2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
38 #include "hw/fw-path-provider.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
78 #include "hw/intc/intc.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84 #include "hw/ppc/spapr_numa.h"
86 #include "monitor/monitor.h"
90 /* SLOF memory layout:
92 * SLOF raw image loaded at 0, copies its romfs right below the flat
93 * device-tree, then position SLOF itself 31M below that
95 * So we set FW_OVERHEAD to 40MB which should account for all of that
98 * We load our kernel at 4M, leaving space for SLOF initial image
100 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
101 #define FW_MAX_SIZE 0x400000
102 #define FW_FILE_NAME "slof.bin"
103 #define FW_OVERHEAD 0x2800000
104 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
106 #define MIN_RMA_SLOF (128 * MiB)
108 #define PHANDLE_INTC 0x00001111
110 /* These two functions implement the VCPU id numbering: one to compute them
111 * all and one to identify thread 0 of a VCORE. Any change to the first one
112 * is likely to have an impact on the second one, so let's keep them close.
114 static int spapr_vcpu_id(SpaprMachineState
*spapr
, int cpu_index
)
116 MachineState
*ms
= MACHINE(spapr
);
117 unsigned int smp_threads
= ms
->smp
.threads
;
121 (cpu_index
/ smp_threads
) * spapr
->vsmt
+ cpu_index
% smp_threads
;
123 static bool spapr_is_thread0_in_vcore(SpaprMachineState
*spapr
,
127 return spapr_get_vcpu_id(cpu
) % spapr
->vsmt
== 0;
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque
)
132 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133 * and newer QEMUs don't even have them. In both cases, we don't want
134 * to send anything on the wire.
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp
= {
140 .name
= "icp/server",
142 .minimum_version_id
= 1,
143 .needed
= pre_2_10_vmstate_dummy_icp_needed
,
144 .fields
= (VMStateField
[]) {
145 VMSTATE_UNUSED(4), /* uint32_t xirr */
146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147 VMSTATE_UNUSED(1), /* uint8_t mfrr */
148 VMSTATE_END_OF_LIST()
152 static void pre_2_10_vmstate_register_dummy_icp(int i
)
154 vmstate_register(NULL
, i
, &pre_2_10_vmstate_dummy_icp
,
155 (void *)(uintptr_t) i
);
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i
)
160 vmstate_unregister(NULL
, &pre_2_10_vmstate_dummy_icp
,
161 (void *)(uintptr_t) i
);
164 int spapr_max_server_number(SpaprMachineState
*spapr
)
166 MachineState
*ms
= MACHINE(spapr
);
169 return DIV_ROUND_UP(ms
->smp
.max_cpus
* spapr
->vsmt
, ms
->smp
.threads
);
172 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
176 uint32_t servers_prop
[smt_threads
];
177 uint32_t gservers_prop
[smt_threads
* 2];
178 int index
= spapr_get_vcpu_id(cpu
);
180 if (cpu
->compat_pvr
) {
181 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
187 /* Build interrupt servers and gservers properties */
188 for (i
= 0; i
< smt_threads
; i
++) {
189 servers_prop
[i
] = cpu_to_be32(index
+ i
);
190 /* Hack, direct the group queues back to cpu 0 */
191 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
192 gservers_prop
[i
*2 + 1] = 0;
194 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
195 servers_prop
, sizeof(servers_prop
));
199 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
200 gservers_prop
, sizeof(gservers_prop
));
205 static void spapr_dt_pa_features(SpaprMachineState
*spapr
,
207 void *fdt
, int offset
)
209 uint8_t pa_features_206
[] = { 6, 0,
210 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
211 uint8_t pa_features_207
[] = { 24, 0,
212 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
213 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
214 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
215 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
216 uint8_t pa_features_300
[] = { 66, 0,
217 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
218 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
219 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
221 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
223 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
224 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
225 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
226 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
227 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
228 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
229 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
230 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
232 /* 42: PM, 44: PC RA, 46: SC vec'd */
233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
234 /* 48: SIMD, 50: QP BFP, 52: String */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
236 /* 54: DecFP, 56: DecI, 58: SHA */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
238 /* 60: NM atomic, 62: RNG */
239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
241 uint8_t *pa_features
= NULL
;
244 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_06
, 0, cpu
->compat_pvr
)) {
245 pa_features
= pa_features_206
;
246 pa_size
= sizeof(pa_features_206
);
248 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_07
, 0, cpu
->compat_pvr
)) {
249 pa_features
= pa_features_207
;
250 pa_size
= sizeof(pa_features_207
);
252 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_3_00
, 0, cpu
->compat_pvr
)) {
253 pa_features
= pa_features_300
;
254 pa_size
= sizeof(pa_features_300
);
260 if (ppc_hash64_has(cpu
, PPC_HASH64_CI_LARGEPAGE
)) {
262 * Note: we keep CI large pages off by default because a 64K capable
263 * guest provisioned with large pages might otherwise try to map a qemu
264 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
265 * even if that qemu runs on a 4k host.
266 * We dd this bit back here if we are confident this is not an issue
268 pa_features
[3] |= 0x20;
270 if ((spapr_get_cap(spapr
, SPAPR_CAP_HTM
) != 0) && pa_size
> 24) {
271 pa_features
[24] |= 0x80; /* Transactional memory support */
273 if (spapr
->cas_pre_isa3_guest
&& pa_size
> 40) {
274 /* Workaround for broken kernels that attempt (guest) radix
275 * mode when they can't handle it, if they see the radix bit set
276 * in pa-features. So hide it from them. */
277 pa_features
[40 + 2] &= ~0x80; /* Radix MMU */
280 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
283 static hwaddr
spapr_node0_size(MachineState
*machine
)
285 if (machine
->numa_state
->num_nodes
) {
287 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
288 if (machine
->numa_state
->nodes
[i
].node_mem
) {
289 return MIN(pow2floor(machine
->numa_state
->nodes
[i
].node_mem
),
294 return machine
->ram_size
;
297 bool spapr_machine_using_legacy_numa(SpaprMachineState
*spapr
)
299 MachineState
*machine
= MACHINE(spapr
);
300 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
302 return smc
->pre_5_2_numa_associativity
||
303 machine
->numa_state
->num_nodes
<= 1;
306 static void add_str(GString
*s
, const gchar
*s1
)
308 g_string_append_len(s
, s1
, strlen(s1
) + 1);
311 static int spapr_dt_memory_node(SpaprMachineState
*spapr
, void *fdt
, int nodeid
,
312 hwaddr start
, hwaddr size
)
315 uint64_t mem_reg_property
[2];
318 mem_reg_property
[0] = cpu_to_be64(start
);
319 mem_reg_property
[1] = cpu_to_be64(size
);
321 sprintf(mem_name
, "memory@%" HWADDR_PRIx
, start
);
322 off
= fdt_add_subnode(fdt
, 0, mem_name
);
324 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
325 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
326 sizeof(mem_reg_property
))));
327 spapr_numa_write_associativity_dt(spapr
, fdt
, off
, nodeid
);
331 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList
*list
, ram_addr_t addr
)
333 MemoryDeviceInfoList
*info
;
335 for (info
= list
; info
; info
= info
->next
) {
336 MemoryDeviceInfo
*value
= info
->value
;
338 if (value
&& value
->type
== MEMORY_DEVICE_INFO_KIND_DIMM
) {
339 PCDIMMDeviceInfo
*pcdimm_info
= value
->u
.dimm
.data
;
341 if (addr
>= pcdimm_info
->addr
&&
342 addr
< (pcdimm_info
->addr
+ pcdimm_info
->size
)) {
343 return pcdimm_info
->node
;
351 struct sPAPRDrconfCellV2
{
359 typedef struct DrconfCellQueue
{
360 struct sPAPRDrconfCellV2 cell
;
361 QSIMPLEQ_ENTRY(DrconfCellQueue
) entry
;
364 static DrconfCellQueue
*
365 spapr_get_drconf_cell(uint32_t seq_lmbs
, uint64_t base_addr
,
366 uint32_t drc_index
, uint32_t aa_index
,
369 DrconfCellQueue
*elem
;
371 elem
= g_malloc0(sizeof(*elem
));
372 elem
->cell
.seq_lmbs
= cpu_to_be32(seq_lmbs
);
373 elem
->cell
.base_addr
= cpu_to_be64(base_addr
);
374 elem
->cell
.drc_index
= cpu_to_be32(drc_index
);
375 elem
->cell
.aa_index
= cpu_to_be32(aa_index
);
376 elem
->cell
.flags
= cpu_to_be32(flags
);
381 static int spapr_dt_dynamic_memory_v2(SpaprMachineState
*spapr
, void *fdt
,
382 int offset
, MemoryDeviceInfoList
*dimms
)
384 MachineState
*machine
= MACHINE(spapr
);
385 uint8_t *int_buf
, *cur_index
;
387 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
388 uint64_t addr
, cur_addr
, size
;
389 uint32_t nr_boot_lmbs
= (machine
->device_memory
->base
/ lmb_size
);
390 uint64_t mem_end
= machine
->device_memory
->base
+
391 memory_region_size(&machine
->device_memory
->mr
);
392 uint32_t node
, buf_len
, nr_entries
= 0;
394 DrconfCellQueue
*elem
, *next
;
395 MemoryDeviceInfoList
*info
;
396 QSIMPLEQ_HEAD(, DrconfCellQueue
) drconf_queue
397 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue
);
399 /* Entry to cover RAM and the gap area */
400 elem
= spapr_get_drconf_cell(nr_boot_lmbs
, 0, 0, -1,
401 SPAPR_LMB_FLAGS_RESERVED
|
402 SPAPR_LMB_FLAGS_DRC_INVALID
);
403 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
406 cur_addr
= machine
->device_memory
->base
;
407 for (info
= dimms
; info
; info
= info
->next
) {
408 PCDIMMDeviceInfo
*di
= info
->value
->u
.dimm
.data
;
415 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
416 * area is marked hotpluggable in the next iteration for the bigger
417 * chunk including the NVDIMM occupied area.
419 if (info
->value
->type
== MEMORY_DEVICE_INFO_KIND_NVDIMM
)
422 /* Entry for hot-pluggable area */
423 if (cur_addr
< addr
) {
424 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
426 elem
= spapr_get_drconf_cell((addr
- cur_addr
) / lmb_size
,
427 cur_addr
, spapr_drc_index(drc
), -1, 0);
428 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
433 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, addr
/ lmb_size
);
435 elem
= spapr_get_drconf_cell(size
/ lmb_size
, addr
,
436 spapr_drc_index(drc
), node
,
437 (SPAPR_LMB_FLAGS_ASSIGNED
|
438 SPAPR_LMB_FLAGS_HOTREMOVABLE
));
439 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
441 cur_addr
= addr
+ size
;
444 /* Entry for remaining hotpluggable area */
445 if (cur_addr
< mem_end
) {
446 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
448 elem
= spapr_get_drconf_cell((mem_end
- cur_addr
) / lmb_size
,
449 cur_addr
, spapr_drc_index(drc
), -1, 0);
450 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
454 buf_len
= nr_entries
* sizeof(struct sPAPRDrconfCellV2
) + sizeof(uint32_t);
455 int_buf
= cur_index
= g_malloc0(buf_len
);
456 *(uint32_t *)int_buf
= cpu_to_be32(nr_entries
);
457 cur_index
+= sizeof(nr_entries
);
459 QSIMPLEQ_FOREACH_SAFE(elem
, &drconf_queue
, entry
, next
) {
460 memcpy(cur_index
, &elem
->cell
, sizeof(elem
->cell
));
461 cur_index
+= sizeof(elem
->cell
);
462 QSIMPLEQ_REMOVE(&drconf_queue
, elem
, DrconfCellQueue
, entry
);
466 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory-v2", int_buf
, buf_len
);
474 static int spapr_dt_dynamic_memory(SpaprMachineState
*spapr
, void *fdt
,
475 int offset
, MemoryDeviceInfoList
*dimms
)
477 MachineState
*machine
= MACHINE(spapr
);
479 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
480 uint32_t device_lmb_start
= machine
->device_memory
->base
/ lmb_size
;
481 uint32_t nr_lmbs
= (machine
->device_memory
->base
+
482 memory_region_size(&machine
->device_memory
->mr
)) /
484 uint32_t *int_buf
, *cur_index
, buf_len
;
487 * Allocate enough buffer size to fit in ibm,dynamic-memory
489 buf_len
= (nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1) * sizeof(uint32_t);
490 cur_index
= int_buf
= g_malloc0(buf_len
);
491 int_buf
[0] = cpu_to_be32(nr_lmbs
);
493 for (i
= 0; i
< nr_lmbs
; i
++) {
494 uint64_t addr
= i
* lmb_size
;
495 uint32_t *dynamic_memory
= cur_index
;
497 if (i
>= device_lmb_start
) {
500 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, i
);
503 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
504 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
505 dynamic_memory
[2] = cpu_to_be32(spapr_drc_index(drc
));
506 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
507 dynamic_memory
[4] = cpu_to_be32(spapr_pc_dimm_node(dimms
, addr
));
508 if (memory_region_present(get_system_memory(), addr
)) {
509 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
511 dynamic_memory
[5] = cpu_to_be32(0);
515 * LMB information for RMA, boot time RAM and gap b/n RAM and
516 * device memory region -- all these are marked as reserved
517 * and as having no valid DRC.
519 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
520 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
521 dynamic_memory
[2] = cpu_to_be32(0);
522 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
523 dynamic_memory
[4] = cpu_to_be32(-1);
524 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
525 SPAPR_LMB_FLAGS_DRC_INVALID
);
528 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
530 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
539 * Adds ibm,dynamic-reconfiguration-memory node.
540 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
541 * of this device tree node.
