2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "qemu/cutils.h"
21 #include "migration.h"
22 #include "qemu-file.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/sockets.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/coroutine.h"
30 #include <sys/socket.h>
32 #include <arpa/inet.h>
33 #include <rdma/rdma_cma.h>
37 * Print and error on both the Monitor and the Log file.
39 #define ERROR(errp, fmt, ...) \
41 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
42 if (errp && (*(errp) == NULL)) { \
43 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
47 #define RDMA_RESOLVE_TIMEOUT_MS 10000
49 /* Do not merge data if larger than this. */
50 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
51 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
53 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
56 * This is only for non-live state being migrated.
57 * Instead of RDMA_WRITE messages, we use RDMA_SEND
58 * messages for that state, which requires a different
59 * delivery design than main memory.
61 #define RDMA_SEND_INCREMENT 32768
64 * Maximum size infiniband SEND message
66 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
67 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
69 #define RDMA_CONTROL_VERSION_CURRENT 1
71 * Capabilities for negotiation.
73 #define RDMA_CAPABILITY_PIN_ALL 0x01
76 * Add the other flags above to this list of known capabilities
77 * as they are introduced.
79 static uint32_t known_capabilities
= RDMA_CAPABILITY_PIN_ALL
;
81 #define CHECK_ERROR_STATE() \
83 if (rdma->error_state) { \
84 if (!rdma->error_reported) { \
85 error_report("RDMA is in an error state waiting migration" \
87 rdma->error_reported = 1; \
89 return rdma->error_state; \
94 * A work request ID is 64-bits and we split up these bits
97 * bits 0-15 : type of control message, 2^16
98 * bits 16-29: ram block index, 2^14
99 * bits 30-63: ram block chunk number, 2^34
101 * The last two bit ranges are only used for RDMA writes,
102 * in order to track their completion and potentially
103 * also track unregistration status of the message.
105 #define RDMA_WRID_TYPE_SHIFT 0UL
106 #define RDMA_WRID_BLOCK_SHIFT 16UL
107 #define RDMA_WRID_CHUNK_SHIFT 30UL
109 #define RDMA_WRID_TYPE_MASK \
110 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
112 #define RDMA_WRID_BLOCK_MASK \
113 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
115 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
118 * RDMA migration protocol:
119 * 1. RDMA Writes (data messages, i.e. RAM)
120 * 2. IB Send/Recv (control channel messages)
124 RDMA_WRID_RDMA_WRITE
= 1,
125 RDMA_WRID_SEND_CONTROL
= 2000,
126 RDMA_WRID_RECV_CONTROL
= 4000,
129 static const char *wrid_desc
[] = {
130 [RDMA_WRID_NONE
] = "NONE",
131 [RDMA_WRID_RDMA_WRITE
] = "WRITE RDMA",
132 [RDMA_WRID_SEND_CONTROL
] = "CONTROL SEND",
133 [RDMA_WRID_RECV_CONTROL
] = "CONTROL RECV",
137 * Work request IDs for IB SEND messages only (not RDMA writes).
138 * This is used by the migration protocol to transmit
139 * control messages (such as device state and registration commands)
141 * We could use more WRs, but we have enough for now.
151 * SEND/RECV IB Control Messages.
154 RDMA_CONTROL_NONE
= 0,
156 RDMA_CONTROL_READY
, /* ready to receive */
157 RDMA_CONTROL_QEMU_FILE
, /* QEMUFile-transmitted bytes */
158 RDMA_CONTROL_RAM_BLOCKS_REQUEST
, /* RAMBlock synchronization */
159 RDMA_CONTROL_RAM_BLOCKS_RESULT
, /* RAMBlock synchronization */
160 RDMA_CONTROL_COMPRESS
, /* page contains repeat values */
161 RDMA_CONTROL_REGISTER_REQUEST
, /* dynamic page registration */
162 RDMA_CONTROL_REGISTER_RESULT
, /* key to use after registration */
163 RDMA_CONTROL_REGISTER_FINISHED
, /* current iteration finished */
164 RDMA_CONTROL_UNREGISTER_REQUEST
, /* dynamic UN-registration */
165 RDMA_CONTROL_UNREGISTER_FINISHED
, /* unpinning finished */
170 * Memory and MR structures used to represent an IB Send/Recv work request.
171 * This is *not* used for RDMA writes, only IB Send/Recv.
174 uint8_t control
[RDMA_CONTROL_MAX_BUFFER
]; /* actual buffer to register */
175 struct ibv_mr
*control_mr
; /* registration metadata */
176 size_t control_len
; /* length of the message */
177 uint8_t *control_curr
; /* start of unconsumed bytes */
178 } RDMAWorkRequestData
;
181 * Negotiate RDMA capabilities during connection-setup time.
188 static void caps_to_network(RDMACapabilities
*cap
)
190 cap
->version
= htonl(cap
->version
);
191 cap
->flags
= htonl(cap
->flags
);
194 static void network_to_caps(RDMACapabilities
*cap
)
196 cap
->version
= ntohl(cap
->version
);
197 cap
->flags
= ntohl(cap
->flags
);
201 * Representation of a RAMBlock from an RDMA perspective.
202 * This is not transmitted, only local.
203 * This and subsequent structures cannot be linked lists
204 * because we're using a single IB message to transmit
205 * the information. It's small anyway, so a list is overkill.
207 typedef struct RDMALocalBlock
{
209 uint8_t *local_host_addr
; /* local virtual address */
210 uint64_t remote_host_addr
; /* remote virtual address */
213 struct ibv_mr
**pmr
; /* MRs for chunk-level registration */
214 struct ibv_mr
*mr
; /* MR for non-chunk-level registration */
215 uint32_t *remote_keys
; /* rkeys for chunk-level registration */
216 uint32_t remote_rkey
; /* rkeys for non-chunk-level registration */
217 int index
; /* which block are we */
218 unsigned int src_index
; /* (Only used on dest) */
221 unsigned long *transit_bitmap
;
222 unsigned long *unregister_bitmap
;
226 * Also represents a RAMblock, but only on the dest.
227 * This gets transmitted by the dest during connection-time
228 * to the source VM and then is used to populate the
229 * corresponding RDMALocalBlock with
230 * the information needed to perform the actual RDMA.
232 typedef struct QEMU_PACKED RDMADestBlock
{
233 uint64_t remote_host_addr
;
236 uint32_t remote_rkey
;
240 static const char *control_desc(unsigned int rdma_control
)
242 static const char *strs
[] = {
243 [RDMA_CONTROL_NONE
] = "NONE",
244 [RDMA_CONTROL_ERROR
] = "ERROR",
245 [RDMA_CONTROL_READY
] = "READY",
246 [RDMA_CONTROL_QEMU_FILE
] = "QEMU FILE",
247 [RDMA_CONTROL_RAM_BLOCKS_REQUEST
] = "RAM BLOCKS REQUEST",
248 [RDMA_CONTROL_RAM_BLOCKS_RESULT
] = "RAM BLOCKS RESULT",
249 [RDMA_CONTROL_COMPRESS
] = "COMPRESS",
250 [RDMA_CONTROL_REGISTER_REQUEST
] = "REGISTER REQUEST",
251 [RDMA_CONTROL_REGISTER_RESULT
] = "REGISTER RESULT",
252 [RDMA_CONTROL_REGISTER_FINISHED
] = "REGISTER FINISHED",
253 [RDMA_CONTROL_UNREGISTER_REQUEST
] = "UNREGISTER REQUEST",
254 [RDMA_CONTROL_UNREGISTER_FINISHED
] = "UNREGISTER FINISHED",
257 if (rdma_control
> RDMA_CONTROL_UNREGISTER_FINISHED
) {
258 return "??BAD CONTROL VALUE??";
261 return strs
[rdma_control
];
264 static uint64_t htonll(uint64_t v
)
266 union { uint32_t lv
[2]; uint64_t llv
; } u
;
267 u
.lv
[0] = htonl(v
>> 32);
268 u
.lv
[1] = htonl(v
& 0xFFFFFFFFULL
);
272 static uint64_t ntohll(uint64_t v
) {
273 union { uint32_t lv
[2]; uint64_t llv
; } u
;
275 return ((uint64_t)ntohl(u
.lv
[0]) << 32) | (uint64_t) ntohl(u
.lv
[1]);
278 static void dest_block_to_network(RDMADestBlock
*db
)
280 db
->remote_host_addr
= htonll(db
->remote_host_addr
);
281 db
->offset
= htonll(db
->offset
);
282 db
->length
= htonll(db
->length
);
283 db
->remote_rkey
= htonl(db
->remote_rkey
);
286 static void network_to_dest_block(RDMADestBlock
*db
)
288 db
->remote_host_addr
= ntohll(db
->remote_host_addr
);
289 db
->offset
= ntohll(db
->offset
);
290 db
->length
= ntohll(db
->length
);
291 db
->remote_rkey
= ntohl(db
->remote_rkey
);
295 * Virtual address of the above structures used for transmitting
296 * the RAMBlock descriptions at connection-time.
297 * This structure is *not* transmitted.
299 typedef struct RDMALocalBlocks
{
301 bool init
; /* main memory init complete */
302 RDMALocalBlock
*block
;
306 * Main data structure for RDMA state.
307 * While there is only one copy of this structure being allocated right now,
308 * this is the place where one would start if you wanted to consider
309 * having more than one RDMA connection open at the same time.
311 typedef struct RDMAContext
{
315 RDMAWorkRequestData wr_data
[RDMA_WRID_MAX
];
318 * This is used by *_exchange_send() to figure out whether or not
319 * the initial "READY" message has already been received or not.
320 * This is because other functions may potentially poll() and detect
321 * the READY message before send() does, in which case we need to
322 * know if it completed.
324 int control_ready_expected
;
326 /* number of outstanding writes */
329 /* store info about current buffer so that we can
330 merge it with future sends */
331 uint64_t current_addr
;
332 uint64_t current_length
;
333 /* index of ram block the current buffer belongs to */
335 /* index of the chunk in the current ram block */
341 * infiniband-specific variables for opening the device
342 * and maintaining connection state and so forth.
344 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
345 * cm_id->verbs, cm_id->channel, and cm_id->qp.
347 struct rdma_cm_id
*cm_id
; /* connection manager ID */
348 struct rdma_cm_id
*listen_id
;
351 struct ibv_context
*verbs
;
352 struct rdma_event_channel
*channel
;
353 struct ibv_qp
*qp
; /* queue pair */
354 struct ibv_comp_channel
*comp_channel
; /* completion channel */
355 struct ibv_pd
*pd
; /* protection domain */
356 struct ibv_cq
*cq
; /* completion queue */
359 * If a previous write failed (perhaps because of a failed
360 * memory registration, then do not attempt any future work
361 * and remember the error state.
368 * Description of ram blocks used throughout the code.
370 RDMALocalBlocks local_ram_blocks
;
371 RDMADestBlock
*dest_blocks
;
373 /* Index of the next RAMBlock received during block registration */
374 unsigned int next_src_index
;
377 * Migration on *destination* started.
378 * Then use coroutine yield function.
379 * Source runs in a thread, so we don't care.
381 int migration_started_on_destination
;
383 int total_registrations
;
386 int unregister_current
, unregister_next
;
387 uint64_t unregistrations
[RDMA_SIGNALED_SEND_MAX
];
389 GHashTable
*blockmap
;
392 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
393 #define QIO_CHANNEL_RDMA(obj) \
394 OBJECT_CHECK(QIOChannelRDMA, (obj), TYPE_QIO_CHANNEL_RDMA)
396 typedef struct QIOChannelRDMA QIOChannelRDMA
;
399 struct QIOChannelRDMA
{
403 bool blocking
; /* XXX we don't actually honour this yet */
407 * Main structure for IB Send/Recv control messages.
408 * This gets prepended at the beginning of every Send/Recv.
410 typedef struct QEMU_PACKED
{
411 uint32_t len
; /* Total length of data portion */
412 uint32_t type
; /* which control command to perform */
413 uint32_t repeat
; /* number of commands in data portion of same type */
417 static void control_to_network(RDMAControlHeader
*control
)
419 control
->type
= htonl(control
->type
);
420 control
->len
= htonl(control
->len
);
421 control
->repeat
= htonl(control
->repeat
);
424 static void network_to_control(RDMAControlHeader
*control
)
426 control
->type
= ntohl(control
->type
);
427 control
->len
= ntohl(control
->len
);
428 control
->repeat
= ntohl(control
->repeat
);
432 * Register a single Chunk.
433 * Information sent by the source VM to inform the dest
434 * to register an single chunk of memory before we can perform
435 * the actual RDMA operation.
