2 * QTest testcase for the MC146818 real-time clock
4 * Copyright IBM, Corp. 2012
7 * Anthony Liguori <aliguori@us.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
21 #include "hw/timer/mc146818rtc_regs.h"
23 static uint8_t base
= 0x70;
25 static int bcd2dec(int value
)
27 return (((value
>> 4) & 0x0F) * 10) + (value
& 0x0F);
30 static uint8_t cmos_read(uint8_t reg
)
36 static void cmos_write(uint8_t reg
, uint8_t val
)
42 static int tm_cmp(struct tm
*lhs
, struct tm
*rhs
)
47 memcpy(&d1
, lhs
, sizeof(d1
));
48 memcpy(&d2
, rhs
, sizeof(d2
));
63 static void print_tm(struct tm
*tm
)
65 printf("%04d-%02d-%02d %02d:%02d:%02d\n",
66 tm
->tm_year
+ 1900, tm
->tm_mon
+ 1, tm
->tm_mday
,
67 tm
->tm_hour
, tm
->tm_min
, tm
->tm_sec
, tm
->tm_gmtoff
);
71 static void cmos_get_date_time(struct tm
*date
)
73 int base_year
= 2000, hour_offset
;
74 int sec
, min
, hour
, mday
, mon
, year
;
78 sec
= cmos_read(RTC_SECONDS
);
79 min
= cmos_read(RTC_MINUTES
);
80 hour
= cmos_read(RTC_HOURS
);
81 mday
= cmos_read(RTC_DAY_OF_MONTH
);
82 mon
= cmos_read(RTC_MONTH
);
83 year
= cmos_read(RTC_YEAR
);
85 if ((cmos_read(RTC_REG_B
) & REG_B_DM
) == 0) {
97 if ((cmos_read(0x0B) & REG_B_24H
) == 0) {
98 if (hour
>= hour_offset
) {
105 localtime_r(&ts
, &dummy
);
107 date
->tm_isdst
= dummy
.tm_isdst
;
110 date
->tm_hour
= hour
;
111 date
->tm_mday
= mday
;
112 date
->tm_mon
= mon
- 1;
113 date
->tm_year
= base_year
+ year
- 1900;
121 static void check_time(int wiggle
)
123 struct tm start
, date
[4], end
;
128 * This check assumes a few things. First, we cannot guarantee that we get
129 * a consistent reading from the wall clock because we may hit an edge of
130 * the clock while reading. To work around this, we read four clock readings
131 * such that at least two of them should match. We need to assume that one
132 * reading is corrupt so we need four readings to ensure that we have at
133 * least two consecutive identical readings
135 * It's also possible that we'll cross an edge reading the host clock so
136 * simply check to make sure that the clock reading is within the period of
137 * when we expect it to be.
141 gmtime_r(&ts
, &start
);
143 cmos_get_date_time(&date
[0]);
144 cmos_get_date_time(&date
[1]);
145 cmos_get_date_time(&date
[2]);
146 cmos_get_date_time(&date
[3]);
151 if (tm_cmp(&date
[0], &date
[1]) == 0) {
153 } else if (tm_cmp(&date
[1], &date
[2]) == 0) {
155 } else if (tm_cmp(&date
[2], &date
[3]) == 0) {
158 g_assert_not_reached();
161 if (!(tm_cmp(&start
, datep
) <= 0 && tm_cmp(datep
, &end
) <= 0)) {
164 start
.tm_isdst
= datep
->tm_isdst
;
166 t
= (long)mktime(datep
);
167 s
= (long)mktime(&start
);
169 g_test_message("RTC is %ld second(s) behind wall-clock\n", (s
- t
));
171 g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t
- s
));
174 g_assert_cmpint(ABS(t
- s
), <=, wiggle
);
178 static int wiggle
= 2;
180 static void set_year_20xx(void)
183 cmos_write(RTC_REG_B
, REG_B_24H
);
184 cmos_write(RTC_REG_A
, 0x76);
185 cmos_write(RTC_YEAR
, 0x11);
186 cmos_write(RTC_CENTURY
, 0x20);
187 cmos_write(RTC_MONTH
, 0x02);
188 cmos_write(RTC_DAY_OF_MONTH
, 0x02);
189 cmos_write(RTC_HOURS
, 0x02);
190 cmos_write(RTC_MINUTES
, 0x04);
191 cmos_write(RTC_SECONDS
, 0x58);
192 cmos_write(RTC_REG_A
, 0x26);
194 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
195 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
196 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
197 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
198 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