543 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState
*spapr
,
546 MachineState
*machine
= MACHINE(spapr
);
548 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
549 uint32_t prop_lmb_size
[] = {cpu_to_be32(lmb_size
>> 32),
550 cpu_to_be32(lmb_size
& 0xffffffff)};
551 MemoryDeviceInfoList
*dimms
= NULL
;
554 * Don't create the node if there is no device memory
556 if (machine
->ram_size
== machine
->maxram_size
) {
560 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
562 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
563 sizeof(prop_lmb_size
));
568 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
573 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
578 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
579 dimms
= qmp_memory_device_list();
580 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRMEM_V2
)) {
581 ret
= spapr_dt_dynamic_memory_v2(spapr
, fdt
, offset
, dimms
);
583 ret
= spapr_dt_dynamic_memory(spapr
, fdt
, offset
, dimms
);
585 qapi_free_MemoryDeviceInfoList(dimms
);
591 ret
= spapr_numa_write_assoc_lookup_arrays(spapr
, fdt
, offset
);
596 static int spapr_dt_memory(SpaprMachineState
*spapr
, void *fdt
)
598 MachineState
*machine
= MACHINE(spapr
);
599 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
600 hwaddr mem_start
, node_size
;
601 int i
, nb_nodes
= machine
->numa_state
->num_nodes
;
602 NodeInfo
*nodes
= machine
->numa_state
->nodes
;
604 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
605 if (!nodes
[i
].node_mem
) {
608 if (mem_start
>= machine
->ram_size
) {
611 node_size
= nodes
[i
].node_mem
;
612 if (node_size
> machine
->ram_size
- mem_start
) {
613 node_size
= machine
->ram_size
- mem_start
;
617 /* spapr_machine_init() checks for rma_size <= node0_size
619 spapr_dt_memory_node(spapr
, fdt
, i
, 0, spapr
->rma_size
);
620 mem_start
+= spapr
->rma_size
;
621 node_size
-= spapr
->rma_size
;
623 for ( ; node_size
; ) {
624 hwaddr sizetmp
= pow2floor(node_size
);
626 /* mem_start != 0 here */
627 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
628 sizetmp
= 1ULL << ctzl(mem_start
);
631 spapr_dt_memory_node(spapr
, fdt
, i
, mem_start
, sizetmp
);
632 node_size
-= sizetmp
;
633 mem_start
+= sizetmp
;
637 /* Generate ibm,dynamic-reconfiguration-memory node if required */
638 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRCONF_MEMORY
)) {
641 g_assert(smc
->dr_lmb_enabled
);
642 ret
= spapr_dt_dynamic_reconfiguration_memory(spapr
, fdt
);
651 static void spapr_dt_cpu(CPUState
*cs
, void *fdt
, int offset
,
652 SpaprMachineState
*spapr
)
654 MachineState
*ms
= MACHINE(spapr
);
655 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
656 CPUPPCState
*env
= &cpu
->env
;
657 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
658 int index
= spapr_get_vcpu_id(cpu
);
659 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
660 0xffffffff, 0xffffffff};
661 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
662 : SPAPR_TIMEBASE_FREQ
;
663 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
664 uint32_t page_sizes_prop
[64];
665 size_t page_sizes_prop_size
;
666 unsigned int smp_threads
= ms
->smp
.threads
;
667 uint32_t vcpus_per_socket
= smp_threads
* ms
->smp
.cores
;
668 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
669 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
672 uint32_t radix_AP_encodings
[PPC_PAGE_SIZES_MAX_SZ
];
675 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
);
677 drc_index
= spapr_drc_index(drc
);
678 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
681 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
682 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
684 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
685 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
686 env
->dcache_line_size
)));
687 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
688 env
->dcache_line_size
)));
689 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
690 env
->icache_line_size
)));
691 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
692 env
->icache_line_size
)));
694 if (pcc
->l1_dcache_size
) {
695 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
696 pcc
->l1_dcache_size
)));
698 warn_report("Unknown L1 dcache size for cpu");
700 if (pcc
->l1_icache_size
) {
701 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
702 pcc
->l1_icache_size
)));
704 warn_report("Unknown L1 icache size for cpu");
707 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
708 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
709 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", cpu
->hash64_opts
->slb_size
)));
710 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", cpu
->hash64_opts
->slb_size
)));
711 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
712 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
714 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
715 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,purr", 1)));
717 if (env
->spr_cb
[SPR_SPURR
].oea_read
) {
718 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,spurr", 1)));
721 if (ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
)) {
722 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
723 segs
, sizeof(segs
))));
726 /* Advertise VSX (vector extensions) if available
727 * 1 == VMX / Altivec available
730 * Only CPUs for which we create core types in spapr_cpu_core.c
731 * are possible, and all of those have VMX */
732 if (spapr_get_cap(spapr
, SPAPR_CAP_VSX
) != 0) {
733 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 2)));
735 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 1)));
738 /* Advertise DFP (Decimal Floating Point) if available
739 * 0 / no property == no DFP
740 * 1 == DFP available */
741 if (spapr_get_cap(spapr
, SPAPR_CAP_DFP
) != 0) {
742 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
745 page_sizes_prop_size
= ppc_create_page_sizes_prop(cpu
, page_sizes_prop
,
746 sizeof(page_sizes_prop
));
747 if (page_sizes_prop_size
) {
748 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
749 page_sizes_prop
, page_sizes_prop_size
)));
752 spapr_dt_pa_features(spapr
, cpu
, fdt
, offset
);
754 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
755 cs
->cpu_index
/ vcpus_per_socket
)));
757 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
758 pft_size_prop
, sizeof(pft_size_prop
))));
760 if (ms
->numa_state
->num_nodes
> 1) {
761 _FDT(spapr_numa_fixup_cpu_dt(spapr
, fdt
, offset
, cpu
));
764 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
766 if (pcc
->radix_page_info
) {
767 for (i
= 0; i
< pcc
->radix_page_info
->count
; i
++) {
768 radix_AP_encodings
[i
] =
769 cpu_to_be32(pcc
->radix_page_info
->entries
[i
]);
771 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-radix-AP-encodings",
773 pcc
->radix_page_info
->count
*
774 sizeof(radix_AP_encodings
[0]))));
778 * We set this property to let the guest know that it can use the large
779 * decrementer and its width in bits.
781 if (spapr_get_cap(spapr
, SPAPR_CAP_LARGE_DECREMENTER
) != SPAPR_CAP_OFF
)
782 _FDT((fdt_setprop_u32(fdt
, offset
, "ibm,dec-bits",
783 pcc
->lrg_decr_bits
)));
786 static void spapr_dt_cpus(void *fdt
, SpaprMachineState
*spapr
)
795 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
797 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
798 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
801 * We walk the CPUs in reverse order to ensure that CPU DT nodes
802 * created by fdt_add_subnode() end up in the right order in FDT
803 * for the guest kernel the enumerate the CPUs correctly.
805 * The CPU list cannot be traversed in reverse order, so we need
811 rev
= g_renew(CPUState
*, rev
, n_cpus
+ 1);
815 for (i
= n_cpus
- 1; i
>= 0; i
--) {
816 CPUState
*cs
= rev
[i
];
817 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
818 int index
= spapr_get_vcpu_id(cpu
);
819 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
822 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
826 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
827 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
830 spapr_dt_cpu(cs
, fdt
, offset
, spapr
);
836 static int spapr_dt_rng(void *fdt
)
841 node
= qemu_fdt_add_subnode(fdt
, "/ibm,platform-facilities");
845 ret
= fdt_setprop_string(fdt
, node
, "device_type",
846 "ibm,platform-facilities");
847 ret
|= fdt_setprop_cell(fdt
, node
, "#address-cells", 0x1);
848 ret
|= fdt_setprop_cell(fdt
, node
, "#size-cells", 0x0);
850 node
= fdt_add_subnode(fdt
, node
, "ibm,random-v1");
854 ret
|= fdt_setprop_string(fdt
, node
, "compatible", "ibm,random");
859 static void spapr_dt_rtas(SpaprMachineState
*spapr
, void *fdt
)
861 MachineState
*ms
= MACHINE(spapr
);
863 GString
*hypertas
= g_string_sized_new(256);
864 GString
*qemu_hypertas
= g_string_sized_new(256);
865 uint64_t max_device_addr
= MACHINE(spapr
)->device_memory
->base
+
866 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
867 uint32_t lrdr_capacity
[] = {
868 cpu_to_be32(max_device_addr
>> 32),
869 cpu_to_be32(max_device_addr
& 0xffffffff),
870 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
>> 32),
871 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
& 0xffffffff),
872 cpu_to_be32(ms
->smp
.max_cpus
/ ms
->smp
.threads
),
875 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
878 add_str(hypertas
, "hcall-pft");
879 add_str(hypertas
, "hcall-term");
880 add_str(hypertas
, "hcall-dabr");
881 add_str(hypertas
, "hcall-interrupt");
882 add_str(hypertas
, "hcall-tce");
883 add_str(hypertas
, "hcall-vio");
884 add_str(hypertas
, "hcall-splpar");
885 add_str(hypertas
, "hcall-join");
886 add_str(hypertas
, "hcall-bulk");
887 add_str(hypertas
, "hcall-set-mode");
888 add_str(hypertas
, "hcall-sprg0");
889 add_str(hypertas
, "hcall-copy");
890 add_str(hypertas
, "hcall-debug");
891 add_str(hypertas
, "hcall-vphn");
892 add_str(qemu_hypertas
, "hcall-memop1");
894 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
895 add_str(hypertas
, "hcall-multi-tce");
898 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
899 add_str(hypertas
, "hcall-hpt-resize");
902 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
903 hypertas
->str
, hypertas
->len
));
904 g_string_free(hypertas
, TRUE
);
905 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
906 qemu_hypertas
->str
, qemu_hypertas
->len
));
907 g_string_free(qemu_hypertas
, TRUE
);
909 spapr_numa_write_rtas_dt(spapr
, fdt
, rtas
);
912 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
913 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
915 * The system reset requirements are driven by existing Linux and PowerVM
916 * implementation which (contrary to PAPR) saves r3 in the error log
917 * structure like machine check, so Linux expects to find the saved r3
918 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
919 * does not look at the error value).
921 * System reset interrupts are not subject to interlock like machine
922 * check, so this memory area could be corrupted if the sreset is
923 * interrupted by a machine check (or vice versa) if it was shared. To
924 * prevent this, system reset uses per-CPU areas for the sreset save
925 * area. A system reset that interrupts a system reset handler could
926 * still overwrite this area, but Linux doesn't try to recover in that
929 * The extra 8 bytes is required because Linux's FWNMI error log check
932 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-size", RTAS_ERROR_LOG_MAX
+
933 ms
->smp
.max_cpus
* sizeof(uint64_t)*2 + sizeof(uint64_t)));
934 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
935 RTAS_ERROR_LOG_MAX
));
936 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
937 RTAS_EVENT_SCAN_RATE
));
939 g_assert(msi_nonbroken
);
940 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
943 * According to PAPR, rtas ibm,os-term does not guarantee a return
944 * back to the guest cpu.
946 * While an additional ibm,extended-os-term property indicates
947 * that rtas call return will always occur. Set this property.
949 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
951 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
952 lrdr_capacity
, sizeof(lrdr_capacity
)));
954 spapr_dt_rtas_tokens(fdt
, rtas
);
958 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
959 * and the XIVE features that the guest may request and thus the valid
960 * values for bytes 23..26 of option vector 5:
962 static void spapr_dt_ov5_platform_support(SpaprMachineState
*spapr
, void *fdt
,
965 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
968 23, 0x00, /* XICS / XIVE mode */
969 24, 0x00, /* Hash/Radix, filled in below. */
970 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
971 26, 0x40, /* Radix options: GTSE == yes. */
974 if (spapr
->irq
->xics
&& spapr
->irq
->xive
) {
975 val
[1] = SPAPR_OV5_XIVE_BOTH
;
976 } else if (spapr
->irq
->xive
) {
977 val
[1] = SPAPR_OV5_XIVE_EXPLOIT
;
979 assert(spapr
->irq
->xics
);
980 val
[1] = SPAPR_OV5_XIVE_LEGACY
;
983 if (!ppc_check_compat(first_ppc_cpu
, CPU_POWERPC_LOGICAL_3_00
, 0,
984 first_ppc_cpu
->compat_pvr
)) {
986 * If we're in a pre POWER9 compat mode then the guest should
987 * do hash and use the legacy interrupt mode
989 val
[1] = SPAPR_OV5_XIVE_LEGACY
; /* XICS */
990 val
[3] = 0x00; /* Hash */
991 } else if (kvm_enabled()) {
992 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
993 val
[3] = 0x80; /* OV5_MMU_BOTH */
994 } else if (kvmppc_has_cap_mmu_radix()) {
995 val
[3] = 0x40; /* OV5_MMU_RADIX_300 */
997 val
[3] = 0x00; /* Hash */
1000 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1003 _FDT(fdt_setprop(fdt
, chosen
, "ibm,arch-vec-5-platform-support",
1007 static void spapr_dt_chosen(SpaprMachineState
*spapr
, void *fdt
, bool reset
)
1009 MachineState
*machine
= MACHINE(spapr
);
1010 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1013 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
1016 const char *boot_device
= machine
->boot_order
;
1017 char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
1019 char *bootlist
= get_boot_devices_list(&cb
);
1021 if (machine
->kernel_cmdline
&& machine
->kernel_cmdline
[0]) {
1022 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs",
1023 machine
->kernel_cmdline
));
1026 if (spapr
->initrd_size
) {
1027 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
1028 spapr
->initrd_base
));
1029 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
1030 spapr
->initrd_base
+ spapr
->initrd_size
));
1033 if (spapr
->kernel_size
) {
1034 uint64_t kprop
[2] = { cpu_to_be64(spapr
->kernel_addr
),
1035 cpu_to_be64(spapr
->kernel_size
) };
1037 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
1038 &kprop
, sizeof(kprop
)));
1039 if (spapr
->kernel_le
) {
1040 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
1044 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", boot_menu
)));
1046 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
1047 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
1048 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
1050 if (cb
&& bootlist
) {
1053 for (i
= 0; i
< cb
; i
++) {
1054 if (bootlist
[i
] == '\n') {
1058 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
1061 if (boot_device
&& strlen(boot_device
)) {
1062 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
1065 if (!spapr
->has_graphics
&& stdout_path
) {
1067 * "linux,stdout-path" and "stdout" properties are
1068 * deprecated by linux kernel. New platforms should only
1069 * use the "stdout-path" property. Set the new property
1070 * and continue using older property to remain compatible
1071 * with the existing firmware.
1073 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
1074 _FDT(fdt_setprop_string(fdt
, chosen
, "stdout-path", stdout_path
));
1078 * We can deal with BAR reallocation just fine, advertise it
1081 if (smc
->linux_pci_probe
) {
1082 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,pci-probe-only", 0));
1085 spapr_dt_ov5_platform_support(spapr
, fdt
, chosen
);
1087 g_free(stdout_path
);
1091 _FDT(spapr_dt_ovec(fdt
, chosen
, spapr
->ov5_cas
, "ibm,architecture-vec-5"));
1094 static void spapr_dt_hypervisor(SpaprMachineState
*spapr
, void *fdt
)
1096 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1097 * KVM to work under pHyp with some guest co-operation */
1099 uint8_t hypercall
[16];
1101 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
1102 /* indicate KVM hypercall interface */
1103 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
1104 if (kvmppc_has_cap_fixup_hcalls()) {
1106 * Older KVM versions with older guest kernels were broken
1107 * with the magic page, don't allow the guest to map it.
