .segnr = dev_addr->domain,
3720 .busnr = dev_addr->bus,
3721 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
3722 .flags = flags,
3724 int ret;
3726 dev_data.assigned_dev_id =
3727 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
3729 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
3730 if (ret < 0) {
3731 return ret;
3734 *dev_id = dev_data.assigned_dev_id;
3736 return 0;
3739 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
3741 struct kvm_assigned_pci_dev dev_data = {
3742 .assigned_dev_id = dev_id,
3745 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
3748 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
3749 uint32_t irq_type, uint32_t guest_irq)
3751 struct kvm_assigned_irq assigned_irq = {
3752 .assigned_dev_id = dev_id,
3753 .guest_irq = guest_irq,
3754 .flags = irq_type,
3757 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
3758 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
3759 } else {
3760 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
3764 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
3765 uint32_t guest_irq)
3767 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
3768 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
3770 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
3773 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
3775 struct kvm_assigned_pci_dev dev_data = {
3776 .assigned_dev_id = dev_id,
3777 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
3780 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
3783 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
3784 uint32_t type)
3786 struct kvm_assigned_irq assigned_irq = {
3787 .assigned_dev_id = dev_id,
3788 .flags = type,
3791 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
3794 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
3796 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
3797 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
3800 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
3802 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
3803 KVM_DEV_IRQ_GUEST_MSI, virq);
3806 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
3808 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
3809 KVM_DEV_IRQ_HOST_MSI);
3812 bool kvm_device_msix_supported(KVMState *s)
3814 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3815 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3816 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
3819 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
3820 uint32_t nr_vectors)
3822 struct kvm_assigned_msix_nr msix_nr = {
3823 .assigned_dev_id = dev_id,
3824 .entry_nr = nr_vectors,
3827 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
3830 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
3831 int virq)
3833 struct kvm_assigned_msix_entry msix_entry = {
3834 .assigned_dev_id = dev_id,
3835 .gsi = virq,
3836 .entry = vector,
3839 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
3842 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
3844 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
3845 KVM_DEV_IRQ_GUEST_MSIX, 0);
3848 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
3850 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
3851 KVM_DEV_IRQ_HOST_MSIX);
3854 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
3855 uint64_t address, uint32_t data, PCIDevice *dev)
3857 X86IOMMUState *iommu = x86_iommu_get_default();
3859 if (iommu) {
3860 int ret;
3861 MSIMessage src, dst;
3862 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
3864 if (!class->int_remap) {
3865 return 0;
3868 src.address = route->u.msi.address_hi;
3869 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
3870 src.address |= route->u.msi.address_lo;
3871 src.data = route->u.msi.data;
3873 ret = class->int_remap(iommu, &src, &dst, dev ? \
3874 pci_requester_id(dev) : \
3875 X86_IOMMU_SID_INVALID);
3876 if (ret) {
3877 trace_kvm_x86_fixup_msi_error(route->gsi);
3878 return 1;
3881 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
3882 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
3883 route->u.msi.data = dst.data;
3886 return 0;
3889 typedef struct MSIRouteEntry MSIRouteEntry;
3891 struct MSIRouteEntry {
3892 PCIDevice *dev; /* Device pointer */
3893 int vector; /* MSI/MSIX vector index */
3894 int virq; /* Virtual IRQ index */
3895 QLIST_ENTRY(MSIRouteEntry) list;
3898 /* List of used GSI routes */
3899 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
3900 QLIST_HEAD_INITIALIZER(msi_route_list);
3902 static void kvm_update_msi_routes_all(void *private, bool global,
3903 uint32_t index, uint32_t mask)
3905 int cnt = 0, vector;
3906 MSIRouteEntry *entry;
3907 MSIMessage msg;
3908 PCIDevice *dev;
3910 /* TODO: explicit route update */
3911 QLIST_FOREACH(entry, &msi_route_list, list) {
3912 cnt++;
3913 vector = entry->vector;
3914 dev = entry->dev;
3915 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
3916 msg = msix_get_message(dev, vector);
3917 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
3918 msg = msi_get_message(dev, vector);
3919 } else {
3921 * Either MSI/MSIX is disabled for the device, or the
3922 * specific message was masked out. Skip this one.
3924 continue;
3926 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
3928 kvm_irqchip_commit_routes(kvm_state);
3929 trace_kvm_x86_update_msi_routes(cnt);
3932 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
3933 int vector, PCIDevice *dev)
3935 static bool notify_list_inited = false;
3936 MSIRouteEntry *entry;
3938 if (!dev) {
3939 /* These are (possibly) IOAPIC routes only used for split
3940 * kernel irqchip mode, while what we are housekeeping are
3941 * PCI devices only. */
3942 return 0;
3945 entry = g_new0(MSIRouteEntry, 1);
3946 entry->dev = dev;
3947 entry->vector = vector;
3948 entry->virq = route->gsi;
3949 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
3951 trace_kvm_x86_add_msi_route(route->gsi);
3953 if (!notify_list_inited) {
3954 /* For the first time we do add route, add ourselves into
3955 * IOMMU's IEC notify list if needed. */
3956 X86IOMMUState *iommu = x86_iommu_get_default();
3957 if (iommu) {
3958 x86_iommu_iec_register_notifier(iommu,
3959 kvm_update_msi_routes_all,
3960 NULL);
3962 notify_list_inited = true;
3964 return 0;
3967 int kvm_arch_release_virq_post(int virq)
3969 MSIRouteEntry *entry, *next;
3970 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
3971 if (entry->virq == virq) {
3972 trace_kvm_x86_remove_msi_route(virq);
3973 QLIST_REMOVE(entry, list);
3974 g_free(entry);
3975 break;
3978 return 0;
3981 int kvm_arch_msi_data_to_gsi(uint32_t data)
3983 abort();