2 * i386 helpers (without register variable usage)
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "sysemu/kvm.h"
24 #ifndef CONFIG_USER_ONLY
25 #include "sysemu/sysemu.h"
26 #include "monitor/monitor.h"
27 #include "hw/i386/apic_internal.h"
30 static void cpu_x86_version(CPUX86State
*env
, int *family
, int *model
)
32 int cpuver
= env
->cpuid_version
;
34 if (family
== NULL
|| model
== NULL
) {
38 *family
= (cpuver
>> 8) & 0x0f;
39 *model
= ((cpuver
>> 12) & 0xf0) + ((cpuver
>> 4) & 0x0f);
42 /* Broadcast MCA signal for processor version 06H_EH and above */
43 int cpu_x86_support_mca_broadcast(CPUX86State
*env
)
48 cpu_x86_version(env
, &family
, &model
);
49 if ((family
== 6 && model
>= 14) || family
> 6) {
56 /***********************************************************/
59 static const char *cc_op_str
[CC_OP_NB
] = {
126 cpu_x86_dump_seg_cache(CPUX86State
*env
, FILE *f
, fprintf_function cpu_fprintf
,
127 const char *name
, struct SegmentCache
*sc
)
130 if (env
->hflags
& HF_CS64_MASK
) {
131 cpu_fprintf(f
, "%-3s=%04x %016" PRIx64
" %08x %08x", name
,
132 sc
->selector
, sc
->base
, sc
->limit
, sc
->flags
& 0x00ffff00);
136 cpu_fprintf(f
, "%-3s=%04x %08x %08x %08x", name
, sc
->selector
,
137 (uint32_t)sc
->base
, sc
->limit
, sc
->flags
& 0x00ffff00);
140 if (!(env
->hflags
& HF_PE_MASK
) || !(sc
->flags
& DESC_P_MASK
))
143 cpu_fprintf(f
, " DPL=%d ", (sc
->flags
& DESC_DPL_MASK
) >> DESC_DPL_SHIFT
);
144 if (sc
->flags
& DESC_S_MASK
) {
145 if (sc
->flags
& DESC_CS_MASK
) {
146 cpu_fprintf(f
, (sc
->flags
& DESC_L_MASK
) ? "CS64" :
147 ((sc
->flags
& DESC_B_MASK
) ? "CS32" : "CS16"));
148 cpu_fprintf(f
, " [%c%c", (sc
->flags
& DESC_C_MASK
) ? 'C' : '-',
149 (sc
->flags
& DESC_R_MASK
) ? 'R' : '-');
152 (sc
->flags
& DESC_B_MASK
|| env
->hflags
& HF_LMA_MASK
)
154 cpu_fprintf(f
, " [%c%c", (sc
->flags
& DESC_E_MASK
) ? 'E' : '-',
155 (sc
->flags
& DESC_W_MASK
) ? 'W' : '-');
157 cpu_fprintf(f
, "%c]", (sc
->flags
& DESC_A_MASK
) ? 'A' : '-');
159 static const char *sys_type_name
[2][16] = {
161 "Reserved", "TSS16-avl", "LDT", "TSS16-busy",
162 "CallGate16", "TaskGate", "IntGate16", "TrapGate16",
163 "Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
164 "CallGate32", "Reserved", "IntGate32", "TrapGate32"
167 "<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
168 "Reserved", "Reserved", "Reserved", "Reserved",
169 "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
170 "Reserved", "IntGate64", "TrapGate64"
174 sys_type_name
[(env
->hflags
& HF_LMA_MASK
) ? 1 : 0]
175 [(sc
->flags
& DESC_TYPE_MASK
)
176 >> DESC_TYPE_SHIFT
]);
179 cpu_fprintf(f
, "\n");
182 #ifndef CONFIG_USER_ONLY
184 /* ARRAY_SIZE check is not required because
185 * DeliveryMode(dm) has a size of 3 bit.
187 static inline const char *dm2str(uint32_t dm
)
189 static const char *str
[] = {
202 static void dump_apic_lvt(FILE *f
, fprintf_function cpu_fprintf
,
203 const char *name
, uint32_t lvt
, bool is_timer
)
205 uint32_t dm
= (lvt
& APIC_LVT_DELIV_MOD
) >> APIC_LVT_DELIV_MOD_SHIFT
;
207 "%s\t 0x%08x %s %-5s %-6s %-7s %-12s %-6s",
209 lvt
& APIC_LVT_INT_POLARITY
? "active-lo" : "active-hi",
210 lvt
& APIC_LVT_LEVEL_TRIGGER
? "level" : "edge",
211 lvt
& APIC_LVT_MASKED
? "masked" : "",
212 lvt
& APIC_LVT_DELIV_STS
? "pending" : "",
214 "" : lvt
& APIC_LVT_TIMER_PERIODIC
?
215 "periodic" : lvt
& APIC_LVT_TIMER_TSCDEADLINE
?
216 "tsc-deadline" : "one-shot",
218 if (dm
!= APIC_DM_NMI
) {
219 cpu_fprintf(f
, " (vec %u)\n", lvt
& APIC_VECTOR_MASK
);
221 cpu_fprintf(f
, "\n");
225 /* ARRAY_SIZE check is not required because
226 * destination shorthand has a size of 2 bit.