1109 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
1110 sizeof(hypercall
))) {
1111 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
1112 hypercall
, sizeof(hypercall
)));
1117 void *spapr_build_fdt(SpaprMachineState
*spapr
, bool reset
, size_t space
)
1119 MachineState
*machine
= MACHINE(spapr
);
1120 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1121 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1127 fdt
= g_malloc0(space
);
1128 _FDT((fdt_create_empty_tree(fdt
, space
)));
1131 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
1132 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
1133 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
1135 /* Guest UUID & Name*/
1136 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
1137 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
1138 if (qemu_uuid_set
) {
1139 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
1143 if (qemu_get_vm_name()) {
1144 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
1145 qemu_get_vm_name()));
1148 /* Host Model & Serial Number */
1149 if (spapr
->host_model
) {
1150 _FDT(fdt_setprop_string(fdt
, 0, "host-model", spapr
->host_model
));
1151 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_model(&buf
)) {
1152 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
1156 if (spapr
->host_serial
) {
1157 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", spapr
->host_serial
));
1158 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_serial(&buf
)) {
1159 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
1163 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
1164 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
1166 /* /interrupt controller */
1167 spapr_irq_dt(spapr
, spapr_max_server_number(spapr
), fdt
, PHANDLE_INTC
);
1169 ret
= spapr_dt_memory(spapr
, fdt
);
1171 error_report("couldn't setup memory nodes in fdt");
1176 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
1178 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
1179 ret
= spapr_dt_rng(fdt
);
1181 error_report("could not set up rng device in the fdt");
1186 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
1187 ret
= spapr_dt_phb(spapr
, phb
, PHANDLE_INTC
, fdt
, NULL
);
1189 error_report("couldn't setup PCI devices in fdt");
1194 spapr_dt_cpus(fdt
, spapr
);
1196 if (smc
->dr_lmb_enabled
) {
1197 _FDT(spapr_dt_drc(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_LMB
));
1200 if (mc
->has_hotpluggable_cpus
) {
1201 int offset
= fdt_path_offset(fdt
, "/cpus");
1202 ret
= spapr_dt_drc(fdt
, offset
, NULL
, SPAPR_DR_CONNECTOR_TYPE_CPU
);
1204 error_report("Couldn't set up CPU DR device tree properties");
1209 /* /event-sources */
1210 spapr_dt_events(spapr
, fdt
);
1213 spapr_dt_rtas(spapr
, fdt
);
1216 spapr_dt_chosen(spapr
, fdt
, reset
);
1219 if (kvm_enabled()) {
1220 spapr_dt_hypervisor(spapr
, fdt
);
1223 /* Build memory reserve map */
1225 if (spapr
->kernel_size
) {
1226 _FDT((fdt_add_mem_rsv(fdt
, spapr
->kernel_addr
,
1227 spapr
->kernel_size
)));
1229 if (spapr
->initrd_size
) {
1230 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
,
1231 spapr
->initrd_size
)));
1235 if (smc
->dr_phb_enabled
) {
1236 ret
= spapr_dt_drc(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_PHB
);
1238 error_report("Couldn't set up PHB DR device tree properties");
1243 /* NVDIMM devices */
1244 if (mc
->nvdimm_supported
) {
1245 spapr_dt_persistent_memory(spapr
, fdt
);
1251 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1253 SpaprMachineState
*spapr
= opaque
;
1255 return (addr
& 0x0fffffff) + spapr
->kernel_addr
;
1258 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1261 CPUPPCState
*env
= &cpu
->env
;
1263 /* The TCG path should also be holding the BQL at this point */
1264 g_assert(qemu_mutex_iothread_locked());
1267 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1268 env
->gpr
[3] = H_PRIVILEGE
;
1270 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1274 struct LPCRSyncState
{
1279 static void do_lpcr_sync(CPUState
*cs
, run_on_cpu_data arg
)
1281 struct LPCRSyncState
*s
= arg
.host_ptr
;
1282 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1283 CPUPPCState
*env
= &cpu
->env
;
1286 cpu_synchronize_state(cs
);
1287 lpcr
= env
->spr
[SPR_LPCR
];
1290 ppc_store_lpcr(cpu
, lpcr
);
1293 void spapr_set_all_lpcrs(target_ulong value
, target_ulong mask
)
1296 struct LPCRSyncState s
= {
1301 run_on_cpu(cs
, do_lpcr_sync
, RUN_ON_CPU_HOST_PTR(&s
));
1305 static void spapr_get_pate(PPCVirtualHypervisor
*vhyp
, ppc_v3_pate_t
*entry
)
1307 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1309 /* Copy PATE1:GR into PATE0:HR */
1310 entry
->dw0
= spapr
->patb_entry
& PATE0_HR
;
1311 entry
->dw1
= spapr
->patb_entry
;
1314 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1315 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1316 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1317 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1318 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1321 * Get the fd to access the kernel htab, re-opening it if necessary
1323 static int get_htab_fd(SpaprMachineState
*spapr
)
1325 Error
*local_err
= NULL
;
1327 if (spapr
->htab_fd
>= 0) {
1328 return spapr
->htab_fd
;
1331 spapr
->htab_fd
= kvmppc_get_htab_fd(false, 0, &local_err
);
1332 if (spapr
->htab_fd
< 0) {
1333 error_report_err(local_err
);
1336 return spapr
->htab_fd
;
1339 void close_htab_fd(SpaprMachineState
*spapr
)
1341 if (spapr
->htab_fd
>= 0) {
1342 close(spapr
->htab_fd
);
1344 spapr
->htab_fd
= -1;
1347 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1349 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1351 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1354 static target_ulong
spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor
*vhyp
)
1356 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1358 assert(kvm_enabled());
1364 return (target_ulong
)(uintptr_t)spapr
->htab
| (spapr
->htab_shift
- 18);
1367 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1370 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1371 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1375 * HTAB is controlled by KVM. Fetch into temporary buffer
1377 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1378 kvmppc_read_hptes(hptes
, ptex
, n
);
1383 * HTAB is controlled by QEMU. Just point to the internally
1386 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1389 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1390 const ppc_hash_pte64_t
*hptes
,
1393 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1396 g_free((void *)hptes
);
1399 /* Nothing to do for qemu managed HPT */
1402 void spapr_store_hpte(PowerPCCPU
*cpu
, hwaddr ptex
,
1403 uint64_t pte0
, uint64_t pte1
)
1405 SpaprMachineState
*spapr
= SPAPR_MACHINE(cpu
->vhyp
);
1406 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1409 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1411 if (pte0
& HPTE64_V_VALID
) {
1412 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1414 * When setting valid, we write PTE1 first. This ensures
1415 * proper synchronization with the reading code in
1416 * ppc_hash64_pteg_search()
1419 stq_p(spapr
->htab
+ offset
, pte0
);
1421 stq_p(spapr
->htab
+ offset
, pte0
);
1423 * When clearing it we set PTE0 first. This ensures proper
1424 * synchronization with the reading code in
1425 * ppc_hash64_pteg_search()
1428 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1433 static void spapr_hpte_set_c(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1436 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ 15;
1437 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1440 /* There should always be a hash table when this is called */
1441 error_report("spapr_hpte_set_c called with no hash table !");
1445 /* The HW performs a non-atomic byte update */
1446 stb_p(spapr
->htab
+ offset
, (pte1
& 0xff) | 0x80);
1449 static void spapr_hpte_set_r(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1452 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ 14;
1453 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1456 /* There should always be a hash table when this is called */
1457 error_report("spapr_hpte_set_r called with no hash table !");
1461 /* The HW performs a non-atomic byte update */
1462 stb_p(spapr
->htab
+ offset
, ((pte1
>> 8) & 0xff) | 0x01);
1465 int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1469 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1470 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1471 * that's much more than is needed for Linux guests */
1472 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1473 shift
= MAX(shift
, 18); /* Minimum architected size */
1474 shift
= MIN(shift
, 46); /* Maximum architected size */
1478 void spapr_free_hpt(SpaprMachineState
*spapr
)
1480 g_free(spapr
->htab
);
1482 spapr
->htab_shift
= 0;
1483 close_htab_fd(spapr
);
1486 void spapr_reallocate_hpt(SpaprMachineState
*spapr
, int shift
,
1491 /* Clean up any HPT info from a previous boot */
1492 spapr_free_hpt(spapr
);
1494 rc
= kvmppc_reset_htab(shift
);
1496 if (rc
== -EOPNOTSUPP
) {
1497 error_setg(errp
, "HPT not supported in nested guests");
1502 /* kernel-side HPT needed, but couldn't allocate one */
1503 error_setg_errno(errp
, errno
,
1504 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1506 /* This is almost certainly fatal, but if the caller really
1507 * wants to carry on with shift == 0, it's welcome to try */
1508 } else if (rc
> 0) {
1509 /* kernel-side HPT allocated */
1512 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1516 spapr
->htab_shift
= shift
;
1519 /* kernel-side HPT not needed, allocate in userspace instead */
1520 size_t size
= 1ULL << shift
;
1523 spapr
->htab
= qemu_memalign(size
, size
);
1525 error_setg_errno(errp
, errno
,
1526 "Could not allocate HPT of order %d", shift
);
1530 memset(spapr
->htab
, 0, size
);
1531 spapr
->htab_shift
= shift
;
1533 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1534 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1537 /* We're setting up a hash table, so that means we're not radix */
1538 spapr
->patb_entry
= 0;
1539 spapr_set_all_lpcrs(0, LPCR_HR
| LPCR_UPRT
);
1542 void spapr_setup_hpt(SpaprMachineState
*spapr
)
1546 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
1547 hpt_shift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1549 uint64_t current_ram_size
;
1551 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
1552 hpt_shift
= spapr_hpt_shift_for_ramsize(current_ram_size
);
1554 spapr_reallocate_hpt(spapr
, hpt_shift
, &error_fatal
);
1556 if (kvm_enabled()) {
1557 hwaddr vrma_limit
= kvmppc_vrma_limit(spapr
->htab_shift
);
1559 /* Check our RMA fits in the possible VRMA */
1560 if (vrma_limit
< spapr
->rma_size
) {
1561 error_report("Unable to create %" HWADDR_PRIu
1562 "MiB RMA (VRMA only allows %" HWADDR_PRIu
"MiB",
1563 spapr
->rma_size
/ MiB
, vrma_limit
/ MiB
);
1569 static int spapr_reset_drcs(Object
*child
, void *opaque
)
1572 (SpaprDrc
*) object_dynamic_cast(child
,
1573 TYPE_SPAPR_DR_CONNECTOR
);
1576 spapr_drc_reset(drc
);
1582 static void spapr_machine_reset(MachineState
*machine
)
1584 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
1585 PowerPCCPU
*first_ppc_cpu
;
1590 kvmppc_svm_off(&error_fatal
);
1591 spapr_caps_apply(spapr
);
1593 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1594 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1595 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
1596 spapr
->max_compat_pvr
)) {
1598 * If using KVM with radix mode available, VCPUs can be started
1599 * without a HPT because KVM will start them in radix mode.
1600 * Set the GR bit in PATE so that we know there is no HPT.
1602 spapr
->patb_entry
= PATE1_GR
;
1603 spapr_set_all_lpcrs(LPCR_HR
| LPCR_UPRT
, LPCR_HR
| LPCR_UPRT
);
1605 spapr_setup_hpt(spapr
);
1608 qemu_devices_reset();
1610 spapr_ovec_cleanup(spapr
->ov5_cas
);
1611 spapr
->ov5_cas
= spapr_ovec_new();
1613 ppc_set_compat_all(spapr
->max_compat_pvr
, &error_fatal
);
1616 * This is fixing some of the default configuration of the XIVE
1617 * devices. To be called after the reset of the machine devices.
1619 spapr_irq_reset(spapr
, &error_fatal
);
1622 * There is no CAS under qtest. Simulate one to please the code that
1623 * depends on spapr->ov5_cas. This is especially needed to test device
1624 * unplug, so we do that before resetting the DRCs.
1626 if (qtest_enabled()) {
1627 spapr_ovec_cleanup(spapr
->ov5_cas
);
1628 spapr
->ov5_cas
= spapr_ovec_clone(spapr
->ov5
);
1631 /* DRC reset may cause a device to be unplugged. This will cause troubles
1632 * if this device is used by another device (eg, a running vhost backend
1633 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1634 * situations, we reset DRCs after all devices have been reset.
1636 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs
, NULL
);
1638 spapr_clear_pending_events(spapr
);
1641 * We place the device tree and RTAS just below either the top of the RMA,
1642 * or just below 2GB, whichever is lower, so that it can be
1643 * processed with 32-bit real mode code if necessary
1645 fdt_addr
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FDT_MAX_SIZE
;
1647 fdt
= spapr_build_fdt(spapr
, true, FDT_MAX_SIZE
);
1651 /* Should only fail if we've built a corrupted tree */
1655 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1656 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1657 g_free(spapr
->fdt_blob
);
1658 spapr
->fdt_size
= fdt_totalsize(fdt
);
1659 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1660 spapr
->fdt_blob
= fdt
;
1662 /* Set up the entry state */
1663 spapr_cpu_set_entry_state(first_ppc_cpu
, SPAPR_ENTRY_POINT
, 0, fdt_addr
, 0);
1664 first_ppc_cpu
->env
.gpr
[5] = 0;
1666 spapr
->fwnmi_system_reset_addr
= -1;
1667 spapr
->fwnmi_machine_check_addr
= -1;
1668 spapr
->fwnmi_machine_check_interlock
= -1;
1670 /* Signal all vCPUs waiting on this condition */
1671 qemu_cond_broadcast(&spapr
->fwnmi_machine_check_interlock_cond
);
1673 migrate_del_blocker(spapr
->fwnmi_migration_blocker
);
1676 static void spapr_create_nvram(SpaprMachineState
*spapr
)
1678 DeviceState
*dev
= qdev_new("spapr-nvram");
1679 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1682 qdev_prop_set_drive_err(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1686 qdev_realize_and_unref(dev
, &spapr
->vio_bus
->bus
, &error_fatal
);
1688 spapr
->nvram
= (struct SpaprNvram
*)dev
;
1691 static void spapr_rtc_create(SpaprMachineState
*spapr
)
1693 object_initialize_child_with_props(OBJECT(spapr
), "rtc", &spapr
->rtc
,
1694 sizeof(spapr
->rtc
), TYPE_SPAPR_RTC
,
1695 &error_fatal
, NULL
);
1696 qdev_realize(DEVICE(&spapr
->rtc
), NULL
, &error_fatal
);
1697 object_property_add_alias(OBJECT(spapr
), "rtc-time", OBJECT(&spapr
->rtc
),
1701 /* Returns whether we want to use VGA or not */
1702 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1704 switch (vga_interface_type
) {
1712 return pci_vga_init(pci_bus
) != NULL
;
1715 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1720 static int spapr_pre_load(void *opaque
)
1724 rc
= spapr_caps_pre_load(opaque
);
1732 static int spapr_post_load(void *opaque
, int version_id
)
1734 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1737 err
= spapr_caps_post_migration(spapr
);
1743 * In earlier versions, there was no separate qdev for the PAPR
1744 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1745 * So when migrating from those versions, poke the incoming offset
1746 * value into the RTC device
1748 if (version_id
< 3) {
1749 err
= spapr_rtc_import_offset(&spapr
->rtc
, spapr
->rtc_offset
);
1755 if (kvm_enabled() && spapr
->patb_entry
) {
1756 PowerPCCPU
*cpu
= POWERPC_CPU(first_cpu
);
1757 bool radix
= !!(spapr
->patb_entry
& PATE1_GR
);
1758 bool gtse
= !!(cpu
->env
.spr
[SPR_LPCR
] & LPCR_GTSE
);
1761 * Update LPCR:HR and UPRT as they may not be set properly in
1764 spapr_set_all_lpcrs(radix
? (LPCR_HR
| LPCR_UPRT
) : 0,
1765 LPCR_HR
| LPCR_UPRT
);
1767 err
= kvmppc_configure_v3_mmu(cpu
, radix
, gtse
, spapr
->patb_entry
);
1769 error_report("Process table config unsupported by the host");
1774 err
= spapr_irq_post_load(spapr
, version_id
);
1782 static int spapr_pre_save(void *opaque
)
1786 rc
= spapr_caps_pre_save(opaque
);
1794 static bool version_before_3(void *opaque
, int version_id
)
1796 return version_id
< 3;
1799 static bool spapr_pending_events_needed(void *opaque
)
1801 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1802 return !QTAILQ_EMPTY(&spapr
->pending_events
);
1805 static const VMStateDescription vmstate_spapr_event_entry
= {
1806 .name
= "spapr_event_log_entry",
1808 .minimum_version_id
= 1,
1809 .fields
= (VMStateField
[]) {
1810 VMSTATE_UINT32(summary
, SpaprEventLogEntry
),
1811 VMSTATE_UINT32(extended_length
, SpaprEventLogEntry
),
1812 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log
, SpaprEventLogEntry
, 0,
1813 NULL
, extended_length
),
1814 VMSTATE_END_OF_LIST()
1818 static const VMStateDescription vmstate_spapr_pending_events
= {
1819 .name
= "spapr_pending_events",
1821 .minimum_version_id
= 1,
1822 .needed
= spapr_pending_events_needed
,
1823 .fields
= (VMStateField
[]) {
1824 VMSTATE_QTAILQ_V(pending_events
, SpaprMachineState
, 1,
1825 vmstate_spapr_event_entry
, SpaprEventLogEntry
, next
),
1826 VMSTATE_END_OF_LIST()
1830 static bool spapr_ov5_cas_needed(void *opaque
)
1832 SpaprMachineState
*spapr
= opaque
;
1833 SpaprOptionVector
*ov5_mask
= spapr_ovec_new();
1836 /* Prior to the introduction of SpaprOptionVector, we had two option
1837 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1838 * Both of these options encode machine topology into the device-tree
1839 * in such a way that the now-booted OS should still be able to interact
1840 * appropriately with QEMU regardless of what options were actually
1841 * negotiatied on the source side.
1843 * As such, we can avoid migrating the CAS-negotiated options if these
1844 * are the only options available on the current machine/platform.
1845 * Since these are the only options available for pseries-2.7 and
1846 * earlier, this allows us to maintain old->new/new->old migration
1849 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1850 * via default pseries-2.8 machines and explicit command-line parameters.
1851 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1852 * of the actual CAS-negotiated values to continue working properly. For
1853 * example, availability of memory unplug depends on knowing whether
1854 * OV5_HP_EVT was negotiated via CAS.
1856 * Thus, for any cases where the set of available CAS-negotiatable
1857 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1858 * include the CAS-negotiated options in the migration stream, unless
1859 * if they affect boot time behaviour only.