437 typedef struct QEMU_PACKED
{
439 uint64_t current_addr
; /* offset into the ram_addr_t space */
440 uint64_t chunk
; /* chunk to lookup if unregistering */
442 uint32_t current_index
; /* which ramblock the chunk belongs to */
444 uint64_t chunks
; /* how many sequential chunks to register */
447 static void register_to_network(RDMAContext
*rdma
, RDMARegister
*reg
)
449 RDMALocalBlock
*local_block
;
450 local_block
= &rdma
->local_ram_blocks
.block
[reg
->current_index
];
452 if (local_block
->is_ram_block
) {
454 * current_addr as passed in is an address in the local ram_addr_t
455 * space, we need to translate this for the destination
457 reg
->key
.current_addr
-= local_block
->offset
;
458 reg
->key
.current_addr
+= rdma
->dest_blocks
[reg
->current_index
].offset
;
460 reg
->key
.current_addr
= htonll(reg
->key
.current_addr
);
461 reg
->current_index
= htonl(reg
->current_index
);
462 reg
->chunks
= htonll(reg
->chunks
);
465 static void network_to_register(RDMARegister
*reg
)
467 reg
->key
.current_addr
= ntohll(reg
->key
.current_addr
);
468 reg
->current_index
= ntohl(reg
->current_index
);
469 reg
->chunks
= ntohll(reg
->chunks
);
472 typedef struct QEMU_PACKED
{
473 uint32_t value
; /* if zero, we will madvise() */
474 uint32_t block_idx
; /* which ram block index */
475 uint64_t offset
; /* Address in remote ram_addr_t space */
476 uint64_t length
; /* length of the chunk */
479 static void compress_to_network(RDMAContext
*rdma
, RDMACompress
*comp
)
481 comp
->value
= htonl(comp
->value
);
483 * comp->offset as passed in is an address in the local ram_addr_t
484 * space, we need to translate this for the destination
486 comp
->offset
-= rdma
->local_ram_blocks
.block
[comp
->block_idx
].offset
;
487 comp
->offset
+= rdma
->dest_blocks
[comp
->block_idx
].offset
;
488 comp
->block_idx
= htonl(comp
->block_idx
);
489 comp
->offset
= htonll(comp
->offset
);
490 comp
->length
= htonll(comp
->length
);
493 static void network_to_compress(RDMACompress
*comp
)
495 comp
->value
= ntohl(comp
->value
);
496 comp
->block_idx
= ntohl(comp
->block_idx
);
497 comp
->offset
= ntohll(comp
->offset
);
498 comp
->length
= ntohll(comp
->length
);
502 * The result of the dest's memory registration produces an "rkey"
503 * which the source VM must reference in order to perform
504 * the RDMA operation.
506 typedef struct QEMU_PACKED
{
510 } RDMARegisterResult
;
512 static void result_to_network(RDMARegisterResult
*result
)
514 result
->rkey
= htonl(result
->rkey
);
515 result
->host_addr
= htonll(result
->host_addr
);
518 static void network_to_result(RDMARegisterResult
*result
)
520 result
->rkey
= ntohl(result
->rkey
);
521 result
->host_addr
= ntohll(result
->host_addr
);
524 const char *print_wrid(int wrid
);
525 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
526 uint8_t *data
, RDMAControlHeader
*resp
,
528 int (*callback
)(RDMAContext
*rdma
));
530 static inline uint64_t ram_chunk_index(const uint8_t *start
,
533 return ((uintptr_t) host
- (uintptr_t) start
) >> RDMA_REG_CHUNK_SHIFT
;
536 static inline uint8_t *ram_chunk_start(const RDMALocalBlock
*rdma_ram_block
,
539 return (uint8_t *)(uintptr_t)(rdma_ram_block
->local_host_addr
+
540 (i
<< RDMA_REG_CHUNK_SHIFT
));
543 static inline uint8_t *ram_chunk_end(const RDMALocalBlock
*rdma_ram_block
,
546 uint8_t *result
= ram_chunk_start(rdma_ram_block
, i
) +
547 (1UL << RDMA_REG_CHUNK_SHIFT
);
549 if (result
> (rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
)) {
550 result
= rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
;
556 static int rdma_add_block(RDMAContext
*rdma
, const char *block_name
,
558 ram_addr_t block_offset
, uint64_t length
)
560 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
561 RDMALocalBlock
*block
;
562 RDMALocalBlock
*old
= local
->block
;
564 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
+ 1);
566 if (local
->nb_blocks
) {
569 if (rdma
->blockmap
) {
570 for (x
= 0; x
< local
->nb_blocks
; x
++) {
571 g_hash_table_remove(rdma
->blockmap
,
572 (void *)(uintptr_t)old
[x
].offset
);
573 g_hash_table_insert(rdma
->blockmap
,
574 (void *)(uintptr_t)old
[x
].offset
,
578 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * local
->nb_blocks
);
582 block
= &local
->block
[local
->nb_blocks
];
584 block
->block_name
= g_strdup(block_name
);
585 block
->local_host_addr
= host_addr
;
586 block
->offset
= block_offset
;
587 block
->length
= length
;
588 block
->index
= local
->nb_blocks
;
589 block
->src_index
= ~0U; /* Filled in by the receipt of the block list */
590 block
->nb_chunks
= ram_chunk_index(host_addr
, host_addr
+ length
) + 1UL;
591 block
->transit_bitmap
= bitmap_new(block
->nb_chunks
);
592 bitmap_clear(block
->transit_bitmap
, 0, block
->nb_chunks
);
593 block
->unregister_bitmap
= bitmap_new(block
->nb_chunks
);
594 bitmap_clear(block
->unregister_bitmap
, 0, block
->nb_chunks
);
595 block
->remote_keys
= g_new0(uint32_t, block
->nb_chunks
);
597 block
->is_ram_block
= local
->init
? false : true;
599 if (rdma
->blockmap
) {
600 g_hash_table_insert(rdma
->blockmap
, (void *)(uintptr_t)block_offset
, block
);
603 trace_rdma_add_block(block_name
, local
->nb_blocks
,
604 (uintptr_t) block
->local_host_addr
,
605 block
->offset
, block
->length
,
606 (uintptr_t) (block
->local_host_addr
+ block
->length
),
607 BITS_TO_LONGS(block
->nb_chunks
) *
608 sizeof(unsigned long) * 8,
617 * Memory regions need to be registered with the device and queue pairs setup
618 * in advanced before the migration starts. This tells us where the RAM blocks
619 * are so that we can register them individually.
621 static int qemu_rdma_init_one_block(const char *block_name
, void *host_addr
,
622 ram_addr_t block_offset
, ram_addr_t length
, void *opaque
)
624 return rdma_add_block(opaque
, block_name
, host_addr
, block_offset
, length
);
628 * Identify the RAMBlocks and their quantity. They will be references to
629 * identify chunk boundaries inside each RAMBlock and also be referenced
630 * during dynamic page registration.
632 static int qemu_rdma_init_ram_blocks(RDMAContext
*rdma
)
634 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
636 assert(rdma
->blockmap
== NULL
);
637 memset(local
, 0, sizeof *local
);
638 qemu_ram_foreach_migratable_block(qemu_rdma_init_one_block
, rdma
);
639 trace_qemu_rdma_init_ram_blocks(local
->nb_blocks
);
640 rdma
->dest_blocks
= g_new0(RDMADestBlock
,
641 rdma
->local_ram_blocks
.nb_blocks
);
647 * Note: If used outside of cleanup, the caller must ensure that the destination
648 * block structures are also updated
650 static int rdma_delete_block(RDMAContext
*rdma
, RDMALocalBlock
*block
)
652 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
653 RDMALocalBlock
*old
= local
->block
;
656 if (rdma
->blockmap
) {
657 g_hash_table_remove(rdma
->blockmap
, (void *)(uintptr_t)block
->offset
);
662 for (j
= 0; j
< block
->nb_chunks
; j
++) {
663 if (!block
->pmr
[j
]) {
666 ibv_dereg_mr(block
->pmr
[j
]);
667 rdma
->total_registrations
--;
674 ibv_dereg_mr(block
->mr
);
675 rdma
->total_registrations
--;
679 g_free(block
->transit_bitmap
);
680 block
->transit_bitmap
= NULL
;
682 g_free(block
->unregister_bitmap
);
683 block
->unregister_bitmap
= NULL
;
685 g_free(block
->remote_keys
);
686 block
->remote_keys
= NULL
;
688 g_free(block
->block_name
);
689 block
->block_name
= NULL
;
691 if (rdma
->blockmap
) {
692 for (x
= 0; x
< local
->nb_blocks
; x
++) {
693 g_hash_table_remove(rdma
->blockmap
,
694 (void *)(uintptr_t)old
[x
].offset
);
698 if (local
->nb_blocks
> 1) {
700 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
- 1);
703 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * block
->index
);
706 if (block
->index
< (local
->nb_blocks
- 1)) {
707 memcpy(local
->block
+ block
->index
, old
+ (block
->index
+ 1),
708 sizeof(RDMALocalBlock
) *
709 (local
->nb_blocks
- (block
->index
+ 1)));
710 for (x
= block
->index
; x
< local
->nb_blocks
- 1; x
++) {
711 local
->block
[x
].index
--;
715 assert(block
== local
->block
);
719 trace_rdma_delete_block(block
, (uintptr_t)block
->local_host_addr
,
720 block
->offset
, block
->length
,
721 (uintptr_t)(block
->local_host_addr
+ block
->length
),
722 BITS_TO_LONGS(block
->nb_chunks
) *
723 sizeof(unsigned long) * 8, block
->nb_chunks
);
729 if (local
->nb_blocks
&& rdma
->blockmap
) {
730 for (x
= 0; x
< local
->nb_blocks
; x
++) {
731 g_hash_table_insert(rdma
->blockmap
,
732 (void *)(uintptr_t)local
->block
[x
].offset
,
741 * Put in the log file which RDMA device was opened and the details
742 * associated with that device.
744 static void qemu_rdma_dump_id(const char *who
, struct ibv_context
*verbs
)
746 struct ibv_port_attr port
;
748 if (ibv_query_port(verbs
, 1, &port
)) {
749 error_report("Failed to query port information");
753 printf("%s RDMA Device opened: kernel name %s "
754 "uverbs device name %s, "
755 "infiniband_verbs class device path %s, "
756 "infiniband class device path %s, "
757 "transport: (%d) %s\n",
760 verbs
->device
->dev_name
,
761 verbs
->device
->dev_path
,
762 verbs
->device
->ibdev_path
,
764 (port
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) ? "Infiniband" :
765 ((port
.link_layer
== IBV_LINK_LAYER_ETHERNET
)
766 ? "Ethernet" : "Unknown"));
770 * Put in the log file the RDMA gid addressing information,
771 * useful for folks who have trouble understanding the
772 * RDMA device hierarchy in the kernel.
774 static void qemu_rdma_dump_gid(const char *who
, struct rdma_cm_id
*id
)
778 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.sgid
, sgid
, sizeof sgid
);
779 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.dgid
, dgid
, sizeof dgid
);
780 trace_qemu_rdma_dump_gid(who
, sgid
, dgid
);
784 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
785 * We will try the next addrinfo struct, and fail if there are
786 * no other valid addresses to bind against.
788 * If user is listening on '[::]', then we will not have a opened a device
789 * yet and have no way of verifying if the device is RoCE or not.
791 * In this case, the source VM will throw an error for ALL types of
792 * connections (both IPv4 and IPv6) if the destination machine does not have
793 * a regular infiniband network available for use.
795 * The only way to guarantee that an error is thrown for broken kernels is
796 * for the management software to choose a *specific* interface at bind time
797 * and validate what time of hardware it is.
799 * Unfortunately, this puts the user in a fix:
801 * If the source VM connects with an IPv4 address without knowing that the
802 * destination has bound to '[::]' the migration will unconditionally fail
803 * unless the management software is explicitly listening on the IPv4
804 * address while using a RoCE-based device.
806 * If the source VM connects with an IPv6 address, then we're OK because we can
807 * throw an error on the source (and similarly on the destination).
809 * But in mixed environments, this will be broken for a while until it is fixed
812 * We do provide a *tiny* bit of help in this function: We can list all of the
813 * devices in the system and check to see if all the devices are RoCE or
816 * If we detect that we have a *pure* RoCE environment, then we can safely
817 * thrown an error even if the management software has specified '[::]' as the
820 * However, if there is are multiple hetergeneous devices, then we cannot make
821 * this assumption and the user just has to be sure they know what they are
824 * Patches are being reviewed on linux-rdma.
826 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context
*verbs
, Error
**errp
)
828 struct ibv_port_attr port_attr
;
830 /* This bug only exists in linux, to our knowledge. */
834 * Verbs are only NULL if management has bound to '[::]'.
836 * Let's iterate through all the devices and see if there any pure IB
837 * devices (non-ethernet).
839 * If not, then we can safely proceed with the migration.
840 * Otherwise, there are no guarantees until the bug is fixed in linux.
844 struct ibv_device
** dev_list
= ibv_get_device_list(&num_devices
);
845 bool roce_found
= false;
846 bool ib_found
= false;
848 for (x
= 0; x
< num_devices
; x
++) {
849 verbs
= ibv_open_device(dev_list
[x
]);
851 if (errno
== EPERM
) {
858 if (ibv_query_port(verbs
, 1, &port_attr
)) {
859 ibv_close_device(verbs
);
860 ERROR(errp
, "Could not query initial IB port");
864 if (port_attr
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) {
866 } else if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
870 ibv_close_device(verbs
);
876 fprintf(stderr
, "WARN: migrations may fail:"
877 " IPv6 over RoCE / iWARP in linux"
878 " is broken. But since you appear to have a"
879 " mixed RoCE / IB environment, be sure to only"
880 " migrate over the IB fabric until the kernel "
881 " fixes the bug.\n");
883 ERROR(errp
, "You only have RoCE / iWARP devices in your systems"
884 " and your management software has specified '[::]'"
885 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
894 * If we have a verbs context, that means that some other than '[::]' was
895 * used by the management software for binding. In which case we can
896 * actually warn the user about a potentially broken kernel.