228 static inline const char *shorthand2str(uint32_t shorthand
)
230 const char *str
[] = {
231 "no-shorthand", "self", "all-self", "all"
233 return str
[shorthand
];
236 static inline uint8_t divider_conf(uint32_t divide_conf
)
238 uint8_t divide_val
= ((divide_conf
& 0x8) >> 1) | (divide_conf
& 0x3);
240 return divide_val
== 7 ? 1 : 2 << divide_val
;
243 static inline void mask2str(char *str
, uint32_t val
, uint8_t size
)
246 *str
++ = (val
>> size
) & 1 ? '1' : '0';
251 #define MAX_LOGICAL_APIC_ID_MASK_SIZE 16
253 static void dump_apic_icr(FILE *f
, fprintf_function cpu_fprintf
,
254 APICCommonState
*s
, CPUX86State
*env
)
256 uint32_t icr
= s
->icr
[0], icr2
= s
->icr
[1];
257 uint8_t dest_shorthand
= \
258 (icr
& APIC_ICR_DEST_SHORT
) >> APIC_ICR_DEST_SHORT_SHIFT
;
259 bool logical_mod
= icr
& APIC_ICR_DEST_MOD
;
260 char apic_id_str
[MAX_LOGICAL_APIC_ID_MASK_SIZE
+ 1];
264 cpu_fprintf(f
, "ICR\t 0x%08x %s %s %s %s\n",
266 logical_mod
? "logical" : "physical",
267 icr
& APIC_ICR_TRIGGER_MOD
? "level" : "edge",
268 icr
& APIC_ICR_LEVEL
? "assert" : "de-assert",
269 shorthand2str(dest_shorthand
));
271 cpu_fprintf(f
, "ICR2\t 0x%08x", icr2
);
272 if (dest_shorthand
!= 0) {
273 cpu_fprintf(f
, "\n");
276 x2apic
= env
->features
[FEAT_1_ECX
] & CPUID_EXT_X2APIC
;
277 dest_field
= x2apic
? icr2
: icr2
>> APIC_ICR_DEST_SHIFT
;
281 cpu_fprintf(f
, " cpu %u (X2APIC ID)\n", dest_field
);
283 cpu_fprintf(f
, " cpu %u (APIC ID)\n",
284 dest_field
& APIC_LOGDEST_XAPIC_ID
);
289 if (s
->dest_mode
== 0xf) { /* flat mode */
290 mask2str(apic_id_str
, icr2
>> APIC_ICR_DEST_SHIFT
, 8);
291 cpu_fprintf(f
, " mask %s (APIC ID)\n", apic_id_str
);
292 } else if (s
->dest_mode
== 0) { /* cluster mode */
294 mask2str(apic_id_str
, dest_field
& APIC_LOGDEST_X2APIC_ID
, 16);
295 cpu_fprintf(f
, " cluster %u mask %s (X2APIC ID)\n",
296 dest_field
>> APIC_LOGDEST_X2APIC_SHIFT
, apic_id_str
);
298 mask2str(apic_id_str
, dest_field
& APIC_LOGDEST_XAPIC_ID
, 4);
299 cpu_fprintf(f
, " cluster %u mask %s (APIC ID)\n",
300 dest_field
>> APIC_LOGDEST_XAPIC_SHIFT
, apic_id_str
);
305 static void dump_apic_interrupt(FILE *f
, fprintf_function cpu_fprintf
,
306 const char *name
, uint32_t *ireg_tab
,
311 cpu_fprintf(f
, "%s\t ", name
);
312 for (i
= 0; i
< 256; i
++) {
313 if (apic_get_bit(ireg_tab
, i
)) {
314 cpu_fprintf(f
, "%u%s ", i
,
315 apic_get_bit(tmr_tab
, i
) ? "(level)" : "");
319 cpu_fprintf(f
, "%s\n", empty
? "(none)" : "");
322 void x86_cpu_dump_local_apic_state(CPUState
*cs
, FILE *f
,
323 fprintf_function cpu_fprintf
, int flags
)
325 X86CPU
*cpu
= X86_CPU(cs
);
326 APICCommonState
*s
= APIC_COMMON(cpu
->apic_state
);
327 uint32_t *lvt
= s
->lvt
;
329 cpu_fprintf(f
, "dumping local APIC state for CPU %-2u\n\n",
330 CPU(cpu
)->cpu_index
);
331 dump_apic_lvt(f
, cpu_fprintf
, "LVT0", lvt
[APIC_LVT_LINT0
], false);
332 dump_apic_lvt(f
, cpu_fprintf
, "LVT1", lvt
[APIC_LVT_LINT1
], false);
333 dump_apic_lvt(f
, cpu_fprintf
, "LVTPC", lvt
[APIC_LVT_PERFORM
], false);
334 dump_apic_lvt(f
, cpu_fprintf
, "LVTERR", lvt
[APIC_LVT_ERROR
], false);
335 dump_apic_lvt(f
, cpu_fprintf
, "LVTTHMR", lvt
[APIC_LVT_THERMAL
], false);
336 dump_apic_lvt(f
, cpu_fprintf
, "LVTT", lvt
[APIC_LVT_TIMER
], true);
338 cpu_fprintf(f
, "Timer\t DCR=0x%x (divide by %u) initial_count = %u\n",
339 s
->divide_conf
& APIC_DCR_MASK
,
340 divider_conf(s
->divide_conf
),
343 cpu_fprintf(f
, "SPIV\t 0x%08x APIC %s, focus=%s, spurious vec %u\n",
345 s
->spurious_vec
& APIC_SPURIO_ENABLED
? "enabled" : "disabled",
346 s
->spurious_vec
& APIC_SPURIO_FOCUS
? "on" : "off",
347 s
->spurious_vec
& APIC_VECTOR_MASK
);
349 dump_apic_icr(f
, cpu_fprintf
, s
, &cpu
->env
);
351 cpu_fprintf(f
, "ESR\t 0x%08x\n", s
->esr
);
353 dump_apic_interrupt(f
, cpu_fprintf
, "ISR", s
->isr
, s
->tmr
);
354 dump_apic_interrupt(f
, cpu_fprintf
, "IRR", s
->irr
, s
->tmr
);
356 cpu_fprintf(f
, "\nAPR 0x%02x TPR 0x%02x DFR 0x%02x LDR 0x%02x",
357 s
->arb_id
, s
->tpr
, s
->dest_mode
, s
->log_dest
);
358 if (s
->dest_mode
== 0) {
359 cpu_fprintf(f
, "(cluster %u: id %u)",
360 s
->log_dest
>> APIC_LOGDEST_XAPIC_SHIFT
,
361 s
->log_dest
& APIC_LOGDEST_XAPIC_ID
);
363 cpu_fprintf(f
, " PPR 0x%02x\n", apic_get_ppr(s
));