1861 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1862 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1863 spapr_ovec_set(ov5_mask
, OV5_DRMEM_V2
);
1865 /* We need extra information if we have any bits outside the mask
1867 cas_needed
= !spapr_ovec_subset(spapr
->ov5
, ov5_mask
);
1869 spapr_ovec_cleanup(ov5_mask
);
1874 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1875 .name
= "spapr_option_vector_ov5_cas",
1877 .minimum_version_id
= 1,
1878 .needed
= spapr_ov5_cas_needed
,
1879 .fields
= (VMStateField
[]) {
1880 VMSTATE_STRUCT_POINTER_V(ov5_cas
, SpaprMachineState
, 1,
1881 vmstate_spapr_ovec
, SpaprOptionVector
),
1882 VMSTATE_END_OF_LIST()
1886 static bool spapr_patb_entry_needed(void *opaque
)
1888 SpaprMachineState
*spapr
= opaque
;
1890 return !!spapr
->patb_entry
;
1893 static const VMStateDescription vmstate_spapr_patb_entry
= {
1894 .name
= "spapr_patb_entry",
1896 .minimum_version_id
= 1,
1897 .needed
= spapr_patb_entry_needed
,
1898 .fields
= (VMStateField
[]) {
1899 VMSTATE_UINT64(patb_entry
, SpaprMachineState
),
1900 VMSTATE_END_OF_LIST()
1904 static bool spapr_irq_map_needed(void *opaque
)
1906 SpaprMachineState
*spapr
= opaque
;
1908 return spapr
->irq_map
&& !bitmap_empty(spapr
->irq_map
, spapr
->irq_map_nr
);
1911 static const VMStateDescription vmstate_spapr_irq_map
= {
1912 .name
= "spapr_irq_map",
1914 .minimum_version_id
= 1,
1915 .needed
= spapr_irq_map_needed
,
1916 .fields
= (VMStateField
[]) {
1917 VMSTATE_BITMAP(irq_map
, SpaprMachineState
, 0, irq_map_nr
),
1918 VMSTATE_END_OF_LIST()
1922 static bool spapr_dtb_needed(void *opaque
)
1924 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(opaque
);
1926 return smc
->update_dt_enabled
;
1929 static int spapr_dtb_pre_load(void *opaque
)
1931 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1933 g_free(spapr
->fdt_blob
);
1934 spapr
->fdt_blob
= NULL
;
1935 spapr
->fdt_size
= 0;
1940 static const VMStateDescription vmstate_spapr_dtb
= {
1941 .name
= "spapr_dtb",
1943 .minimum_version_id
= 1,
1944 .needed
= spapr_dtb_needed
,
1945 .pre_load
= spapr_dtb_pre_load
,
1946 .fields
= (VMStateField
[]) {
1947 VMSTATE_UINT32(fdt_initial_size
, SpaprMachineState
),
1948 VMSTATE_UINT32(fdt_size
, SpaprMachineState
),
1949 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob
, SpaprMachineState
, 0, NULL
,
1951 VMSTATE_END_OF_LIST()
1955 static bool spapr_fwnmi_needed(void *opaque
)
1957 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1959 return spapr
->fwnmi_machine_check_addr
!= -1;
1962 static int spapr_fwnmi_pre_save(void *opaque
)
1964 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1967 * Check if machine check handling is in progress and print a
1970 if (spapr
->fwnmi_machine_check_interlock
!= -1) {
1971 warn_report("A machine check is being handled during migration. The"
1972 "handler may run and log hardware error on the destination");
1978 static const VMStateDescription vmstate_spapr_fwnmi
= {
1979 .name
= "spapr_fwnmi",
1981 .minimum_version_id
= 1,
1982 .needed
= spapr_fwnmi_needed
,
1983 .pre_save
= spapr_fwnmi_pre_save
,
1984 .fields
= (VMStateField
[]) {
1985 VMSTATE_UINT64(fwnmi_system_reset_addr
, SpaprMachineState
),
1986 VMSTATE_UINT64(fwnmi_machine_check_addr
, SpaprMachineState
),
1987 VMSTATE_INT32(fwnmi_machine_check_interlock
, SpaprMachineState
),
1988 VMSTATE_END_OF_LIST()
1992 static const VMStateDescription vmstate_spapr
= {
1995 .minimum_version_id
= 1,
1996 .pre_load
= spapr_pre_load
,
1997 .post_load
= spapr_post_load
,
1998 .pre_save
= spapr_pre_save
,
1999 .fields
= (VMStateField
[]) {
2000 /* used to be @next_irq */
2001 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
2004 VMSTATE_UINT64_TEST(rtc_offset
, SpaprMachineState
, version_before_3
),
2006 VMSTATE_PPC_TIMEBASE_V(tb
, SpaprMachineState
, 2),
2007 VMSTATE_END_OF_LIST()
2009 .subsections
= (const VMStateDescription
*[]) {
2010 &vmstate_spapr_ov5_cas
,
2011 &vmstate_spapr_patb_entry
,
2012 &vmstate_spapr_pending_events
,
2013 &vmstate_spapr_cap_htm
,
2014 &vmstate_spapr_cap_vsx
,
2015 &vmstate_spapr_cap_dfp
,
2016 &vmstate_spapr_cap_cfpc
,
2017 &vmstate_spapr_cap_sbbc
,
2018 &vmstate_spapr_cap_ibs
,
2019 &vmstate_spapr_cap_hpt_maxpagesize
,
2020 &vmstate_spapr_irq_map
,
2021 &vmstate_spapr_cap_nested_kvm_hv
,
2023 &vmstate_spapr_cap_large_decr
,
2024 &vmstate_spapr_cap_ccf_assist
,
2025 &vmstate_spapr_cap_fwnmi
,
2026 &vmstate_spapr_fwnmi
,
2031 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
2033 SpaprMachineState
*spapr
= opaque
;
2035 /* "Iteration" header */
2036 if (!spapr
->htab_shift
) {
2037 qemu_put_be32(f
, -1);
2039 qemu_put_be32(f
, spapr
->htab_shift
);
2043 spapr
->htab_save_index
= 0;
2044 spapr
->htab_first_pass
= true;
2046 if (spapr
->htab_shift
) {
2047 assert(kvm_enabled());
2055 static void htab_save_chunk(QEMUFile
*f
, SpaprMachineState
*spapr
,
2056 int chunkstart
, int n_valid
, int n_invalid
)
2058 qemu_put_be32(f
, chunkstart
);
2059 qemu_put_be16(f
, n_valid
);
2060 qemu_put_be16(f
, n_invalid
);
2061 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
2062 HASH_PTE_SIZE_64
* n_valid
);
2065 static void htab_save_end_marker(QEMUFile
*f
)
2067 qemu_put_be32(f
, 0);
2068 qemu_put_be16(f
, 0);
2069 qemu_put_be16(f
, 0);
2072 static void htab_save_first_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2075 bool has_timeout
= max_ns
!= -1;
2076 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2077 int index
= spapr
->htab_save_index
;
2078 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2080 assert(spapr
->htab_first_pass
);
2085 /* Consume invalid HPTEs */
2086 while ((index
< htabslots
)
2087 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2088 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2092 /* Consume valid HPTEs */
2094 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2095 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2096 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2100 if (index
> chunkstart
) {
2101 int n_valid
= index
- chunkstart
;
2103 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, 0);
2106 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2110 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
2112 if (index
>= htabslots
) {
2113 assert(index
== htabslots
);
2115 spapr
->htab_first_pass
= false;
2117 spapr
->htab_save_index
= index
;
2120 static int htab_save_later_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2123 bool final
= max_ns
< 0;
2124 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2125 int examined
= 0, sent
= 0;
2126 int index
= spapr
->htab_save_index
;
2127 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2129 assert(!spapr
->htab_first_pass
);
2132 int chunkstart
, invalidstart
;
2134 /* Consume non-dirty HPTEs */
2135 while ((index
< htabslots
)
2136 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
2142 /* Consume valid dirty HPTEs */
2143 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2144 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2145 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2146 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2151 invalidstart
= index
;
2152 /* Consume invalid dirty HPTEs */
2153 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
2154 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2155 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2156 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2161 if (index
> chunkstart
) {
2162 int n_valid
= invalidstart
- chunkstart
;
2163 int n_invalid
= index
- invalidstart
;
2165 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, n_invalid
);
2166 sent
+= index
- chunkstart
;
2168 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2173 if (examined
>= htabslots
) {
2177 if (index
>= htabslots
) {
2178 assert(index
== htabslots
);
2181 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
2183 if (index
>= htabslots
) {
2184 assert(index
== htabslots
);
2188 spapr
->htab_save_index
= index
;
2190 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
2193 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2194 #define MAX_KVM_BUF_SIZE 2048
2196 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
2198 SpaprMachineState
*spapr
= opaque
;
2202 /* Iteration header */
2203 if (!spapr
->htab_shift
) {
2204 qemu_put_be32(f
, -1);
2207 qemu_put_be32(f
, 0);
2211 assert(kvm_enabled());
2213 fd
= get_htab_fd(spapr
);
2218 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
2222 } else if (spapr
->htab_first_pass
) {
2223 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
2225 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
2228 htab_save_end_marker(f
);
2233 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
2235 SpaprMachineState
*spapr
= opaque
;
2238 /* Iteration header */
2239 if (!spapr
->htab_shift
) {
2240 qemu_put_be32(f
, -1);
2243 qemu_put_be32(f
, 0);
2249 assert(kvm_enabled());
2251 fd
= get_htab_fd(spapr
);
2256 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
2261 if (spapr
->htab_first_pass
) {
2262 htab_save_first_pass(f
, spapr
, -1);
2264 htab_save_later_pass(f
, spapr
, -1);
2268 htab_save_end_marker(f
);
2273 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
2275 SpaprMachineState
*spapr
= opaque
;
2276 uint32_t section_hdr
;
2278 Error
*local_err
= NULL
;
2280 if (version_id
< 1 || version_id
> 1) {
2281 error_report("htab_load() bad version");
2285 section_hdr
= qemu_get_be32(f
);
2287 if (section_hdr
== -1) {
2288 spapr_free_hpt(spapr
);
2293 /* First section gives the htab size */
2294 spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
2296 error_report_err(local_err
);
2303 assert(kvm_enabled());
2305 fd
= kvmppc_get_htab_fd(true, 0, &local_err
);
2307 error_report_err(local_err
);
2314 uint16_t n_valid
, n_invalid
;
2316 index
= qemu_get_be32(f
);
2317 n_valid
= qemu_get_be16(f
);
2318 n_invalid
= qemu_get_be16(f
);
2320 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
2325 if ((index
+ n_valid
+ n_invalid
) >
2326 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
2327 /* Bad index in stream */
2329 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2330 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
2336 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
2337 HASH_PTE_SIZE_64
* n_valid
);
2340 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
2341 HASH_PTE_SIZE_64
* n_invalid
);
2348 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
);
2363 static void htab_save_cleanup(void *opaque
)
2365 SpaprMachineState
*spapr
= opaque
;
2367 close_htab_fd(spapr
);
2370 static SaveVMHandlers savevm_htab_handlers
= {
2371 .save_setup
= htab_save_setup
,
2372 .save_live_iterate
= htab_save_iterate
,
2373 .save_live_complete_precopy
= htab_save_complete
,
2374 .save_cleanup
= htab_save_cleanup
,
2375 .load_state
= htab_load
,
2378 static void spapr_boot_set(void *opaque
, const char *boot_device
,
2381 MachineState
*machine
= MACHINE(opaque
);
2382 machine
->boot_order
= g_strdup(boot_device
);
2385 static void spapr_create_lmb_dr_connectors(SpaprMachineState
*spapr
)
2387 MachineState
*machine
= MACHINE(spapr
);
2388 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
2389 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
2392 for (i
= 0; i
< nr_lmbs
; i
++) {
2395 addr
= i
* lmb_size
+ machine
->device_memory
->base
;
2396 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_LMB
,
2402 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2403 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2404 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2406 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
2410 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2411 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
2412 " is not aligned to %" PRIu64
" MiB",
2414 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2418 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2419 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
2420 " is not aligned to %" PRIu64
" MiB",
2422 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2426 for (i
= 0; i
< machine
->numa_state
->num_nodes
; i
++) {
2427 if (machine
->numa_state
->nodes
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
2429 "Node %d memory size 0x%" PRIx64
2430 " is not aligned to %" PRIu64
" MiB",
2431 i
, machine
->numa_state
->nodes
[i
].node_mem
,
2432 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2438 /* find cpu slot in machine->possible_cpus by core_id */
2439 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
2441 int index
= id
/ ms
->smp
.threads
;
2443 if (index
>= ms
->possible_cpus
->len
) {
2449 return &ms
->possible_cpus
->cpus
[index
];
2452 static void spapr_set_vsmt_mode(SpaprMachineState
*spapr
, Error
**errp
)
2454 MachineState
*ms
= MACHINE(spapr
);
2455 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2456 Error
*local_err
= NULL
;
2457 bool vsmt_user
= !!spapr
->vsmt
;
2458 int kvm_smt
= kvmppc_smt_threads();
2460 unsigned int smp_threads
= ms
->smp
.threads
;
2462 if (!kvm_enabled() && (smp_threads
> 1)) {
2463 error_setg(errp
, "TCG cannot support more than 1 thread/core "
2464 "on a pseries machine");
2467 if (!is_power_of_2(smp_threads
)) {
2468 error_setg(errp
, "Cannot support %d threads/core on a pseries "
2469 "machine because it must be a power of 2", smp_threads
);
2473 /* Detemine the VSMT mode to use: */
2475 if (spapr
->vsmt
< smp_threads
) {
2476 error_setg(errp
, "Cannot support VSMT mode %d"
2477 " because it must be >= threads/core (%d)",
2478 spapr
->vsmt
, smp_threads
);
2481 /* In this case, spapr->vsmt has been set by the command line */
2482 } else if (!smc
->smp_threads_vsmt
) {
2484 * Default VSMT value is tricky, because we need it to be as
2485 * consistent as possible (for migration), but this requires
2486 * changing it for at least some existing cases. We pick 8 as
2487 * the value that we'd get with KVM on POWER8, the
2488 * overwhelmingly common case in production systems.
2490 spapr
->vsmt
= MAX(8, smp_threads
);
2492 spapr
->vsmt
= smp_threads
;
2495 /* KVM: If necessary, set the SMT mode: */
2496 if (kvm_enabled() && (spapr
->vsmt
!= kvm_smt
)) {
2497 ret
= kvmppc_set_smt_threads(spapr
->vsmt
);
2499 /* Looks like KVM isn't able to change VSMT mode */
2500 error_setg(&local_err
,
2501 "Failed to set KVM's VSMT mode to %d (errno %d)",
2503 /* We can live with that if the default one is big enough
2504 * for the number of threads, and a submultiple of the one
2505 * we want. In this case we'll waste some vcpu ids, but
2506 * behaviour will be correct */
2507 if ((kvm_smt
>= smp_threads
) && ((spapr
->vsmt
% kvm_smt
) == 0)) {
2508 warn_report_err(local_err
);
2511 error_append_hint(&local_err
,
2512 "On PPC, a VM with %d threads/core"
2513 " on a host with %d threads/core"
2514 " requires the use of VSMT mode %d.\n",
2515 smp_threads
, kvm_smt
, spapr
->vsmt
);
2517 kvmppc_error_append_smt_possible_hint(&local_err
);
2518 error_propagate(errp
, local_err
);
2522 /* else TCG: nothing to do currently */
2525 static void spapr_init_cpus(SpaprMachineState
*spapr
)
2527 MachineState
*machine
= MACHINE(spapr
);
2528 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2529 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2530 const char *type
= spapr_get_cpu_core_type(machine
->cpu_type
);
2531 const CPUArchIdList
*possible_cpus
;
2532 unsigned int smp_cpus
= machine
->smp
.cpus
;
2533 unsigned int smp_threads
= machine
->smp
.threads
;
2534 unsigned int max_cpus
= machine
->smp
.max_cpus
;
2535 int boot_cores_nr
= smp_cpus
/ smp_threads
;
2538 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
2539 if (mc
->has_hotpluggable_cpus
) {
2540 if (smp_cpus
% smp_threads
) {
2541 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2542 smp_cpus
, smp_threads
);
2545 if (max_cpus
% smp_threads
) {
2546 error_report("max_cpus (%u) must be multiple of threads (%u)",
2547 max_cpus
, smp_threads
);
2551 if (max_cpus
!= smp_cpus
) {
2552 error_report("This machine version does not support CPU hotplug");
2555 boot_cores_nr
= possible_cpus
->len
;
2558 if (smc
->pre_2_10_has_unused_icps
) {
2561 for (i
= 0; i
< spapr_max_server_number(spapr
); i
++) {
2562 /* Dummy entries get deregistered when real ICPState objects
2563 * are registered during CPU core hotplug.
