4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
19 #include <sys/utsname.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_para.h>
24 #include "qemu-common.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/kvm_int.h"
31 #include "exec/gdbstub.h"
32 #include "qemu/host-utils.h"
33 #include "qemu/config-file.h"
34 #include "qemu/error-report.h"
35 #include "hw/i386/pc.h"
36 #include "hw/i386/apic.h"
37 #include "hw/i386/apic_internal.h"
38 #include "hw/i386/apic-msidef.h"
40 #include "exec/ioport.h"
41 #include "standard-headers/asm-x86/hyperv.h"
42 #include "hw/pci/pci.h"
43 #include "hw/pci/msi.h"
44 #include "migration/migration.h"
45 #include "exec/memattrs.h"
50 #define DPRINTF(fmt, ...) \
51 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
53 #define DPRINTF(fmt, ...) \
57 #define MSR_KVM_WALL_CLOCK 0x11
58 #define MSR_KVM_SYSTEM_TIME 0x12
60 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
61 * 255 kvm_msr_entry structs */
62 #define MSR_BUF_SIZE 4096
65 #define BUS_MCEERR_AR 4
68 #define BUS_MCEERR_AO 5
71 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
72 KVM_CAP_INFO(SET_TSS_ADDR
),
73 KVM_CAP_INFO(EXT_CPUID
),
74 KVM_CAP_INFO(MP_STATE
),
78 static bool has_msr_star
;
79 static bool has_msr_hsave_pa
;
80 static bool has_msr_tsc_aux
;
81 static bool has_msr_tsc_adjust
;
82 static bool has_msr_tsc_deadline
;
83 static bool has_msr_feature_control
;
84 static bool has_msr_async_pf_en
;
85 static bool has_msr_pv_eoi_en
;
86 static bool has_msr_misc_enable
;
87 static bool has_msr_smbase
;
88 static bool has_msr_bndcfgs
;
89 static bool has_msr_kvm_steal_time
;
90 static int lm_capable_kernel
;
91 static bool has_msr_hv_hypercall
;
92 static bool has_msr_hv_vapic
;
93 static bool has_msr_hv_tsc
;
94 static bool has_msr_hv_crash
;
95 static bool has_msr_hv_reset
;
96 static bool has_msr_hv_vpindex
;
97 static bool has_msr_hv_runtime
;
98 static bool has_msr_hv_synic
;
99 static bool has_msr_hv_stimer
;
100 static bool has_msr_mtrr
;
101 static bool has_msr_xss
;
103 static bool has_msr_architectural_pmu
;
104 static uint32_t num_architectural_pmu_counters
;
106 static int has_xsave
;
108 static int has_pit_state2
;
110 int kvm_has_pit_state2(void)
112 return has_pit_state2
;
115 bool kvm_has_smm(void)
117 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
120 bool kvm_allows_irq0_override(void)
122 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
125 static int kvm_get_tsc(CPUState
*cs
)
127 X86CPU
*cpu
= X86_CPU(cs
);
128 CPUX86State
*env
= &cpu
->env
;
130 struct kvm_msrs info
;
131 struct kvm_msr_entry entries
[1];
135 if (env
->tsc_valid
) {
139 msr_data
.info
.nmsrs
= 1;
140 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
141 env
->tsc_valid
= !runstate_is_running();
143 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
149 env
->tsc
= msr_data
.entries
[0].data
;
153 static inline void do_kvm_synchronize_tsc(void *arg
)
160 void kvm_synchronize_all_tsc(void)
166 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, cpu
);
171 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
173 struct kvm_cpuid2
*cpuid
;
176 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
177 cpuid
= g_malloc0(size
);
179 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
180 if (r
== 0 && cpuid
->nent
>= max
) {
188 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
196 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
199 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
201 struct kvm_cpuid2
*cpuid
;
203 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
209 static const struct kvm_para_features
{
212 } para_features
[] = {
213 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
214 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
215 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
216 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
219 static int get_para_features(KVMState
*s
)
223 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
224 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
225 features
|= (1 << para_features
[i
].feature
);
233 /* Returns the value for a specific register on the cpuid entry
235 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
255 /* Find matching entry for function/index on kvm_cpuid2 struct
257 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
262 for (i
= 0; i
< cpuid
->nent
; ++i
) {
263 if (cpuid
->entries
[i
].function
== function
&&
264 cpuid
->entries
[i
].index
== index
) {
265 return &cpuid
->entries
[i
];
272 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
273 uint32_t index
, int reg
)
275 struct kvm_cpuid2
*cpuid
;
277 uint32_t cpuid_1_edx
;
280 cpuid
= get_supported_cpuid(s
);
282 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
285 ret
= cpuid_entry_get_reg(entry
, reg
);
288 /* Fixups for the data returned by KVM, below */
290 if (function
== 1 && reg
== R_EDX
) {
291 /* KVM before 2.6.30 misreports the following features */
292 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
293 } else if (function
== 1 && reg
== R_ECX
) {
294 /* We can set the hypervisor flag, even if KVM does not return it on
295 * GET_SUPPORTED_CPUID
297 ret
|= CPUID_EXT_HYPERVISOR
;
298 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
299 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
300 * and the irqchip is in the kernel.
302 if (kvm_irqchip_in_kernel() &&
303 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
304 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
307 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
308 * without the in-kernel irqchip
310 if (!kvm_irqchip_in_kernel()) {
311 ret
&= ~CPUID_EXT_X2APIC
;
313 } else if (function
== 6 && reg
== R_EAX
) {
314 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
315 } else if (function
== 0x80000001 && reg
== R_EDX
) {
316 /* On Intel, kvm returns cpuid according to the Intel spec,
317 * so add missing bits according to the AMD spec:
319 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
320 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
325 /* fallback for older kernels */
326 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
327 ret
= get_para_features(s
);
333 typedef struct HWPoisonPage
{
335 QLIST_ENTRY(HWPoisonPage
) list
;
338 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
339 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
341 static void kvm_unpoison_all(void *param
)
343 HWPoisonPage
*page
, *next_page
;
345 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
346 QLIST_REMOVE(page
, list
);
347 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
352 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
356 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
357 if (page
->ram_addr
== ram_addr
) {
361 page
= g_new(HWPoisonPage
, 1);
362 page
->ram_addr
= ram_addr
;
363 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
366 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
371 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
374 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
379 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
381 CPUX86State
*env
= &cpu
->env
;
382 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
383 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
384 uint64_t mcg_status
= MCG_STATUS_MCIP
;
386 if (code
== BUS_MCEERR_AR
) {
387 status
|= MCI_STATUS_AR
| 0x134;
388 mcg_status
|= MCG_STATUS_EIPV
;
391 mcg_status
|= MCG_STATUS_RIPV
;
393 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
394 (MCM_ADDR_PHYS
<< 6) | 0xc,
395 cpu_x86_support_mca_broadcast(env
) ?
396 MCE_INJECT_BROADCAST
: 0);
399 static void hardware_memory_error(void)
401 fprintf(stderr
, "Hardware memory error!\n");
405 int kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
407 X86CPU
*cpu
= X86_CPU(c
);
408 CPUX86State
*env
= &cpu
->env
;
412 if ((env
->mcg_cap
& MCG_SER_P
) && addr
413 && (code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
)) {
414 ram_addr
= qemu_ram_addr_from_host(addr
);
415 if (ram_addr
== RAM_ADDR_INVALID
||
416 !kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
417 fprintf(stderr
, "Hardware memory error for memory used by "
418 "QEMU itself instead of guest system!\n");
419 /* Hope we are lucky for AO MCE */
420 if (code
== BUS_MCEERR_AO
) {
423 hardware_memory_error();
426 kvm_hwpoison_page_add(ram_addr
);
427 kvm_mce_inject(cpu
, paddr
, code
);
429 if (code
== BUS_MCEERR_AO
) {
431 } else if (code
== BUS_MCEERR_AR
) {
432 hardware_memory_error();
440 int kvm_arch_on_sigbus(int code
, void *addr
)
442 X86CPU
*cpu
= X86_CPU(first_cpu
);
444 if ((cpu
->env
.mcg_cap
& MCG_SER_P
) && addr
&& code
== BUS_MCEERR_AO
) {
448 /* Hope we are lucky for AO MCE */
449 ram_addr
= qemu_ram_addr_from_host(addr
);
450 if (ram_addr
== RAM_ADDR_INVALID
||
451 !kvm_physical_memory_addr_from_host(first_cpu
->kvm_state
,
453 fprintf(stderr
, "Hardware memory error for memory used by "
454 "QEMU itself instead of guest system!: %p\n", addr
);
457 kvm_hwpoison_page_add(ram_addr
);
458 kvm_mce_inject(X86_CPU(first_cpu
), paddr
, code
);
460 if (code
== BUS_MCEERR_AO
) {
462 } else if (code
== BUS_MCEERR_AR
) {
463 hardware_memory_error();
471 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
473 CPUX86State
*env
= &cpu
->env
;
475 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
476 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
477 struct kvm_x86_mce mce
;
479 env
->exception_injected
= -1;
482 * There must be at least one bank in use if an MCE is pending.
483 * Find it and use its values for the event injection.