899 /* IB ports start with 1, not 0 */
900 if (ibv_query_port(verbs
, 1, &port_attr
)) {
901 ERROR(errp
, "Could not query initial IB port");
905 if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
906 ERROR(errp
, "Linux kernel's RoCE / iWARP does not support IPv6 "
907 "(but patches on linux-rdma in progress)");
917 * Figure out which RDMA device corresponds to the requested IP hostname
918 * Also create the initial connection manager identifiers for opening
921 static int qemu_rdma_resolve_host(RDMAContext
*rdma
, Error
**errp
)
924 struct rdma_addrinfo
*res
;
926 struct rdma_cm_event
*cm_event
;
927 char ip
[40] = "unknown";
928 struct rdma_addrinfo
*e
;
930 if (rdma
->host
== NULL
|| !strcmp(rdma
->host
, "")) {
931 ERROR(errp
, "RDMA hostname has not been set");
935 /* create CM channel */
936 rdma
->channel
= rdma_create_event_channel();
937 if (!rdma
->channel
) {
938 ERROR(errp
, "could not create CM channel");
943 ret
= rdma_create_id(rdma
->channel
, &rdma
->cm_id
, NULL
, RDMA_PS_TCP
);
945 ERROR(errp
, "could not create channel id");
946 goto err_resolve_create_id
;
949 snprintf(port_str
, 16, "%d", rdma
->port
);
952 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
954 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
955 goto err_resolve_get_addr
;
958 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
959 inet_ntop(e
->ai_family
,
960 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
961 trace_qemu_rdma_resolve_host_trying(rdma
->host
, ip
);
963 ret
= rdma_resolve_addr(rdma
->cm_id
, NULL
, e
->ai_dst_addr
,
964 RDMA_RESOLVE_TIMEOUT_MS
);
966 if (e
->ai_family
== AF_INET6
) {
967 ret
= qemu_rdma_broken_ipv6_kernel(rdma
->cm_id
->verbs
, errp
);
976 ERROR(errp
, "could not resolve address %s", rdma
->host
);
977 goto err_resolve_get_addr
;
980 qemu_rdma_dump_gid("source_resolve_addr", rdma
->cm_id
);
982 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
984 ERROR(errp
, "could not perform event_addr_resolved");
985 goto err_resolve_get_addr
;
988 if (cm_event
->event
!= RDMA_CM_EVENT_ADDR_RESOLVED
) {
989 ERROR(errp
, "result not equal to event_addr_resolved %s",
990 rdma_event_str(cm_event
->event
));
991 perror("rdma_resolve_addr");
992 rdma_ack_cm_event(cm_event
);
994 goto err_resolve_get_addr
;
996 rdma_ack_cm_event(cm_event
);
999 ret
= rdma_resolve_route(rdma
->cm_id
, RDMA_RESOLVE_TIMEOUT_MS
);
1001 ERROR(errp
, "could not resolve rdma route");
1002 goto err_resolve_get_addr
;
1005 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1007 ERROR(errp
, "could not perform event_route_resolved");
1008 goto err_resolve_get_addr
;
1010 if (cm_event
->event
!= RDMA_CM_EVENT_ROUTE_RESOLVED
) {
1011 ERROR(errp
, "result not equal to event_route_resolved: %s",
1012 rdma_event_str(cm_event
->event
));
1013 rdma_ack_cm_event(cm_event
);
1015 goto err_resolve_get_addr
;
1017 rdma_ack_cm_event(cm_event
);
1018 rdma
->verbs
= rdma
->cm_id
->verbs
;
1019 qemu_rdma_dump_id("source_resolve_host", rdma
->cm_id
->verbs
);
1020 qemu_rdma_dump_gid("source_resolve_host", rdma
->cm_id
);
1023 err_resolve_get_addr
:
1024 rdma_destroy_id(rdma
->cm_id
);
1026 err_resolve_create_id
:
1027 rdma_destroy_event_channel(rdma
->channel
);
1028 rdma
->channel
= NULL
;
1033 * Create protection domain and completion queues
1035 static int qemu_rdma_alloc_pd_cq(RDMAContext
*rdma
)
1038 rdma
->pd
= ibv_alloc_pd(rdma
->verbs
);
1040 error_report("failed to allocate protection domain");
1044 /* create completion channel */
1045 rdma
->comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1046 if (!rdma
->comp_channel
) {
1047 error_report("failed to allocate completion channel");
1048 goto err_alloc_pd_cq
;
1052 * Completion queue can be filled by both read and write work requests,
1053 * so must reflect the sum of both possible queue sizes.
1055 rdma
->cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1056 NULL
, rdma
->comp_channel
, 0);
1058 error_report("failed to allocate completion queue");
1059 goto err_alloc_pd_cq
;
1066 ibv_dealloc_pd(rdma
->pd
);
1068 if (rdma
->comp_channel
) {
1069 ibv_destroy_comp_channel(rdma
->comp_channel
);
1072 rdma
->comp_channel
= NULL
;
1078 * Create queue pairs.
1080 static int qemu_rdma_alloc_qp(RDMAContext
*rdma
)
1082 struct ibv_qp_init_attr attr
= { 0 };
1085 attr
.cap
.max_send_wr
= RDMA_SIGNALED_SEND_MAX
;
1086 attr
.cap
.max_recv_wr
= 3;
1087 attr
.cap
.max_send_sge
= 1;
1088 attr
.cap
.max_recv_sge
= 1;
1089 attr
.send_cq
= rdma
->cq
;
1090 attr
.recv_cq
= rdma
->cq
;
1091 attr
.qp_type
= IBV_QPT_RC
;
1093 ret
= rdma_create_qp(rdma
->cm_id
, rdma
->pd
, &attr
);
1098 rdma
->qp
= rdma
->cm_id
->qp
;
1102 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext
*rdma
)
1105 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
1107 for (i
= 0; i
< local
->nb_blocks
; i
++) {
1108 local
->block
[i
].mr
=
1109 ibv_reg_mr(rdma
->pd
,
1110 local
->block
[i
].local_host_addr
,
1111 local
->block
[i
].length
,
1112 IBV_ACCESS_LOCAL_WRITE
|
1113 IBV_ACCESS_REMOTE_WRITE
1115 if (!local
->block
[i
].mr
) {
1116 perror("Failed to register local dest ram block!\n");
1119 rdma
->total_registrations
++;
1122 if (i
>= local
->nb_blocks
) {
1126 for (i
--; i
>= 0; i
--) {
1127 ibv_dereg_mr(local
->block
[i
].mr
);
1128 rdma
->total_registrations
--;
1136 * Find the ram block that corresponds to the page requested to be
1137 * transmitted by QEMU.
1139 * Once the block is found, also identify which 'chunk' within that
1140 * block that the page belongs to.
1142 * This search cannot fail or the migration will fail.
1144 static int qemu_rdma_search_ram_block(RDMAContext
*rdma
,
1145 uintptr_t block_offset
,
1148 uint64_t *block_index
,
1149 uint64_t *chunk_index
)
1151 uint64_t current_addr
= block_offset
+ offset
;
1152 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
1153 (void *) block_offset
);
1155 assert(current_addr
>= block
->offset
);
1156 assert((current_addr
+ length
) <= (block
->offset
+ block
->length
));
1158 *block_index
= block
->index
;
1159 *chunk_index
= ram_chunk_index(block
->local_host_addr
,
1160 block
->local_host_addr
+ (current_addr
- block
->offset
));
1166 * Register a chunk with IB. If the chunk was already registered
1167 * previously, then skip.
1169 * Also return the keys associated with the registration needed
1170 * to perform the actual RDMA operation.
1172 static int qemu_rdma_register_and_get_keys(RDMAContext
*rdma
,
1173 RDMALocalBlock
*block
, uintptr_t host_addr
,
1174 uint32_t *lkey
, uint32_t *rkey
, int chunk
,
1175 uint8_t *chunk_start
, uint8_t *chunk_end
)
1179 *lkey
= block
->mr
->lkey
;
1182 *rkey
= block
->mr
->rkey
;
1187 /* allocate memory to store chunk MRs */
1189 block
->pmr
= g_new0(struct ibv_mr
*, block
->nb_chunks
);
1193 * If 'rkey', then we're the destination, so grant access to the source.
1195 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1197 if (!block
->pmr
[chunk
]) {
1198 uint64_t len
= chunk_end
- chunk_start
;
1200 trace_qemu_rdma_register_and_get_keys(len
, chunk_start
);
1202 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
,
1204 (rkey
? (IBV_ACCESS_LOCAL_WRITE
|
1205 IBV_ACCESS_REMOTE_WRITE
) : 0));
1207 if (!block
->pmr
[chunk
]) {
1208 perror("Failed to register chunk!");
1209 fprintf(stderr
, "Chunk details: block: %d chunk index %d"
1210 " start %" PRIuPTR
" end %" PRIuPTR
1212 " local %" PRIuPTR
" registrations: %d\n",
1213 block
->index
, chunk
, (uintptr_t)chunk_start
,
1214 (uintptr_t)chunk_end
, host_addr
,
1215 (uintptr_t)block
->local_host_addr
,
1216 rdma
->total_registrations
);
1219 rdma
->total_registrations
++;
1223 *lkey
= block
->pmr
[chunk
]->lkey
;
1226 *rkey
= block
->pmr
[chunk
]->rkey
;
1232 * Register (at connection time) the memory used for control
1235 static int qemu_rdma_reg_control(RDMAContext
*rdma
, int idx
)
1237 rdma
->wr_data
[idx
].control_mr
= ibv_reg_mr(rdma
->pd
,
1238 rdma
->wr_data
[idx
].control
, RDMA_CONTROL_MAX_BUFFER
,
1239 IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
);
1240 if (rdma
->wr_data
[idx
].control_mr
) {
1241 rdma
->total_registrations
++;
1244 error_report("qemu_rdma_reg_control failed");
1248 const char *print_wrid(int wrid
)
1250 if (wrid
>= RDMA_WRID_RECV_CONTROL
) {
1251 return wrid_desc
[RDMA_WRID_RECV_CONTROL
];
1253 return wrid_desc
[wrid
];
1257 * RDMA requires memory registration (mlock/pinning), but this is not good for
1260 * In preparation for the future where LRU information or workload-specific
1261 * writable writable working set memory access behavior is available to QEMU
1262 * it would be nice to have in place the ability to UN-register/UN-pin
1263 * particular memory regions from the RDMA hardware when it is determine that
1264 * those regions of memory will likely not be accessed again in the near future.
1266 * While we do not yet have such information right now, the following
1267 * compile-time option allows us to perform a non-optimized version of this
1270 * By uncommenting this option, you will cause *all* RDMA transfers to be
1271 * unregistered immediately after the transfer completes on both sides of the
1272 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1274 * This will have a terrible impact on migration performance, so until future
1275 * workload information or LRU information is available, do not attempt to use
1276 * this feature except for basic testing.
1278 //#define RDMA_UNREGISTRATION_EXAMPLE
1281 * Perform a non-optimized memory unregistration after every transfer
1282 * for demonstration purposes, only if pin-all is not requested.
1284 * Potential optimizations:
1285 * 1. Start a new thread to run this function continuously
1287 - and for receipt of unregister messages
1289 * 3. Use workload hints.
1291 static int qemu_rdma_unregister_waiting(RDMAContext
*rdma
)
1293 while (rdma
->unregistrations
[rdma
->unregister_current
]) {
1295 uint64_t wr_id
= rdma
->unregistrations
[rdma
->unregister_current
];
1297 (wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1299 (wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1300 RDMALocalBlock
*block
=
1301 &(rdma
->local_ram_blocks
.block
[index
]);
1302 RDMARegister reg
= { .current_index
= index
};
1303 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
1305 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1306 .type
= RDMA_CONTROL_UNREGISTER_REQUEST
,
1310 trace_qemu_rdma_unregister_waiting_proc(chunk
,
1311 rdma
->unregister_current
);
1313 rdma
->unregistrations
[rdma
->unregister_current
] = 0;
1314 rdma
->unregister_current
++;
1316 if (rdma
->unregister_current
== RDMA_SIGNALED_SEND_MAX
) {
1317 rdma
->unregister_current
= 0;
1322 * Unregistration is speculative (because migration is single-threaded
1323 * and we cannot break the protocol's inifinband message ordering).
1324 * Thus, if the memory is currently being used for transmission,
1325 * then abort the attempt to unregister and try again
1326 * later the next time a completion is received for this memory.