2565 pre_2_10_vmstate_register_dummy_icp(i
);
2569 for (i
= 0; i
< possible_cpus
->len
; i
++) {
2570 int core_id
= i
* smp_threads
;
2572 if (mc
->has_hotpluggable_cpus
) {
2573 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_CPU
,
2574 spapr_vcpu_id(spapr
, core_id
));
2577 if (i
< boot_cores_nr
) {
2578 Object
*core
= object_new(type
);
2579 int nr_threads
= smp_threads
;
2581 /* Handle the partially filled core for older machine types */
2582 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
2583 nr_threads
= smp_cpus
- i
* smp_threads
;
2586 object_property_set_int(core
, "nr-threads", nr_threads
,
2588 object_property_set_int(core
, CPU_CORE_PROP_CORE_ID
, core_id
,
2590 qdev_realize(DEVICE(core
), NULL
, &error_fatal
);
2597 static PCIHostState
*spapr_create_default_phb(void)
2601 dev
= qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE
);
2602 qdev_prop_set_uint32(dev
, "index", 0);
2603 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
2605 return PCI_HOST_BRIDGE(dev
);
2608 static hwaddr
spapr_rma_size(SpaprMachineState
*spapr
, Error
**errp
)
2610 MachineState
*machine
= MACHINE(spapr
);
2611 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2612 hwaddr rma_size
= machine
->ram_size
;
2613 hwaddr node0_size
= spapr_node0_size(machine
);
2615 /* RMA has to fit in the first NUMA node */
2616 rma_size
= MIN(rma_size
, node0_size
);
2619 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2622 rma_size
= MIN(rma_size
, 1 * TiB
);
2625 * Clamp the RMA size based on machine type. This is for
2626 * migration compatibility with older qemu versions, which limited
2627 * the RMA size for complicated and mostly bad reasons.
2629 if (smc
->rma_limit
) {
2630 rma_size
= MIN(rma_size
, smc
->rma_limit
);
2633 if (rma_size
< MIN_RMA_SLOF
) {
2635 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2636 "ldMiB guest RMA (Real Mode Area memory)",
2637 MIN_RMA_SLOF
/ MiB
);
2644 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState
*spapr
)
2646 MachineState
*machine
= MACHINE(spapr
);
2649 for (i
= 0; i
< machine
->ram_slots
; i
++) {
2650 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_PMEM
, i
);
2654 /* pSeries LPAR / sPAPR hardware init */
2655 static void spapr_machine_init(MachineState
*machine
)
2657 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
2658 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2659 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2660 const char *kernel_filename
= machine
->kernel_filename
;
2661 const char *initrd_filename
= machine
->initrd_filename
;
2664 MemoryRegion
*sysmem
= get_system_memory();
2665 long load_limit
, fw_size
;
2667 Error
*resize_hpt_err
= NULL
;
2669 msi_nonbroken
= true;
2671 QLIST_INIT(&spapr
->phbs
);
2672 QTAILQ_INIT(&spapr
->pending_dimm_unplugs
);
2674 /* Determine capabilities to run with */
2675 spapr_caps_init(spapr
);
2677 kvmppc_check_papr_resize_hpt(&resize_hpt_err
);
2678 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DEFAULT
) {
2680 * If the user explicitly requested a mode we should either
2681 * supply it, or fail completely (which we do below). But if
2682 * it's not set explicitly, we reset our mode to something
2685 if (resize_hpt_err
) {
2686 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
2687 error_free(resize_hpt_err
);
2688 resize_hpt_err
= NULL
;
2690 spapr
->resize_hpt
= smc
->resize_hpt_default
;
2694 assert(spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DEFAULT
);
2696 if ((spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) && resize_hpt_err
) {
2698 * User requested HPT resize, but this host can't supply it. Bail out
2700 error_report_err(resize_hpt_err
);
2703 error_free(resize_hpt_err
);
2705 spapr
->rma_size
= spapr_rma_size(spapr
, &error_fatal
);
2707 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2708 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
2711 * VSMT must be set in order to be able to compute VCPU ids, ie to
2712 * call spapr_max_server_number() or spapr_vcpu_id().
2714 spapr_set_vsmt_mode(spapr
, &error_fatal
);
2716 /* Set up Interrupt Controller before we create the VCPUs */
2717 spapr_irq_init(spapr
, &error_fatal
);
2719 /* Set up containers for ibm,client-architecture-support negotiated options
2721 spapr
->ov5
= spapr_ovec_new();
2722 spapr
->ov5_cas
= spapr_ovec_new();
2724 if (smc
->dr_lmb_enabled
) {
2725 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2726 spapr_validate_node_memory(machine
, &error_fatal
);
2729 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2731 /* advertise support for dedicated HP event source to guests */
2732 if (spapr
->use_hotplug_event_source
) {
2733 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2736 /* advertise support for HPT resizing */
2737 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
2738 spapr_ovec_set(spapr
->ov5
, OV5_HPT_RESIZE
);
2741 /* advertise support for ibm,dyamic-memory-v2 */
2742 spapr_ovec_set(spapr
->ov5
, OV5_DRMEM_V2
);
2744 /* advertise XIVE on POWER9 machines */
2745 if (spapr
->irq
->xive
) {
2746 spapr_ovec_set(spapr
->ov5
, OV5_XIVE_EXPLOIT
);
2750 spapr_init_cpus(spapr
);
2753 * check we don't have a memory-less/cpu-less NUMA node
2754 * Firmware relies on the existing memory/cpu topology to provide the
2755 * NUMA topology to the kernel.
2756 * And the linux kernel needs to know the NUMA topology at start
2757 * to be able to hotplug CPUs later.
2759 if (machine
->numa_state
->num_nodes
) {
2760 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
2761 /* check for memory-less node */
2762 if (machine
->numa_state
->nodes
[i
].node_mem
== 0) {
2765 /* check for cpu-less node */
2767 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
2768 if (cpu
->node_id
== i
) {
2773 /* memory-less and cpu-less node */
2776 "Memory-less/cpu-less nodes are not supported (node %d)",
2786 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2787 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2788 * called from vPHB reset handler so we initialize the counter here.
2789 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2790 * must be equally distant from any other node.
2791 * The final value of spapr->gpu_numa_id is going to be written to
2792 * max-associativity-domains in spapr_build_fdt().
2794 spapr
->gpu_numa_id
= MAX(1, machine
->numa_state
->num_nodes
);
2796 /* Init numa_assoc_array */
2797 spapr_numa_associativity_init(spapr
, machine
);
2799 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2800 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
2801 spapr
->max_compat_pvr
)) {
2802 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_300
);
2803 /* KVM and TCG always allow GTSE with radix... */
2804 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_GTSE
);
2806 /* ... but not with hash (currently). */
2808 if (kvm_enabled()) {
2809 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2810 kvmppc_enable_logical_ci_hcalls();
2811 kvmppc_enable_set_mode_hcall();
2813 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2814 kvmppc_enable_clear_ref_mod_hcalls();
2816 /* Enable H_PAGE_INIT */
2817 kvmppc_enable_h_page_init();
2821 memory_region_add_subregion(sysmem
, 0, machine
->ram
);
2823 /* always allocate the device memory information */
2824 machine
->device_memory
= g_malloc0(sizeof(*machine
->device_memory
));
2826 /* initialize hotplug memory address space */
2827 if (machine
->ram_size
< machine
->maxram_size
) {
2828 ram_addr_t device_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2830 * Limit the number of hotpluggable memory slots to half the number
2831 * slots that KVM supports, leaving the other half for PCI and other
2832 * devices. However ensure that number of slots doesn't drop below 32.
2834 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
2835 SPAPR_MAX_RAM_SLOTS
;
2837 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2838 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2840 if (machine
->ram_slots
> max_memslots
) {
2841 error_report("Specified number of memory slots %"
2842 PRIu64
" exceeds max supported %d",
2843 machine
->ram_slots
, max_memslots
);
2847 machine
->device_memory
->base
= ROUND_UP(machine
->ram_size
,
2848 SPAPR_DEVICE_MEM_ALIGN
);
2849 memory_region_init(&machine
->device_memory
->mr
, OBJECT(spapr
),
2850 "device-memory", device_mem_size
);
2851 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
2852 &machine
->device_memory
->mr
);
2855 if (smc
->dr_lmb_enabled
) {
2856 spapr_create_lmb_dr_connectors(spapr
);
2859 if (spapr_get_cap(spapr
, SPAPR_CAP_FWNMI
) == SPAPR_CAP_ON
) {
2860 /* Create the error string for live migration blocker */
2861 error_setg(&spapr
->fwnmi_migration_blocker
,
2862 "A machine check is being handled during migration. The handler"
2863 "may run and log hardware error on the destination");
2866 if (mc
->nvdimm_supported
) {
2867 spapr_create_nvdimm_dr_connectors(spapr
);
2870 /* Set up RTAS event infrastructure */
2871 spapr_events_init(spapr
);
2873 /* Set up the RTC RTAS interfaces */
2874 spapr_rtc_create(spapr
);
2876 /* Set up VIO bus */
2877 spapr
->vio_bus
= spapr_vio_bus_init();
2879 for (i
= 0; i
< serial_max_hds(); i
++) {
2881 spapr_vty_create(spapr
->vio_bus
, serial_hd(i
));
2885 /* We always have at least the nvram device on VIO */
2886 spapr_create_nvram(spapr
);
2889 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2890 * connectors (described in root DT node's "ibm,drc-types" property)
2891 * are pre-initialized here. additional child connectors (such as
2892 * connectors for a PHBs PCI slots) are added as needed during their
2893 * parent's realization.
2895 if (smc
->dr_phb_enabled
) {
2896 for (i
= 0; i
< SPAPR_MAX_PHBS
; i
++) {
2897 spapr_dr_connector_new(OBJECT(machine
), TYPE_SPAPR_DRC_PHB
, i
);
2902 spapr_pci_rtas_init();
2904 phb
= spapr_create_default_phb();
2906 for (i
= 0; i
< nb_nics
; i
++) {
2907 NICInfo
*nd
= &nd_table
[i
];
2910 nd
->model
= g_strdup("spapr-vlan");
2913 if (g_str_equal(nd
->model
, "spapr-vlan") ||
2914 g_str_equal(nd
->model
, "ibmveth")) {
2915 spapr_vlan_create(spapr
->vio_bus
, nd
);
2917 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2921 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2922 spapr_vscsi_create(spapr
->vio_bus
);
2926 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
2927 spapr
->has_graphics
= true;
2928 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2932 if (smc
->use_ohci_by_default
) {
2933 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2935 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2938 if (spapr
->has_graphics
) {
2939 USBBus
*usb_bus
= usb_bus_find(-1);
2941 usb_create_simple(usb_bus
, "usb-kbd");
2942 usb_create_simple(usb_bus
, "usb-mouse");
2946 if (kernel_filename
) {
2947 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2948 translate_kernel_address
, spapr
,
2949 NULL
, NULL
, NULL
, NULL
, 1,
2950 PPC_ELF_MACHINE
, 0, 0);
2951 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2952 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2953 translate_kernel_address
, spapr
,
2954 NULL
, NULL
, NULL
, NULL
, 0,
2955 PPC_ELF_MACHINE
, 0, 0);
2956 spapr
->kernel_le
= spapr
->kernel_size
> 0;
2958 if (spapr
->kernel_size
< 0) {
2959 error_report("error loading %s: %s", kernel_filename
,
2960 load_elf_strerror(spapr
->kernel_size
));
2965 if (initrd_filename
) {
2966 /* Try to locate the initrd in the gap between the kernel
2967 * and the firmware. Add a bit of space just in case
2969 spapr
->initrd_base
= (spapr
->kernel_addr
+ spapr
->kernel_size
2970 + 0x1ffff) & ~0xffff;
2971 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
2974 - spapr
->initrd_base
);
2975 if (spapr
->initrd_size
< 0) {
2976 error_report("could not load initial ram disk '%s'",
2983 if (bios_name
== NULL
) {
2984 bios_name
= FW_FILE_NAME
;
2986 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
2988 error_report("Could not find LPAR firmware '%s'", bios_name
);
2991 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
2993 error_report("Could not load LPAR firmware '%s'", filename
);
2998 /* FIXME: Should register things through the MachineState's qdev
2999 * interface, this is a legacy from the sPAPREnvironment structure
3000 * which predated MachineState but had a similar function */
3001 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
3002 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY
, 1,
3003 &savevm_htab_handlers
, spapr
);
3005 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine
));
3007 qemu_register_boot_set(spapr_boot_set
, spapr
);
3010 * Nothing needs to be done to resume a suspended guest because
3011 * suspending does not change the machine state, so no need for
3012 * a ->wakeup method.
3014 qemu_register_wakeup_support();
3016 if (kvm_enabled()) {
3017 /* to stop and start vmclock */
3018 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
3021 kvmppc_spapr_enable_inkernel_multitce();
3024 qemu_cond_init(&spapr
->fwnmi_machine_check_interlock_cond
);
3027 static int spapr_kvm_type(MachineState
*machine
, const char *vm_type
)
3033 if (!strcmp(vm_type
, "HV")) {
3037 if (!strcmp(vm_type
, "PR")) {
3041 error_report("Unknown kvm-type specified '%s'", vm_type
);
3046 * Implementation of an interface to adjust firmware path
3047 * for the bootindex property handling.