485 for (bank
= 0; bank
< bank_num
; bank
++) {
486 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
490 assert(bank
< bank_num
);
493 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
494 mce
.mcg_status
= env
->mcg_status
;
495 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
496 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
498 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
503 static void cpu_update_state(void *opaque
, int running
, RunState state
)
505 CPUX86State
*env
= opaque
;
508 env
->tsc_valid
= false;
512 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
514 X86CPU
*cpu
= X86_CPU(cs
);
518 #ifndef KVM_CPUID_SIGNATURE_NEXT
519 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
522 static bool hyperv_hypercall_available(X86CPU
*cpu
)
524 return cpu
->hyperv_vapic
||
525 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
528 static bool hyperv_enabled(X86CPU
*cpu
)
530 CPUState
*cs
= CPU(cpu
);
531 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
532 (hyperv_hypercall_available(cpu
) ||
534 cpu
->hyperv_relaxed_timing
||
537 cpu
->hyperv_vpindex
||
538 cpu
->hyperv_runtime
||
543 static int kvm_arch_set_tsc_khz(CPUState
*cs
)
545 X86CPU
*cpu
= X86_CPU(cs
);
546 CPUX86State
*env
= &cpu
->env
;
553 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
) ?
554 kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
) :
557 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
558 * TSC frequency doesn't match the one we want.
560 int cur_freq
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
561 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
563 if (cur_freq
<= 0 || cur_freq
!= env
->tsc_khz
) {
564 error_report("warning: TSC frequency mismatch between "
565 "VM and host, and TSC scaling unavailable");
573 static Error
*invtsc_mig_blocker
;
575 #define KVM_MAX_CPUID_ENTRIES 100
577 int kvm_arch_init_vcpu(CPUState
*cs
)
580 struct kvm_cpuid2 cpuid
;
581 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
582 } QEMU_PACKED cpuid_data
;
583 X86CPU
*cpu
= X86_CPU(cs
);
584 CPUX86State
*env
= &cpu
->env
;
585 uint32_t limit
, i
, j
, cpuid_i
;
587 struct kvm_cpuid_entry2
*c
;
588 uint32_t signature
[3];
589 int kvm_base
= KVM_CPUID_SIGNATURE
;
592 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
596 /* Paravirtualization CPUIDs */
597 if (hyperv_enabled(cpu
)) {
598 c
= &cpuid_data
.entries
[cpuid_i
++];
599 c
->function
= HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
600 if (!cpu
->hyperv_vendor_id
) {
601 memcpy(signature
, "Microsoft Hv", 12);
603 size_t len
= strlen(cpu
->hyperv_vendor_id
);
606 error_report("hv-vendor-id truncated to 12 characters");
609 memset(signature
, 0, 12);
610 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
612 c
->eax
= HYPERV_CPUID_MIN
;
613 c
->ebx
= signature
[0];
614 c
->ecx
= signature
[1];
615 c
->edx
= signature
[2];
617 c
= &cpuid_data
.entries
[cpuid_i
++];
618 c
->function
= HYPERV_CPUID_INTERFACE
;
619 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
620 c
->eax
= signature
[0];
625 c
= &cpuid_data
.entries
[cpuid_i
++];
626 c
->function
= HYPERV_CPUID_VERSION
;
630 c
= &cpuid_data
.entries
[cpuid_i
++];
631 c
->function
= HYPERV_CPUID_FEATURES
;
632 if (cpu
->hyperv_relaxed_timing
) {
633 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
635 if (cpu
->hyperv_vapic
) {
636 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
637 c
->eax
|= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
638 has_msr_hv_vapic
= true;
640 if (cpu
->hyperv_time
&&
641 kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) > 0) {
642 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
643 c
->eax
|= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE
;
645 has_msr_hv_tsc
= true;
647 if (cpu
->hyperv_crash
&& has_msr_hv_crash
) {
648 c
->edx
|= HV_X64_GUEST_CRASH_MSR_AVAILABLE
;
650 c
->edx
|= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE
;
651 if (cpu
->hyperv_reset
&& has_msr_hv_reset
) {
652 c
->eax
|= HV_X64_MSR_RESET_AVAILABLE
;
654 if (cpu
->hyperv_vpindex
&& has_msr_hv_vpindex
) {
655 c
->eax
|= HV_X64_MSR_VP_INDEX_AVAILABLE
;
657 if (cpu
->hyperv_runtime
&& has_msr_hv_runtime
) {
658 c
->eax
|= HV_X64_MSR_VP_RUNTIME_AVAILABLE
;
660 if (cpu
->hyperv_synic
) {
663 if (!has_msr_hv_synic
||
664 kvm_vcpu_enable_cap(cs
, KVM_CAP_HYPERV_SYNIC
, 0)) {
665 fprintf(stderr
, "Hyper-V SynIC is not supported by kernel\n");
669 c
->eax
|= HV_X64_MSR_SYNIC_AVAILABLE
;
670 env
->msr_hv_synic_version
= HV_SYNIC_VERSION_1
;
671 for (sint
= 0; sint
< ARRAY_SIZE(env
->msr_hv_synic_sint
); sint
++) {
672 env
->msr_hv_synic_sint
[sint
] = HV_SYNIC_SINT_MASKED
;
675 if (cpu
->hyperv_stimer
) {
676 if (!has_msr_hv_stimer
) {
677 fprintf(stderr
, "Hyper-V timers aren't supported by kernel\n");
680 c
->eax
|= HV_X64_MSR_SYNTIMER_AVAILABLE
;
682 c
= &cpuid_data
.entries
[cpuid_i
++];
683 c
->function
= HYPERV_CPUID_ENLIGHTMENT_INFO
;
684 if (cpu
->hyperv_relaxed_timing
) {
685 c
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
687 if (has_msr_hv_vapic
) {
688 c
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
690 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
692 c
= &cpuid_data
.entries
[cpuid_i
++];
693 c
->function
= HYPERV_CPUID_IMPLEMENT_LIMITS
;
697 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
698 has_msr_hv_hypercall
= true;
701 if (cpu
->expose_kvm
) {
702 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
703 c
= &cpuid_data
.entries
[cpuid_i
++];
704 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
705 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
706 c
->ebx
= signature
[0];
707 c
->ecx
= signature
[1];
708 c
->edx
= signature
[2];
710 c
= &cpuid_data
.entries
[cpuid_i
++];
711 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
712 c
->eax
= env
->features
[FEAT_KVM
];
714 has_msr_async_pf_en
= c
->eax
& (1 << KVM_FEATURE_ASYNC_PF
);
716 has_msr_pv_eoi_en
= c
->eax
& (1 << KVM_FEATURE_PV_EOI
);
718 has_msr_kvm_steal_time
= c
->eax
& (1 << KVM_FEATURE_STEAL_TIME
);
721 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
723 for (i
= 0; i
<= limit
; i
++) {
724 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
725 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
728 c
= &cpuid_data
.entries
[cpuid_i
++];
732 /* Keep reading function 2 till all the input is received */
736 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
737 KVM_CPUID_FLAG_STATE_READ_NEXT
;
738 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
739 times
= c
->eax
& 0xff;
741 for (j
= 1; j
< times
; ++j
) {
742 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
743 fprintf(stderr
, "cpuid_data is full, no space for "
744 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
747 c
= &cpuid_data
.entries
[cpuid_i
++];
749 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
750 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
758 if (i
== 0xd && j
== 64) {
762 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
764 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
766 if (i
== 4 && c
->eax
== 0) {
769 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
772 if (i
== 0xd && c
->eax
== 0) {
775 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
776 fprintf(stderr
, "cpuid_data is full, no space for "
777 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
780 c
= &cpuid_data
.entries
[cpuid_i
++];
786 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
794 cpu_x86_cpuid(env
, 0x0a, 0, &ver
, &unused
, &unused
, &unused
);
795 if ((ver
& 0xff) > 0) {
796 has_msr_architectural_pmu
= true;
797 num_architectural_pmu_counters
= (ver
& 0xff00) >> 8;
799 /* Shouldn't be more than 32, since that's the number of bits
800 * available in EBX to tell us _which_ counters are available.
803 if (num_architectural_pmu_counters
> MAX_GP_COUNTERS
) {
804 num_architectural_pmu_counters
= MAX_GP_COUNTERS
;
809 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
811 for (i
= 0x80000000; i
<= limit
; i
++) {
812 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
813 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
816 c
= &cpuid_data
.entries
[cpuid_i
++];
820 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
823 /* Call Centaur's CPUID instructions they are supported. */
824 if (env
->cpuid_xlevel2
> 0) {
825 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
827 for (i
= 0xC0000000; i
<= limit
; i
++) {
828 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
829 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
832 c
= &cpuid_data
.entries
[cpuid_i
++];
836 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
840 cpuid_data
.cpuid
.nent
= cpuid_i
;
842 if (((env
->cpuid_version
>> 8)&0xF) >= 6
843 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
844 (CPUID_MCE
| CPUID_MCA
)
845 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
846 uint64_t mcg_cap
, unsupported_caps
;
850 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
852 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
856 if (banks
< (env
->mcg_cap
& MCG_CAP_BANKS_MASK
)) {
857 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
858 (int)(env
->mcg_cap
& MCG_CAP_BANKS_MASK
), banks
);
862 unsupported_caps
= env
->mcg_cap
& ~(mcg_cap
| MCG_CAP_BANKS_MASK
);
863 if (unsupported_caps
) {
864 error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64
,
868 env
->mcg_cap
&= mcg_cap
| MCG_CAP_BANKS_MASK
;
869 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &env
->mcg_cap
);
871 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
876 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
878 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
880 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
881 !!(c
->ecx
& CPUID_EXT_SMX
);
884 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 0x80000007, 0);
885 if (c
&& (c
->edx
& 1<<8) && invtsc_mig_blocker
== NULL
) {
887 error_setg(&invtsc_mig_blocker
,
888 "State blocked by non-migratable CPU device"
890 migrate_add_blocker(invtsc_mig_blocker
);
892 vmstate_x86_cpu
.unmigratable
= 1;
895 cpuid_data
.cpuid
.padding
= 0;
896 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
901 r
= kvm_arch_set_tsc_khz(cs
);
906 /* vcpu's TSC frequency is either specified by user, or following
907 * the value used by KVM if the former is not present. In the
908 * latter case, we query it from KVM and record in env->tsc_khz,
909 * so that vcpu's TSC frequency can be migrated later via this field.