366 void x86_cpu_dump_local_apic_state(CPUState
*cs
, FILE *f
,
367 fprintf_function cpu_fprintf
, int flags
)
370 #endif /* !CONFIG_USER_ONLY */
372 #define DUMP_CODE_BYTES_TOTAL 50
373 #define DUMP_CODE_BYTES_BACKWARD 20
375 void x86_cpu_dump_state(CPUState
*cs
, FILE *f
, fprintf_function cpu_fprintf
,
378 X86CPU
*cpu
= X86_CPU(cs
);
379 CPUX86State
*env
= &cpu
->env
;
382 static const char *seg_name
[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
384 eflags
= cpu_compute_eflags(env
);
386 if (env
->hflags
& HF_CS64_MASK
) {
388 "RAX=%016" PRIx64
" RBX=%016" PRIx64
" RCX=%016" PRIx64
" RDX=%016" PRIx64
"\n"
389 "RSI=%016" PRIx64
" RDI=%016" PRIx64
" RBP=%016" PRIx64
" RSP=%016" PRIx64
"\n"
390 "R8 =%016" PRIx64
" R9 =%016" PRIx64
" R10=%016" PRIx64
" R11=%016" PRIx64
"\n"
391 "R12=%016" PRIx64
" R13=%016" PRIx64
" R14=%016" PRIx64
" R15=%016" PRIx64
"\n"
392 "RIP=%016" PRIx64
" RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
410 eflags
& DF_MASK
? 'D' : '-',
411 eflags
& CC_O
? 'O' : '-',
412 eflags
& CC_S
? 'S' : '-',
413 eflags
& CC_Z
? 'Z' : '-',
414 eflags
& CC_A
? 'A' : '-',
415 eflags
& CC_P
? 'P' : '-',
416 eflags
& CC_C
? 'C' : '-',
417 env
->hflags
& HF_CPL_MASK
,
418 (env
->hflags
>> HF_INHIBIT_IRQ_SHIFT
) & 1,
419 (env
->a20_mask
>> 20) & 1,
420 (env
->hflags
>> HF_SMM_SHIFT
) & 1,
425 cpu_fprintf(f
, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
426 "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
427 "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
428 (uint32_t)env
->regs
[R_EAX
],
429 (uint32_t)env
->regs
[R_EBX
],
430 (uint32_t)env
->regs
[R_ECX
],
431 (uint32_t)env
->regs
[R_EDX
],
432 (uint32_t)env
->regs
[R_ESI
],
433 (uint32_t)env
->regs
[R_EDI
],
434 (uint32_t)env
->regs
[R_EBP
],
435 (uint32_t)env
->regs
[R_ESP
],
436 (uint32_t)env
->eip
, eflags
,
437 eflags
& DF_MASK
? 'D' : '-',
438 eflags
& CC_O
? 'O' : '-',
439 eflags
& CC_S
? 'S' : '-',
440 eflags
& CC_Z
? 'Z' : '-',
441 eflags
& CC_A
? 'A' : '-',
442 eflags
& CC_P
? 'P' : '-',
443 eflags
& CC_C
? 'C' : '-',
444 env
->hflags
& HF_CPL_MASK
,
445 (env
->hflags
>> HF_INHIBIT_IRQ_SHIFT
) & 1,
446 (env
->a20_mask
>> 20) & 1,
447 (env
->hflags
>> HF_SMM_SHIFT
) & 1,
451 for(i
= 0; i
< 6; i
++) {
452 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, seg_name
[i
],
455 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, "LDT", &env
->ldt
);
456 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, "TR", &env
->tr
);
459 if (env
->hflags
& HF_LMA_MASK
) {
460 cpu_fprintf(f
, "GDT= %016" PRIx64
" %08x\n",
461 env
->gdt
.base
, env
->gdt
.limit
);
462 cpu_fprintf(f
, "IDT= %016" PRIx64
" %08x\n",
463 env
->idt
.base
, env
->idt
.limit
);
464 cpu_fprintf(f
, "CR0=%08x CR2=%016" PRIx64
" CR3=%016" PRIx64
" CR4=%08x\n",
465 (uint32_t)env
->cr
[0],
468 (uint32_t)env
->cr
[4]);
469 for(i
= 0; i
< 4; i
++)
470 cpu_fprintf(f
, "DR%d=%016" PRIx64
" ", i
, env
->dr
[i
]);
471 cpu_fprintf(f
, "\nDR6=%016" PRIx64
" DR7=%016" PRIx64
"\n",
472 env
->dr
[6], env
->dr
[7]);
476 cpu_fprintf(f
, "GDT= %08x %08x\n",
477 (uint32_t)env
->gdt
.base
, env
->gdt
.limit
);
478 cpu_fprintf(f
, "IDT= %08x %08x\n",
479 (uint32_t)env
->idt
.base
, env
->idt
.limit
);
480 cpu_fprintf(f
, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
481 (uint32_t)env
->cr
[0],
482 (uint32_t)env
->cr
[2],
483 (uint32_t)env
->cr
[3],
484 (uint32_t)env
->cr
[4]);
485 for(i
= 0; i
< 4; i
++) {
486 cpu_fprintf(f
, "DR%d=" TARGET_FMT_lx
" ", i
, env
->dr
[i
]);
488 cpu_fprintf(f
, "\nDR6=" TARGET_FMT_lx
" DR7=" TARGET_FMT_lx
"\n",
489 env
->dr
[6], env
->dr
[7]);
491 if (flags
& CPU_DUMP_CCOP
) {
492 if ((unsigned)env
->cc_op
< CC_OP_NB
)
493 snprintf(cc_op_name
, sizeof(cc_op_name
), "%s", cc_op_str
[env
->cc_op
]);
495 snprintf(cc_op_name
, sizeof(cc_op_name
), "[%d]", env
->cc_op
);
497 if (env
->hflags
& HF_CS64_MASK
) {
498 cpu_fprintf(f
, "CCS=%016" PRIx64
" CCD=%016" PRIx64
" CCO=%-8s\n",
499 env
->cc_src
, env
->cc_dst
,
504 cpu_fprintf(f
, "CCS=%08x CCD=%08x CCO=%-8s\n",
505 (uint32_t)env
->cc_src
, (uint32_t)env
->cc_dst
,
509 cpu_fprintf(f
, "EFER=%016" PRIx64
"\n", env
->efer
);
510 if (flags
& CPU_DUMP_FPU
) {
513 for(i
= 0; i
< 8; i
++) {
514 fptag
|= ((!env
->fptags
[i
]) << i