1328 clear_bit(chunk
, block
->unregister_bitmap
);
1330 if (test_bit(chunk
, block
->transit_bitmap
)) {
1331 trace_qemu_rdma_unregister_waiting_inflight(chunk
);
1335 trace_qemu_rdma_unregister_waiting_send(chunk
);
1337 ret
= ibv_dereg_mr(block
->pmr
[chunk
]);
1338 block
->pmr
[chunk
] = NULL
;
1339 block
->remote_keys
[chunk
] = 0;
1342 perror("unregistration chunk failed");
1345 rdma
->total_registrations
--;
1347 reg
.key
.chunk
= chunk
;
1348 register_to_network(rdma
, ®
);
1349 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1355 trace_qemu_rdma_unregister_waiting_complete(chunk
);
1361 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id
, uint64_t index
,
1364 uint64_t result
= wr_id
& RDMA_WRID_TYPE_MASK
;
1366 result
|= (index
<< RDMA_WRID_BLOCK_SHIFT
);
1367 result
|= (chunk
<< RDMA_WRID_CHUNK_SHIFT
);
1373 * Set bit for unregistration in the next iteration.
1374 * We cannot transmit right here, but will unpin later.
1376 static void qemu_rdma_signal_unregister(RDMAContext
*rdma
, uint64_t index
,
1377 uint64_t chunk
, uint64_t wr_id
)
1379 if (rdma
->unregistrations
[rdma
->unregister_next
] != 0) {
1380 error_report("rdma migration: queue is full");
1382 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1384 if (!test_and_set_bit(chunk
, block
->unregister_bitmap
)) {
1385 trace_qemu_rdma_signal_unregister_append(chunk
,
1386 rdma
->unregister_next
);
1388 rdma
->unregistrations
[rdma
->unregister_next
++] =
1389 qemu_rdma_make_wrid(wr_id
, index
, chunk
);
1391 if (rdma
->unregister_next
== RDMA_SIGNALED_SEND_MAX
) {
1392 rdma
->unregister_next
= 0;
1395 trace_qemu_rdma_signal_unregister_already(chunk
);
1401 * Consult the connection manager to see a work request
1402 * (of any kind) has completed.
1403 * Return the work request ID that completed.
1405 static uint64_t qemu_rdma_poll(RDMAContext
*rdma
, uint64_t *wr_id_out
,
1412 ret
= ibv_poll_cq(rdma
->cq
, 1, &wc
);
1415 *wr_id_out
= RDMA_WRID_NONE
;
1420 error_report("ibv_poll_cq return %d", ret
);
1424 wr_id
= wc
.wr_id
& RDMA_WRID_TYPE_MASK
;
1426 if (wc
.status
!= IBV_WC_SUCCESS
) {
1427 fprintf(stderr
, "ibv_poll_cq wc.status=%d %s!\n",
1428 wc
.status
, ibv_wc_status_str(wc
.status
));
1429 fprintf(stderr
, "ibv_poll_cq wrid=%s!\n", wrid_desc
[wr_id
]);
1434 if (rdma
->control_ready_expected
&&
1435 (wr_id
>= RDMA_WRID_RECV_CONTROL
)) {
1436 trace_qemu_rdma_poll_recv(wrid_desc
[RDMA_WRID_RECV_CONTROL
],
1437 wr_id
- RDMA_WRID_RECV_CONTROL
, wr_id
, rdma
->nb_sent
);
1438 rdma
->control_ready_expected
= 0;
1441 if (wr_id
== RDMA_WRID_RDMA_WRITE
) {
1443 (wc
.wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1445 (wc
.wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1446 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1448 trace_qemu_rdma_poll_write(print_wrid(wr_id
), wr_id
, rdma
->nb_sent
,
1449 index
, chunk
, block
->local_host_addr
,
1450 (void *)(uintptr_t)block
->remote_host_addr
);
1452 clear_bit(chunk
, block
->transit_bitmap
);
1454 if (rdma
->nb_sent
> 0) {
1458 if (!rdma
->pin_all
) {
1460 * FYI: If one wanted to signal a specific chunk to be unregistered
1461 * using LRU or workload-specific information, this is the function
1462 * you would call to do so. That chunk would then get asynchronously
1463 * unregistered later.
1465 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1466 qemu_rdma_signal_unregister(rdma
, index
, chunk
, wc
.wr_id
);
1470 trace_qemu_rdma_poll_other(print_wrid(wr_id
), wr_id
, rdma
->nb_sent
);
1473 *wr_id_out
= wc
.wr_id
;
1475 *byte_len
= wc
.byte_len
;
1481 /* Wait for activity on the completion channel.
1482 * Returns 0 on success, none-0 on error.
1484 static int qemu_rdma_wait_comp_channel(RDMAContext
*rdma
)
1487 * Coroutine doesn't start until migration_fd_process_incoming()
1488 * so don't yield unless we know we're running inside of a coroutine.
1490 if (rdma
->migration_started_on_destination
) {
1491 yield_until_fd_readable(rdma
->comp_channel
->fd
);
1493 /* This is the source side, we're in a separate thread
1494 * or destination prior to migration_fd_process_incoming()
1495 * we can't yield; so we have to poll the fd.
1496 * But we need to be able to handle 'cancel' or an error
1497 * without hanging forever.
1499 while (!rdma
->error_state
&& !rdma
->received_error
) {
1501 pfds
[0].fd
= rdma
->comp_channel
->fd
;
1502 pfds
[0].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1503 /* 0.1s timeout, should be fine for a 'cancel' */
1504 switch (qemu_poll_ns(pfds
, 1, 100 * 1000 * 1000)) {
1505 case 1: /* fd active */
1508 case 0: /* Timeout, go around again */
1511 default: /* Error of some type -
1512 * I don't trust errno from qemu_poll_ns
1514 error_report("%s: poll failed", __func__
);
1518 if (migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) {
1519 /* Bail out and let the cancellation happen */
1525 if (rdma
->received_error
) {
1528 return rdma
->error_state
;
1532 * Block until the next work request has completed.
1534 * First poll to see if a work request has already completed,
1537 * If we encounter completed work requests for IDs other than
1538 * the one we're interested in, then that's generally an error.
1540 * The only exception is actual RDMA Write completions. These
1541 * completions only need to be recorded, but do not actually
1542 * need further processing.
1544 static int qemu_rdma_block_for_wrid(RDMAContext
*rdma
, int wrid_requested
,
1547 int num_cq_events
= 0, ret
= 0;
1550 uint64_t wr_id
= RDMA_WRID_NONE
, wr_id_in
;
1552 if (ibv_req_notify_cq(rdma
->cq
, 0)) {
1556 while (wr_id
!= wrid_requested
) {
1557 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1562 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1564 if (wr_id
== RDMA_WRID_NONE
) {
1567 if (wr_id
!= wrid_requested
) {
1568 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested
),
1569 wrid_requested
, print_wrid(wr_id
), wr_id
);
1573 if (wr_id
== wrid_requested
) {
1578 ret
= qemu_rdma_wait_comp_channel(rdma
);
1580 goto err_block_for_wrid
;
1583 ret
= ibv_get_cq_event(rdma
->comp_channel
, &cq
, &cq_ctx
);
1585 perror("ibv_get_cq_event");
1586 goto err_block_for_wrid
;
1591 ret
= -ibv_req_notify_cq(cq
, 0);
1593 goto err_block_for_wrid
;
1596 while (wr_id
!= wrid_requested
) {
1597 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1599 goto err_block_for_wrid
;
1602 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1604 if (wr_id
== RDMA_WRID_NONE
) {
1607 if (wr_id
!= wrid_requested
) {
1608 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested
),
1609 wrid_requested
, print_wrid(wr_id
), wr_id
);
1613 if (wr_id
== wrid_requested
) {
1614 goto success_block_for_wrid
;
1618 success_block_for_wrid
:
1619 if (num_cq_events
) {
1620 ibv_ack_cq_events(cq
, num_cq_events
);
1625 if (num_cq_events
) {
1626 ibv_ack_cq_events(cq
, num_cq_events
);
1629 rdma
->error_state
= ret
;
1634 * Post a SEND message work request for the control channel
1635 * containing some data and block until the post completes.
1637 static int qemu_rdma_post_send_control(RDMAContext
*rdma
, uint8_t *buf
,
1638 RDMAControlHeader
*head
)
1641 RDMAWorkRequestData
*wr
= &rdma
->wr_data
[RDMA_WRID_CONTROL
];
1642 struct ibv_send_wr
*bad_wr
;
1643 struct ibv_sge sge
= {
1644 .addr
= (uintptr_t)(wr
->control
),
1645 .length
= head
->len
+ sizeof(RDMAControlHeader
),
1646 .lkey
= wr
->control_mr
->lkey
,
1648 struct ibv_send_wr send_wr
= {
1649 .wr_id
= RDMA_WRID_SEND_CONTROL
,
1650 .opcode
= IBV_WR_SEND
,
1651 .send_flags
= IBV_SEND_SIGNALED
,
1656 trace_qemu_rdma_post_send_control(control_desc(head
->type
));
1659 * We don't actually need to do a memcpy() in here if we used
1660 * the "sge" properly, but since we're only sending control messages
1661 * (not RAM in a performance-critical path), then its OK for now.
1663 * The copy makes the RDMAControlHeader simpler to manipulate
1664 * for the time being.
1666 assert(head
->len
<= RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
));
1667 memcpy(wr
->control
, head
, sizeof(RDMAControlHeader
));
1668 control_to_network((void *) wr
->control
);
1671 memcpy(wr
->control
+ sizeof(RDMAControlHeader
), buf
, head
->len
);
1675 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
1678 error_report("Failed to use post IB SEND for control");
1682 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_SEND_CONTROL
, NULL
);
1684 error_report("rdma migration: send polling control error");
1691 * Post a RECV work request in anticipation of some future receipt
1692 * of data on the control channel.
1694 static int qemu_rdma_post_recv_control(RDMAContext
*rdma
, int idx
)
1696 struct ibv_recv_wr
*bad_wr
;
1697 struct ibv_sge sge
= {
1698 .addr
= (uintptr_t)(rdma
->wr_data
[idx
].control
),
1699 .length
= RDMA_CONTROL_MAX_BUFFER
,
1700 .lkey
= rdma
->wr_data
[idx
].control_mr
->lkey
,
1703 struct ibv_recv_wr recv_wr
= {
1704 .wr_id
= RDMA_WRID_RECV_CONTROL
+ idx
,
1710 if (ibv_post_recv(rdma
->qp
, &recv_wr
, &bad_wr
)) {
1718 * Block and wait for a RECV control channel message to arrive.
1720 static int qemu_rdma_exchange_get_response(RDMAContext
*rdma
,
1721 RDMAControlHeader
*head
, int expecting
, int idx
)
1724 int ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RECV_CONTROL
+ idx
,
1728 error_report("rdma migration: recv polling control error!");
1732 network_to_control((void *) rdma
->wr_data
[idx
].control
);
1733 memcpy(head
, rdma
->wr_data
[idx
].control
, sizeof(RDMAControlHeader
));
1735 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting
));
1737 if (expecting
== RDMA_CONTROL_NONE
) {
1738 trace_qemu_rdma_exchange_get_response_none(control_desc(head
->type
),
1740 } else if (head
->type
!= expecting
|| head
->type
== RDMA_CONTROL_ERROR
) {
1741 error_report("Was expecting a %s (%d) control message"
1742 ", but got: %s (%d), length: %d",
1743 control_desc(expecting
), expecting
,
1744 control_desc(head
->type
), head
->type
, head
->len
);
1745 if (head
->type
== RDMA_CONTROL_ERROR
) {
1746 rdma
->received_error
= true;
1750 if (head
->len
> RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
)) {
1751 error_report("too long length: %d", head
->len
);
1754 if (sizeof(*head
) + head
->len
!= byte_len
) {
1755 error_report("Malformed length: %d byte_len %d", head
->len
, byte_len
);
1763 * When a RECV work request has completed, the work request's
1764 * buffer is pointed at the header.
1766 * This will advance the pointer to the data portion
1767 * of the control message of the work request's buffer that
1768 * was populated after the work request finished.
1770 static void qemu_rdma_move_header(RDMAContext
*rdma
, int idx
,
1771 RDMAControlHeader
*head
)
1773 rdma
->wr_data
[idx
].control_len
= head
->len
;
1774 rdma
->wr_data
[idx
].control_curr
=
1775 rdma
->wr_data
[idx
].control
+ sizeof(RDMAControlHeader
);
1779 * This is an 'atomic' high-level operation to deliver a single, unified
1780 * control-channel message.
1782 * Additionally, if the user is expecting some kind of reply to this message,
1783 * they can request a 'resp' response message be filled in by posting an
1784 * additional work request on behalf of the user and waiting for an additional
1787 * The extra (optional) response is used during registration to us from having
1788 * to perform an *additional* exchange of message just to provide a response by
1789 * instead piggy-backing on the acknowledgement.
1791 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1792 uint8_t *data
, RDMAControlHeader
*resp
,
1794 int (*callback
)(RDMAContext
*rdma
))
1799 * Wait until the dest is ready before attempting to deliver the message
1800 * by waiting for a READY message.
1802 if (rdma
->control_ready_expected
) {
1803 RDMAControlHeader resp
;
1804 ret
= qemu_rdma_exchange_get_response(rdma
,
1805 &resp
, RDMA_CONTROL_READY
, RDMA_WRID_READY
);
1812 * If the user is expecting a response, post a WR in anticipation of it.