912 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
913 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
921 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
923 cpu
->kvm_msr_buf
= g_malloc0(MSR_BUF_SIZE
);
925 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
928 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_RDTSCP
)) {
929 has_msr_tsc_aux
= false;
935 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
937 CPUX86State
*env
= &cpu
->env
;
939 env
->exception_injected
= -1;
940 env
->interrupt_injected
= -1;
942 if (kvm_irqchip_in_kernel()) {
943 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
944 KVM_MP_STATE_UNINITIALIZED
;
946 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
950 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
952 CPUX86State
*env
= &cpu
->env
;
954 /* APs get directly into wait-for-SIPI state. */
955 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
956 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
960 static int kvm_get_supported_msrs(KVMState
*s
)
962 static int kvm_supported_msrs
;
966 if (kvm_supported_msrs
== 0) {
967 struct kvm_msr_list msr_list
, *kvm_msr_list
;
969 kvm_supported_msrs
= -1;
971 /* Obtain MSR list from KVM. These are the MSRs that we must
974 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
975 if (ret
< 0 && ret
!= -E2BIG
) {
978 /* Old kernel modules had a bug and could write beyond the provided
979 memory. Allocate at least a safe amount of 1K. */
980 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
982 sizeof(msr_list
.indices
[0])));
984 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
985 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
989 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
990 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
994 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
995 has_msr_hsave_pa
= true;
998 if (kvm_msr_list
->indices
[i
] == MSR_TSC_AUX
) {
999 has_msr_tsc_aux
= true;
1002 if (kvm_msr_list
->indices
[i
] == MSR_TSC_ADJUST
) {
1003 has_msr_tsc_adjust
= true;
1006 if (kvm_msr_list
->indices
[i
] == MSR_IA32_TSCDEADLINE
) {
1007 has_msr_tsc_deadline
= true;
1010 if (kvm_msr_list
->indices
[i
] == MSR_IA32_SMBASE
) {
1011 has_msr_smbase
= true;
1014 if (kvm_msr_list
->indices
[i
] == MSR_IA32_MISC_ENABLE
) {
1015 has_msr_misc_enable
= true;
1018 if (kvm_msr_list
->indices
[i
] == MSR_IA32_BNDCFGS
) {
1019 has_msr_bndcfgs
= true;
1022 if (kvm_msr_list
->indices
[i
] == MSR_IA32_XSS
) {
1026 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_CRASH_CTL
) {
1027 has_msr_hv_crash
= true;
1030 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_RESET
) {
1031 has_msr_hv_reset
= true;
1034 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_INDEX
) {
1035 has_msr_hv_vpindex
= true;
1038 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_RUNTIME
) {
1039 has_msr_hv_runtime
= true;
1042 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_SCONTROL
) {
1043 has_msr_hv_synic
= true;
1046 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_STIMER0_CONFIG
) {
1047 has_msr_hv_stimer
= true;
1053 g_free(kvm_msr_list
);
1059 static Notifier smram_machine_done
;
1060 static KVMMemoryListener smram_listener
;
1061 static AddressSpace smram_address_space
;
1062 static MemoryRegion smram_as_root
;
1063 static MemoryRegion smram_as_mem
;
1065 static void register_smram_listener(Notifier
*n
, void *unused
)
1067 MemoryRegion
*smram
=
1068 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
1070 /* Outer container... */
1071 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
1072 memory_region_set_enabled(&smram_as_root
, true);
1074 /* ... with two regions inside: normal system memory with low
1077 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
1078 get_system_memory(), 0, ~0ull);
1079 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
1080 memory_region_set_enabled(&smram_as_mem
, true);
1083 /* ... SMRAM with higher priority */
1084 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
1085 memory_region_set_enabled(smram
, true);
1088 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
1089 kvm_memory_listener_register(kvm_state
, &smram_listener
,
1090 &smram_address_space
, 1);
1093 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
1095 uint64_t identity_base
= 0xfffbc000;
1096 uint64_t shadow_mem
;
1098 struct utsname utsname
;
1100 #ifdef KVM_CAP_XSAVE
1101 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1105 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1108 #ifdef KVM_CAP_PIT_STATE2
1109 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1112 ret
= kvm_get_supported_msrs(s
);
1118 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
1121 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1122 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1123 * Since these must be part of guest physical memory, we need to allocate
1124 * them, both by setting their start addresses in the kernel and by
1125 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1127 * Older KVM versions may not support setting the identity map base. In
1128 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1131 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
1132 /* Allows up to 16M BIOSes. */
1133 identity_base
= 0xfeffc000;
1135 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
1141 /* Set TSS base one page after EPT identity map. */
1142 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
1147 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1148 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
1150 fprintf(stderr
, "e820_add_entry() table is full\n");
1153 qemu_register_reset(kvm_unpoison_all
, NULL
);
1155 shadow_mem
= machine_kvm_shadow_mem(ms
);
1156 if (shadow_mem
!= -1) {
1158 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
1164 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
)) {
1165 smram_machine_done
.notify
= register_smram_listener
;
1166 qemu_add_machine_init_done_notifier(&smram_machine_done
);
1171 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1173 lhs
->selector
= rhs
->selector
;
1174 lhs
->base
= rhs
->base
;
1175 lhs
->limit
= rhs
->limit
;
1187 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1189 unsigned flags
= rhs
->flags
;
1190 lhs
->selector
= rhs
->selector
;
1191 lhs
->base
= rhs
->base
;
1192 lhs
->limit
= rhs
->limit
;
1193 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
1194 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
1195 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
1196 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
1197 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
1198 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
1199 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
1200 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
1201 lhs
->unusable
= !lhs
->present
;
1205 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
1207 lhs
->selector
= rhs
->selector
;
1208 lhs
->base
= rhs
->base
;
1209 lhs
->limit
= rhs
->limit
;
1210 if (rhs
->unusable
) {
1213 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
1214 (rhs
->present
* DESC_P_MASK
) |
1215 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
1216 (rhs
->db
<< DESC_B_SHIFT
) |
1217 (rhs
->s
* DESC_S_MASK
) |
1218 (rhs
->l
<< DESC_L_SHIFT
) |
1219 (rhs
->g
* DESC_G_MASK
) |
1220 (rhs
->avl
* DESC_AVL_MASK
);
1224 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
1227 *kvm_reg
= *qemu_reg
;
1229 *qemu_reg
= *kvm_reg
;
1233 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
1235 CPUX86State
*env
= &cpu
->env
;
1236 struct kvm_regs regs
;
1240 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
1246 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
1247 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
1248 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
1249 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
1250 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
1251 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
1252 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
1253 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
1254 #ifdef TARGET_X86_64
1255 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
1256 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
1257 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
1258 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
1259 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
1260 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
1261 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
1262 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
1265 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
1266 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
1269 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1275 static int kvm_put_fpu(X86CPU
*cpu
)
1277 CPUX86State
*env
= &cpu
->env
;
1281 memset(&fpu
, 0, sizeof fpu
);