3049 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
3052 #define CAST(type, obj, name) \
3053 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3054 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
3055 SpaprPhbState
*phb
= CAST(SpaprPhbState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
3056 VHostSCSICommon
*vsc
= CAST(VHostSCSICommon
, dev
, TYPE_VHOST_SCSI_COMMON
);
3059 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
3060 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
3061 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
3065 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3066 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3067 * 0x8000 | (target << 8) | (bus << 5) | lun
3068 * (see the "Logical unit addressing format" table in SAM5)
3070 unsigned id
= 0x8000 | (d
->id
<< 8) | (d
->channel
<< 5) | d
->lun
;
3071 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3072 (uint64_t)id
<< 48);
3073 } else if (virtio
) {
3075 * We use SRP luns of the form 01000000 | (target << 8) | lun
3076 * in the top 32 bits of the 64-bit LUN
3077 * Note: the quote above is from SLOF and it is wrong,
3078 * the actual binding is:
3079 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3081 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
3082 if (d
->lun
>= 256) {
3083 /* Use the LUN "flat space addressing method" */
3086 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3087 (uint64_t)id
<< 32);
3090 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3091 * in the top 32 bits of the 64-bit LUN
3093 unsigned usb_port
= atoi(usb
->port
->path
);
3094 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
3095 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3096 (uint64_t)id
<< 32);
3101 * SLOF probes the USB devices, and if it recognizes that the device is a
3102 * storage device, it changes its name to "storage" instead of "usb-host",
3103 * and additionally adds a child node for the SCSI LUN, so the correct
3104 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3106 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
3107 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
3108 if (usb_host_dev_is_scsi_storage(usbdev
)) {
3109 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
3114 /* Replace "pci" with "pci@800000020000000" */
3115 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
3119 /* Same logic as virtio above */
3120 unsigned id
= 0x1000000 | (vsc
->target
<< 16) | vsc
->lun
;
3121 return g_strdup_printf("disk@%"PRIX64
, (uint64_t)id
<< 32);
3124 if (g_str_equal("pci-bridge", qdev_fw_name(dev
))) {
3125 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3126 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
3127 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev
->devfn
));
3133 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
3135 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3137 return g_strdup(spapr
->kvm_type
);
3140 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
3142 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3144 g_free(spapr
->kvm_type
);
3145 spapr
->kvm_type
= g_strdup(value
);
3148 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
3150 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3152 return spapr
->use_hotplug_event_source
;
3155 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
3158 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3160 spapr
->use_hotplug_event_source
= value
;
3163 static bool spapr_get_msix_emulation(Object
*obj
, Error
**errp
)
3168 static char *spapr_get_resize_hpt(Object
*obj
, Error
**errp
)
3170 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3172 switch (spapr
->resize_hpt
) {
3173 case SPAPR_RESIZE_HPT_DEFAULT
:
3174 return g_strdup("default");
3175 case SPAPR_RESIZE_HPT_DISABLED
:
3176 return g_strdup("disabled");
3177 case SPAPR_RESIZE_HPT_ENABLED
:
3178 return g_strdup("enabled");
3179 case SPAPR_RESIZE_HPT_REQUIRED
:
3180 return g_strdup("required");
3182 g_assert_not_reached();
3185 static void spapr_set_resize_hpt(Object
*obj
, const char *value
, Error
**errp
)
3187 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3189 if (strcmp(value
, "default") == 0) {
3190 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DEFAULT
;
3191 } else if (strcmp(value
, "disabled") == 0) {
3192 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
3193 } else if (strcmp(value
, "enabled") == 0) {
3194 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_ENABLED
;
3195 } else if (strcmp(value
, "required") == 0) {
3196 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_REQUIRED
;
3198 error_setg(errp
, "Bad value for \"resize-hpt\" property");
3202 static char *spapr_get_ic_mode(Object
*obj
, Error
**errp
)
3204 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3206 if (spapr
->irq
== &spapr_irq_xics_legacy
) {
3207 return g_strdup("legacy");
3208 } else if (spapr
->irq
== &spapr_irq_xics
) {
3209 return g_strdup("xics");
3210 } else if (spapr
->irq
== &spapr_irq_xive
) {
3211 return g_strdup("xive");
3212 } else if (spapr
->irq
== &spapr_irq_dual
) {
3213 return g_strdup("dual");
3215 g_assert_not_reached();
3218 static void spapr_set_ic_mode(Object
*obj
, const char *value
, Error
**errp
)
3220 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3222 if (SPAPR_MACHINE_GET_CLASS(spapr
)->legacy_irq_allocation
) {
3223 error_setg(errp
, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3227 /* The legacy IRQ backend can not be set */
3228 if (strcmp(value
, "xics") == 0) {
3229 spapr
->irq
= &spapr_irq_xics
;
3230 } else if (strcmp(value
, "xive") == 0) {
3231 spapr
->irq
= &spapr_irq_xive
;
3232 } else if (strcmp(value
, "dual") == 0) {
3233 spapr
->irq
= &spapr_irq_dual
;
3235 error_setg(errp
, "Bad value for \"ic-mode\" property");
3239 static char *spapr_get_host_model(Object
*obj
, Error
**errp
)
3241 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3243 return g_strdup(spapr
->host_model
);
3246 static void spapr_set_host_model(Object
*obj
, const char *value
, Error
**errp
)
3248 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3250 g_free(spapr
->host_model
);
3251 spapr
->host_model
= g_strdup(value
);
3254 static char *spapr_get_host_serial(Object
*obj
, Error
**errp
)
3256 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3258 return g_strdup(spapr
->host_serial
);
3261 static void spapr_set_host_serial(Object
*obj
, const char *value
, Error
**errp
)
3263 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3265 g_free(spapr
->host_serial
);
3266 spapr
->host_serial
= g_strdup(value
);
3269 static void spapr_instance_init(Object
*obj
)
3271 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3272 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3274 spapr
->htab_fd
= -1;
3275 spapr
->use_hotplug_event_source
= true;
3276 object_property_add_str(obj
, "kvm-type",
3277 spapr_get_kvm_type
, spapr_set_kvm_type
);
3278 object_property_set_description(obj
, "kvm-type",
3279 "Specifies the KVM virtualization mode (HV, PR)");
3280 object_property_add_bool(obj
, "modern-hotplug-events",
3281 spapr_get_modern_hotplug_events
,
3282 spapr_set_modern_hotplug_events
);
3283 object_property_set_description(obj
, "modern-hotplug-events",
3284 "Use dedicated hotplug event mechanism in"
3285 " place of standard EPOW events when possible"
3286 " (required for memory hot-unplug support)");
3287 ppc_compat_add_property(obj
, "max-cpu-compat", &spapr
->max_compat_pvr
,
3288 "Maximum permitted CPU compatibility mode");
3290 object_property_add_str(obj
, "resize-hpt",
3291 spapr_get_resize_hpt
, spapr_set_resize_hpt
);
3292 object_property_set_description(obj
, "resize-hpt",
3293 "Resizing of the Hash Page Table (enabled, disabled, required)");
3294 object_property_add_uint32_ptr(obj
, "vsmt",
3295 &spapr
->vsmt
, OBJ_PROP_FLAG_READWRITE
);
3296 object_property_set_description(obj
, "vsmt",
3297 "Virtual SMT: KVM behaves as if this were"
3298 " the host's SMT mode");
3300 object_property_add_bool(obj
, "vfio-no-msix-emulation",
3301 spapr_get_msix_emulation
, NULL
);
3303 object_property_add_uint64_ptr(obj
, "kernel-addr",
3304 &spapr
->kernel_addr
, OBJ_PROP_FLAG_READWRITE
);
3305 object_property_set_description(obj
, "kernel-addr",
3306 stringify(KERNEL_LOAD_ADDR
)
3307 " for -kernel is the default");
3308 spapr
->kernel_addr
= KERNEL_LOAD_ADDR
;
3309 /* The machine class defines the default interrupt controller mode */
3310 spapr
->irq
= smc
->irq
;
3311 object_property_add_str(obj
, "ic-mode", spapr_get_ic_mode
,
3313 object_property_set_description(obj
, "ic-mode",
3314 "Specifies the interrupt controller mode (xics, xive, dual)");
3316 object_property_add_str(obj
, "host-model",
3317 spapr_get_host_model
, spapr_set_host_model
);
3318 object_property_set_description(obj
, "host-model",
3319 "Host model to advertise in guest device tree");
3320 object_property_add_str(obj
, "host-serial",
3321 spapr_get_host_serial
, spapr_set_host_serial
);
3322 object_property_set_description(obj
, "host-serial",
3323 "Host serial number to advertise in guest device tree");
3326 static void spapr_machine_finalizefn(Object
*obj
)
3328 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3330 g_free(spapr
->kvm_type
);
3333 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
3335 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
3336 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3337 CPUPPCState
*env
= &cpu
->env
;
3339 cpu_synchronize_state(cs
);
3340 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3341 if (spapr
->fwnmi_system_reset_addr
!= -1) {
3342 uint64_t rtas_addr
, addr
;
3344 /* get rtas addr from fdt */
3345 rtas_addr
= spapr_get_rtas_addr();
3347 qemu_system_guest_panicked(NULL
);
3351 addr
= rtas_addr
+ RTAS_ERROR_LOG_MAX
+ cs
->cpu_index
* sizeof(uint64_t)*2;
3352 stq_be_phys(&address_space_memory
, addr
, env
->gpr
[3]);
3353 stq_be_phys(&address_space_memory
, addr
+ sizeof(uint64_t), 0);
3356 ppc_cpu_do_system_reset(cs
);
3357 if (spapr
->fwnmi_system_reset_addr
!= -1) {
3358 env
->nip
= spapr
->fwnmi_system_reset_addr
;
3362 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
3367 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
3371 int spapr_lmb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3372 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3377 addr
= spapr_drc_index(drc
) * SPAPR_MEMORY_BLOCK_SIZE
;
3378 node
= object_property_get_uint(OBJECT(drc
->dev
), PC_DIMM_NODE_PROP
,
3380 *fdt_start_offset
= spapr_dt_memory_node(spapr
, fdt
, node
, addr
,
3381 SPAPR_MEMORY_BLOCK_SIZE
);
3385 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
3386 bool dedicated_hp_event_source
, Error
**errp
)
3389 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
3391 uint64_t addr
= addr_start
;
3392 bool hotplugged
= spapr_drc_hotplugged(dev
);
3394 for (i
= 0; i
< nr_lmbs
; i
++) {
3395 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3396 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3399 if (!spapr_drc_attach(drc
, dev
, errp
)) {
3400 while (addr
> addr_start
) {
3401 addr
-= SPAPR_MEMORY_BLOCK_SIZE
;
3402 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3403 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3404 spapr_drc_detach(drc
);
3409 spapr_drc_reset(drc
);
3411 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3413 /* send hotplug notification to the
3414 * guest only in case of hotplugged memory
3417 if (dedicated_hp_event_source
) {
3418 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3419 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3420 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3422 spapr_drc_index(drc
));
3424 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3430 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3433 Error
*local_err
= NULL
;
3434 SpaprMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
3435 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3436 uint64_t size
, addr
;
3438 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
3440 size
= memory_device_get_region_size(MEMORY_DEVICE(dev
), &error_abort
);
3442 pc_dimm_plug(dimm
, MACHINE(ms
));
3445 addr
= object_property_get_uint(OBJECT(dimm
),
3446 PC_DIMM_ADDR_PROP
, &error_abort
);
3447 spapr_add_lmbs(dev
, addr
, size
,
3448 spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
),
3451 slot
= object_property_get_int(OBJECT(dimm
),
3452 PC_DIMM_SLOT_PROP
, &error_abort
);
3453 /* We should have valid slot number at this point */
3454 g_assert(slot
>= 0);
3455 spapr_add_nvdimm(dev
, slot
, &local_err
);
3465 pc_dimm_unplug(dimm
, MACHINE(ms
));
3466 error_propagate(errp
, local_err
);
3469 static void spapr_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3472 const SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(hotplug_dev
);
3473 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3474 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
3475 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3476 Error
*local_err
= NULL
;
3481 if (!smc
->dr_lmb_enabled
) {
3482 error_setg(errp
, "Memory hotplug not supported for this machine");
3486 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &local_err
);
3488 error_propagate(errp
, local_err
);
3493 if (!spapr_nvdimm_validate(hotplug_dev
, NVDIMM(dev
), size
, errp
)) {
3496 } else if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
3497 error_setg(errp
, "Hotplugged memory size must be a multiple of "
3498 "%" PRIu64
" MB", SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
3502 memdev
= object_property_get_link(OBJECT(dimm
), PC_DIMM_MEMDEV_PROP
,
3504 pagesize
= host_memory_backend_pagesize(MEMORY_BACKEND(memdev
));
3505 if (!spapr_check_pagesize(spapr
, pagesize
, errp
)) {
3509 pc_dimm_pre_plug(dimm
, MACHINE(hotplug_dev
), NULL
, errp
);
3512 struct SpaprDimmState
{
3515 QTAILQ_ENTRY(SpaprDimmState
) next
;
3518 static SpaprDimmState
*spapr_pending_dimm_unplugs_find(SpaprMachineState
*s
,
3521 SpaprDimmState
*dimm_state
= NULL
;
3523 QTAILQ_FOREACH(dimm_state
, &s
->pending_dimm_unplugs
, next
) {
3524 if (dimm_state
->dimm
== dimm
) {
3531 static SpaprDimmState
*spapr_pending_dimm_unplugs_add(SpaprMachineState
*spapr
,
3535 SpaprDimmState
*ds
= NULL
;
3538 * If this request is for a DIMM whose removal had failed earlier
3539 * (due to guest's refusal to remove the LMBs), we would have this
3540 * dimm already in the pending_dimm_unplugs list. In that
3541 * case don't add again.
3543 ds
= spapr_pending_dimm_unplugs_find(spapr
, dimm
);
3545 ds
= g_malloc0(sizeof(SpaprDimmState
));
3546 ds
->nr_lmbs
= nr_lmbs
;
3548 QTAILQ_INSERT_HEAD(&spapr
->pending_dimm_unplugs
, ds
, next
);
3553 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState
*spapr
,
3554 SpaprDimmState
*dimm_state
)
3556 QTAILQ_REMOVE(&spapr
->pending_dimm_unplugs
, dimm_state
, next
);
3560 static SpaprDimmState
*spapr_recover_pending_dimm_state(SpaprMachineState
*ms
,
3564 uint64_t size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
),
3566 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3567 uint32_t avail_lmbs
= 0;
3568 uint64_t addr_start
, addr
;
3571 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3575 for (i
= 0; i
< nr_lmbs
; i
++) {
3576 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3577 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3582 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3585 return spapr_pending_dimm_unplugs_add(ms
, avail_lmbs
, dimm
);
3588 /* Callback to be called during DRC release. */
3589 void spapr_lmb_release(DeviceState
*dev
)
3591 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3592 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_ctrl
);
3593 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3595 /* This information will get lost if a migration occurs
3596 * during the unplug process. In this case recover it. */
3598 ds
= spapr_recover_pending_dimm_state(spapr
, PC_DIMM(dev
));
3600 /* The DRC being examined by the caller at least must be counted */
3601 g_assert(ds
->nr_lmbs
);
3604 if (--ds
->nr_lmbs
) {
3609 * Now that all the LMBs have been removed by the guest, call the
3610 * unplug handler chain. This can never fail.
3612 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3613 object_unparent(OBJECT(dev
));
3616 static void spapr_memory_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3618 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3619 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3621 pc_dimm_unplug(PC_DIMM(dev
), MACHINE(hotplug_dev
));
3622 qdev_unrealize(dev
);
3623 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
3626 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
3627 DeviceState
*dev
, Error
**errp
)
3629 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3630 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3632 uint64_t size
, addr_start
, addr
;
3636 if (object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
)) {
3637 error_setg(errp
, "nvdimm device hot unplug is not supported yet.");
3641 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &error_abort
);
3642 nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3644 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3648 * An existing pending dimm state for this DIMM means that there is an
3649 * unplug operation in progress, waiting for the spapr_lmb_release
3650 * callback to complete the job (BQL can't cover that far). In this case,
3651 * bail out to avoid detaching DRCs that were already released.
3653 if (spapr_pending_dimm_unplugs_find(spapr
, dimm
)) {
3654 error_setg(errp
, "Memory unplug already in progress for device %s",
3659 spapr_pending_dimm_unplugs_add(spapr
, nr_lmbs
, dimm
);
3662 for (i
= 0; i
< nr_lmbs
; i
++) {
3663 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3664 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3667 spapr_drc_detach(drc
);
3668 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3671 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3672 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3673 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3674 nr_lmbs
, spapr_drc_index(drc
));
3677 /* Callback to be called during DRC release. */
3678 void spapr_core_release(DeviceState
*dev
)
3680 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3682 /* Call the unplug handler chain. This can never fail. */
3683 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3684 object_unparent(OBJECT(dev
));
3687 static void spapr_core_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3689 MachineState
*ms
= MACHINE(hotplug_dev
);
3690 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(ms
);
3691 CPUCore
*cc
= CPU_CORE(dev
);
3692 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
3694 if (smc
->pre_2_10_has_unused_icps
) {
3695 SpaprCpuCore
*sc
= SPAPR_CPU_CORE(OBJECT(dev
));
3698 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3699 CPUState
*cs
= CPU(sc
->threads
[i
]);
3701 pre_2_10_vmstate_register_dummy_icp(cs
->cpu_index
);
3706 core_slot
->cpu
= NULL
;
3707 qdev_unrealize(dev
);
3711 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3714 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3717 CPUCore
*cc
= CPU_CORE(dev
);
3719 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
3720 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3725 error_setg(errp
, "Boot CPU core may not be unplugged");
3729 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3730 spapr_vcpu_id(spapr
, cc
->core_id
));
3733 if (!spapr_drc_unplug_requested(drc
)) {
3734 spapr_drc_detach(drc
);
3735 spapr_hotplug_req_remove_by_index(drc
);
3739 int spapr_core_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3740 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3742 SpaprCpuCore
*core
= SPAPR_CPU_CORE(drc
->dev
);
3743 CPUState
*cs
= CPU(core
->threads
[0]);
3744 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3745 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
3746 int id
= spapr_get_vcpu_id(cpu
);
3750 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
3751 offset
= fdt_add_subnode(fdt
, 0, nodename
);
3754 spapr_dt_cpu(cs
, fdt
, offset
, spapr
);
3756 *fdt_start_offset
= offset
;
3760 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3763 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3764 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
3765 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3766 SpaprCpuCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
3767 CPUCore
*cc
= CPU_CORE(dev
);
3770 CPUArchId
*core_slot
;
3772 bool hotplugged
= spapr_drc_hotplugged(dev
);
3775 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3777 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3781 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3782 spapr_vcpu_id(spapr
, cc
->core_id
));
3784 g_assert(drc
|| !mc
->has_hotpluggable_cpus
);
3787 if (!spapr_drc_attach(drc
, dev
, errp
)) {
3793 * Send hotplug notification interrupt to the guest only
3794 * in case of hotplugged CPUs.