);
516 cpu_fprintf(f
, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
518 (env
->fpus
& ~0x3800) | (env
->fpstt
& 0x7) << 11,
524 u
.d
= env
->fpregs
[i
].d
;
525 cpu_fprintf(f
, "FPR%d=%016" PRIx64
" %04x",
526 i
, u
.l
.lower
, u
.l
.upper
);
528 cpu_fprintf(f
, "\n");
532 if (env
->hflags
& HF_CS64_MASK
)
537 cpu_fprintf(f
, "XMM%02d=%08x%08x%08x%08x",
539 env
->xmm_regs
[i
].ZMM_L(3),
540 env
->xmm_regs
[i
].ZMM_L(2),
541 env
->xmm_regs
[i
].ZMM_L(1),
542 env
->xmm_regs
[i
].ZMM_L(0));
544 cpu_fprintf(f
, "\n");
549 if (flags
& CPU_DUMP_CODE
) {
550 target_ulong base
= env
->segs
[R_CS
].base
+ env
->eip
;
551 target_ulong offs
= MIN(env
->eip
, DUMP_CODE_BYTES_BACKWARD
);
555 cpu_fprintf(f
, "Code=");
556 for (i
= 0; i
< DUMP_CODE_BYTES_TOTAL
; i
++) {
557 if (cpu_memory_rw_debug(cs
, base
- offs
+ i
, &code
, 1, 0) == 0) {
558 snprintf(codestr
, sizeof(codestr
), "%02x", code
);
560 snprintf(codestr
, sizeof(codestr
), "??");
562 cpu_fprintf(f
, "%s%s%s%s", i
> 0 ? " " : "",
563 i
== offs
? "<" : "", codestr
, i
== offs
? ">" : "");
565 cpu_fprintf(f
, "\n");
569 /***********************************************************/
571 /* XXX: add PGE support */
573 void x86_cpu_set_a20(X86CPU
*cpu
, int a20_state
)
575 CPUX86State
*env
= &cpu
->env
;
577 a20_state
= (a20_state
!= 0);
578 if (a20_state
!= ((env
->a20_mask
>> 20) & 1)) {
579 CPUState
*cs
= CPU(cpu
);
581 qemu_log_mask(CPU_LOG_MMU
, "A20 update: a20=%d\n", a20_state
);
582 /* if the cpu is currently executing code, we must unlink it and
583 all the potentially executing TB */
584 cpu_interrupt(cs
, CPU_INTERRUPT_EXITTB
);
586 /* when a20 is changed, all the MMU mappings are invalid, so
587 we must flush everything */
589 env
->a20_mask
= ~(1 << 20) | (a20_state
<< 20);
593 void cpu_x86_update_cr0(CPUX86State
*env
, uint32_t new_cr0
)
595 X86CPU
*cpu
= x86_env_get_cpu(env
);
598 qemu_log_mask(CPU_LOG_MMU
, "CR0 update: CR0=0x%08x\n", new_cr0
);
599 if ((new_cr0
& (CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
)) !=
600 (env
->cr
[0] & (CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
))) {
601 tlb_flush(CPU(cpu
), 1);
605 if (!(env
->cr
[0] & CR0_PG_MASK
) && (new_cr0
& CR0_PG_MASK
) &&
606 (env
->efer
& MSR_EFER_LME
)) {
607 /* enter in long mode */
608 /* XXX: generate an exception */
609 if (!(env
->cr
[4] & CR4_PAE_MASK
))
611 env
->efer
|= MSR_EFER_LMA
;
612 env
->hflags
|= HF_LMA_MASK
;
613 } else if ((env
->cr
[0] & CR0_PG_MASK
) && !(new_cr0
& CR0_PG_MASK
) &&
614 (env
->efer
& MSR_EFER_LMA
)) {
616 env
->efer
&= ~MSR_EFER_LMA
;
617 env
->hflags
&= ~(HF_LMA_MASK
| HF_CS64_MASK
);
618 env
->eip
&= 0xffffffff;
621 env
->cr
[0] = new_cr0
| CR0_ET_MASK
;
623 /* update PE flag in hidden flags */
624 pe_state
= (env
->cr
[0] & CR0_PE_MASK
);
625 env
->hflags
= (env
->hflags
& ~HF_PE_MASK
) | (pe_state
<< HF_PE_SHIFT
);
626 /* ensure that ADDSEG is always set in real mode */
627 env
->hflags
|= ((pe_state
^ 1) << HF_ADDSEG_SHIFT
);
628 /* update FPU flags */
629 env
->hflags
= (env
->hflags
& ~(HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
)) |
630 ((new_cr0
<< (HF_MP_SHIFT
- 1)) & (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
));
633 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
635 void cpu_x86_update_cr3(CPUX86State
*env
, target_ulong new_cr3
)
637 X86CPU
*cpu
= x86_env_get_cpu(env
);
639 env
->cr
[3] = new_cr3
;
640 if (env
->cr
[0] & CR0_PG_MASK
) {
641 qemu_log_mask(CPU_LOG_MMU
,
642 "CR3 update: CR3=" TARGET_FMT_lx
"\n", new_cr3
);
643 tlb_flush(CPU(cpu
), 0);
647 void cpu_x86_update_cr4(CPUX86State
*env
, uint32_t new_cr4
)
649 X86CPU
*cpu
= x86_env_get_cpu(env
);
652 #if defined(DEBUG_MMU)
653 printf("CR4 update: CR4=%08x\n", (uint32_t)env
->cr
[4]);
655 if ((new_cr4
^ env
->cr
[4]) &
656 (CR4_PGE_MASK
| CR4_PAE_MASK
| CR4_PSE_MASK
|
657 CR4_SMEP_MASK
| CR4_SMAP_MASK
)) {
658 tlb_flush(CPU(cpu
), 1);
661 /* Clear bits we're going to recompute. */
662 hflags
= env
->hflags
& ~(HF_OSFXSR_MASK
| HF_SMAP_MASK
);
665 if (!(env
->features
[FEAT_1_EDX
] & CPUID_SSE
)) {
666 new_cr4
&= ~CR4_OSFXSR_MASK
;
668 if (new_cr4
& CR4_OSFXSR_MASK
) {
669 hflags
|= HF_OSFXSR_MASK
;
672 if (!(env
->features
[FEAT_7_0_EBX
] & CPUID_7_0_EBX_SMAP
)) {