1282 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1283 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1284 fpu
.fcw
= env
->fpuc
;
1285 fpu
.last_opcode
= env
->fpop
;
1286 fpu
.last_ip
= env
->fpip
;
1287 fpu
.last_dp
= env
->fpdp
;
1288 for (i
= 0; i
< 8; ++i
) {
1289 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1291 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1292 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1293 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].ZMM_Q(0));
1294 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].ZMM_Q(1));
1296 fpu
.mxcsr
= env
->mxcsr
;
1298 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1301 #define XSAVE_FCW_FSW 0
1302 #define XSAVE_FTW_FOP 1
1303 #define XSAVE_CWD_RIP 2
1304 #define XSAVE_CWD_RDP 4
1305 #define XSAVE_MXCSR 6
1306 #define XSAVE_ST_SPACE 8
1307 #define XSAVE_XMM_SPACE 40
1308 #define XSAVE_XSTATE_BV 128
1309 #define XSAVE_YMMH_SPACE 144
1310 #define XSAVE_BNDREGS 240
1311 #define XSAVE_BNDCSR 256
1312 #define XSAVE_OPMASK 272
1313 #define XSAVE_ZMM_Hi256 288
1314 #define XSAVE_Hi16_ZMM 416
1315 #define XSAVE_PKRU 672
1317 #define XSAVE_BYTE_OFFSET(word_offset) \
1318 ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0]))
1320 #define ASSERT_OFFSET(word_offset, field) \
1321 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1322 offsetof(X86XSaveArea, field))
1324 ASSERT_OFFSET(XSAVE_FCW_FSW
, legacy
.fcw
);
1325 ASSERT_OFFSET(XSAVE_FTW_FOP
, legacy
.ftw
);
1326 ASSERT_OFFSET(XSAVE_CWD_RIP
, legacy
.fpip
);
1327 ASSERT_OFFSET(XSAVE_CWD_RDP
, legacy
.fpdp
);
1328 ASSERT_OFFSET(XSAVE_MXCSR
, legacy
.mxcsr
);
1329 ASSERT_OFFSET(XSAVE_ST_SPACE
, legacy
.fpregs
);
1330 ASSERT_OFFSET(XSAVE_XMM_SPACE
, legacy
.xmm_regs
);
1331 ASSERT_OFFSET(XSAVE_XSTATE_BV
, header
.xstate_bv
);
1332 ASSERT_OFFSET(XSAVE_YMMH_SPACE
, avx_state
);
1333 ASSERT_OFFSET(XSAVE_BNDREGS
, bndreg_state
);
1334 ASSERT_OFFSET(XSAVE_BNDCSR
, bndcsr_state
);
1335 ASSERT_OFFSET(XSAVE_OPMASK
, opmask_state
);
1336 ASSERT_OFFSET(XSAVE_ZMM_Hi256
, zmm_hi256_state
);
1337 ASSERT_OFFSET(XSAVE_Hi16_ZMM
, hi16_zmm_state
);
1338 ASSERT_OFFSET(XSAVE_PKRU
, pkru_state
);
1340 static int kvm_put_xsave(X86CPU
*cpu
)
1342 CPUX86State
*env
= &cpu
->env
;
1343 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1344 uint16_t cwd
, swd
, twd
;
1348 return kvm_put_fpu(cpu
);
1351 memset(xsave
, 0, sizeof(struct kvm_xsave
));
1353 swd
= env
->fpus
& ~(7 << 11);
1354 swd
|= (env
->fpstt
& 7) << 11;
1356 for (i
= 0; i
< 8; ++i
) {
1357 twd
|= (!env
->fptags
[i
]) << i
;
1359 xsave
->legacy
.fcw
= cwd
;
1360 xsave
->legacy
.fsw
= swd
;
1361 xsave
->legacy
.ftw
= twd
;
1362 xsave
->legacy
.fpop
= env
->fpop
;
1363 xsave
->legacy
.fpip
= env
->fpip
;
1364 xsave
->legacy
.fpdp
= env
->fpdp
;
1365 memcpy(&xsave
->legacy
.fpregs
, env
->fpregs
,
1366 sizeof env
->fpregs
);
1367 xsave
->legacy
.mxcsr
= env
->mxcsr
;
1368 xsave
->header
.xstate_bv
= env
->xstate_bv
;
1369 memcpy(&xsave
->bndreg_state
.bnd_regs
, env
->bnd_regs
,
1370 sizeof env
->bnd_regs
);
1371 xsave
->bndcsr_state
.bndcsr
= env
->bndcs_regs
;
1372 memcpy(&xsave
->opmask_state
.opmask_regs
, env
->opmask_regs
,
1373 sizeof env
->opmask_regs
);
1375 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1376 uint8_t *xmm
= xsave
->legacy
.xmm_regs
[i
];
1377 uint8_t *ymmh
= xsave
->avx_state
.ymmh
[i
];
1378 uint8_t *zmmh
= xsave
->zmm_hi256_state
.zmm_hi256
[i
];
1379 stq_p(xmm
, env
->xmm_regs
[i
].ZMM_Q(0));
1380 stq_p(xmm
+8, env
->xmm_regs
[i
].ZMM_Q(1));
1381 stq_p(ymmh
, env
->xmm_regs
[i
].ZMM_Q(2));
1382 stq_p(ymmh
+8, env
->xmm_regs
[i
].ZMM_Q(3));
1383 stq_p(zmmh
, env
->xmm_regs
[i
].ZMM_Q(4));
1384 stq_p(zmmh
+8, env
->xmm_regs
[i
].ZMM_Q(5));
1385 stq_p(zmmh
+16, env
->xmm_regs
[i
].ZMM_Q(6));
1386 stq_p(zmmh
+24, env
->xmm_regs
[i
].ZMM_Q(7));
1389 #ifdef TARGET_X86_64
1390 memcpy(&xsave
->hi16_zmm_state
.hi16_zmm
, &env
->xmm_regs
[16],
1391 16 * sizeof env
->xmm_regs
[16]);
1392 memcpy(&xsave
->pkru_state
, &env
->pkru
, sizeof env
->pkru
);
1394 r
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1398 static int kvm_put_xcrs(X86CPU
*cpu
)
1400 CPUX86State
*env
= &cpu
->env
;
1401 struct kvm_xcrs xcrs
= {};
1409 xcrs
.xcrs
[0].xcr
= 0;
1410 xcrs
.xcrs
[0].value
= env
->xcr0
;
1411 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1414 static int kvm_put_sregs(X86CPU
*cpu
)
1416 CPUX86State
*env
= &cpu
->env
;
1417 struct kvm_sregs sregs
;
1419 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1420 if (env
->interrupt_injected
>= 0) {
1421 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1422 (uint64_t)1 << (env
->interrupt_injected
% 64);
1425 if ((env
->eflags
& VM_MASK
)) {
1426 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1427 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1428 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1429 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1430 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1431 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1433 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1434 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1435 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1436 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1437 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1438 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1441 set_seg(&sregs
.tr
, &env
->tr
);
1442 set_seg(&sregs
.ldt
, &env
->ldt
);
1444 sregs
.idt
.limit
= env
->idt
.limit
;
1445 sregs
.idt
.base
= env
->idt
.base
;
1446 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1447 sregs
.gdt
.limit
= env
->gdt
.limit
;
1448 sregs
.gdt
.base
= env
->gdt
.base
;
1449 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1451 sregs
.cr0
= env
->cr
[0];
1452 sregs
.cr2
= env
->cr
[2];
1453 sregs
.cr3
= env
->cr
[3];
1454 sregs
.cr4
= env
->cr
[4];
1456 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1457 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1459 sregs
.efer
= env
->efer
;
1461 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1464 static void kvm_msr_buf_reset(X86CPU
*cpu
)
1466 memset(cpu
->kvm_msr_buf
, 0, MSR_BUF_SIZE
);
1469 static void kvm_msr_entry_add(X86CPU
*cpu
, uint32_t index
, uint64_t value
)
1471 struct kvm_msrs
*msrs
= cpu
->kvm_msr_buf
;
1472 void *limit
= ((void *)msrs
) + MSR_BUF_SIZE
;
1473 struct kvm_msr_entry
*entry
= &msrs
->entries
[msrs
->nmsrs
];
1475 assert((void *)(entry
+ 1) <= limit
);
1477 entry
->index
= index
;
1478 entry
->reserved
= 0;
1479 entry
->data
= value
;
1483 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1485 CPUX86State
*env
= &cpu
->env
;
1488 if (!has_msr_tsc_deadline
) {
1492 kvm_msr_buf_reset(cpu
);
1493 kvm_msr_entry_add(cpu
, MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1495 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1505 * Provide a separate write service for the feature control MSR in order to
1506 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1507 * before writing any other state because forcibly leaving nested mode
1508 * invalidates the VCPU state.
1510 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1514 if (!has_msr_feature_control
) {
1518 kvm_msr_buf_reset(cpu
);
1519 kvm_msr_entry_add(cpu
, MSR_IA32_FEATURE_CONTROL
,
1520 cpu
->env
.msr_ia32_feature_control
);
1522 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1531 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1533 CPUX86State
*env
= &cpu
->env
;
1537 kvm_msr_buf_reset(cpu
);
1539 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1540 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1541 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1542 kvm_msr_entry_add(cpu
, MSR_PAT
, env
->pat
);
1544 kvm_msr_entry_add(cpu
, MSR_STAR
, env
->star
);
1546 if (has_msr_hsave_pa
) {
1547 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, env
->vm_hsave
);
1549 if (has_msr_tsc_aux
) {
1550 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, env
->tsc_aux
);
1552 if (has_msr_tsc_adjust
) {
1553 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, env
->tsc_adjust
);
1555 if (has_msr_misc_enable
) {
1556 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
,
1557 env
->msr_ia32_misc_enable
);
1559 if (has_msr_smbase
) {
1560 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, env
->smbase
);
1562 if (has_msr_bndcfgs
) {
1563 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
1566 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, env
->xss
);
1568 #ifdef TARGET_X86_64
1569 if (lm_capable_kernel
) {
1570 kvm_msr_entry_add(cpu
, MSR_CSTAR
, env
->cstar
);
1571 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, env
->kernelgsbase
);
1572 kvm_msr_entry_add(cpu
, MSR_FMASK
, env
->fmask
);
1573 kvm_msr_entry_add(cpu
, MSR_LSTAR
, env
->lstar
);
1577 * The following MSRs have side effects on the guest or are too heavy
1578 * for normal writeback. Limit them to reset or full state updates.