1815 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_DATA
);
1817 error_report("rdma migration: error posting"
1818 " extra control recv for anticipated result!");
1824 * Post a WR to replace the one we just consumed for the READY message.
1826 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1828 error_report("rdma migration: error posting first control recv!");
1833 * Deliver the control message that was requested.
1835 ret
= qemu_rdma_post_send_control(rdma
, data
, head
);
1838 error_report("Failed to send control buffer!");
1843 * If we're expecting a response, block and wait for it.
1847 trace_qemu_rdma_exchange_send_issue_callback();
1848 ret
= callback(rdma
);
1854 trace_qemu_rdma_exchange_send_waiting(control_desc(resp
->type
));
1855 ret
= qemu_rdma_exchange_get_response(rdma
, resp
,
1856 resp
->type
, RDMA_WRID_DATA
);
1862 qemu_rdma_move_header(rdma
, RDMA_WRID_DATA
, resp
);
1864 *resp_idx
= RDMA_WRID_DATA
;
1866 trace_qemu_rdma_exchange_send_received(control_desc(resp
->type
));
1869 rdma
->control_ready_expected
= 1;
1875 * This is an 'atomic' high-level operation to receive a single, unified
1876 * control-channel message.
1878 static int qemu_rdma_exchange_recv(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1881 RDMAControlHeader ready
= {
1883 .type
= RDMA_CONTROL_READY
,
1889 * Inform the source that we're ready to receive a message.
1891 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &ready
);
1894 error_report("Failed to send control buffer!");
1899 * Block and wait for the message.
1901 ret
= qemu_rdma_exchange_get_response(rdma
, head
,
1902 expecting
, RDMA_WRID_READY
);
1908 qemu_rdma_move_header(rdma
, RDMA_WRID_READY
, head
);
1911 * Post a new RECV work request to replace the one we just consumed.
1913 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1915 error_report("rdma migration: error posting second control recv!");
1923 * Write an actual chunk of memory using RDMA.
1925 * If we're using dynamic registration on the dest-side, we have to
1926 * send a registration command first.
1928 static int qemu_rdma_write_one(QEMUFile
*f
, RDMAContext
*rdma
,
1929 int current_index
, uint64_t current_addr
,
1933 struct ibv_send_wr send_wr
= { 0 };
1934 struct ibv_send_wr
*bad_wr
;
1935 int reg_result_idx
, ret
, count
= 0;
1936 uint64_t chunk
, chunks
;
1937 uint8_t *chunk_start
, *chunk_end
;
1938 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[current_index
]);
1940 RDMARegisterResult
*reg_result
;
1941 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_REGISTER_RESULT
};
1942 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1943 .type
= RDMA_CONTROL_REGISTER_REQUEST
,
1948 sge
.addr
= (uintptr_t)(block
->local_host_addr
+
1949 (current_addr
- block
->offset
));
1950 sge
.length
= length
;
1952 chunk
= ram_chunk_index(block
->local_host_addr
,
1953 (uint8_t *)(uintptr_t)sge
.addr
);
1954 chunk_start
= ram_chunk_start(block
, chunk
);
1956 if (block
->is_ram_block
) {
1957 chunks
= length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
1959 if (chunks
&& ((length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
1963 chunks
= block
->length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
1965 if (chunks
&& ((block
->length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
1970 trace_qemu_rdma_write_one_top(chunks
+ 1,
1972 (1UL << RDMA_REG_CHUNK_SHIFT
) / 1024 / 1024);
1974 chunk_end
= ram_chunk_end(block
, chunk
+ chunks
);
1976 if (!rdma
->pin_all
) {
1977 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1978 qemu_rdma_unregister_waiting(rdma
);
1982 while (test_bit(chunk
, block
->transit_bitmap
)) {
1984 trace_qemu_rdma_write_one_block(count
++, current_index
, chunk
,
1985 sge
.addr
, length
, rdma
->nb_sent
, block
->nb_chunks
);
1987 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
1990 error_report("Failed to Wait for previous write to complete "
1991 "block %d chunk %" PRIu64
1992 " current %" PRIu64
" len %" PRIu64
" %d",
1993 current_index
, chunk
, sge
.addr
, length
, rdma
->nb_sent
);
1998 if (!rdma
->pin_all
|| !block
->is_ram_block
) {
1999 if (!block
->remote_keys
[chunk
]) {
2001 * This chunk has not yet been registered, so first check to see
2002 * if the entire chunk is zero. If so, tell the other size to
2003 * memset() + madvise() the entire chunk without RDMA.
2006 if (buffer_is_zero((void *)(uintptr_t)sge
.addr
, length
)) {
2007 RDMACompress comp
= {
2008 .offset
= current_addr
,
2010 .block_idx
= current_index
,
2014 head
.len
= sizeof(comp
);
2015 head
.type
= RDMA_CONTROL_COMPRESS
;
2017 trace_qemu_rdma_write_one_zero(chunk
, sge
.length
,
2018 current_index
, current_addr
);
2020 compress_to_network(rdma
, &comp
);
2021 ret
= qemu_rdma_exchange_send(rdma
, &head
,
2022 (uint8_t *) &comp
, NULL
, NULL
, NULL
);
2028 acct_update_position(f
, sge
.length
, true);
2034 * Otherwise, tell other side to register.
2036 reg
.current_index
= current_index
;
2037 if (block
->is_ram_block
) {
2038 reg
.key
.current_addr
= current_addr
;
2040 reg
.key
.chunk
= chunk
;
2042 reg
.chunks
= chunks
;
2044 trace_qemu_rdma_write_one_sendreg(chunk
, sge
.length
, current_index
,
2047 register_to_network(rdma
, ®
);
2048 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
2049 &resp
, ®_result_idx
, NULL
);
2054 /* try to overlap this single registration with the one we sent. */
2055 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2056 &sge
.lkey
, NULL
, chunk
,
2057 chunk_start
, chunk_end
)) {
2058 error_report("cannot get lkey");
2062 reg_result
= (RDMARegisterResult
*)
2063 rdma
->wr_data
[reg_result_idx
].control_curr
;
2065 network_to_result(reg_result
);
2067 trace_qemu_rdma_write_one_recvregres(block
->remote_keys
[chunk
],
2068 reg_result
->rkey
, chunk
);
2070 block
->remote_keys
[chunk
] = reg_result
->rkey
;
2071 block
->remote_host_addr
= reg_result
->host_addr
;
2073 /* already registered before */
2074 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2075 &sge
.lkey
, NULL
, chunk
,
2076 chunk_start
, chunk_end
)) {
2077 error_report("cannot get lkey!");
2082 send_wr
.wr
.rdma
.rkey
= block
->remote_keys
[chunk
];
2084 send_wr
.wr
.rdma
.rkey
= block
->remote_rkey
;
2086 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2087 &sge
.lkey
, NULL
, chunk
,
2088 chunk_start
, chunk_end
)) {
2089 error_report("cannot get lkey!");
2095 * Encode the ram block index and chunk within this wrid.
2096 * We will use this information at the time of completion
2097 * to figure out which bitmap to check against and then which
2098 * chunk in the bitmap to look for.
2100 send_wr
.wr_id
= qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE
,
2101 current_index
, chunk
);
2103 send_wr
.opcode
= IBV_WR_RDMA_WRITE
;
2104 send_wr
.send_flags
= IBV_SEND_SIGNALED
;
2105 send_wr
.sg_list
= &sge
;
2106 send_wr
.num_sge
= 1;
2107 send_wr
.wr
.rdma
.remote_addr
= block
->remote_host_addr
+
2108 (current_addr
- block
->offset
);
2110 trace_qemu_rdma_write_one_post(chunk
, sge
.addr
, send_wr
.wr
.rdma
.remote_addr
,
2114 * ibv_post_send() does not return negative error numbers,
2115 * per the specification they are positive - no idea why.
2117 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
2119 if (ret
== ENOMEM
) {
2120 trace_qemu_rdma_write_one_queue_full();
2121 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2123 error_report("rdma migration: failed to make "
2124 "room in full send queue! %d", ret
);
2130 } else if (ret
> 0) {
2131 perror("rdma migration: post rdma write failed");
2135 set_bit(chunk
, block
->transit_bitmap
);
2136 acct_update_position(f
, sge
.length
, false);
2137 rdma
->total_writes
++;
2143 * Push out any unwritten RDMA operations.
2145 * We support sending out multiple chunks at the same time.
2146 * Not all of them need to get signaled in the completion queue.
2148 static int qemu_rdma_write_flush(QEMUFile
*f
, RDMAContext
*rdma
)
2152 if (!rdma
->current_length
) {
2156 ret
= qemu_rdma_write_one(f
, rdma
,
2157 rdma
->current_index
, rdma
->current_addr
, rdma
->current_length
);
2165 trace_qemu_rdma_write_flush(rdma
->nb_sent
);
2168 rdma
->current_length
= 0;
2169 rdma
->current_addr
= 0;
2174 static inline int qemu_rdma_buffer_mergable(RDMAContext
*rdma
,
2175 uint64_t offset
, uint64_t len
)
2177 RDMALocalBlock
*block
;
2181 if (rdma
->current_index
< 0) {
2185 if (rdma
->current_chunk
< 0) {
2189 block
= &(rdma
->local_ram_blocks
.block
[rdma
->current_index
]);
2190 host_addr
= block
->local_host_addr
+ (offset
- block
->offset
);
2191 chunk_end
= ram_chunk_end(block
, rdma
->current_chunk
);
2193 if (rdma
->current_length
== 0) {
2198 * Only merge into chunk sequentially.
2200 if (offset
!= (rdma
->current_addr
+ rdma
->current_length
)) {
2204 if (offset
< block
->offset
) {
2208 if ((offset
+ len
) > (block
->offset
+ block
->length
)) {
2212 if ((host_addr
+ len
) > chunk_end
) {
2220 * We're not actually writing here, but doing three things:
2222 * 1. Identify the chunk the buffer belongs to.
2223 * 2. If the chunk is full or the buffer doesn't belong to the current
2224 * chunk, then start a new chunk and flush() the old chunk.
2225 * 3. To keep the hardware busy, we also group chunks into batches
2226 * and only require that a batch gets acknowledged in the completion
2227 * qeueue instead of each individual chunk.
2229 static int qemu_rdma_write(QEMUFile
*f
, RDMAContext
*rdma
,
2230 uint64_t block_offset
, uint64_t offset
,
2233 uint64_t current_addr
= block_offset
+ offset
;
2234 uint64_t index
= rdma
->current_index
;
2235 uint64_t chunk
= rdma
->current_chunk
;
2238 /* If we cannot merge it, we flush the current buffer first. */
2239 if (!qemu_rdma_buffer_mergable(rdma
, current_addr
, len
)) {
2240 ret
= qemu_rdma_write_flush(f
, rdma
);
2244 rdma
->current_length
= 0;
2245 rdma
->current_addr
= current_addr
;
2247 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2248 offset
, len
, &index
, &chunk
);
2250 error_report("ram block search failed");
2253 rdma
->current_index
= index
;
2254 rdma
->current_chunk
= chunk
;
2258 rdma
->current_length
+= len
;
2260 /* flush it if buffer is too large */
2261 if (rdma
->current_length
>= RDMA_MERGE_MAX
) {
2262 return qemu_rdma_write_flush(f
, rdma
);
2268 static void qemu_rdma_cleanup(RDMAContext
*rdma
)
2272 if (rdma
->cm_id
&& rdma
->connected
) {
2273 if ((rdma
->error_state
||
2274 migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) &&
2275 !rdma
->received_error
) {
2276 RDMAControlHeader head
= { .len
= 0,
2277 .type
= RDMA_CONTROL_ERROR
,
2280 error_report("Early error. Sending error.");
2281 qemu_rdma_post_send_control(rdma
, NULL
, &head
);
2284 rdma_disconnect(rdma
->cm_id
);
2285 trace_qemu_rdma_cleanup_disconnect();
2286 rdma
->connected
= false;
2289 g_free(rdma
->dest_blocks
);
2290 rdma
->dest_blocks
= NULL
;
2292 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2293 if (rdma
->wr_data
[idx
].control_mr
) {
2294 rdma
->total_registrations
--;
2295 ibv_dereg_mr(rdma
->wr_data
[idx
].control_mr
);
2297 rdma
->wr_data
[idx
].control_mr
= NULL
;
2300 if (rdma
->local_ram_blocks
.block
) {
2301 while (rdma
->local_ram_blocks
.nb_blocks
) {
2302 rdma_delete_block(rdma
, &rdma
->local_ram_blocks
.block
[0]);
2307 rdma_destroy_qp(rdma
->cm_id
);
2311 ibv_destroy_cq(rdma
->cq
);
2314 if (rdma
->comp_channel
) {
2315 ibv_destroy_comp_channel(rdma
->comp_channel
);
2316 rdma
->comp_channel
= NULL
;
2319 ibv_dealloc_pd(rdma
->pd
);
2323 rdma_destroy_id(rdma
->cm_id
);
2326 if (rdma
->listen_id
) {
2327 rdma_destroy_id(rdma
->listen_id
);
2328 rdma
->listen_id
= NULL
;
2330 if (rdma
->channel
) {
2331 rdma_destroy_event_channel(rdma
->channel
);
2332 rdma
->channel
= NULL
;
2339 static int qemu_rdma_source_init(RDMAContext
*rdma
, bool pin_all
, Error
**errp
)
2342 Error
*local_err
= NULL
, **temp
= &local_err
;
2345 * Will be validated against destination's actual capabilities
2346 * after the connect() completes.