199 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x11);
200 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x20);
202 if (sizeof(time_t) == 4) {
206 /* Set a date in 2080 to ensure there is no year-2038 overflow. */
207 cmos_write(RTC_REG_A
, 0x76);
208 cmos_write(RTC_YEAR
, 0x80);
209 cmos_write(RTC_REG_A
, 0x26);
211 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
212 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
213 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
214 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
215 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
216 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x80);
217 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x20);
219 cmos_write(RTC_REG_A
, 0x76);
220 cmos_write(RTC_YEAR
, 0x11);
221 cmos_write(RTC_REG_A
, 0x26);
223 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
224 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
225 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
226 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
227 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
228 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x11);
229 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x20);
232 static void set_year_1980(void)
235 cmos_write(RTC_REG_B
, REG_B_24H
);
236 cmos_write(RTC_REG_A
, 0x76);
237 cmos_write(RTC_YEAR
, 0x80);
238 cmos_write(RTC_CENTURY
, 0x19);
239 cmos_write(RTC_MONTH
, 0x02);
240 cmos_write(RTC_DAY_OF_MONTH
, 0x02);
241 cmos_write(RTC_HOURS
, 0x02);
242 cmos_write(RTC_MINUTES
, 0x04);
243 cmos_write(RTC_SECONDS
, 0x58);
244 cmos_write(RTC_REG_A
, 0x26);
246 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
247 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
248 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
249 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
250 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
251 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x80);
252 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x19);
255 static void bcd_check_time(void)
258 cmos_write(RTC_REG_B
, REG_B_24H
);
262 static void dec_check_time(void)
265 cmos_write(RTC_REG_B
, REG_B_24H
| REG_B_DM
);
269 static void alarm_time(void)
279 cmos_write(RTC_REG_B
, REG_B_24H
| REG_B_DM
);
281 g_assert(!get_irq(RTC_ISA_IRQ
));
282 cmos_read(RTC_REG_C
);
284 now
.tm_sec
= (now
.tm_sec
+ 2) % 60;
285 cmos_write(RTC_SECONDS_ALARM
, now
.tm_sec
);
286 cmos_write(RTC_MINUTES_ALARM
, RTC_ALARM_DONT_CARE
);
287 cmos_write(RTC_HOURS_ALARM
, RTC_ALARM_DONT_CARE
);
288 cmos_write(RTC_REG_B
, cmos_read(RTC_REG_B
) | REG_B_AIE
);
290 for (i
= 0; i
< 2 + wiggle
; i
++) {
291 if (get_irq(RTC_ISA_IRQ
)) {
295 clock_step(1000000000);
298 g_assert(get_irq(RTC_ISA_IRQ
));
299 g_assert((cmos_read(RTC_REG_C
) & REG_C_AF
) != 0);
300 g_assert(cmos_read(RTC_REG_C
) == 0);
303 static void set_time(int mode
, int h
, int m
, int s
)
305 /* set BCD 12 hour mode */
306 cmos_write(RTC_REG_B
, mode
);
308 cmos_write(RTC_REG_A
, 0x76);
309 cmos_write(RTC_HOURS
, h
);
310 cmos_write(RTC_MINUTES
, m
);
311 cmos_write(RTC_SECONDS
, s
);
312 cmos_write(RTC_REG_A
, 0x26);
315 #define assert_time(h, m, s) \
317 g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
318 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
319 g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
322 static void basic_12h_bcd(void)
324 /* set BCD 12 hour mode */
325 set_time(0, 0x81, 0x59, 0x00);
326 clock_step(1000000000LL);