1580 if (level
>= KVM_PUT_RESET_STATE
) {
1581 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, env
->tsc
);
1582 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, env
->system_time_msr
);
1583 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1584 if (has_msr_async_pf_en
) {
1585 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, env
->async_pf_en_msr
);
1587 if (has_msr_pv_eoi_en
) {
1588 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, env
->pv_eoi_en_msr
);
1590 if (has_msr_kvm_steal_time
) {
1591 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, env
->steal_time_msr
);
1593 if (has_msr_architectural_pmu
) {
1594 /* Stop the counter. */
1595 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1596 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1598 /* Set the counter values. */
1599 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1600 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
,
1601 env
->msr_fixed_counters
[i
]);
1603 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1604 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
,
1605 env
->msr_gp_counters
[i
]);
1606 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
,
1607 env
->msr_gp_evtsel
[i
]);
1609 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
,
1610 env
->msr_global_status
);
1611 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1612 env
->msr_global_ovf_ctrl
);
1614 /* Now start the PMU. */
1615 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
,
1616 env
->msr_fixed_ctr_ctrl
);
1617 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
,
1618 env
->msr_global_ctrl
);
1620 if (has_msr_hv_hypercall
) {
1621 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
,
1622 env
->msr_hv_guest_os_id
);
1623 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
,
1624 env
->msr_hv_hypercall
);
1626 if (has_msr_hv_vapic
) {
1627 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
,
1630 if (has_msr_hv_tsc
) {
1631 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, env
->msr_hv_tsc
);
1633 if (has_msr_hv_crash
) {
1636 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++)
1637 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
,
1638 env
->msr_hv_crash_params
[j
]);
1640 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_CTL
,
1641 HV_X64_MSR_CRASH_CTL_NOTIFY
);
1643 if (has_msr_hv_runtime
) {
1644 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, env
->msr_hv_runtime
);
1646 if (cpu
->hyperv_synic
) {
1649 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
,
1650 env
->msr_hv_synic_control
);
1651 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
,
1652 env
->msr_hv_synic_version
);
1653 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
,
1654 env
->msr_hv_synic_evt_page
);
1655 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
,
1656 env
->msr_hv_synic_msg_page
);
1658 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_synic_sint
); j
++) {
1659 kvm_msr_entry_add(cpu
, HV_X64_MSR_SINT0
+ j
,
1660 env
->msr_hv_synic_sint
[j
]);
1663 if (has_msr_hv_stimer
) {
1666 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_config
); j
++) {
1667 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_CONFIG
+ j
* 2,
1668 env
->msr_hv_stimer_config
[j
]);
1671 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_count
); j
++) {
1672 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_COUNT
+ j
* 2,
1673 env
->msr_hv_stimer_count
[j
]);
1677 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, env
->mtrr_deftype
);
1678 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
1679 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
1680 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
1681 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
1682 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
1683 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
1684 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
1685 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
1686 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
1687 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
1688 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
1689 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1690 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
),
1691 env
->mtrr_var
[i
].base
);
1692 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
),
1693 env
->mtrr_var
[i
].mask
);
1697 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1698 * kvm_put_msr_feature_control. */
1703 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, env
->mcg_status
);
1704 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, env
->mcg_ctl
);
1705 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1706 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1710 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1715 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
1720 static int kvm_get_fpu(X86CPU
*cpu
)
1722 CPUX86State
*env
= &cpu
->env
;
1726 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
1731 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1732 env
->fpus
= fpu
.fsw
;
1733 env
->fpuc
= fpu
.fcw
;
1734 env
->fpop
= fpu
.last_opcode
;
1735 env
->fpip
= fpu
.last_ip
;
1736 env
->fpdp
= fpu
.last_dp
;
1737 for (i
= 0; i
< 8; ++i
) {
1738 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1740 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1741 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1742 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
1743 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
1745 env
->mxcsr
= fpu
.mxcsr
;
1750 static int kvm_get_xsave(X86CPU
*cpu
)
1752 CPUX86State
*env
= &cpu
->env
;
1753 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1755 uint16_t cwd
, swd
, twd
;
1758 return kvm_get_fpu(cpu
);
1761 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
1766 cwd
= xsave
->legacy
.fcw
;
1767 swd
= xsave
->legacy
.fsw
;
1768 twd
= xsave
->legacy
.ftw
;
1769 env
->fpop
= xsave
->legacy
.fpop
;
1770 env
->fpstt
= (swd
>> 11) & 7;
1773 for (i
= 0; i
< 8; ++i
) {
1774 env
->fptags
[i
] = !((twd
>> i
) & 1);
1776 env
->fpip
= xsave
->legacy
.fpip
;
1777 env
->fpdp
= xsave
->legacy
.fpdp
;
1778 env
->mxcsr
= xsave
->legacy
.mxcsr
;
1779 memcpy(env
->fpregs
, &xsave
->legacy
.fpregs
,
1780 sizeof env
->fpregs
);
1781 env
->xstate_bv
= xsave
->header
.xstate_bv
;
1782 memcpy(env
->bnd_regs
, &xsave
->bndreg_state
.bnd_regs
,
1783 sizeof env
->bnd_regs
);
1784 env
->bndcs_regs
= xsave
->bndcsr_state
.bndcsr
;
1785 memcpy(env
->opmask_regs
, &xsave
->opmask_state
.opmask_regs
,
1786 sizeof env
->opmask_regs
);
1788 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1789 uint8_t *xmm
= xsave
->legacy
.xmm_regs
[i
];
1790 uint8_t *ymmh
= xsave
->avx_state
.ymmh
[i
];
1791 uint8_t *zmmh
= xsave
->zmm_hi256_state
.zmm_hi256
[i
];
1792 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(xmm
);
1793 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(xmm
+8);
1794 env
->xmm_regs
[i
].ZMM_Q(2) = ldq_p(ymmh
);
1795 env
->xmm_regs
[i
].ZMM_Q(3) = ldq_p(ymmh
+8);
1796 env
->xmm_regs
[i
].ZMM_Q(4) = ldq_p(zmmh
);
1797 env
->xmm_regs
[i
].ZMM_Q(5) = ldq_p(zmmh
+8);
1798 env
->xmm_regs
[i
].ZMM_Q(6) = ldq_p(zmmh
+16);
1799 env
->xmm_regs
[i
].ZMM_Q(7) = ldq_p(zmmh
+24);
1802 #ifdef TARGET_X86_64
1803 memcpy(&env
->xmm_regs
[16], &xsave
->hi16_zmm_state
.hi16_zmm
,
1804 16 * sizeof env
->xmm_regs
[16]);
1805 memcpy(&env
->pkru
, &xsave
->pkru_state
, sizeof env
->pkru
);
1810 static int kvm_get_xcrs(X86CPU
*cpu
)
1812 CPUX86State
*env
= &cpu
->env
;
1814 struct kvm_xcrs xcrs
;
1820 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
1825 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1826 /* Only support xcr0 now */
1827 if (xcrs
.xcrs
[i
].xcr
== 0) {
1828 env
->xcr0
= xcrs
.xcrs
[i
].value
;
1835 static int kvm_get_sregs(X86CPU
*cpu
)
1837 CPUX86State
*env
= &cpu
->env
;
1838 struct kvm_sregs sregs
;
1842 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1847 /* There can only be one pending IRQ set in the bitmap at a time, so try
1848 to find it and save its number instead (-1 for none). */
1849 env
->interrupt_injected
= -1;
1850 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1851 if (sregs
.interrupt_bitmap
[i
]) {
1852 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1853 env
->interrupt_injected
= i
* 64 + bit
;
1858 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1859 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1860 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1861 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1862 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1863 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1865 get_seg(&env
->tr
, &sregs
.tr
);
1866 get_seg(&env
->ldt
, &sregs
.ldt
);
1868 env
->idt
.limit
= sregs
.idt
.limit
;
1869 env
->idt
.base
= sregs
.idt
.base
;
1870 env
->gdt
.limit
= sregs
.gdt
.limit
;
1871 env
->gdt
.base
= sregs
.gdt
.base
;
1873 env
->cr
[0] = sregs
.cr0
;
1874 env
->cr
[2] = sregs
.cr2
;
1875 env
->cr
[3] = sregs
.cr3
;
1876 env
->cr
[4] = sregs
.cr4
;
1878 env
->efer
= sregs
.efer
;
1880 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1882 #define HFLAG_COPY_MASK \
1883 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1884 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1885 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1886 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1888 hflags
= env
->hflags
& HFLAG_COPY_MASK
;
1889 hflags
|= (env
->segs
[R_SS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1890 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1891 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1892 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1893 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1895 if (env
->cr
[4] & CR4_OSFXSR_MASK
) {
1896 hflags
|= HF_OSFXSR_MASK
;
1899 if (env
->efer
& MSR_EFER_LMA
) {
1900 hflags
|= HF_LMA_MASK
;
1903 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1904 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1906 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1907 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1908 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1909 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1910 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1911 !(hflags
& HF_CS32_MASK
)) {
1912 hflags
|= HF_ADDSEG_MASK
;
1914 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1915 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
1918 env
->hflags
= hflags
;
1923 static int kvm_get_msrs(X86CPU
*cpu
)
1925 CPUX86State
*env
= &cpu
->env
;
1926 struct kvm_msr_entry
*msrs
= cpu
->kvm_msr_buf
->entries
;
1929 kvm_msr_buf_reset(cpu
);
1931 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, 0);
1932 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, 0);
1933 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, 0);
1934 kvm_msr_entry_add(cpu
, MSR_PAT
, 0);
1936 kvm_msr_entry_add(cpu
, MSR_STAR
, 0);
1938 if (has_msr_hsave_pa
) {
1939 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, 0);
1941 if (has_msr_tsc_aux
) {
1942 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, 0);
1944 if (has_msr_tsc_adjust
) {
1945 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, 0);
1947 if (has_msr_tsc_deadline
) {
1948 kvm_msr_entry_add(cpu
, MSR_IA32_TSCDEADLINE
, 0);
1950 if (has_msr_misc_enable
) {
1951 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
, 0);
1953 if (has_msr_smbase
) {