2348 rdma
->pin_all
= pin_all
;
2350 ret
= qemu_rdma_resolve_host(rdma
, temp
);
2352 goto err_rdma_source_init
;
2355 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2357 ERROR(temp
, "rdma migration: error allocating pd and cq! Your mlock()"
2358 " limits may be too low. Please check $ ulimit -a # and "
2359 "search for 'ulimit -l' in the output");
2360 goto err_rdma_source_init
;
2363 ret
= qemu_rdma_alloc_qp(rdma
);
2365 ERROR(temp
, "rdma migration: error allocating qp!");
2366 goto err_rdma_source_init
;
2369 ret
= qemu_rdma_init_ram_blocks(rdma
);
2371 ERROR(temp
, "rdma migration: error initializing ram blocks!");
2372 goto err_rdma_source_init
;
2375 /* Build the hash that maps from offset to RAMBlock */
2376 rdma
->blockmap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
2377 for (idx
= 0; idx
< rdma
->local_ram_blocks
.nb_blocks
; idx
++) {
2378 g_hash_table_insert(rdma
->blockmap
,
2379 (void *)(uintptr_t)rdma
->local_ram_blocks
.block
[idx
].offset
,
2380 &rdma
->local_ram_blocks
.block
[idx
]);
2383 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2384 ret
= qemu_rdma_reg_control(rdma
, idx
);
2386 ERROR(temp
, "rdma migration: error registering %d control!",
2388 goto err_rdma_source_init
;
2394 err_rdma_source_init
:
2395 error_propagate(errp
, local_err
);
2396 qemu_rdma_cleanup(rdma
);
2400 static int qemu_rdma_connect(RDMAContext
*rdma
, Error
**errp
)
2402 RDMACapabilities cap
= {
2403 .version
= RDMA_CONTROL_VERSION_CURRENT
,
2406 struct rdma_conn_param conn_param
= { .initiator_depth
= 2,
2408 .private_data
= &cap
,
2409 .private_data_len
= sizeof(cap
),
2411 struct rdma_cm_event
*cm_event
;
2415 * Only negotiate the capability with destination if the user
2416 * on the source first requested the capability.
2418 if (rdma
->pin_all
) {
2419 trace_qemu_rdma_connect_pin_all_requested();
2420 cap
.flags
|= RDMA_CAPABILITY_PIN_ALL
;
2423 caps_to_network(&cap
);
2425 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2427 ERROR(errp
, "posting second control recv");
2428 goto err_rdma_source_connect
;
2431 ret
= rdma_connect(rdma
->cm_id
, &conn_param
);
2433 perror("rdma_connect");
2434 ERROR(errp
, "connecting to destination!");
2435 goto err_rdma_source_connect
;
2438 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2440 perror("rdma_get_cm_event after rdma_connect");
2441 ERROR(errp
, "connecting to destination!");
2442 rdma_ack_cm_event(cm_event
);
2443 goto err_rdma_source_connect
;
2446 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2447 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2448 ERROR(errp
, "connecting to destination!");
2449 rdma_ack_cm_event(cm_event
);
2450 goto err_rdma_source_connect
;
2452 rdma
->connected
= true;
2454 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2455 network_to_caps(&cap
);
2458 * Verify that the *requested* capabilities are supported by the destination
2459 * and disable them otherwise.
2461 if (rdma
->pin_all
&& !(cap
.flags
& RDMA_CAPABILITY_PIN_ALL
)) {
2462 ERROR(errp
, "Server cannot support pinning all memory. "
2463 "Will register memory dynamically.");
2464 rdma
->pin_all
= false;
2467 trace_qemu_rdma_connect_pin_all_outcome(rdma
->pin_all
);
2469 rdma_ack_cm_event(cm_event
);
2471 rdma
->control_ready_expected
= 1;
2475 err_rdma_source_connect
:
2476 qemu_rdma_cleanup(rdma
);
2480 static int qemu_rdma_dest_init(RDMAContext
*rdma
, Error
**errp
)
2483 struct rdma_cm_id
*listen_id
;
2484 char ip
[40] = "unknown";
2485 struct rdma_addrinfo
*res
, *e
;
2488 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2489 rdma
->wr_data
[idx
].control_len
= 0;
2490 rdma
->wr_data
[idx
].control_curr
= NULL
;
2493 if (!rdma
->host
|| !rdma
->host
[0]) {
2494 ERROR(errp
, "RDMA host is not set!");
2495 rdma
->error_state
= -EINVAL
;
2498 /* create CM channel */
2499 rdma
->channel
= rdma_create_event_channel();
2500 if (!rdma
->channel
) {
2501 ERROR(errp
, "could not create rdma event channel");
2502 rdma
->error_state
= -EINVAL
;
2507 ret
= rdma_create_id(rdma
->channel
, &listen_id
, NULL
, RDMA_PS_TCP
);
2509 ERROR(errp
, "could not create cm_id!");
2510 goto err_dest_init_create_listen_id
;
2513 snprintf(port_str
, 16, "%d", rdma
->port
);
2514 port_str
[15] = '\0';
2516 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
2518 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
2519 goto err_dest_init_bind_addr
;
2522 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
2523 inet_ntop(e
->ai_family
,
2524 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
2525 trace_qemu_rdma_dest_init_trying(rdma
->host
, ip
);
2526 ret
= rdma_bind_addr(listen_id
, e
->ai_dst_addr
);
2530 if (e
->ai_family
== AF_INET6
) {
2531 ret
= qemu_rdma_broken_ipv6_kernel(listen_id
->verbs
, errp
);
2540 ERROR(errp
, "Error: could not rdma_bind_addr!");
2541 goto err_dest_init_bind_addr
;
2544 rdma
->listen_id
= listen_id
;
2545 qemu_rdma_dump_gid("dest_init", listen_id
);
2548 err_dest_init_bind_addr
:
2549 rdma_destroy_id(listen_id
);
2550 err_dest_init_create_listen_id
:
2551 rdma_destroy_event_channel(rdma
->channel
);
2552 rdma
->channel
= NULL
;
2553 rdma
->error_state
= ret
;
2558 static void *qemu_rdma_data_init(const char *host_port
, Error
**errp
)
2560 RDMAContext
*rdma
= NULL
;
2561 InetSocketAddress
*addr
;
2564 rdma
= g_new0(RDMAContext
, 1);
2565 rdma
->current_index
= -1;
2566 rdma
->current_chunk
= -1;
2568 addr
= g_new(InetSocketAddress
, 1);
2569 if (!inet_parse(addr
, host_port
, NULL
)) {
2570 rdma
->port
= atoi(addr
->port
);
2571 rdma
->host
= g_strdup(addr
->host
);
2573 ERROR(errp
, "bad RDMA migration address '%s'", host_port
);
2578 qapi_free_InetSocketAddress(addr
);
2585 * QEMUFile interface to the control channel.
2586 * SEND messages for control only.
2587 * VM's ram is handled with regular RDMA messages.
2589 static ssize_t
qio_channel_rdma_writev(QIOChannel
*ioc
,
2590 const struct iovec
*iov
,
2596 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2597 QEMUFile
*f
= rioc
->file
;
2598 RDMAContext
*rdma
= rioc
->rdma
;
2604 CHECK_ERROR_STATE();
2607 * Push out any writes that
2608 * we're queued up for VM's ram.
2610 ret
= qemu_rdma_write_flush(f
, rdma
);
2612 rdma
->error_state
= ret
;
2616 for (i
= 0; i
< niov
; i
++) {
2617 size_t remaining
= iov
[i
].iov_len
;
2618 uint8_t * data
= (void *)iov
[i
].iov_base
;
2620 RDMAControlHeader head
;
2622 len
= MIN(remaining
, RDMA_SEND_INCREMENT
);
2626 head
.type
= RDMA_CONTROL_QEMU_FILE
;
2628 ret
= qemu_rdma_exchange_send(rdma
, &head
, data
, NULL
, NULL
, NULL
);
2631 rdma
->error_state
= ret
;
2643 static size_t qemu_rdma_fill(RDMAContext
*rdma
, uint8_t *buf
,
2644 size_t size
, int idx
)
2648 if (rdma
->wr_data
[idx
].control_len
) {
2649 trace_qemu_rdma_fill(rdma
->wr_data
[idx
].control_len
, size
);
2651 len
= MIN(size
, rdma
->wr_data
[idx
].control_len
);
2652 memcpy(buf
, rdma
->wr_data
[idx
].control_curr
, len
);
2653 rdma
->wr_data
[idx
].control_curr
+= len
;
2654 rdma
->wr_data
[idx
].control_len
-= len
;
2661 * QEMUFile interface to the control channel.
2662 * RDMA links don't use bytestreams, so we have to
2663 * return bytes to QEMUFile opportunistically.
2665 static ssize_t
qio_channel_rdma_readv(QIOChannel
*ioc
,
2666 const struct iovec
*iov
,
2672 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2673 RDMAContext
*rdma
= rioc
->rdma
;
2674 RDMAControlHeader head
;
2679 CHECK_ERROR_STATE();
2681 for (i
= 0; i
< niov
; i
++) {
2682 size_t want
= iov
[i
].iov_len
;
2683 uint8_t *data
= (void *)iov
[i
].iov_base
;
2686 * First, we hold on to the last SEND message we
2687 * were given and dish out the bytes until we run
2690 ret
= qemu_rdma_fill(rioc
->rdma
, data
, want
, 0);
2693 /* Got what we needed, so go to next iovec */
2698 /* If we got any data so far, then don't wait
2699 * for more, just return what we have */
2705 /* We've got nothing at all, so lets wait for
2708 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_QEMU_FILE
);
2711 rdma
->error_state
= ret
;
2716 * SEND was received with new bytes, now try again.
2718 ret
= qemu_rdma_fill(rioc
->rdma
, data
, want
, 0);
2722 /* Still didn't get enough, so lets just return */
2725 return QIO_CHANNEL_ERR_BLOCK
;
2735 * Block until all the outstanding chunks have been delivered by the hardware.
2737 static int qemu_rdma_drain_cq(QEMUFile
*f
, RDMAContext
*rdma
)
2741 if (qemu_rdma_write_flush(f
, rdma
) < 0) {
2745 while (rdma
->nb_sent
) {
2746 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2748 error_report("rdma migration: complete polling error!");
2753 qemu_rdma_unregister_waiting(rdma
);
2759 static int qio_channel_rdma_set_blocking(QIOChannel
*ioc
,
2763 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2764 /* XXX we should make readv/writev actually honour this :-) */
2765 rioc
->blocking
= blocking
;
2770 typedef struct QIOChannelRDMASource QIOChannelRDMASource
;
2771 struct QIOChannelRDMASource
{
2773 QIOChannelRDMA
*rioc
;
2774 GIOCondition condition
;
2778 qio_channel_rdma_source_prepare(GSource
*source
,
2781 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2782 RDMAContext
*rdma
= rsource
->rioc
->rdma
;
2783 GIOCondition cond
= 0;
2786 if (rdma
->wr_data
[0].control_len
) {
2791 return cond
& rsource
->condition
;
2795 qio_channel_rdma_source_check(GSource
*source
)
2797 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2798 RDMAContext
*rdma
= rsource
->rioc
->rdma
;
2799 GIOCondition cond
= 0;
2801 if (rdma
->wr_data
[0].control_len
) {
2806 return cond
& rsource
->condition
;
2810 qio_channel_rdma_source_dispatch(GSource
*source
,
2811 GSourceFunc callback
,
2814 QIOChannelFunc func
= (QIOChannelFunc
)callback
;
2815 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2816 RDMAContext
*rdma
= rsource
->rioc
->rdma
;
2817 GIOCondition cond
= 0;
2819 if (rdma
->wr_data
[0].control_len
) {
2824 return (*func
)(QIO_CHANNEL(rsource
->rioc
),
2825 (cond
& rsource
->condition
),
2830 qio_channel_rdma_source_finalize(GSource
*source
)
2832 QIOChannelRDMASource
*ssource
= (QIOChannelRDMASource
*)source
;
2834 object_unref(OBJECT(ssource
->rioc
));
2837 GSourceFuncs qio_channel_rdma_source_funcs
= {
2838 qio_channel_rdma_source_prepare
,
2839 qio_channel_rdma_source_check
,
2840 qio_channel_rdma_source_dispatch
,
2841 qio_channel_rdma_source_finalize
2844 static GSource
*qio_channel_rdma_create_watch(QIOChannel
*ioc
,
2845 GIOCondition condition
)
2847 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2848 QIOChannelRDMASource
*ssource
;
2851 source
= g_source_new(&qio_channel_rdma_source_funcs
,
2852 sizeof(QIOChannelRDMASource
));
2853 ssource
= (QIOChannelRDMASource
*)source
;
2855 ssource
->rioc
= rioc
;
2856 object_ref(OBJECT(rioc
));
2858 ssource
->condition
= condition
;
2864 static int qio_channel_rdma_close(QIOChannel
*ioc
,
2867 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2868 trace_qemu_rdma_close();
2870 if (!rioc
->rdma
->error_state
) {
2871 rioc
->rdma
->error_state
= qemu_file_get_error(rioc
->file
);
2873 qemu_rdma_cleanup(rioc
->rdma
);
2883 * This means that 'block_offset' is a full virtual address that does not
2884 * belong to a RAMBlock of the virtual machine and instead
2885 * represents a private malloc'd memory area that the caller wishes to
2889 * Offset is an offset to be added to block_offset and used
2890 * to also lookup the corresponding RAMBlock.