327 assert_time(0x81, 0x59, 0x01);
328 clock_step(59000000000LL);
329 assert_time(0x82, 0x00, 0x00);
331 /* test BCD wraparound */
332 set_time(0, 0x09, 0x59, 0x59);
333 clock_step(60000000000LL);
334 assert_time(0x10, 0x00, 0x59);
337 set_time(0, 0x12, 0x59, 0x59);
338 clock_step(1000000000LL);
339 assert_time(0x01, 0x00, 0x00);
342 set_time(0, 0x92, 0x59, 0x59);
343 clock_step(1000000000LL);
344 assert_time(0x81, 0x00, 0x00);
347 set_time(0, 0x11, 0x59, 0x59);
348 clock_step(1000000000LL);
349 assert_time(0x92, 0x00, 0x00);
350 /* TODO: test day wraparound */
353 set_time(0, 0x91, 0x59, 0x59);
354 clock_step(1000000000LL);
355 assert_time(0x12, 0x00, 0x00);
356 /* TODO: test day wraparound */
359 static void basic_12h_dec(void)
361 /* set decimal 12 hour mode */
362 set_time(REG_B_DM
, 0x81, 59, 0);
363 clock_step(1000000000LL);
364 assert_time(0x81, 59, 1);
365 clock_step(59000000000LL);
366 assert_time(0x82, 0, 0);
369 set_time(REG_B_DM
, 0x8c, 59, 59);
370 clock_step(1000000000LL);
371 assert_time(0x81, 0, 0);
374 set_time(REG_B_DM
, 0x0c, 59, 59);
375 clock_step(1000000000LL);
376 assert_time(0x01, 0, 0);
379 set_time(REG_B_DM
, 0x0b, 59, 59);
380 clock_step(1000000000LL);
381 assert_time(0x8c, 0, 0);
384 set_time(REG_B_DM
, 0x8b, 59, 59);
385 clock_step(1000000000LL);
386 assert_time(0x0c, 0, 0);
387 /* TODO: test day wraparound */
390 static void basic_24h_bcd(void)
392 /* set BCD 24 hour mode */
393 set_time(REG_B_24H
, 0x09, 0x59, 0x00);
394 clock_step(1000000000LL);
395 assert_time(0x09, 0x59, 0x01);
396 clock_step(59000000000LL);
397 assert_time(0x10, 0x00, 0x00);
399 /* test BCD wraparound */
400 set_time(REG_B_24H
, 0x09, 0x59, 0x00);
401 clock_step(60000000000LL);
402 assert_time(0x10, 0x00, 0x00);
404 /* TODO: test day wraparound */
405 set_time(REG_B_24H
, 0x23, 0x59, 0x00);
406 clock_step(60000000000LL);
407 assert_time(0x00, 0x00, 0x00);
410 static void basic_24h_dec(void)
412 /* set decimal 24 hour mode */
413 set_time(REG_B_24H
| REG_B_DM
, 9, 59, 0);
414 clock_step(1000000000LL);
415 assert_time(9, 59, 1);
416 clock_step(59000000000LL);
417 assert_time(10, 0, 0);
419 /* test BCD wraparound */
420 set_time(REG_B_24H
| REG_B_DM
, 9, 59, 0);
421 clock_step(60000000000LL);
422 assert_time(10, 0, 0);
424 /* TODO: test day wraparound */
425 set_time(REG_B_24H
| REG_B_DM
, 23, 59, 0);
426 clock_step(60000000000LL);
427 assert_time(0, 0, 0);
430 static void am_pm_alarm(void)
432 cmos_write(RTC_MINUTES_ALARM
, 0xC0);
433 cmos_write(RTC_SECONDS_ALARM
, 0xC0);
435 /* set BCD 12 hour mode */
436 cmos_write(RTC_REG_B
, 0);
438 /* Set time and alarm hour. */
439 cmos_write(RTC_REG_A
, 0x76);
440 cmos_write(RTC_HOURS_ALARM
, 0x82);
441 cmos_write(RTC_HOURS
, 0x81);
442 cmos_write(RTC_MINUTES
, 0x59);
443 cmos_write(RTC_SECONDS
, 0x00);
444 cmos_read(RTC_REG_C
);
445 cmos_write(RTC_REG_A
, 0x26);
447 /* Check that alarm triggers when AM/PM is set. */
448 clock_step(60000000000LL);
449 g_assert(cmos_read(RTC_HOURS
) == 0x82);
450 g_assert((cmos_read(RTC_REG_C
) & REG_C_AF
) != 0);
453 * Each of the following two tests takes over 60 seconds due to the time
454 * needed to report the PIT interrupts. Unfortunately, our PIT device
455 * model keeps counting even when GATE=0, so we cannot simply disable
458 if (g_test_quick()) {
462 /* set DEC 12 hour mode */
463 cmos_write(RTC_REG_B
, REG_B_DM
);
465 /* Set time and alarm hour. */
466 cmos_write(RTC_REG_A
, 0x76);
467 cmos_write(RTC_HOURS_ALARM
, 0x82);
468 cmos_write(RTC_HOURS
, 3);
469 cmos_write(RTC_MINUTES
, 0);
470 cmos_write(RTC_SECONDS