1954 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, 0);
1956 if (has_msr_feature_control
) {
1957 kvm_msr_entry_add(cpu
, MSR_IA32_FEATURE_CONTROL
, 0);
1959 if (has_msr_bndcfgs
) {
1960 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, 0);
1963 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, 0);
1967 if (!env
->tsc_valid
) {
1968 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, 0);
1969 env
->tsc_valid
= !runstate_is_running();
1972 #ifdef TARGET_X86_64
1973 if (lm_capable_kernel
) {
1974 kvm_msr_entry_add(cpu
, MSR_CSTAR
, 0);
1975 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, 0);
1976 kvm_msr_entry_add(cpu
, MSR_FMASK
, 0);
1977 kvm_msr_entry_add(cpu
, MSR_LSTAR
, 0);
1980 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, 0);
1981 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, 0);
1982 if (has_msr_async_pf_en
) {
1983 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, 0);
1985 if (has_msr_pv_eoi_en
) {
1986 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, 0);
1988 if (has_msr_kvm_steal_time
) {
1989 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, 0);
1991 if (has_msr_architectural_pmu
) {
1992 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1993 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1994 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
, 0);
1995 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
, 0);
1996 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1997 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
, 0);
1999 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
2000 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
, 0);
2001 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
, 0);
2006 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, 0);
2007 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, 0);
2008 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
2009 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, 0);
2013 if (has_msr_hv_hypercall
) {
2014 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
, 0);
2015 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
, 0);
2017 if (has_msr_hv_vapic
) {
2018 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
, 0);
2020 if (has_msr_hv_tsc
) {
2021 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, 0);
2023 if (has_msr_hv_crash
) {
2026 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++) {
2027 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
, 0);
2030 if (has_msr_hv_runtime
) {
2031 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, 0);
2033 if (cpu
->hyperv_synic
) {
2036 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
, 0);
2037 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
, 0);
2038 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
, 0);
2039 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
, 0);
2040 for (msr
= HV_X64_MSR_SINT0
; msr
<= HV_X64_MSR_SINT15
; msr
++) {
2041 kvm_msr_entry_add(cpu
, msr
, 0);
2044 if (has_msr_hv_stimer
) {
2047 for (msr
= HV_X64_MSR_STIMER0_CONFIG
; msr
<= HV_X64_MSR_STIMER3_COUNT
;
2049 kvm_msr_entry_add(cpu
, msr
, 0);
2053 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, 0);
2054 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, 0);
2055 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, 0);
2056 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, 0);
2057 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, 0);
2058 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, 0);
2059 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, 0);
2060 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, 0);
2061 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, 0);
2062 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, 0);
2063 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, 0);
2064 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, 0);
2065 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2066 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
), 0);
2067 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), 0);
2071 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, cpu
->kvm_msr_buf
);
2076 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
2077 for (i
= 0; i
< ret
; i
++) {
2078 uint32_t index
= msrs
[i
].index
;
2080 case MSR_IA32_SYSENTER_CS
:
2081 env
->sysenter_cs
= msrs
[i
].data
;
2083 case MSR_IA32_SYSENTER_ESP
:
2084 env
->sysenter_esp
= msrs
[i
].data
;
2086 case MSR_IA32_SYSENTER_EIP
:
2087 env
->sysenter_eip
= msrs
[i
].data
;
2090 env
->pat
= msrs
[i
].data
;
2093 env
->star
= msrs
[i
].data
;
2095 #ifdef TARGET_X86_64
2097 env
->cstar
= msrs
[i
].data
;
2099 case MSR_KERNELGSBASE
:
2100 env
->kernelgsbase
= msrs
[i
].data
;
2103 env
->fmask
= msrs
[i
].data
;
2106 env
->lstar
= msrs
[i
].data
;
2110 env
->tsc
= msrs
[i
].data
;
2113 env
->tsc_aux
= msrs
[i
].data
;
2115 case MSR_TSC_ADJUST
:
2116 env
->tsc_adjust
= msrs
[i
].data
;
2118 case MSR_IA32_TSCDEADLINE
:
2119 env
->tsc_deadline
= msrs
[i
].data
;
2121 case MSR_VM_HSAVE_PA
:
2122 env
->vm_hsave
= msrs
[i
].data
;
2124 case MSR_KVM_SYSTEM_TIME
:
2125 env
->system_time_msr
= msrs
[i
].data
;
2127 case MSR_KVM_WALL_CLOCK
:
2128 env
->wall_clock_msr
= msrs
[i
].data
;
2130 case MSR_MCG_STATUS
:
2131 env
->mcg_status
= msrs
[i
].data
;
2134 env
->mcg_ctl
= msrs
[i
].data
;
2136 case MSR_IA32_MISC_ENABLE
:
2137 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
2139 case MSR_IA32_SMBASE
:
2140 env
->smbase
= msrs
[i
].data
;
2142 case MSR_IA32_FEATURE_CONTROL
:
2143 env
->msr_ia32_feature_control
= msrs
[i
].data
;
2145 case MSR_IA32_BNDCFGS
:
2146 env
->msr_bndcfgs
= msrs
[i
].data
;
2149 env
->xss
= msrs
[i
].data
;
2152 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
2153 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
2154 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
2157 case MSR_KVM_ASYNC_PF_EN
:
2158 env
->async_pf_en_msr
= msrs
[i
].data
;
2160 case MSR_KVM_PV_EOI_EN
:
2161 env
->pv_eoi_en_msr
= msrs
[i
].data
;
2163 case MSR_KVM_STEAL_TIME
:
2164 env
->steal_time_msr
= msrs
[i
].data
;
2166 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
2167 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
2169 case MSR_CORE_PERF_GLOBAL_CTRL
:
2170 env
->msr_global_ctrl
= msrs
[i
].data
;
2172 case MSR_CORE_PERF_GLOBAL_STATUS
:
2173 env
->msr_global_status
= msrs
[i
].data
;
2175 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
2176 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
2178 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
2179 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
2181 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
2182 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
2184 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
2185 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
2187 case HV_X64_MSR_HYPERCALL
:
2188 env
->msr_hv_hypercall
= msrs
[i
].data
;
2190 case HV_X64_MSR_GUEST_OS_ID
:
2191 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
2193 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2194 env
->msr_hv_vapic
= msrs
[i
].data
;
2196 case HV_X64_MSR_REFERENCE_TSC
:
2197 env
->msr_hv_tsc
= msrs
[i
].data
;
2199 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2200 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
2202 case HV_X64_MSR_VP_RUNTIME
:
2203 env
->msr_hv_runtime
= msrs
[i
].data
;
2205 case HV_X64_MSR_SCONTROL
:
2206 env
->msr_hv_synic_control
= msrs
[i
].data
;
2208 case HV_X64_MSR_SVERSION
:
2209 env
->msr_hv_synic_version
= msrs
[i
].data
;
2211 case HV_X64_MSR_SIEFP
:
2212 env
->msr_hv_synic_evt_page
= msrs
[i
].data
;
2214 case HV_X64_MSR_SIMP
:
2215 env
->msr_hv_synic_msg_page
= msrs
[i
].data
;
2217 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
2218 env
->msr_hv_synic_sint
[index
- HV_X64_MSR_SINT0
] = msrs
[i
].data
;
2220 case HV_X64_MSR_STIMER0_CONFIG
:
2221 case HV_X64_MSR_STIMER1_CONFIG
:
2222 case HV_X64_MSR_STIMER2_CONFIG
:
2223 case HV_X64_MSR_STIMER3_CONFIG
:
2224 env
->msr_hv_stimer_config
[(index
- HV_X64_MSR_STIMER0_CONFIG
)/2] =
2227 case HV_X64_MSR_STIMER0_COUNT
:
2228 case HV_X64_MSR_STIMER1_COUNT
:
2229 case HV_X64_MSR_STIMER2_COUNT
:
2230 case HV_X64_MSR_STIMER3_COUNT
:
2231 env
->msr_hv_stimer_count
[(index
- HV_X64_MSR_STIMER0_COUNT
)/2] =
2234 case MSR_MTRRdefType
:
2235 env
->mtrr_deftype
= msrs
[i
].data
;
2237 case MSR_MTRRfix64K_00000
:
2238 env
->mtrr_fixed
[0] = msrs
[i
].data
;
2240 case MSR_MTRRfix16K_80000
:
2241 env
->mtrr_fixed
[1] = msrs
[i
].data
;
2243 case MSR_MTRRfix16K_A0000
:
2244 env
->mtrr_fixed
[2] = msrs
[i
].data
;
2246 case MSR_MTRRfix4K_C0000
:
2247 env
->mtrr_fixed
[3] = msrs
[i
].data
;
2249 case MSR_MTRRfix4K_C8000
:
2250 env
->mtrr_fixed
[4] = msrs
[i
].data
;
2252 case MSR_MTRRfix4K_D0000
:
2253 env
->mtrr_fixed
[5] = msrs
[i
].data
;
2255 case MSR_MTRRfix4K_D8000
:
2256 env
->mtrr_fixed
[6] = msrs
[i
].data
;
2258 case MSR_MTRRfix4K_E0000
:
2259 env
->mtrr_fixed
[7] = msrs
[i
].data
;
2261 case MSR_MTRRfix4K_E8000
:
2262 env
->mtrr_fixed
[8] = msrs
[i
].data
;
2264 case MSR_MTRRfix4K_F0000
:
2265 env
->mtrr_fixed
[9] = msrs
[i
].data
;
2267 case MSR_MTRRfix4K_F8000
:
2268 env
->mtrr_fixed
[10] = msrs
[i
].data
;
2270 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
2272 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
;
2274 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
2283 static int kvm_put_mp_state(X86CPU
*cpu
)
2285 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
2287 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2290 static int kvm_get_mp_state(X86CPU
*cpu
)
2292 CPUState
*cs
= CPU(cpu
);
2293 CPUX86State
*env
= &cpu
->env
;
2294 struct kvm_mp_state mp_state
;
2297 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
2301 env
->mp_state
= mp_state
.mp_state
;
2302 if (kvm_irqchip_in_kernel()) {
2303 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
2308 static int kvm_get_apic(X86CPU
*cpu
)
2310 DeviceState
*apic
= cpu
->apic_state
;
2311 struct kvm_lapic_state kapic
;
2314 if (apic
&& kvm_irqchip_in_kernel()) {
2315 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
2320 kvm_get_apic_state(apic
, &kapic
);
2325 static int kvm_put_apic(X86CPU
*cpu
)
2327 DeviceState
*apic
= cpu
->apic_state
;
2328 struct kvm_lapic_state kapic
;
2330 if (apic
&& kvm_irqchip_in_kernel()) {
2331 kvm_put_apic_state(apic
, &kapic
);
2333 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_LAPIC
, &kapic
);
2338 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
2340 CPUState
*cs
= CPU(cpu
);
2341 CPUX86State
*env
= &cpu
->env
;
2342 struct kvm_vcpu_events events
= {};
2344 if (!kvm_has_vcpu_events()) {
2348 events
.exception
.injected
= (env
->exception_injected
>= 0);
2349 events
.exception
.nr
= env
->exception_injected
;
2350 events
.exception
.has_error_code
= env
->has_error_code
;
2351 events
.exception
.error_code
= env
->error_code
;
2352 events
.exception
.pad
= 0;
2354 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
2355 events
.interrupt
.nr
= env
->interrupt_injected
;
2356 events
.interrupt
.soft
= env
->soft_interrupt
;
2358 events
.nmi
.injected
= env
->nmi_injected
;
2359 events
.nmi
.pending
= env
->nmi_pending
;
2360 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
2363 events
.sipi_vector
= env
->sipi_vector
;
2365 if (has_msr_smbase
) {
2366 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
2367 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
2368 if (kvm_irqchip_in_kernel()) {
2369 /* As soon as these are moved to the kernel, remove them
2370 * from cs->interrupt_request.