3796 spapr_hotplug_req_add_by_index(drc
);
3798 spapr_drc_reset(drc
);
3802 core_slot
->cpu
= OBJECT(dev
);
3804 if (smc
->pre_2_10_has_unused_icps
) {
3805 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3806 cs
= CPU(core
->threads
[i
]);
3807 pre_2_10_vmstate_unregister_dummy_icp(cs
->cpu_index
);
3812 * Set compatibility mode to match the boot CPU, which was either set
3813 * by the machine reset code or by CAS.
3816 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3817 if (ppc_set_compat(core
->threads
[i
],
3818 POWERPC_CPU(first_cpu
)->compat_pvr
,
3826 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3829 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
3830 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
3831 CPUCore
*cc
= CPU_CORE(dev
);
3832 const char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
3833 const char *type
= object_get_typename(OBJECT(dev
));
3834 CPUArchId
*core_slot
;
3836 unsigned int smp_threads
= machine
->smp
.threads
;
3838 if (dev
->hotplugged
&& !mc
->has_hotpluggable_cpus
) {
3839 error_setg(errp
, "CPU hotplug not supported for this machine");
3843 if (strcmp(base_core_type
, type
)) {
3844 error_setg(errp
, "CPU core type should be %s", base_core_type
);
3848 if (cc
->core_id
% smp_threads
) {
3849 error_setg(errp
, "invalid core id %d", cc
->core_id
);
3854 * In general we should have homogeneous threads-per-core, but old
3855 * (pre hotplug support) machine types allow the last core to have
3856 * reduced threads as a compatibility hack for when we allowed
3857 * total vcpus not a multiple of threads-per-core.
3859 if (mc
->has_hotpluggable_cpus
&& (cc
->nr_threads
!= smp_threads
)) {
3860 error_setg(errp
, "invalid nr-threads %d, must be %d", cc
->nr_threads
,
3865 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3867 error_setg(errp
, "core id %d out of range", cc
->core_id
);
3871 if (core_slot
->cpu
) {
3872 error_setg(errp
, "core %d already populated", cc
->core_id
);
3876 numa_cpu_pre_plug(core_slot
, dev
, errp
);
3879 int spapr_phb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3880 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3882 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(drc
->dev
);
3885 intc_phandle
= spapr_irq_get_phandle(spapr
, spapr
->fdt_blob
, errp
);
3886 if (intc_phandle
<= 0) {
3890 if (spapr_dt_phb(spapr
, sphb
, intc_phandle
, fdt
, fdt_start_offset
)) {
3891 error_setg(errp
, "unable to create FDT node for PHB %d", sphb
->index
);
3895 /* generally SLOF creates these, for hotplug it's up to QEMU */
3896 _FDT(fdt_setprop_string(fdt
, *fdt_start_offset
, "name", "pci"));
3901 static void spapr_phb_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3904 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3905 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3906 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3907 const unsigned windows_supported
= spapr_phb_windows_supported(sphb
);
3909 if (dev
->hotplugged
&& !smc
->dr_phb_enabled
) {
3910 error_setg(errp
, "PHB hotplug not supported for this machine");
3914 if (sphb
->index
== (uint32_t)-1) {
3915 error_setg(errp
, "\"index\" for PAPR PHB is mandatory");
3920 * This will check that sphb->index doesn't exceed the maximum number of
3921 * PHBs for the current machine type.
3923 smc
->phb_placement(spapr
, sphb
->index
,
3924 &sphb
->buid
, &sphb
->io_win_addr
,
3925 &sphb
->mem_win_addr
, &sphb
->mem64_win_addr
,
3926 windows_supported
, sphb
->dma_liobn
,
3927 &sphb
->nv2_gpa_win_addr
, &sphb
->nv2_atsd_win_addr
,
3931 static void spapr_phb_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3934 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3935 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3936 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3938 bool hotplugged
= spapr_drc_hotplugged(dev
);
3940 if (!smc
->dr_phb_enabled
) {
3944 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
3945 /* hotplug hooks should check it's enabled before getting this far */
3948 if (!spapr_drc_attach(drc
, dev
, errp
)) {
3953 spapr_hotplug_req_add_by_index(drc
);
3955 spapr_drc_reset(drc
);
3959 void spapr_phb_release(DeviceState
*dev
)
3961 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3963 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3964 object_unparent(OBJECT(dev
));
3967 static void spapr_phb_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3969 qdev_unrealize(dev
);
3972 static void spapr_phb_unplug_request(HotplugHandler
*hotplug_dev
,
3973 DeviceState
*dev
, Error
**errp
)
3975 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3978 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
3981 if (!spapr_drc_unplug_requested(drc
)) {
3982 spapr_drc_detach(drc
);
3983 spapr_hotplug_req_remove_by_index(drc
);
3987 static void spapr_tpm_proxy_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3990 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3991 SpaprTpmProxy
*tpm_proxy
= SPAPR_TPM_PROXY(dev
);
3993 if (spapr
->tpm_proxy
!= NULL
) {
3994 error_setg(errp
, "Only one TPM proxy can be specified for this machine");
3998 spapr
->tpm_proxy
= tpm_proxy
;
4001 static void spapr_tpm_proxy_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4003 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4005 qdev_unrealize(dev
);
4006 object_unparent(OBJECT(dev
));
4007 spapr
->tpm_proxy
= NULL
;
4010 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
4011 DeviceState
*dev
, Error
**errp
)
4013 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4014 spapr_memory_plug(hotplug_dev
, dev
, errp
);
4015 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4016 spapr_core_plug(hotplug_dev
, dev
, errp
);
4017 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4018 spapr_phb_plug(hotplug_dev
, dev
, errp
);
4019 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4020 spapr_tpm_proxy_plug(hotplug_dev
, dev
, errp
);
4024 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
4025 DeviceState
*dev
, Error
**errp
)
4027 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4028 spapr_memory_unplug(hotplug_dev
, dev
);
4029 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4030 spapr_core_unplug(hotplug_dev
, dev
);
4031 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4032 spapr_phb_unplug(hotplug_dev
, dev
);
4033 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4034 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
4038 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
4039 DeviceState
*dev
, Error
**errp
)
4041 SpaprMachineState
*sms
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4042 MachineClass
*mc
= MACHINE_GET_CLASS(sms
);
4043 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4045 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4046 if (spapr_ovec_test(sms
->ov5_cas
, OV5_HP_EVT
)) {
4047 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
4049 /* NOTE: this means there is a window after guest reset, prior to
4050 * CAS negotiation, where unplug requests will fail due to the
4051 * capability not being detected yet. This is a bit different than
4052 * the case with PCI unplug, where the events will be queued and
4053 * eventually handled by the guest after boot
4055 error_setg(errp
, "Memory hot unplug not supported for this guest");
4057 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4058 if (!mc
->has_hotpluggable_cpus
) {
4059 error_setg(errp
, "CPU hot unplug not supported on this machine");
4062 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
4063 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4064 if (!smc
->dr_phb_enabled
) {
4065 error_setg(errp
, "PHB hot unplug not supported on this machine");
4068 spapr_phb_unplug_request(hotplug_dev
, dev
, errp
);
4069 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4070 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
4074 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
4075 DeviceState
*dev
, Error
**errp
)
4077 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4078 spapr_memory_pre_plug(hotplug_dev
, dev
, errp
);
4079 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4080 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
4081 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4082 spapr_phb_pre_plug(hotplug_dev
, dev
, errp
);
4086 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
4089 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
4090 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
) ||
4091 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
) ||
4092 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4093 return HOTPLUG_HANDLER(machine
);
4095 if (object_dynamic_cast(OBJECT(dev
), TYPE_PCI_DEVICE
)) {
4096 PCIDevice
*pcidev
= PCI_DEVICE(dev
);
4097 PCIBus
*root
= pci_device_root_bus(pcidev
);
4098 SpaprPhbState
*phb
=
4099 (SpaprPhbState
*)object_dynamic_cast(OBJECT(BUS(root
)->parent
),
4100 TYPE_SPAPR_PCI_HOST_BRIDGE
);
4103 return HOTPLUG_HANDLER(phb
);
4109 static CpuInstanceProperties
4110 spapr_cpu_index_to_props(MachineState
*machine
, unsigned cpu_index
)
4112 CPUArchId
*core_slot
;
4113 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4115 /* make sure possible_cpu are intialized */
4116 mc
->possible_cpu_arch_ids(machine
);
4117 /* get CPU core slot containing thread that matches cpu_index */
4118 core_slot
= spapr_find_cpu_slot(machine
, cpu_index
, NULL
);
4120 return core_slot
->props
;
4123 static int64_t spapr_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
4125 return idx
/ ms
->smp
.cores
% ms
->numa_state
->num_nodes
;
4128 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
4131 unsigned int smp_threads
= machine
->smp
.threads
;
4132 unsigned int smp_cpus
= machine
->smp
.cpus
;
4133 const char *core_type
;
4134 int spapr_max_cores
= machine
->smp
.max_cpus
/ smp_threads
;
4135 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4137 if (!mc
->has_hotpluggable_cpus
) {
4138 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
4140 if (machine
->possible_cpus
) {
4141 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
4142 return machine
->possible_cpus
;
4145 core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
4147 error_report("Unable to find sPAPR CPU Core definition");
4151 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
4152 sizeof(CPUArchId
) * spapr_max_cores
);
4153 machine
->possible_cpus
->len
= spapr_max_cores
;
4154 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
4155 int core_id
= i
* smp_threads
;
4157 machine
->possible_cpus
->cpus
[i
].type
= core_type
;
4158 machine
->possible_cpus
->cpus
[i
].vcpus_count
= smp_threads
;
4159 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
4160 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
4161 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
4163 return machine
->possible_cpus
;
4166 static void spapr_phb_placement(SpaprMachineState
*spapr
, uint32_t index
,
4167 uint64_t *buid
, hwaddr
*pio
,
4168 hwaddr
*mmio32
, hwaddr
*mmio64
,
4169 unsigned n_dma
, uint32_t *liobns
,
4170 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4173 * New-style PHB window placement.
4175 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4176 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4179 * Some guest kernels can't work with MMIO windows above 1<<46
4180 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4182 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4183 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4184 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4185 * 1TiB 64-bit MMIO windows for each PHB.
4187 const uint64_t base_buid
= 0x800000020000000ULL
;
4190 /* Sanity check natural alignments */
4191 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4192 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4193 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
4194 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
4195 /* Sanity check bounds */
4196 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
4197 SPAPR_PCI_MEM32_WIN_SIZE
);
4198 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
4199 SPAPR_PCI_MEM64_WIN_SIZE
);
4201 if (index
>= SPAPR_MAX_PHBS
) {
4202 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
4203 SPAPR_MAX_PHBS
- 1);
4207 *buid
= base_buid
+ index
;
4208 for (i
= 0; i
< n_dma
; ++i
) {
4209 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4212 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
4213 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
4214 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
4216 *nv2gpa
= SPAPR_PCI_NV2RAM64_WIN_BASE
+ index
* SPAPR_PCI_NV2RAM64_WIN_SIZE
;
4217 *nv2atsd
= SPAPR_PCI_NV2ATSD_WIN_BASE
+ index
* SPAPR_PCI_NV2ATSD_WIN_SIZE
;
4220 static ICSState
*spapr_ics_get(XICSFabric
*dev
, int irq
)
4222 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4224 return ics_valid_irq(spapr
->ics
, irq
) ? spapr
->ics
: NULL
;
4227 static void spapr_ics_resend(XICSFabric
*dev
)
4229 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4231 ics_resend(spapr
->ics
);
4234 static ICPState
*spapr_icp_get(XICSFabric
*xi
, int vcpu_id
)
4236 PowerPCCPU
*cpu
= spapr_find_cpu(vcpu_id
);
4238 return cpu
? spapr_cpu_state(cpu
)->icp
: NULL
;
4241 static void spapr_pic_print_info(InterruptStatsProvider
*obj
,
4244 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
4246 spapr_irq_print_info(spapr
, mon
);
4247 monitor_printf(mon
, "irqchip: %s\n",
4248 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4252 * This is a XIVE only operation
4254 static int spapr_match_nvt(XiveFabric
*xfb
, uint8_t format
,
4255 uint8_t nvt_blk
, uint32_t nvt_idx
,
4256 bool cam_ignore
, uint8_t priority
,
4257 uint32_t logic_serv
, XiveTCTXMatch
*match
)
4259 SpaprMachineState
*spapr
= SPAPR_MACHINE(xfb
);
4260 XivePresenter
*xptr
= XIVE_PRESENTER(spapr
->active_intc
);
4261 XivePresenterClass
*xpc
= XIVE_PRESENTER_GET_CLASS(xptr
);
4264 count
= xpc
->match_nvt(xptr
, format
, nvt_blk
, nvt_idx
, cam_ignore
,
4265 priority
, logic_serv
, match
);
4271 * When we implement the save and restore of the thread interrupt
4272 * contexts in the enter/exit CPU handlers of the machine and the
4273 * escalations in QEMU, we should be able to handle non dispatched
4276 * Until this is done, the sPAPR machine should find at least one
4277 * matching context always.