, 0);
471 cmos_read(RTC_REG_C
);
472 cmos_write(RTC_REG_A
, 0x26);
474 /* Check that alarm triggers. */
475 clock_step(3600 * 11 * 1000000000LL);
476 g_assert(cmos_read(RTC_HOURS
) == 0x82);
477 g_assert((cmos_read(RTC_REG_C
) & REG_C_AF
) != 0);
479 /* Same as above, with inverted HOURS and HOURS_ALARM. */
480 cmos_write(RTC_REG_A
, 0x76);
481 cmos_write(RTC_HOURS_ALARM
, 2);
482 cmos_write(RTC_HOURS
, 3);
483 cmos_write(RTC_MINUTES
, 0);
484 cmos_write(RTC_SECONDS
, 0);
485 cmos_read(RTC_REG_C
);
486 cmos_write(RTC_REG_A
, 0x26);
488 /* Check that alarm does not trigger if hours differ only by AM/PM. */
489 clock_step(3600 * 11 * 1000000000LL);
490 g_assert(cmos_read(RTC_HOURS
) == 0x82);
491 g_assert((cmos_read(RTC_REG_C
) & REG_C_AF
) == 0);
494 /* success if no crash or abort */
495 static void fuzz_registers(void)
499 for (i
= 0; i
< 1000; i
++) {
502 reg
= (uint8_t)g_test_rand_int_range(0, 16);
503 val
= (uint8_t)g_test_rand_int_range(0, 256);
505 cmos_write(reg
, val
);
510 static void register_b_set_flag(void)
512 /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
513 cmos_write(RTC_REG_B
, REG_B_24H
| REG_B_SET
);
515 cmos_write(RTC_REG_A
, 0x76);
516 cmos_write(RTC_YEAR
, 0x11);
517 cmos_write(RTC_CENTURY
, 0x20);
518 cmos_write(RTC_MONTH
, 0x02);
519 cmos_write(RTC_DAY_OF_MONTH
, 0x02);
520 cmos_write(RTC_HOURS
, 0x02);
521 cmos_write(RTC_MINUTES
, 0x04);
522 cmos_write(RTC_SECONDS
, 0x58);
523 cmos_write(RTC_REG_A
, 0x26);
525 /* Since SET flag is still enabled, these are equality checks. */
526 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
527 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
528 g_assert_cmpint(cmos_read(RTC_SECONDS
), ==, 0x58);
529 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
530 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
531 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x11);
532 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x20);
534 /* Disable SET flag in Register B */
535 cmos_write(RTC_REG_B
, cmos_read(RTC_REG_B
) & ~REG_B_SET
);
537 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
538 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
540 /* Since SET flag is disabled, this is an inequality check.
541 * We (reasonably) assume that no (sexagesimal) overflow occurs. */
542 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
543 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
544 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
545 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x11);
546 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x20);
549 int main(int argc
, char **argv
)
551 QTestState
*s
= NULL
;
554 g_test_init(&argc
, &argv
, NULL
);
556 s
= qtest_start("-rtc clock=vm");
557 qtest_irq_intercept_in(s
, "ioapic");
559 qtest_add_func("/rtc/check-time/bcd", bcd_check_time
);
560 qtest_add_func("/rtc/check-time/dec", dec_check_time
);
561 qtest_add_func("/rtc/alarm/interrupt", alarm_time
);
562 qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm
);
563 qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec
);
564 qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd
);
565 qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec
);
566 qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd
);
567 qtest_add_func("/rtc/set-year/20xx", set_year_20xx
);
568 qtest_add_func("/rtc/set-year/1980", set_year_1980
);
569 qtest_add_func("/rtc/misc/register_b_set_flag", register_b_set_flag
);
570 qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers
);