673 new_cr4
&= ~CR4_SMAP_MASK
;
675 if (new_cr4
& CR4_SMAP_MASK
) {
676 hflags
|= HF_SMAP_MASK
;
679 if (!(env
->features
[FEAT_7_0_ECX
] & CPUID_7_0_ECX_PKU
)) {
680 new_cr4
&= ~CR4_PKE_MASK
;
683 env
->cr
[4] = new_cr4
;
684 env
->hflags
= hflags
;
686 cpu_sync_bndcs_hflags(env
);
689 #if defined(CONFIG_USER_ONLY)
691 int x86_cpu_handle_mmu_fault(CPUState
*cs
, vaddr addr
,
692 int is_write
, int mmu_idx
)
694 X86CPU
*cpu
= X86_CPU(cs
);
695 CPUX86State
*env
= &cpu
->env
;
697 /* user mode only emulation */
700 env
->error_code
= (is_write
<< PG_ERROR_W_BIT
);
701 env
->error_code
|= PG_ERROR_U_MASK
;
702 cs
->exception_index
= EXCP0E_PAGE
;
709 * -1 = cannot handle fault
710 * 0 = nothing more to do
711 * 1 = generate PF fault
713 int x86_cpu_handle_mmu_fault(CPUState
*cs
, vaddr addr
,
714 int is_write1
, int mmu_idx
)
716 X86CPU
*cpu
= X86_CPU(cs
);
717 CPUX86State
*env
= &cpu
->env
;
719 target_ulong pde_addr
, pte_addr
;
721 int is_dirty
, prot
, page_size
, is_write
, is_user
;
723 uint64_t rsvd_mask
= PG_HI_RSVD_MASK
;
724 uint32_t page_offset
;
727 is_user
= mmu_idx
== MMU_USER_IDX
;
728 #if defined(DEBUG_MMU)
729 printf("MMU fault: addr=%" VADDR_PRIx
" w=%d u=%d eip=" TARGET_FMT_lx
"\n",
730 addr
, is_write1
, is_user
, env
->eip
);
732 is_write
= is_write1
& 1;
734 if (!(env
->cr
[0] & CR0_PG_MASK
)) {
737 if (!(env
->hflags
& HF_LMA_MASK
)) {
738 /* Without long mode we can only address 32bits in real mode */
742 prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
747 if (!(env
->efer
& MSR_EFER_NXE
)) {
748 rsvd_mask
|= PG_NX_MASK
;
751 if (env
->cr
[4] & CR4_PAE_MASK
) {
753 target_ulong pdpe_addr
;
756 if (env
->hflags
& HF_LMA_MASK
) {
757 uint64_t pml4e_addr
, pml4e
;
760 /* test virtual address sign extension */
761 sext
= (int64_t)addr
>> 47;
762 if (sext
!= 0 && sext
!= -1) {
764 cs
->exception_index
= EXCP0D_GPF
;
768 pml4e_addr
= ((env
->cr
[3] & ~0xfff) + (((addr
>> 39) & 0x1ff) << 3)) &
770 pml4e
= x86_ldq_phys(cs
, pml4e_addr
);
771 if (!(pml4e
& PG_PRESENT_MASK
)) {
774 if (pml4e
& (rsvd_mask
| PG_PSE_MASK
)) {
777 if (!(pml4e
& PG_ACCESSED_MASK
)) {
778 pml4e
|= PG_ACCESSED_MASK
;
779 x86_stl_phys_notdirty(cs
, pml4e_addr
, pml4e
);
781 ptep
= pml4e
^ PG_NX_MASK
;
782 pdpe_addr
= ((pml4e
& PG_ADDRESS_MASK
) + (((addr
>> 30) & 0x1ff) << 3)) &
784 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
785 if (!(pdpe
& PG_PRESENT_MASK
)) {
788 if (pdpe
& rsvd_mask
) {
791 ptep
&= pdpe
^ PG_NX_MASK
;
792 if (!(pdpe
& PG_ACCESSED_MASK
)) {
793 pdpe
|= PG_ACCESSED_MASK
;
794 x86_stl_phys_notdirty(cs
, pdpe_addr
, pdpe
);
796 if (pdpe
& PG_PSE_MASK
) {
798 page_size
= 1024 * 1024 * 1024;
799 pte_addr
= pdpe_addr
;
801 goto do_check_protect
;
806 /* XXX: load them when cr3 is loaded ? */
807 pdpe_addr
= ((env
->cr
[3] & ~0x1f) + ((addr
>> 27) & 0x18)) &
809 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
810 if (!(pdpe
& PG_PRESENT_MASK
)) {
813 rsvd_mask
|= PG_HI_USER_MASK
;
814 if (pdpe
& (rsvd_mask
| PG_NX_MASK
)) {
817 ptep
= PG_NX_MASK
| PG_USER_MASK
| PG_RW_MASK
;
820 pde_addr
= ((pdpe
& PG_ADDRESS_MASK
) + (((addr
>> 21) & 0x1ff) << 3)) &
822 pde
= x86_ldq_phys(cs
, pde_addr
);
823 if (!(pde
& PG_PRESENT_MASK
)) {
826 if (pde
& rsvd_mask
) {
829 ptep
&= pde
^ PG_NX_MASK
;
830 if (pde
& PG_PSE_MASK
) {
832 page_size
= 2048 * 1024;
835 goto do_check_protect
;
838 if (!(pde
& PG_ACCESSED_MASK
)) {
839 pde
|= PG_ACCESSED_MASK
;
840 x86_stl_phys_notdirty(cs
, pde_addr
, pde
);
842 pte_addr
= ((pde
& PG_ADDRESS_MASK
) + (((addr
>> 12) & 0x1ff) << 3)) &
844 pte
= x86_ldq_phys(cs
, pte_addr
);
845 if (!(pte
& PG_PRESENT_MASK
)) {
848 if (pte
& rsvd_mask
) {
851 /* combine pde and pte nx, user and rw protections */
852 ptep
&= pte
^ PG_NX_MASK
;
857 /* page directory entry */
858 pde_addr
= ((env
->cr
[3] & ~0xfff) + ((addr
>> 20) & 0xffc)) &
860 pde
= x86_ldl_phys(cs
, pde_addr
);
861 if (!(pde
& PG_PRESENT_MASK
)) {
864 ptep
= pde
| PG_NX_MASK
;
866 /* if PSE bit is set, then we use a 4MB page */
867 if ((pde
& PG_PSE_MASK
) && (env
->cr
[4] & CR4_PSE_MASK
)) {
868 page_size
= 4096 * 1024;
871 /* Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved.
872 * Leave bits 20-13 in place for setting accessed/dirty bits below.