2372 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
2373 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
2374 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
2376 /* Keep these in cs->interrupt_request. */
2377 events
.smi
.pending
= 0;
2378 events
.smi
.latched_init
= 0;
2380 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
2384 if (level
>= KVM_PUT_RESET_STATE
) {
2386 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
2389 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
2392 static int kvm_get_vcpu_events(X86CPU
*cpu
)
2394 CPUX86State
*env
= &cpu
->env
;
2395 struct kvm_vcpu_events events
;
2398 if (!kvm_has_vcpu_events()) {
2402 memset(&events
, 0, sizeof(events
));
2403 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
2407 env
->exception_injected
=
2408 events
.exception
.injected
? events
.exception
.nr
: -1;
2409 env
->has_error_code
= events
.exception
.has_error_code
;
2410 env
->error_code
= events
.exception
.error_code
;
2412 env
->interrupt_injected
=
2413 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
2414 env
->soft_interrupt
= events
.interrupt
.soft
;
2416 env
->nmi_injected
= events
.nmi
.injected
;
2417 env
->nmi_pending
= events
.nmi
.pending
;
2418 if (events
.nmi
.masked
) {
2419 env
->hflags2
|= HF2_NMI_MASK
;
2421 env
->hflags2
&= ~HF2_NMI_MASK
;
2424 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
2425 if (events
.smi
.smm
) {
2426 env
->hflags
|= HF_SMM_MASK
;
2428 env
->hflags
&= ~HF_SMM_MASK
;
2430 if (events
.smi
.pending
) {
2431 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2433 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2435 if (events
.smi
.smm_inside_nmi
) {
2436 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
2438 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
2440 if (events
.smi
.latched_init
) {
2441 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2443 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2447 env
->sipi_vector
= events
.sipi_vector
;
2452 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
2454 CPUState
*cs
= CPU(cpu
);
2455 CPUX86State
*env
= &cpu
->env
;
2457 unsigned long reinject_trap
= 0;
2459 if (!kvm_has_vcpu_events()) {
2460 if (env
->exception_injected
== 1) {
2461 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2462 } else if (env
->exception_injected
== 3) {
2463 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
2465 env
->exception_injected
= -1;
2469 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2470 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2471 * by updating the debug state once again if single-stepping is on.
2472 * Another reason to call kvm_update_guest_debug here is a pending debug
2473 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2474 * reinject them via SET_GUEST_DEBUG.
2476 if (reinject_trap
||
2477 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
2478 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
2483 static int kvm_put_debugregs(X86CPU
*cpu
)
2485 CPUX86State
*env
= &cpu
->env
;
2486 struct kvm_debugregs dbgregs
;
2489 if (!kvm_has_debugregs()) {
2493 for (i
= 0; i
< 4; i
++) {
2494 dbgregs
.db
[i
] = env
->dr
[i
];
2496 dbgregs
.dr6
= env
->dr
[6];
2497 dbgregs
.dr7
= env
->dr
[7];
2500 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
2503 static int kvm_get_debugregs(X86CPU
*cpu
)
2505 CPUX86State
*env
= &cpu
->env
;
2506 struct kvm_debugregs dbgregs
;
2509 if (!kvm_has_debugregs()) {
2513 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
2517 for (i
= 0; i
< 4; i
++) {
2518 env
->dr
[i
] = dbgregs
.db
[i
];
2520 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
2521 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
2526 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
2528 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2531 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
2533 if (level
>= KVM_PUT_RESET_STATE
) {
2534 ret
= kvm_put_msr_feature_control(x86_cpu
);
2540 if (level
== KVM_PUT_FULL_STATE
) {
2541 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2542 * because TSC frequency mismatch shouldn't abort migration,
2543 * unless the user explicitly asked for a more strict TSC
2544 * setting (e.g. using an explicit "tsc-freq" option).
2546 kvm_arch_set_tsc_khz(cpu
);
2549 ret
= kvm_getput_regs(x86_cpu
, 1);
2553 ret
= kvm_put_xsave(x86_cpu
);
2557 ret
= kvm_put_xcrs(x86_cpu
);
2561 ret
= kvm_put_sregs(x86_cpu
);
2565 /* must be before kvm_put_msrs */
2566 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
2570 ret
= kvm_put_msrs(x86_cpu
, level
);
2574 if (level
>= KVM_PUT_RESET_STATE
) {
2575 ret
= kvm_put_mp_state(x86_cpu
);
2579 ret
= kvm_put_apic(x86_cpu
);
2585 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
2590 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
2594 ret
= kvm_put_debugregs(x86_cpu
);
2599 ret
= kvm_guest_debug_workarounds(x86_cpu
);
2606 int kvm_arch_get_registers(CPUState
*cs
)
2608 X86CPU
*cpu
= X86_CPU(cs
);
2611 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
2613 ret
= kvm_getput_regs(cpu
, 0);
2617 ret
= kvm_get_xsave(cpu
);
2621 ret
= kvm_get_xcrs(cpu
);
2625 ret
= kvm_get_sregs(cpu
);
2629 ret
= kvm_get_msrs(cpu
);
2633 ret
= kvm_get_mp_state(cpu
);
2637 ret
= kvm_get_apic(cpu
);
2641 ret
= kvm_get_vcpu_events(cpu
);
2645 ret
= kvm_get_debugregs(cpu
);
2651 cpu_sync_bndcs_hflags(&cpu
->env
);
2655 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
2657 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2658 CPUX86State
*env
= &x86_cpu
->env
;
2662 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
2663 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
2664 qemu_mutex_lock_iothread();
2665 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
2666 qemu_mutex_unlock_iothread();
2667 DPRINTF("injected NMI\n");
2668 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
2670 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
2674 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
2675 qemu_mutex_lock_iothread();
2676 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
2677 qemu_mutex_unlock_iothread();
2678 DPRINTF("injected SMI\n");
2679 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
2681 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
2687 if (!kvm_pic_in_kernel()) {
2688 qemu_mutex_lock_iothread();
2691 /* Force the VCPU out of its inner loop to process any INIT requests
2692 * or (for userspace APIC, but it is cheap to combine the checks here)
2693 * pending TPR access reports.