4280 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: NVT %x/%x is not dispatched\n",
4287 int spapr_get_vcpu_id(PowerPCCPU
*cpu
)
4289 return cpu
->vcpu_id
;
4292 bool spapr_set_vcpu_id(PowerPCCPU
*cpu
, int cpu_index
, Error
**errp
)
4294 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
4295 MachineState
*ms
= MACHINE(spapr
);
4298 vcpu_id
= spapr_vcpu_id(spapr
, cpu_index
);
4300 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id
)) {
4301 error_setg(errp
, "Can't create CPU with id %d in KVM", vcpu_id
);
4302 error_append_hint(errp
, "Adjust the number of cpus to %d "
4303 "or try to raise the number of threads per core\n",
4304 vcpu_id
* ms
->smp
.threads
/ spapr
->vsmt
);
4308 cpu
->vcpu_id
= vcpu_id
;
4312 PowerPCCPU
*spapr_find_cpu(int vcpu_id
)
4317 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
4319 if (spapr_get_vcpu_id(cpu
) == vcpu_id
) {
4327 static void spapr_cpu_exec_enter(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4329 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4331 /* These are only called by TCG, KVM maintains dispatch state */
4333 spapr_cpu
->prod
= false;
4334 if (spapr_cpu
->vpa_addr
) {
4335 CPUState
*cs
= CPU(cpu
);
4338 dispatch
= ldl_be_phys(cs
->as
,
4339 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4341 if ((dispatch
& 1) != 0) {
4342 qemu_log_mask(LOG_GUEST_ERROR
,
4343 "VPA: incorrect dispatch counter value for "
4344 "dispatched partition %u, correcting.\n", dispatch
);
4348 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4352 static void spapr_cpu_exec_exit(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4354 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4356 if (spapr_cpu
->vpa_addr
) {
4357 CPUState
*cs
= CPU(cpu
);
4360 dispatch
= ldl_be_phys(cs
->as
,
4361 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4363 if ((dispatch
& 1) != 1) {
4364 qemu_log_mask(LOG_GUEST_ERROR
,
4365 "VPA: incorrect dispatch counter value for "
4366 "preempted partition %u, correcting.\n", dispatch
);
4370 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4374 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
4376 MachineClass
*mc
= MACHINE_CLASS(oc
);
4377 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
4378 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
4379 NMIClass
*nc
= NMI_CLASS(oc
);
4380 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
4381 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
4382 XICSFabricClass
*xic
= XICS_FABRIC_CLASS(oc
);
4383 InterruptStatsProviderClass
*ispc
= INTERRUPT_STATS_PROVIDER_CLASS(oc
);
4384 XiveFabricClass
*xfc
= XIVE_FABRIC_CLASS(oc
);
4386 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
4387 mc
->ignore_boot_device_suffixes
= true;
4390 * We set up the default / latest behaviour here. The class_init
4391 * functions for the specific versioned machine types can override
4392 * these details for backwards compatibility
4394 mc
->init
= spapr_machine_init
;
4395 mc
->reset
= spapr_machine_reset
;
4396 mc
->block_default_type
= IF_SCSI
;
4397 mc
->max_cpus
= 1024;
4398 mc
->no_parallel
= 1;
4399 mc
->default_boot_order
= "";
4400 mc
->default_ram_size
= 512 * MiB
;
4401 mc
->default_ram_id
= "ppc_spapr.ram";
4402 mc
->default_display
= "std";
4403 mc
->kvm_type
= spapr_kvm_type
;
4404 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
4405 mc
->pci_allow_0_address
= true;
4406 assert(!mc
->get_hotplug_handler
);
4407 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
4408 hc
->pre_plug
= spapr_machine_device_pre_plug
;
4409 hc
->plug
= spapr_machine_device_plug
;
4410 mc
->cpu_index_to_instance_props
= spapr_cpu_index_to_props
;
4411 mc
->get_default_cpu_node_id
= spapr_get_default_cpu_node_id
;
4412 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
4413 hc
->unplug_request
= spapr_machine_device_unplug_request
;
4414 hc
->unplug
= spapr_machine_device_unplug
;
4416 smc
->dr_lmb_enabled
= true;
4417 smc
->update_dt_enabled
= true;
4418 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power9_v2.0");
4419 mc
->has_hotpluggable_cpus
= true;
4420 mc
->nvdimm_supported
= true;
4421 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_ENABLED
;
4422 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
4423 nc
->nmi_monitor_handler
= spapr_nmi
;
4424 smc
->phb_placement
= spapr_phb_placement
;
4425 vhc
->hypercall
= emulate_spapr_hypercall
;
4426 vhc
->hpt_mask
= spapr_hpt_mask
;
4427 vhc
->map_hptes
= spapr_map_hptes
;
4428 vhc
->unmap_hptes
= spapr_unmap_hptes
;
4429 vhc
->hpte_set_c
= spapr_hpte_set_c
;
4430 vhc
->hpte_set_r
= spapr_hpte_set_r
;
4431 vhc
->get_pate
= spapr_get_pate
;
4432 vhc
->encode_hpt_for_kvm_pr
= spapr_encode_hpt_for_kvm_pr
;
4433 vhc
->cpu_exec_enter
= spapr_cpu_exec_enter
;
4434 vhc
->cpu_exec_exit
= spapr_cpu_exec_exit
;
4435 xic
->ics_get
= spapr_ics_get
;
4436 xic
->ics_resend
= spapr_ics_resend
;
4437 xic
->icp_get
= spapr_icp_get
;
4438 ispc
->print_info
= spapr_pic_print_info
;
4439 /* Force NUMA node memory size to be a multiple of
4440 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4441 * in which LMBs are represented and hot-added
4443 mc
->numa_mem_align_shift
= 28;
4444 mc
->auto_enable_numa
= true;
4446 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_OFF
;
4447 smc
->default_caps
.caps
[SPAPR_CAP_VSX
] = SPAPR_CAP_ON
;
4448 smc
->default_caps
.caps
[SPAPR_CAP_DFP
] = SPAPR_CAP_ON
;
4449 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4450 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4451 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_WORKAROUND
;
4452 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 16; /* 64kiB */
4453 smc
->default_caps
.caps
[SPAPR_CAP_NESTED_KVM_HV
] = SPAPR_CAP_OFF
;
4454 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_ON
;
4455 smc
->default_caps
.caps
[SPAPR_CAP_CCF_ASSIST
] = SPAPR_CAP_ON
;
4456 smc
->default_caps
.caps
[SPAPR_CAP_FWNMI
] = SPAPR_CAP_ON
;
4457 spapr_caps_add_properties(smc
);
4458 smc
->irq
= &spapr_irq_dual
;
4459 smc
->dr_phb_enabled
= true;
4460 smc
->linux_pci_probe
= true;
4461 smc
->smp_threads_vsmt
= true;
4462 smc
->nr_xirqs
= SPAPR_NR_XIRQS
;
4463 xfc
->match_nvt
= spapr_match_nvt
;
4466 static const TypeInfo spapr_machine_info
= {
4467 .name
= TYPE_SPAPR_MACHINE
,
4468 .parent
= TYPE_MACHINE
,
4470 .instance_size
= sizeof(SpaprMachineState
),
4471 .instance_init
= spapr_instance_init
,
4472 .instance_finalize
= spapr_machine_finalizefn
,
4473 .class_size
= sizeof(SpaprMachineClass
),
4474 .class_init
= spapr_machine_class_init
,
4475 .interfaces
= (InterfaceInfo
[]) {
4476 { TYPE_FW_PATH_PROVIDER
},
4478 { TYPE_HOTPLUG_HANDLER
},
4479 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
4480 { TYPE_XICS_FABRIC
},
4481 { TYPE_INTERRUPT_STATS_PROVIDER
},
4482 { TYPE_XIVE_FABRIC
},
4487 static void spapr_machine_latest_class_options(MachineClass
*mc
)
4489 mc
->alias
= "pseries";
4490 mc
->is_default
= true;
4493 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4494 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4497 MachineClass *mc = MACHINE_CLASS(oc); \
4498 spapr_machine_##suffix##_class_options(mc); \
4500 spapr_machine_latest_class_options(mc); \
4503 static const TypeInfo spapr_machine_##suffix##_info = { \
4504 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4505 .parent = TYPE_SPAPR_MACHINE, \
4506 .class_init = spapr_machine_##suffix##_class_init, \
4508 static void spapr_machine_register_##suffix(void) \
4510 type_register(&spapr_machine_##suffix##_info); \
4512 type_init(spapr_machine_register_##suffix)
4517 static void spapr_machine_5_2_class_options(MachineClass
*mc
)
4519 /* Defaults for the latest behaviour inherited from the base class */
4522 DEFINE_SPAPR_MACHINE(5_2
, "5.2", true);
4527 static void spapr_machine_5_1_class_options(MachineClass
*mc
)
4529 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4531 spapr_machine_5_2_class_options(mc
);
4532 compat_props_add(mc
->compat_props
, hw_compat_5_1
, hw_compat_5_1_len
);
4533 smc
->pre_5_2_numa_associativity
= true;
4536 DEFINE_SPAPR_MACHINE(5_1
, "5.1", false);
4541 static void spapr_machine_5_0_class_options(MachineClass
*mc
)
4543 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4544 static GlobalProperty compat
[] = {
4545 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pre-5.1-associativity", "on" },
4548 spapr_machine_5_1_class_options(mc
);
4549 compat_props_add(mc
->compat_props
, hw_compat_5_0
, hw_compat_5_0_len
);
4550 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4551 mc
->numa_mem_supported
= true;
4552 smc
->pre_5_1_assoc_refpoints
= true;
4555 DEFINE_SPAPR_MACHINE(5_0
, "5.0", false);
4560 static void spapr_machine_4_2_class_options(MachineClass
*mc
)
4562 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4564 spapr_machine_5_0_class_options(mc
);
4565 compat_props_add(mc
->compat_props
, hw_compat_4_2
, hw_compat_4_2_len
);
4566 smc
->default_caps
.caps
[SPAPR_CAP_CCF_ASSIST
] = SPAPR_CAP_OFF
;
4567 smc
->default_caps
.caps
[SPAPR_CAP_FWNMI
] = SPAPR_CAP_OFF
;
4568 smc
->rma_limit
= 16 * GiB
;
4569 mc
->nvdimm_supported
= false;
4572 DEFINE_SPAPR_MACHINE(4_2
, "4.2", false);
4577 static void spapr_machine_4_1_class_options(MachineClass
*mc
)
4579 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4580 static GlobalProperty compat
[] = {
4581 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4582 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pgsz", "0x11000" },
4585 spapr_machine_4_2_class_options(mc
);
4586 smc
->linux_pci_probe
= false;
4587 smc
->smp_threads_vsmt
= false;
4588 compat_props_add(mc
->compat_props
, hw_compat_4_1
, hw_compat_4_1_len
);
4589 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4592 DEFINE_SPAPR_MACHINE(4_1
, "4.1", false);
4597 static void phb_placement_4_0(SpaprMachineState
*spapr
, uint32_t index
,
4598 uint64_t *buid
, hwaddr
*pio
,
4599 hwaddr
*mmio32
, hwaddr
*mmio64
,
4600 unsigned n_dma
, uint32_t *liobns
,
4601 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4603 spapr_phb_placement(spapr
, index
, buid
, pio
, mmio32
, mmio64
, n_dma
, liobns
,
4604 nv2gpa
, nv2atsd
, errp
);
4609 static void spapr_machine_4_0_class_options(MachineClass
*mc
)
4611 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4613 spapr_machine_4_1_class_options(mc
);
4614 compat_props_add(mc
->compat_props
, hw_compat_4_0
, hw_compat_4_0_len
);
4615 smc
->phb_placement
= phb_placement_4_0
;
4616 smc
->irq
= &spapr_irq_xics
;
4617 smc
->pre_4_1_migration
= true;
4620 DEFINE_SPAPR_MACHINE(4_0
, "4.0", false);
4625 static void spapr_machine_3_1_class_options(MachineClass
*mc
)
4627 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4629 spapr_machine_4_0_class_options(mc
);
4630 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
4632 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power8_v2.0");
4633 smc
->update_dt_enabled
= false;
4634 smc
->dr_phb_enabled
= false;
4635 smc
->broken_host_serial_model
= true;
4636 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_BROKEN
;
4637 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_BROKEN
;
4638 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_BROKEN
;
4639 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_OFF
;
4642 DEFINE_SPAPR_MACHINE(3_1
, "3.1", false);
4648 static void spapr_machine_3_0_class_options(MachineClass
*mc
)
4650 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4652 spapr_machine_3_1_class_options(mc
);
4653 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
4655 smc
->legacy_irq_allocation
= true;
4656 smc
->nr_xirqs
= 0x400;
4657 smc
->irq
= &spapr_irq_xics_legacy
;
4660 DEFINE_SPAPR_MACHINE(3_0
, "3.0", false);
4665 static void spapr_machine_2_12_class_options(MachineClass
*mc
)
4667 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4668 static GlobalProperty compat
[] = {
4669 { TYPE_POWERPC_CPU
, "pre-3.0-migration", "on" },
4670 { TYPE_SPAPR_CPU_CORE
, "pre-3.0-migration", "on" },
4673 spapr_machine_3_0_class_options(mc
);
4674 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
4675 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4677 /* We depend on kvm_enabled() to choose a default value for the
4678 * hpt-max-page-size capability. Of course we can't do it here
4679 * because this is too early and the HW accelerator isn't initialzed
4680 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4682 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 0;
4685 DEFINE_SPAPR_MACHINE(2_12
, "2.12", false);
4687 static void spapr_machine_2_12_sxxm_class_options(MachineClass
*mc
)
4689 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4691 spapr_machine_2_12_class_options(mc
);
4692 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4693 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4694 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_FIXED_CCD
;
4697 DEFINE_SPAPR_MACHINE(2_12_sxxm
, "2.12-sxxm", false);
4703 static void spapr_machine_2_11_class_options(MachineClass
*mc
)
4705 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4707 spapr_machine_2_12_class_options(mc
);
4708 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_ON
;
4709 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
4712 DEFINE_SPAPR_MACHINE(2_11
, "2.11", false);
4718 static void spapr_machine_2_10_class_options(MachineClass
*mc
)
4720 spapr_machine_2_11_class_options(mc
);
4721 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
4724 DEFINE_SPAPR_MACHINE(2_10
, "2.10", false);
4730 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
4732 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4733 static GlobalProperty compat
[] = {
4734 { TYPE_POWERPC_CPU
, "pre-2.10-migration", "on" },
4737 spapr_machine_2_10_class_options(mc
);
4738 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
4739 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4740 smc
->pre_2_10_has_unused_icps
= true;
4741 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_DISABLED
;
4744 DEFINE_SPAPR_MACHINE(2_9
, "2.9", false);
4750 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
4752 static GlobalProperty compat
[] = {
4753 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pcie-extended-configuration-space", "off" },
4756 spapr_machine_2_9_class_options(mc
);
4757 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
4758 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4759 mc
->numa_mem_align_shift
= 23;
4762 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
4768 static void phb_placement_2_7(SpaprMachineState
*spapr
, uint32_t index
,
4769 uint64_t *buid
, hwaddr
*pio
,
4770 hwaddr
*mmio32
, hwaddr
*mmio64
,
4771 unsigned n_dma
, uint32_t *liobns
,
4772 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4774 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4775 const uint64_t base_buid
= 0x800000020000000ULL
;
4776 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
4777 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
4778 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
4779 const uint32_t max_index
= 255;
4780 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
4782 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
4783 hwaddr phb0_base
, phb_base
;
4786 /* Do we have device memory? */
4787 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
4788 /* Can't just use maxram_size, because there may be an
4789 * alignment gap between normal and device memory regions
4791 ram_top
= MACHINE(spapr
)->device_memory
->base
+
4792 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
4795 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
4797 if (index
> max_index
) {
4798 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
4803 *buid
= base_buid
+ index
;
4804 for (i
= 0; i
< n_dma
; ++i
) {
4805 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4808 phb_base
= phb0_base
+ index
* phb_spacing
;
4809 *pio
= phb_base
+ pio_offset
;
4810 *mmio32
= phb_base
+ mmio_offset
;
4812 * We don't set the 64-bit MMIO window, relying on the PHB's
4813 * fallback behaviour of automatically splitting a large "32-bit"
4814 * window into contiguous 32-bit and 64-bit windows
4821 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
4823 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4824 static GlobalProperty compat
[] = {
4825 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0xf80000000", },
4826 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem64_win_size", "0", },
4827 { TYPE_POWERPC_CPU
, "pre-2.8-migration", "on", },
4828 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pre-2.8-migration", "on", },
4831 spapr_machine_2_8_class_options(mc
);
4832 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power7_v2.3");
4833 mc
->default_machine_opts
= "modern-hotplug-events=off";
4834 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
4835 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4836 smc
->phb_placement
= phb_placement_2_7
;
4839 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
4845 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
4847 static GlobalProperty compat
[] = {
4848 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "ddw", "off" },
4851 spapr_machine_2_7_class_options(mc
);
4852 mc
->has_hotpluggable_cpus
= false;
4853 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
4854 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4857 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
4863 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
4865 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4866 static GlobalProperty compat
[] = {
4867 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4870 spapr_machine_2_6_class_options(mc
);
4871 smc
->use_ohci_by_default
= true;
4872 compat_props_add(mc
->compat_props
, hw_compat_2_5
, hw_compat_2_5_len
);
4873 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4876 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
4882 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
4884 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4886 spapr_machine_2_5_class_options(mc
);
4887 smc
->dr_lmb_enabled
= false;
4888 compat_props_add(mc
->compat_props
, hw_compat_2_4
, hw_compat_2_4_len
);
4891 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
4897 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
4899 static GlobalProperty compat
[] = {
4900 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4902 spapr_machine_2_4_class_options(mc
);
4903 compat_props_add(mc
->compat_props
, hw_compat_2_3
, hw_compat_2_3_len
);
4904 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4906 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
4912 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
4914 static GlobalProperty compat
[] = {
4915 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0x20000000" },
4918 spapr_machine_2_3_class_options(mc
);
4919 compat_props_add(mc
->compat_props
, hw_compat_2_2
, hw_compat_2_2_len
);
4920 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4921 mc
->default_machine_opts
= "modern-hotplug-events=off,suppress-vmdesc=on";
4923 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
4929 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
4931 spapr_machine_2_2_class_options(mc
);
4932 compat_props_add(mc
->compat_props
, hw_compat_2_1
, hw_compat_2_1_len
);
4934 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
4936 static void spapr_machine_register_types(void)
4938 type_register_static(&spapr_machine_info
);
4941 type_init(spapr_machine_register_types
)