874 pte
= pde
| ((pde
& 0x1fe000LL
) << (32 - 13));
875 rsvd_mask
= 0x200000;
876 goto do_check_protect_pse36
;
879 if (!(pde
& PG_ACCESSED_MASK
)) {
880 pde
|= PG_ACCESSED_MASK
;
881 x86_stl_phys_notdirty(cs
, pde_addr
, pde
);
884 /* page directory entry */
885 pte_addr
= ((pde
& ~0xfff) + ((addr
>> 10) & 0xffc)) &
887 pte
= x86_ldl_phys(cs
, pte_addr
);
888 if (!(pte
& PG_PRESENT_MASK
)) {
891 /* combine pde and pte user and rw protections */
892 ptep
&= pte
| PG_NX_MASK
;
898 rsvd_mask
|= (page_size
- 1) & PG_ADDRESS_MASK
& ~PG_PSE_PAT_MASK
;
899 do_check_protect_pse36
:
900 if (pte
& rsvd_mask
) {
905 /* can the page can be put in the TLB? prot will tell us */
906 if (is_user
&& !(ptep
& PG_USER_MASK
)) {
907 goto do_fault_protect
;
911 if (mmu_idx
!= MMU_KSMAP_IDX
|| !(ptep
& PG_USER_MASK
)) {
913 if ((ptep
& PG_RW_MASK
) || (!is_user
&& !(env
->cr
[0] & CR0_WP_MASK
))) {
917 if (!(ptep
& PG_NX_MASK
) &&
918 (mmu_idx
== MMU_USER_IDX
||
919 !((env
->cr
[4] & CR4_SMEP_MASK
) && (ptep
& PG_USER_MASK
)))) {
923 if ((prot
& (1 << is_write1
)) == 0) {
924 goto do_fault_protect
;
927 if ((env
->cr
[4] & CR4_PKE_MASK
) && (env
->hflags
& HF_LMA_MASK
) &&
928 (ptep
& PG_USER_MASK
) && env
->pkru
) {
929 uint32_t pk
= (pte
& PG_PKRU_MASK
) >> PG_PKRU_BIT
;
930 uint32_t pkru_ad
= (env
->pkru
>> pk
* 2) & 1;
931 uint32_t pkru_wd
= (env
->pkru
>> pk
* 2) & 2;
934 prot
&= ~(PAGE_READ
| PAGE_WRITE
);
935 } else if (pkru_wd
&& (is_user
|| env
->cr
[0] & CR0_WP_MASK
)) {
938 if ((prot
& (1 << is_write1
)) == 0) {
939 assert(is_write1
!= 2);
940 error_code
|= PG_ERROR_PK_MASK
;
941 goto do_fault_protect
;
946 is_dirty
= is_write
&& !(pte
& PG_DIRTY_MASK
);
947 if (!(pte
& PG_ACCESSED_MASK
) || is_dirty
) {
948 pte
|= PG_ACCESSED_MASK
;
950 pte
|= PG_DIRTY_MASK
;
952 x86_stl_phys_notdirty(cs
, pte_addr
, pte
);
955 if (!(pte
& PG_DIRTY_MASK
)) {
956 /* only set write access if already dirty... otherwise wait
963 pte
= pte
& env
->a20_mask
;
965 /* align to page_size */
966 pte
&= PG_ADDRESS_MASK
& ~(page_size
- 1);
968 /* Even if 4MB pages, we map only one 4KB page in the cache to
969 avoid filling it too fast */
970 vaddr
= addr
& TARGET_PAGE_MASK
;
971 page_offset
= vaddr
& (page_size
- 1);
972 paddr
= pte
+ page_offset
;
974 assert(prot
& (1 << is_write1
));
975 tlb_set_page_with_attrs(cs
, vaddr
, paddr
, cpu_get_mem_attrs(env
),
976 prot
, mmu_idx
, page_size
);
979 error_code
|= PG_ERROR_RSVD_MASK
;
981 error_code
|= PG_ERROR_P_MASK
;
983 error_code
|= (is_write
<< PG_ERROR_W_BIT
);
985 error_code
|= PG_ERROR_U_MASK
;
986 if (is_write1
== 2 &&
987 (((env
->efer
& MSR_EFER_NXE
) &&
988 (env
->cr
[4] & CR4_PAE_MASK
)) ||
989 (env
->cr
[4] & CR4_SMEP_MASK
)))
990 error_code
|= PG_ERROR_I_D_MASK
;
991 if (env
->intercept_exceptions
& (1 << EXCP0E_PAGE
)) {
992 /* cr2 is not modified in case of exceptions */
994 env
->vm_vmcb
+ offsetof(struct vmcb
, control
.exit_info_2
),
999 env
->error_code
= error_code
;
1000 cs
->exception_index
= EXCP0E_PAGE
;
1004 hwaddr
x86_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
1006 X86CPU
*cpu
= X86_CPU(cs
);
1007 CPUX86State
*env
= &cpu
->env
;
1008 target_ulong pde_addr
, pte_addr
;
1010 uint32_t page_offset
;
1013 if (!(env
->cr
[0] & CR0_PG_MASK
)) {
1014 pte
= addr
& env
->a20_mask
;
1016 } else if (env
->cr
[4] & CR4_PAE_MASK
) {
1017 target_ulong pdpe_addr
;
1020 #ifdef TARGET_X86_64
1021 if (env
->hflags
& HF_LMA_MASK
) {
1022 uint64_t pml4e_addr
, pml4e
;
1025 /* test virtual address sign extension */
1026 sext
= (int64_t)addr
>> 47;
1027 if (sext
!= 0 && sext
!= -1) {
1030 pml4e_addr
= ((env
->cr
[3] & ~0xfff) + (((addr
>> 39) & 0x1ff) << 3)) &
1032 pml4e
= x86_ldq_phys(cs
, pml4e_addr
);
1033 if (!(pml4e
& PG_PRESENT_MASK
)) {
1036 pdpe_addr
= ((pml4e
& PG_ADDRESS_MASK
) +
1037 (((addr
>> 30) & 0x1ff) << 3)) & env
->a20_mask
;
1038 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
1039 if (!(pdpe
& PG_PRESENT_MASK
)) {
1042 if (pdpe
& PG_PSE_MASK
) {
1043 page_size
= 1024 * 1024 * 1024;
1051 pdpe_addr
= ((env
->cr
[3] & ~0x1f) + ((addr
>> 27) & 0x18)) &
1053 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
1054 if (!(pdpe
& PG_PRESENT_MASK
))
1058 pde_addr
= ((pdpe
& PG_ADDRESS_MASK
) +
1059 (((addr
>> 21) & 0x1ff) << 3)) & env