2695 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
2696 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2697 !(env
->hflags
& HF_SMM_MASK
)) {
2698 cpu
->exit_request
= 1;
2700 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2701 cpu
->exit_request
= 1;
2705 if (!kvm_pic_in_kernel()) {
2706 /* Try to inject an interrupt if the guest can accept it */
2707 if (run
->ready_for_interrupt_injection
&&
2708 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2709 (env
->eflags
& IF_MASK
)) {
2712 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
2713 irq
= cpu_get_pic_interrupt(env
);
2715 struct kvm_interrupt intr
;
2718 DPRINTF("injected interrupt %d\n", irq
);
2719 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
2722 "KVM: injection failed, interrupt lost (%s)\n",
2728 /* If we have an interrupt but the guest is not ready to receive an
2729 * interrupt, request an interrupt window exit. This will
2730 * cause a return to userspace as soon as the guest is ready to
2731 * receive interrupts. */
2732 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
2733 run
->request_interrupt_window
= 1;
2735 run
->request_interrupt_window
= 0;
2738 DPRINTF("setting tpr\n");
2739 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
2741 qemu_mutex_unlock_iothread();
2745 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
2747 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2748 CPUX86State
*env
= &x86_cpu
->env
;
2750 if (run
->flags
& KVM_RUN_X86_SMM
) {
2751 env
->hflags
|= HF_SMM_MASK
;
2753 env
->hflags
&= HF_SMM_MASK
;
2756 env
->eflags
|= IF_MASK
;
2758 env
->eflags
&= ~IF_MASK
;
2761 /* We need to protect the apic state against concurrent accesses from
2762 * different threads in case the userspace irqchip is used. */
2763 if (!kvm_irqchip_in_kernel()) {
2764 qemu_mutex_lock_iothread();
2766 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
2767 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
2768 if (!kvm_irqchip_in_kernel()) {
2769 qemu_mutex_unlock_iothread();
2771 return cpu_get_mem_attrs(env
);
2774 int kvm_arch_process_async_events(CPUState
*cs
)
2776 X86CPU
*cpu
= X86_CPU(cs
);
2777 CPUX86State
*env
= &cpu
->env
;
2779 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
2780 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2781 assert(env
->mcg_cap
);
2783 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
2785 kvm_cpu_synchronize_state(cs
);
2787 if (env
->exception_injected
== EXCP08_DBLE
) {
2788 /* this means triple fault */
2789 qemu_system_reset_request();
2790 cs
->exit_request
= 1;
2793 env
->exception_injected
= EXCP12_MCHK
;
2794 env
->has_error_code
= 0;
2797 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
2798 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
2802 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2803 !(env
->hflags
& HF_SMM_MASK
)) {
2804 kvm_cpu_synchronize_state(cs
);
2808 if (kvm_irqchip_in_kernel()) {
2812 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
2813 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
2814 apic_poll_irq(cpu
->apic_state
);
2816 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2817 (env
->eflags
& IF_MASK
)) ||
2818 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2821 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
2822 kvm_cpu_synchronize_state(cs
);
2825 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2826 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
2827 kvm_cpu_synchronize_state(cs
);
2828 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
2829 env
->tpr_access_type
);
2835 static int kvm_handle_halt(X86CPU
*cpu
)
2837 CPUState
*cs
= CPU(cpu
);
2838 CPUX86State
*env
= &cpu
->env
;
2840 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2841 (env
->eflags
& IF_MASK
)) &&
2842 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2850 static int kvm_handle_tpr_access(X86CPU
*cpu
)
2852 CPUState
*cs
= CPU(cpu
);
2853 struct kvm_run
*run
= cs
->kvm_run
;
2855 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
2856 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
2861 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2863 static const uint8_t int3
= 0xcc;
2865 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
2866 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
2872 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2876 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
2877 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
2889 static int nb_hw_breakpoint
;
2891 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
2895 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2896 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
2897 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
2904 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
2905 target_ulong len
, int type
)
2908 case GDB_BREAKPOINT_HW
:
2911 case GDB_WATCHPOINT_WRITE
:
2912 case GDB_WATCHPOINT_ACCESS
:
2919 if (addr
& (len
- 1)) {
2931 if (nb_hw_breakpoint
== 4) {
2934 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
2937 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
2938 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
2939 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
2945 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
2946 target_ulong len
, int type
)
2950 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
2955 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
2960 void kvm_arch_remove_all_hw_breakpoints(void)
2962 nb_hw_breakpoint
= 0;
2965 static CPUWatchpoint hw_watchpoint
;
2967 static int kvm_handle_debug(X86CPU
*cpu
,
2968 struct kvm_debug_exit_arch
*arch_info
)
2970 CPUState
*cs
= CPU(cpu
);
2971 CPUX86State
*env
= &cpu
->env
;
2975 if (arch_info
->exception
== 1) {
2976 if (arch_info
->dr6
& (1 << 14)) {
2977 if (cs
->singlestep_enabled
) {
2981 for (n
= 0; n
< 4; n
++) {
2982 if (arch_info
->dr6
& (1 << n
)) {
2983 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
2989 cs
->watchpoint_hit
= &hw_watchpoint
;
2990 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
2991 hw_watchpoint
.flags
= BP_MEM_WRITE
;
2995 cs
->watchpoint_hit
= &hw_watchpoint
;
2996 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
2997 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
3003 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
3007 cpu_synchronize_state(cs
);
3008 assert(env
->exception_injected
== -1);
3011 env
->exception_injected
= arch_info
->exception
;
3012 env
->has_error_code
= 0;
3018 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
3020 const uint8_t type_code
[] = {
3021 [GDB_BREAKPOINT_HW
] = 0x0,
3022 [GDB_WATCHPOINT_WRITE
] = 0x1,
3023 [GDB_WATCHPOINT_ACCESS
] = 0x3
3025 const uint8_t len_code
[] = {
3026 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3030 if (kvm_sw_breakpoints_active(cpu
)) {
3031 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
3033 if (nb_hw_breakpoint
> 0) {
3034 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
3035 dbg
->arch
.debugreg
[7] = 0x0600;
3036 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3037 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
3038 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
3039 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
3040 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
3045 static bool host_supports_vmx(void)
3047 uint32_t ecx
, unused
;
3049 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
3050 return ecx
& CPUID_EXT_VMX
;
3053 #define VMX_INVALID_GUEST_STATE 0x80000021
3055 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
3057 X86CPU
*cpu
= X86_CPU(cs
);
3061 switch (run
->exit_reason
) {
3063 DPRINTF("handle_hlt\n");
3064 qemu_mutex_lock_iothread();
3065 ret
= kvm_handle_halt(cpu
);
3066 qemu_mutex_unlock_iothread();
3068 case KVM_EXIT_SET_TPR
:
3071 case KVM_EXIT_TPR_ACCESS
:
3072 qemu_mutex_lock_iothread();
3073 ret
= kvm_handle_tpr_access(cpu
);
3074 qemu_mutex_unlock_iothread();
3076 case KVM_EXIT_FAIL_ENTRY
:
3077 code
= run
->fail_entry
.hardware_entry_failure_reason
;
3078 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
3080 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
3082 "\nIf you're running a guest on an Intel machine without "
3083 "unrestricted mode\n"
3084 "support, the failure can be most likely due to the guest "
3085 "entering an invalid\n"
3086 "state for Intel VT. For example, the guest maybe running "
3087 "in big real mode\n"
3088 "which is not supported on less recent Intel processors."
3093 case KVM_EXIT_EXCEPTION
:
3094 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
3095 run
->ex
.exception
, run
->ex
.error_code
);
3098 case KVM_EXIT_DEBUG
:
3099 DPRINTF("kvm_exit_debug\n");
3100 qemu_mutex_lock_iothread();
3101 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
3102 qemu_mutex_unlock_iothread();
3104 case KVM_EXIT_HYPERV
:
3105 ret
= kvm_hv_handle_exit(cpu
, &run
->hyperv
);
3107 case KVM_EXIT_IOAPIC_EOI
:
3108 ioapic_eoi_broadcast(run
->eoi
.vector
);
3112 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
3120 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
3122 X86CPU
*cpu
= X86_CPU(cs
);
3123 CPUX86State
*env
= &cpu
->env
;
3125 kvm_cpu_synchronize_state(cs
);
3126 return !(env
->cr
[0] & CR0_PE_MASK
) ||
3127 ((env
->segs
[R_CS
].selector
& 3) != 3);
3130 void kvm_arch_init_irq_routing(KVMState
*s
)
3132 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
3133 /* If kernel can't do irq routing, interrupt source
3134 * override 0->2 cannot be set up as required by HPET.
3135 * So we have to disable it.
3139 /* We know at this point that we're using the in-kernel
3140 * irqchip, so we can use irqfds, and on x86 we know
3141 * we can use msi via irqfd and GSI routing.
3143 kvm_msi_via_irqfd_allowed
= true;
3144 kvm_gsi_routing_allowed
= true;
3146 if (kvm_irqchip_is_split()) {
3149 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3150 MSI routes for signaling interrupts to the local apics. */
3151 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
3152 struct MSIMessage msg
= { 0x0, 0x0 };
3153 if (kvm_irqchip_add_msi_route(s
, msg
, NULL
) < 0) {
3154 error_report("Could not enable split IRQ mode.");
3161 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
3164 if (machine_kernel_irqchip_split(ms
)) {
3165 ret
= kvm_vm_enable_cap(s
, KVM_CAP_SPLIT_IRQCHIP
, 0, 24);
3167 error_report("Could not enable split irqchip mode: %s\n",
3171 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3172 kvm_split_irqchip
= true;
3180 /* Classic KVM device assignment interface. Will remain x86 only. */
3181 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
3182 uint32_t flags
, uint32_t *dev_id
)
3184 struct kvm_assigned_pci_dev dev_data
= {
3185 .segnr
= dev_addr
->domain
,
3186 .busnr
= dev_addr
->bus
,
3187 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
3192 dev_data
.assigned_dev_id
=
3193 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
3195 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
3200 *dev_id
= dev_data
.assigned_dev_id
;
3205 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
3207 struct kvm_assigned_pci_dev dev_data
= {
3208 .assigned_dev_id
= dev_id
,
3211 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
3214 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3215 uint32_t irq_type
, uint32_t guest_irq
)
3217 struct kvm_assigned_irq assigned_irq
= {
3218 .assigned_dev_id
= dev_id
,
3219 .guest_irq
= guest_irq
,
3223 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
3224 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
3226 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
3230 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
3233 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
3234 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
3236 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
3239 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
3241 struct kvm_assigned_pci_dev dev_data
= {
3242 .assigned_dev_id
= dev_id
,
3243 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
3246 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
3249 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3252 struct kvm_assigned_irq assigned_irq
= {
3253 .assigned_dev_id
= dev_id
,
3257 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
3260 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
3262 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
3263 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
3266 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
3268 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
3269 KVM_DEV_IRQ_GUEST_MSI
, virq
);
3272 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
3274 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
3275 KVM_DEV_IRQ_HOST_MSI
);
3278 bool kvm_device_msix_supported(KVMState
*s
)
3280 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3281 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3282 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
3285 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
3286 uint32_t nr_vectors
)
3288 struct kvm_assigned_msix_nr msix_nr
= {
3289 .assigned_dev_id
= dev_id
,
3290 .entry_nr
= nr_vectors
,
3293 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
3296 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
3299 struct kvm_assigned_msix_entry msix_entry
= {
3300 .assigned_dev_id
= dev_id
,
3305 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
3308 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
3310 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
3311 KVM_DEV_IRQ_GUEST_MSIX
, 0);
3314 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
3316 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
3317 KVM_DEV_IRQ_HOST_MSIX
);
3320 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
3321 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
3326 int kvm_arch_msi_data_to_gsi(uint32_t data
)