2893 * Initiate an transfer this size.
2896 * A 'hint' or 'advice' that means that we wish to speculatively
2897 * and asynchronously unregister this memory. In this case, there is no
2898 * guarantee that the unregister will actually happen, for example,
2899 * if the memory is being actively transmitted. Additionally, the memory
2900 * may be re-registered at any future time if a write within the same
2901 * chunk was requested again, even if you attempted to unregister it
2904 * @size < 0 : TODO, not yet supported
2905 * Unregister the memory NOW. This means that the caller does not
2906 * expect there to be any future RDMA transfers and we just want to clean
2907 * things up. This is used in case the upper layer owns the memory and
2908 * cannot wait for qemu_fclose() to occur.
2910 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2911 * sent. Usually, this will not be more than a few bytes of
2912 * the protocol because most transfers are sent asynchronously.
2914 static size_t qemu_rdma_save_page(QEMUFile
*f
, void *opaque
,
2915 ram_addr_t block_offset
, ram_addr_t offset
,
2916 size_t size
, uint64_t *bytes_sent
)
2918 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
2919 RDMAContext
*rdma
= rioc
->rdma
;
2922 CHECK_ERROR_STATE();
2928 * Add this page to the current 'chunk'. If the chunk
2929 * is full, or the page doen't belong to the current chunk,
2930 * an actual RDMA write will occur and a new chunk will be formed.
2932 ret
= qemu_rdma_write(f
, rdma
, block_offset
, offset
, size
);
2934 error_report("rdma migration: write error! %d", ret
);
2939 * We always return 1 bytes because the RDMA
2940 * protocol is completely asynchronous. We do not yet know
2941 * whether an identified chunk is zero or not because we're
2942 * waiting for other pages to potentially be merged with
2943 * the current chunk. So, we have to call qemu_update_position()
2944 * later on when the actual write occurs.
2950 uint64_t index
, chunk
;
2952 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2954 ret = qemu_rdma_drain_cq(f, rdma);
2956 fprintf(stderr, "rdma: failed to synchronously drain"
2957 " completion queue before unregistration.\n");
2963 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2964 offset
, size
, &index
, &chunk
);
2967 error_report("ram block search failed");
2971 qemu_rdma_signal_unregister(rdma
, index
, chunk
, 0);
2974 * TODO: Synchronous, guaranteed unregistration (should not occur during
2975 * fast-path). Otherwise, unregisters will process on the next call to
2976 * qemu_rdma_drain_cq()
2978 qemu_rdma_unregister_waiting(rdma);
2984 * Drain the Completion Queue if possible, but do not block,
2987 * If nothing to poll, the end of the iteration will do this
2988 * again to make sure we don't overflow the request queue.
2991 uint64_t wr_id
, wr_id_in
;
2992 int ret
= qemu_rdma_poll(rdma
, &wr_id_in
, NULL
);
2994 error_report("rdma migration: polling error! %d", ret
);
2998 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
3000 if (wr_id
== RDMA_WRID_NONE
) {
3005 return RAM_SAVE_CONTROL_DELAYED
;
3007 rdma
->error_state
= ret
;
3011 static int qemu_rdma_accept(RDMAContext
*rdma
)
3013 RDMACapabilities cap
;
3014 struct rdma_conn_param conn_param
= {
3015 .responder_resources
= 2,
3016 .private_data
= &cap
,
3017 .private_data_len
= sizeof(cap
),
3019 struct rdma_cm_event
*cm_event
;
3020 struct ibv_context
*verbs
;
3024 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3026 goto err_rdma_dest_wait
;
3029 if (cm_event
->event
!= RDMA_CM_EVENT_CONNECT_REQUEST
) {
3030 rdma_ack_cm_event(cm_event
);
3031 goto err_rdma_dest_wait
;
3034 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
3036 network_to_caps(&cap
);
3038 if (cap
.version
< 1 || cap
.version
> RDMA_CONTROL_VERSION_CURRENT
) {
3039 error_report("Unknown source RDMA version: %d, bailing...",
3041 rdma_ack_cm_event(cm_event
);
3042 goto err_rdma_dest_wait
;
3046 * Respond with only the capabilities this version of QEMU knows about.
3048 cap
.flags
&= known_capabilities
;
3051 * Enable the ones that we do know about.
3052 * Add other checks here as new ones are introduced.
3054 if (cap
.flags
& RDMA_CAPABILITY_PIN_ALL
) {
3055 rdma
->pin_all
= true;
3058 rdma
->cm_id
= cm_event
->id
;
3059 verbs
= cm_event
->id
->verbs
;
3061 rdma_ack_cm_event(cm_event
);
3063 trace_qemu_rdma_accept_pin_state(rdma
->pin_all
);
3065 caps_to_network(&cap
);
3067 trace_qemu_rdma_accept_pin_verbsc(verbs
);
3070 rdma
->verbs
= verbs
;
3071 } else if (rdma
->verbs
!= verbs
) {
3072 error_report("ibv context not matching %p, %p!", rdma
->verbs
,
3074 goto err_rdma_dest_wait
;
3077 qemu_rdma_dump_id("dest_init", verbs
);
3079 ret
= qemu_rdma_alloc_pd_cq(rdma
);
3081 error_report("rdma migration: error allocating pd and cq!");
3082 goto err_rdma_dest_wait
;
3085 ret
= qemu_rdma_alloc_qp(rdma
);
3087 error_report("rdma migration: error allocating qp!");
3088 goto err_rdma_dest_wait
;
3091 ret
= qemu_rdma_init_ram_blocks(rdma
);
3093 error_report("rdma migration: error initializing ram blocks!");
3094 goto err_rdma_dest_wait
;
3097 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
3098 ret
= qemu_rdma_reg_control(rdma
, idx
);
3100 error_report("rdma: error registering %d control", idx
);
3101 goto err_rdma_dest_wait
;
3105 qemu_set_fd_handler(rdma
->channel
->fd
, NULL
, NULL
, NULL
);
3107 ret
= rdma_accept(rdma
->cm_id
, &conn_param
);
3109 error_report("rdma_accept returns %d", ret
);
3110 goto err_rdma_dest_wait
;
3113 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3115 error_report("rdma_accept get_cm_event failed %d", ret
);
3116 goto err_rdma_dest_wait
;
3119 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
3120 error_report("rdma_accept not event established");
3121 rdma_ack_cm_event(cm_event
);
3122 goto err_rdma_dest_wait
;
3125 rdma_ack_cm_event(cm_event
);
3126 rdma
->connected
= true;
3128 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
3130 error_report("rdma migration: error posting second control recv");
3131 goto err_rdma_dest_wait
;
3134 qemu_rdma_dump_gid("dest_connect", rdma
->cm_id
);
3139 rdma
->error_state
= ret
;
3140 qemu_rdma_cleanup(rdma
);
3144 static int dest_ram_sort_func(const void *a
, const void *b
)
3146 unsigned int a_index
= ((const RDMALocalBlock
*)a
)->src_index
;
3147 unsigned int b_index
= ((const RDMALocalBlock
*)b
)->src_index
;
3149 return (a_index
< b_index
) ? -1 : (a_index
!= b_index
);
3153 * During each iteration of the migration, we listen for instructions
3154 * by the source VM to perform dynamic page registrations before they
3155 * can perform RDMA operations.
3157 * We respond with the 'rkey'.
3159 * Keep doing this until the source tells us to stop.
3161 static int qemu_rdma_registration_handle(QEMUFile
*f
, void *opaque
)
3163 RDMAControlHeader reg_resp
= { .len
= sizeof(RDMARegisterResult
),
3164 .type
= RDMA_CONTROL_REGISTER_RESULT
,
3167 RDMAControlHeader unreg_resp
= { .len
= 0,
3168 .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
3171 RDMAControlHeader blocks
= { .type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
,
3173 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3174 RDMAContext
*rdma
= rioc
->rdma
;
3175 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3176 RDMAControlHeader head
;
3177 RDMARegister
*reg
, *registers
;
3179 RDMARegisterResult
*reg_result
;
3180 static RDMARegisterResult results
[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
];
3181 RDMALocalBlock
*block
;
3188 CHECK_ERROR_STATE();
3191 trace_qemu_rdma_registration_handle_wait();
3193 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_NONE
);
3199 if (head
.repeat
> RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
) {
3200 error_report("rdma: Too many requests in this message (%d)."
3201 "Bailing.", head
.repeat
);
3206 switch (head
.type
) {
3207 case RDMA_CONTROL_COMPRESS
:
3208 comp
= (RDMACompress
*) rdma
->wr_data
[idx
].control_curr
;
3209 network_to_compress(comp
);
3211 trace_qemu_rdma_registration_handle_compress(comp
->length
,
3214 if (comp
->block_idx
>= rdma
->local_ram_blocks
.nb_blocks
) {
3215 error_report("rdma: 'compress' bad block index %u (vs %d)",
3216 (unsigned int)comp
->block_idx
,
3217 rdma
->local_ram_blocks
.nb_blocks
);
3221 block
= &(rdma
->local_ram_blocks
.block
[comp
->block_idx
]);
3223 host_addr
= block
->local_host_addr
+
3224 (comp
->offset
- block
->offset
);
3226 ram_handle_compressed(host_addr
, comp
->value
, comp
->length
);
3229 case RDMA_CONTROL_REGISTER_FINISHED
:
3230 trace_qemu_rdma_registration_handle_finished();
3233 case RDMA_CONTROL_RAM_BLOCKS_REQUEST
:
3234 trace_qemu_rdma_registration_handle_ram_blocks();
3236 /* Sort our local RAM Block list so it's the same as the source,
3237 * we can do this since we've filled in a src_index in the list
3238 * as we received the RAMBlock list earlier.
3240 qsort(rdma
->local_ram_blocks
.block
,
3241 rdma
->local_ram_blocks
.nb_blocks
,
3242 sizeof(RDMALocalBlock
), dest_ram_sort_func
);
3243 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3244 local
->block
[i
].index
= i
;
3247 if (rdma
->pin_all
) {
3248 ret
= qemu_rdma_reg_whole_ram_blocks(rdma
);
3250 error_report("rdma migration: error dest "
3251 "registering ram blocks");
3257 * Dest uses this to prepare to transmit the RAMBlock descriptions
3258 * to the source VM after connection setup.
3259 * Both sides use the "remote" structure to communicate and update
3260 * their "local" descriptions with what was sent.