->a20_mask
;
1060 pde
= x86_ldq_phys(cs
, pde_addr
);
1061 if (!(pde
& PG_PRESENT_MASK
)) {
1064 if (pde
& PG_PSE_MASK
) {
1066 page_size
= 2048 * 1024;
1070 pte_addr
= ((pde
& PG_ADDRESS_MASK
) +
1071 (((addr
>> 12) & 0x1ff) << 3)) & env
->a20_mask
;
1073 pte
= x86_ldq_phys(cs
, pte_addr
);
1075 if (!(pte
& PG_PRESENT_MASK
)) {
1081 /* page directory entry */
1082 pde_addr
= ((env
->cr
[3] & ~0xfff) + ((addr
>> 20) & 0xffc)) & env
->a20_mask
;
1083 pde
= x86_ldl_phys(cs
, pde_addr
);
1084 if (!(pde
& PG_PRESENT_MASK
))
1086 if ((pde
& PG_PSE_MASK
) && (env
->cr
[4] & CR4_PSE_MASK
)) {
1087 pte
= pde
| ((pde
& 0x1fe000LL
) << (32 - 13));
1088 page_size
= 4096 * 1024;
1090 /* page directory entry */
1091 pte_addr
= ((pde
& ~0xfff) + ((addr
>> 10) & 0xffc)) & env
->a20_mask
;
1092 pte
= x86_ldl_phys(cs
, pte_addr
);
1093 if (!(pte
& PG_PRESENT_MASK
)) {
1098 pte
= pte
& env
->a20_mask
;
1101 #ifdef TARGET_X86_64
1104 pte
&= PG_ADDRESS_MASK
& ~(page_size
- 1);
1105 page_offset
= (addr
& TARGET_PAGE_MASK
) & (page_size
- 1);
1106 return pte
| page_offset
;
1109 typedef struct MCEInjectionParams
{
1114 uint64_t mcg_status
;
1118 } MCEInjectionParams
;
1120 static void do_inject_x86_mce(void *data
)
1122 MCEInjectionParams
*params
= data
;
1123 CPUX86State
*cenv
= ¶ms
->cpu
->env
;
1124 CPUState
*cpu
= CPU(params
->cpu
);
1125 uint64_t *banks
= cenv
->mce_banks
+ 4 * params
->bank
;
1127 cpu_synchronize_state(cpu
);
1130 * If there is an MCE exception being processed, ignore this SRAO MCE
1131 * unless unconditional injection was requested.
1133 if (!(params
->flags
& MCE_INJECT_UNCOND_AO
)
1134 && !(params
->status
& MCI_STATUS_AR
)
1135 && (cenv
->mcg_status
& MCG_STATUS_MCIP
)) {
1139 if (params
->status
& MCI_STATUS_UC
) {
1141 * if MSR_MCG_CTL is not all 1s, the uncorrected error
1142 * reporting is disabled
1144 if ((cenv
->mcg_cap
& MCG_CTL_P
) && cenv
->mcg_ctl
!= ~(uint64_t)0) {
1145 monitor_printf(params
->mon
,
1146 "CPU %d: Uncorrected error reporting disabled\n",
1152 * if MSR_MCi_CTL is not all 1s, the uncorrected error
1153 * reporting is disabled for the bank
1155 if (banks
[0] != ~(uint64_t)0) {
1156 monitor_printf(params
->mon
,
1157 "CPU %d: Uncorrected error reporting disabled for"
1159 cpu
->cpu_index
, params
->bank
);
1163 if ((cenv
->mcg_status
& MCG_STATUS_MCIP
) ||
1164 !(cenv
->cr
[4] & CR4_MCE_MASK
)) {
1165 monitor_printf(params
->mon
,
1166 "CPU %d: Previous MCE still in progress, raising"
1169 qemu_log_mask(CPU_LOG_RESET
, "Triple fault\n");
1170 qemu_system_reset_request();
1173 if (banks
[1] & MCI_STATUS_VAL
) {
1174 params
->status
|= MCI_STATUS_OVER
;
1176 banks
[2] = params
->addr
;
1177 banks
[3] = params
->misc
;
1178 cenv
->mcg_status
= params
->mcg_status
;
1179 banks
[1] = params
->status
;
1180 cpu_interrupt(cpu
, CPU_INTERRUPT_MCE
);
1181 } else if (!(banks
[1] & MCI_STATUS_VAL
)
1182 || !(banks
[1] & MCI_STATUS_UC
)) {
1183 if (banks
[1] & MCI_STATUS_VAL
) {
1184 params
->status
|= MCI_STATUS_OVER
;
1186 banks
[2] = params
->addr
;
1187 banks
[3] = params
->misc
;
1188 banks
[1] = params
->status
;
1190 banks
[1] |= MCI_STATUS_OVER
;
1194 void cpu_x86_inject_mce(Monitor
*mon
, X86CPU
*cpu
, int bank
,
1195 uint64_t status
, uint64_t mcg_status
, uint64_t addr
,
1196 uint64_t misc
, int flags
)
1198 CPUState
*cs
= CPU(cpu
);
1199 CPUX86State
*cenv
= &cpu
->env
;
1200 MCEInjectionParams params
= {
1205 .mcg_status
= mcg_status
,
1210 unsigned bank_num
= cenv
->mcg_cap
& 0xff;
1212 if (!cenv
->mcg_cap
) {
1213 monitor_printf(mon
, "MCE injection not supported\n");
1216 if (bank
>= bank_num
) {
1217 monitor_printf(mon
, "Invalid MCE bank number\n");
1220 if (!(status
& MCI_STATUS_VAL
)) {
1221 monitor_printf(mon
, "Invalid MCE status code\n");
1224 if ((flags
& MCE_INJECT_BROADCAST
)
1225 && !cpu_x86_support_mca_broadcast(cenv
)) {
1226 monitor_printf(mon
, "Guest CPU does not support MCA broadcast\n");
1230 run_on_cpu(cs
, do_inject_x86_mce
, ¶ms
);
1231 if (flags
& MCE_INJECT_BROADCAST
) {
1235 params
.status
= MCI_STATUS_VAL
| MCI_STATUS_UC
;
1236 params
.mcg_status
= MCG_STATUS_MCIP
| MCG_STATUS_RIPV
;
1239 CPU_FOREACH(other_cs
) {
1240 if (other_cs
== cs
) {
1243 params
.cpu
= X86_CPU(other_cs
);
1244 run_on_cpu(other_cs
, do_inject_x86_mce
, ¶ms
);
1249 void cpu_report_tpr_access(CPUX86State
*env
, TPRAccess access
)
1251 X86CPU
*cpu
= x86_env_get_cpu(env
);
1252 CPUState
*cs
= CPU(cpu
);
1254 if (kvm_enabled()) {
1255 env
->tpr_access_type
= access
;
1257 cpu_interrupt(cs
, CPU_INTERRUPT_TPR
);
1259 cpu_restore_state(cs
, cs
->mem_io_pc
);
1261 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
, access
);
1264 #endif /* !CONFIG_USER_ONLY */
1266 int cpu_x86_get_descr_debug(CPUX86State
*env
, unsigned int selector
,
1267 target_ulong
*base
, unsigned int *limit
,
1268 unsigned int *flags
)
1270 X86CPU
*cpu
= x86_env_get_cpu(env
);
1271 CPUState
*cs
= CPU(cpu
);
1281 index
= selector
& ~7;
1282 ptr
= dt
->base
+ index
;
1283 if ((index
+ 7) > dt
->limit
1284 || cpu_memory_rw_debug(cs
, ptr
, (uint8_t *)&e1
, sizeof(e1
), 0) != 0
1285 || cpu_memory_rw_debug(cs
, ptr
+4, (uint8_t *)&e2
, sizeof(e2
), 0) != 0)
1288 *base
= ((e1
>> 16) | ((e2
& 0xff) << 16) | (e2
& 0xff000000));
1289 *limit
= (e1
& 0xffff) | (e2
& 0x000f0000);
1290 if (e2
& DESC_G_MASK
)
1291 *limit
= (*limit
<< 12) | 0xfff;
1297 #if !defined(CONFIG_USER_ONLY)
1298 void do_cpu_init(X86CPU
*cpu
)
1300 CPUState
*cs
= CPU(cpu
);
1301 CPUX86State
*env
= &cpu
->env
;
1302 CPUX86State
*save
= g_new(CPUX86State
, 1);
1303 int sipi
= cs
->interrupt_request
& CPU_INTERRUPT_SIPI
;
1308 cs
->interrupt_request
= sipi
;
1309 memcpy(&env
->start_init_save
, &save
->start_init_save
,
1310 offsetof(CPUX86State
, end_init_save
) -
1311 offsetof(CPUX86State
, start_init_save
));
1314 if (kvm_enabled()) {
1315 kvm_arch_do_init_vcpu(cpu
);
1317 apic_init_reset(cpu
->apic_state
);
1320 void do_cpu_sipi(X86CPU
*cpu
)
1322 apic_sipi(cpu
->apic_state
);
1325 void do_cpu_init(X86CPU
*cpu
)
1328 void do_cpu_sipi(X86CPU
*cpu
)
1333 /* Frob eflags into and out of the CPU temporary format. */
1335 void x86_cpu_exec_enter(CPUState
*cs
)
1337 X86CPU
*cpu
= X86_CPU(cs
);
1338 CPUX86State
*env
= &cpu
->env
;
1340 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
1341 env
->df
= 1 - (2 * ((env
->eflags
>> 10) & 1));
1342 CC_OP
= CC_OP_EFLAGS
;
1343 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
1346 void x86_cpu_exec_exit(CPUState
*cs
)
1348 X86CPU
*cpu
= X86_CPU(cs
);
1349 CPUX86State
*env
= &cpu
->env
;
1351 env
->eflags
= cpu_compute_eflags(env
);
1354 #ifndef CONFIG_USER_ONLY
1355 uint8_t x86_ldub_phys(CPUState
*cs
, hwaddr addr
)
1357 X86CPU
*cpu
= X86_CPU(cs
);
1358 CPUX86State
*env
= &cpu
->env
;
1360 return address_space_ldub(cs
->as
, addr
,
1361 cpu_get_mem_attrs(env
),
1365 uint32_t x86_lduw_phys(CPUState
*cs
, hwaddr addr
)
1367 X86CPU
*cpu
= X86_CPU(cs
);
1368 CPUX86State
*env
= &cpu
->env
;
1370 return address_space_lduw(cs
->as
, addr
,
1371 cpu_get_mem_attrs(env
),
1375 uint32_t x86_ldl_phys(CPUState
*cs
, hwaddr addr
)
1377 X86CPU
*cpu
= X86_CPU(cs
);
1378 CPUX86State
*env
= &cpu
->env
;
1380 return address_space_ldl(cs
->as
, addr
,
1381 cpu_get_mem_attrs(env
),
1385 uint64_t x86_ldq_phys(CPUState
*cs
, hwaddr addr
)
1387 X86CPU
*cpu
= X86_CPU(cs
);
1388 CPUX86State
*env
= &cpu
->env
;
1390 return address_space_ldq(cs
->as
, addr
,
1391 cpu_get_mem_attrs(env
),
1395 void x86_stb_phys(CPUState
*cs
, hwaddr addr
, uint8_t val
)
1397 X86CPU
*cpu
= X86_CPU(cs
);
1398 CPUX86State
*env
= &cpu
->env
;
1400 address_space_stb(cs
->as
, addr
, val
,
1401 cpu_get_mem_attrs(env
),
1405 void x86_stl_phys_notdirty(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1407 X86CPU
*cpu
= X86_CPU(cs
);
1408 CPUX86State
*env
= &cpu
->env
;
1410 address_space_stl_notdirty(cs
->as
, addr
, val
,
1411 cpu_get_mem_attrs(env
),
1415 void x86_stw_phys(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1417 X86CPU
*cpu
= X86_CPU(cs
);
1418 CPUX86State
*env
= &cpu
->env
;
1420 address_space_stw(cs
->as
, addr
, val
,
1421 cpu_get_mem_attrs(env
),
1425 void x86_stl_phys(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1427 X86CPU
*cpu
= X86_CPU(cs
);
1428 CPUX86State
*env
= &cpu
->env
;
1430 address_space_stl(cs
->as
, addr
, val
,
1431 cpu_get_mem_attrs(env
),
1435 void x86_stq_phys(CPUState
*cs
, hwaddr addr
, uint64_t val
)
1437 X86CPU
*cpu
= X86_CPU(cs
);
1438 CPUX86State
*env
= &cpu
->env
;
1440 address_space_stq(cs
->as
, addr
, val
,
1441 cpu_get_mem_attrs(env
),