3262 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3263 rdma
->dest_blocks
[i
].remote_host_addr
=
3264 (uintptr_t)(local
->block
[i
].local_host_addr
);
3266 if (rdma
->pin_all
) {
3267 rdma
->dest_blocks
[i
].remote_rkey
= local
->block
[i
].mr
->rkey
;
3270 rdma
->dest_blocks
[i
].offset
= local
->block
[i
].offset
;
3271 rdma
->dest_blocks
[i
].length
= local
->block
[i
].length
;
3273 dest_block_to_network(&rdma
->dest_blocks
[i
]);
3274 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3275 local
->block
[i
].block_name
,
3276 local
->block
[i
].offset
,
3277 local
->block
[i
].length
,
3278 local
->block
[i
].local_host_addr
,
3279 local
->block
[i
].src_index
);
3282 blocks
.len
= rdma
->local_ram_blocks
.nb_blocks
3283 * sizeof(RDMADestBlock
);
3286 ret
= qemu_rdma_post_send_control(rdma
,
3287 (uint8_t *) rdma
->dest_blocks
, &blocks
);
3290 error_report("rdma migration: error sending remote info");
3295 case RDMA_CONTROL_REGISTER_REQUEST
:
3296 trace_qemu_rdma_registration_handle_register(head
.repeat
);
3298 reg_resp
.repeat
= head
.repeat
;
3299 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3301 for (count
= 0; count
< head
.repeat
; count
++) {
3303 uint8_t *chunk_start
, *chunk_end
;
3305 reg
= ®isters
[count
];
3306 network_to_register(reg
);
3308 reg_result
= &results
[count
];
3310 trace_qemu_rdma_registration_handle_register_loop(count
,
3311 reg
->current_index
, reg
->key
.current_addr
, reg
->chunks
);
3313 if (reg
->current_index
>= rdma
->local_ram_blocks
.nb_blocks
) {
3314 error_report("rdma: 'register' bad block index %u (vs %d)",
3315 (unsigned int)reg
->current_index
,
3316 rdma
->local_ram_blocks
.nb_blocks
);
3320 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3321 if (block
->is_ram_block
) {
3322 if (block
->offset
> reg
->key
.current_addr
) {
3323 error_report("rdma: bad register address for block %s"
3324 " offset: %" PRIx64
" current_addr: %" PRIx64
,
3325 block
->block_name
, block
->offset
,
3326 reg
->key
.current_addr
);
3330 host_addr
= (block
->local_host_addr
+
3331 (reg
->key
.current_addr
- block
->offset
));
3332 chunk
= ram_chunk_index(block
->local_host_addr
,
3333 (uint8_t *) host_addr
);
3335 chunk
= reg
->key
.chunk
;
3336 host_addr
= block
->local_host_addr
+
3337 (reg
->key
.chunk
* (1UL << RDMA_REG_CHUNK_SHIFT
));
3338 /* Check for particularly bad chunk value */
3339 if (host_addr
< (void *)block
->local_host_addr
) {
3340 error_report("rdma: bad chunk for block %s"
3342 block
->block_name
, reg
->key
.chunk
);
3347 chunk_start
= ram_chunk_start(block
, chunk
);
3348 chunk_end
= ram_chunk_end(block
, chunk
+ reg
->chunks
);
3349 if (qemu_rdma_register_and_get_keys(rdma
, block
,
3350 (uintptr_t)host_addr
, NULL
, ®_result
->rkey
,
3351 chunk
, chunk_start
, chunk_end
)) {
3352 error_report("cannot get rkey");
3357 reg_result
->host_addr
= (uintptr_t)block
->local_host_addr
;
3359 trace_qemu_rdma_registration_handle_register_rkey(
3362 result_to_network(reg_result
);
3365 ret
= qemu_rdma_post_send_control(rdma
,
3366 (uint8_t *) results
, ®_resp
);
3369 error_report("Failed to send control buffer");
3373 case RDMA_CONTROL_UNREGISTER_REQUEST
:
3374 trace_qemu_rdma_registration_handle_unregister(head
.repeat
);
3375 unreg_resp
.repeat
= head
.repeat
;
3376 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3378 for (count
= 0; count
< head
.repeat
; count
++) {
3379 reg
= ®isters
[count
];
3380 network_to_register(reg
);
3382 trace_qemu_rdma_registration_handle_unregister_loop(count
,
3383 reg
->current_index
, reg
->key
.chunk
);
3385 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3387 ret
= ibv_dereg_mr(block
->pmr
[reg
->key
.chunk
]);
3388 block
->pmr
[reg
->key
.chunk
] = NULL
;
3391 perror("rdma unregistration chunk failed");
3396 rdma
->total_registrations
--;
3398 trace_qemu_rdma_registration_handle_unregister_success(
3402 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &unreg_resp
);
3405 error_report("Failed to send control buffer");
3409 case RDMA_CONTROL_REGISTER_RESULT
:
3410 error_report("Invalid RESULT message at dest.");
3414 error_report("Unknown control message %s", control_desc(head
.type
));
3421 rdma
->error_state
= ret
;
3427 * Called via a ram_control_load_hook during the initial RAM load section which
3428 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3430 * We've already built our local RAMBlock list, but not yet sent the list to
3434 rdma_block_notification_handle(QIOChannelRDMA
*rioc
, const char *name
)
3436 RDMAContext
*rdma
= rioc
->rdma
;
3440 /* Find the matching RAMBlock in our local list */
3441 for (curr
= 0; curr
< rdma
->local_ram_blocks
.nb_blocks
; curr
++) {
3442 if (!strcmp(rdma
->local_ram_blocks
.block
[curr
].block_name
, name
)) {
3449 error_report("RAMBlock '%s' not found on destination", name
);
3453 rdma
->local_ram_blocks
.block
[curr
].src_index
= rdma
->next_src_index
;
3454 trace_rdma_block_notification_handle(name
, rdma
->next_src_index
);
3455 rdma
->next_src_index
++;
3460 static int rdma_load_hook(QEMUFile
*f
, void *opaque
, uint64_t flags
, void *data
)
3463 case RAM_CONTROL_BLOCK_REG
:
3464 return rdma_block_notification_handle(opaque
, data
);
3466 case RAM_CONTROL_HOOK
:
3467 return qemu_rdma_registration_handle(f
, opaque
);
3470 /* Shouldn't be called with any other values */
3475 static int qemu_rdma_registration_start(QEMUFile
*f
, void *opaque
,
3476 uint64_t flags
, void *data
)
3478 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3479 RDMAContext
*rdma
= rioc
->rdma
;
3481 CHECK_ERROR_STATE();
3483 trace_qemu_rdma_registration_start(flags
);
3484 qemu_put_be64(f
, RAM_SAVE_FLAG_HOOK
);
3491 * Inform dest that dynamic registrations are done for now.
3492 * First, flush writes, if any.
3494 static int qemu_rdma_registration_stop(QEMUFile
*f
, void *opaque
,
3495 uint64_t flags
, void *data
)
3497 Error
*local_err
= NULL
, **errp
= &local_err
;
3498 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3499 RDMAContext
*rdma
= rioc
->rdma
;
3500 RDMAControlHeader head
= { .len
= 0, .repeat
= 1 };
3503 CHECK_ERROR_STATE();
3506 ret
= qemu_rdma_drain_cq(f
, rdma
);
3512 if (flags
== RAM_CONTROL_SETUP
) {
3513 RDMAControlHeader resp
= {.type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
};
3514 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3515 int reg_result_idx
, i
, nb_dest_blocks
;
3517 head
.type
= RDMA_CONTROL_RAM_BLOCKS_REQUEST
;
3518 trace_qemu_rdma_registration_stop_ram();
3521 * Make sure that we parallelize the pinning on both sides.
3522 * For very large guests, doing this serially takes a really
3523 * long time, so we have to 'interleave' the pinning locally
3524 * with the control messages by performing the pinning on this
3525 * side before we receive the control response from the other
3526 * side that the pinning has completed.
3528 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, &resp
,
3529 ®_result_idx
, rdma
->pin_all
?
3530 qemu_rdma_reg_whole_ram_blocks
: NULL
);
3532 ERROR(errp
, "receiving remote info!");
3536 nb_dest_blocks
= resp
.len
/ sizeof(RDMADestBlock
);
3539 * The protocol uses two different sets of rkeys (mutually exclusive):
3540 * 1. One key to represent the virtual address of the entire ram block.
3541 * (dynamic chunk registration disabled - pin everything with one rkey.)
3542 * 2. One to represent individual chunks within a ram block.
3543 * (dynamic chunk registration enabled - pin individual chunks.)
3545 * Once the capability is successfully negotiated, the destination transmits
3546 * the keys to use (or sends them later) including the virtual addresses
3547 * and then propagates the remote ram block descriptions to his local copy.
3550 if (local
->nb_blocks
!= nb_dest_blocks
) {
3551 ERROR(errp
, "ram blocks mismatch (Number of blocks %d vs %d) "
3552 "Your QEMU command line parameters are probably "
3553 "not identical on both the source and destination.",
3554 local
->nb_blocks
, nb_dest_blocks
);
3555 rdma
->error_state
= -EINVAL
;
3559 qemu_rdma_move_header(rdma
, reg_result_idx
, &resp
);
3560 memcpy(rdma
->dest_blocks
,
3561 rdma
->wr_data
[reg_result_idx
].control_curr
, resp
.len
);
3562 for (i
= 0; i
< nb_dest_blocks
; i
++) {
3563 network_to_dest_block(&rdma
->dest_blocks
[i
]);
3565 /* We require that the blocks are in the same order */
3566 if (rdma
->dest_blocks
[i
].length
!= local
->block
[i
].length
) {
3567 ERROR(errp
, "Block %s/%d has a different length %" PRIu64
3568 "vs %" PRIu64
, local
->block
[i
].block_name
, i
,
3569 local
->block
[i
].length
,
3570 rdma
->dest_blocks
[i
].length
);
3571 rdma
->error_state
= -EINVAL
;
3574 local
->block
[i
].remote_host_addr
=
3575 rdma
->dest_blocks
[i
].remote_host_addr
;
3576 local
->block
[i
].remote_rkey
= rdma
->dest_blocks
[i
].remote_rkey
;
3580 trace_qemu_rdma_registration_stop(flags
);
3582 head
.type
= RDMA_CONTROL_REGISTER_FINISHED
;
3583 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, NULL
, NULL
, NULL
);
3591 rdma
->error_state
= ret
;
3595 static const QEMUFileHooks rdma_read_hooks
= {
3596 .hook_ram_load
= rdma_load_hook
,
3599 static const QEMUFileHooks rdma_write_hooks
= {
3600 .before_ram_iterate
= qemu_rdma_registration_start
,
3601 .after_ram_iterate
= qemu_rdma_registration_stop
,
3602 .save_page
= qemu_rdma_save_page
,
3606 static void qio_channel_rdma_finalize(Object
*obj
)
3608 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(obj
);
3610 qemu_rdma_cleanup(rioc
->rdma
);
3616 static void qio_channel_rdma_class_init(ObjectClass
*klass
,
3617 void *class_data G_GNUC_UNUSED
)
3619 QIOChannelClass
*ioc_klass
= QIO_CHANNEL_CLASS(klass
);
3621 ioc_klass
->io_writev
= qio_channel_rdma_writev
;
3622 ioc_klass
->io_readv
= qio_channel_rdma_readv
;
3623 ioc_klass
->io_set_blocking
= qio_channel_rdma_set_blocking
;
3624 ioc_klass
->io_close
= qio_channel_rdma_close
;
3625 ioc_klass
->io_create_watch
= qio_channel_rdma_create_watch
;
3628 static const TypeInfo qio_channel_rdma_info
= {
3629 .parent
= TYPE_QIO_CHANNEL
,
3630 .name
= TYPE_QIO_CHANNEL_RDMA
,
3631 .instance_size
= sizeof(QIOChannelRDMA
),
3632 .instance_finalize
= qio_channel_rdma_finalize
,
3633 .class_init
= qio_channel_rdma_class_init
,
3636 static void qio_channel_rdma_register_types(void)
3638 type_register_static(&qio_channel_rdma_info
);
3641 type_init(qio_channel_rdma_register_types
);
3643 static QEMUFile
*qemu_fopen_rdma(RDMAContext
*rdma
, const char *mode
)
3645 QIOChannelRDMA
*rioc
;
3647 if (qemu_file_mode_is_not_valid(mode
)) {
3651 rioc
= QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA
));
3654 if (mode
[0] == 'w') {
3655 rioc
->file
= qemu_fopen_channel_output(QIO_CHANNEL(rioc
));
3656 qemu_file_set_hooks(rioc
->file
, &rdma_write_hooks
);
3658 rioc
->file
= qemu_fopen_channel_input(QIO_CHANNEL(rioc
));
3659 qemu_file_set_hooks(rioc
->file
, &rdma_read_hooks
);
3665 static void rdma_accept_incoming_migration(void *opaque
)
3667 RDMAContext
*rdma
= opaque
;
3670 Error
*local_err
= NULL
, **errp
= &local_err
;
3672 trace_qemu_rdma_accept_incoming_migration();
3673 ret
= qemu_rdma_accept(rdma
);
3676 ERROR(errp
, "RDMA Migration initialization failed!");
3680 trace_qemu_rdma_accept_incoming_migration_accepted();
3682 f
= qemu_fopen_rdma(rdma
, "rb");
3684 ERROR(errp
, "could not qemu_fopen_rdma!");
3685 qemu_rdma_cleanup(rdma
);
3689 rdma
->migration_started_on_destination
= 1;
3690 migration_fd_process_incoming(f
);
3693 void rdma_start_incoming_migration(const char *host_port
, Error
**errp
)
3697 Error
*local_err
= NULL
;
3699 trace_rdma_start_incoming_migration();
3700 rdma
= qemu_rdma_data_init(host_port
, &local_err
);
3706 ret
= qemu_rdma_dest_init(rdma
, &local_err
);
3712 trace_rdma_start_incoming_migration_after_dest_init();
3714 ret
= rdma_listen(rdma
->listen_id
, 5);
3717 ERROR(errp
, "listening on socket!");
3721 trace_rdma_start_incoming_migration_after_rdma_listen();
3723 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
3724 NULL
, (void *)(intptr_t)rdma
);
3727 error_propagate(errp
, local_err
);
3731 void rdma_start_outgoing_migration(void *opaque
,
3732 const char *host_port
, Error
**errp
)
3734 MigrationState
*s
= opaque
;
3735 RDMAContext
*rdma
= qemu_rdma_data_init(host_port
, errp
);
3742 ret
= qemu_rdma_source_init(rdma
,
3743 s
->enabled_capabilities
[MIGRATION_CAPABILITY_RDMA_PIN_ALL
], errp
);
3749 trace_rdma_start_outgoing_migration_after_rdma_source_init();
3750 ret
= qemu_rdma_connect(rdma
, errp
);
3756 trace_rdma_start_outgoing_migration_after_rdma_connect();
3758 s
->to_dst_file
= qemu_fopen_rdma(rdma
, "wb");
3759 migrate_fd_connect(s
, NULL
);