2 * device quirks for PCI devices
4 * Copyright Red Hat, Inc. 2012-2015
7 * Alex Williamson <alex.williamson@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "qemu/units.h"
15 #include "qemu/error-report.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/range.h"
18 #include "qapi/error.h"
19 #include "qapi/visitor.h"
20 #include <sys/ioctl.h>
21 #include "hw/nvram/fw_cfg.h"
25 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
26 static bool vfio_pci_is(VFIOPCIDevice
*vdev
, uint32_t vendor
, uint32_t device
)
28 return (vendor
== PCI_ANY_ID
|| vendor
== vdev
->vendor_id
) &&
29 (device
== PCI_ANY_ID
|| device
== vdev
->device_id
);
32 static bool vfio_is_vga(VFIOPCIDevice
*vdev
)
34 PCIDevice
*pdev
= &vdev
->pdev
;
35 uint16_t class = pci_get_word(pdev
->config
+ PCI_CLASS_DEVICE
);
37 return class == PCI_CLASS_DISPLAY_VGA
;
41 * List of device ids/vendor ids for which to disable
42 * option rom loading. This avoids the guest hangs during rom
43 * execution as noticed with the BCM 57810 card for lack of a
44 * more better way to handle such issues.
45 * The user can still override by specifying a romfile or
47 * Please see https://bugs.launchpad.net/qemu/+bug/1284874
48 * for an analysis of the 57810 card hang. When adding
49 * a new vendor id/device id combination below, please also add
50 * your card/environment details and information that could
51 * help in debugging to the bug tracking this issue
57 { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
60 bool vfio_blacklist_opt_rom(VFIOPCIDevice
*vdev
)
64 for (i
= 0 ; i
< ARRAY_SIZE(romblacklist
); i
++) {
65 if (vfio_pci_is(vdev
, romblacklist
[i
].vendor
, romblacklist
[i
].device
)) {
66 trace_vfio_quirk_rom_blacklisted(vdev
->vbasedev
.name
,
67 romblacklist
[i
].vendor
,
68 romblacklist
[i
].device
);
76 * Device specific region quirks (mostly backdoors to PCI config space)
80 * The generic window quirks operate on an address and data register,
81 * vfio_generic_window_address_quirk handles the address register and
82 * vfio_generic_window_data_quirk handles the data register. These ops
83 * pass reads and writes through to hardware until a value matching the
84 * stored address match/mask is written. When this occurs, the data
85 * register access emulated PCI config space for the device rather than
86 * passing through accesses. This enables devices where PCI config space
87 * is accessible behind a window register to maintain the virtualization
88 * provided through vfio.
90 typedef struct VFIOConfigWindowMatch
{
93 } VFIOConfigWindowMatch
;
95 typedef struct VFIOConfigWindowQuirk
{
96 struct VFIOPCIDevice
*vdev
;
100 uint32_t address_offset
;
101 uint32_t data_offset
;
106 MemoryRegion
*addr_mem
;
107 MemoryRegion
*data_mem
;
110 VFIOConfigWindowMatch matches
[];
111 } VFIOConfigWindowQuirk
;
113 static uint64_t vfio_generic_window_quirk_address_read(void *opaque
,
117 VFIOConfigWindowQuirk
*window
= opaque
;
118 VFIOPCIDevice
*vdev
= window
->vdev
;
120 return vfio_region_read(&vdev
->bars
[window
->bar
].region
,
121 addr
+ window
->address_offset
, size
);
124 static void vfio_generic_window_quirk_address_write(void *opaque
, hwaddr addr
,
128 VFIOConfigWindowQuirk
*window
= opaque
;
129 VFIOPCIDevice
*vdev
= window
->vdev
;
132 window
->window_enabled
= false;
134 vfio_region_write(&vdev
->bars
[window
->bar
].region
,
135 addr
+ window
->address_offset
, data
, size
);
137 for (i
= 0; i
< window
->nr_matches
; i
++) {
138 if ((data
& ~window
->matches
[i
].mask
) == window
->matches
[i
].match
) {
139 window
->window_enabled
= true;
140 window
->address_val
= data
& window
->matches
[i
].mask
;
141 trace_vfio_quirk_generic_window_address_write(vdev
->vbasedev
.name
,
142 memory_region_name(window
->addr_mem
), data
);
148 static const MemoryRegionOps vfio_generic_window_address_quirk
= {
149 .read
= vfio_generic_window_quirk_address_read
,
150 .write
= vfio_generic_window_quirk_address_write
,
151 .endianness
= DEVICE_LITTLE_ENDIAN
,
154 static uint64_t vfio_generic_window_quirk_data_read(void *opaque
,
155 hwaddr addr
, unsigned size
)
157 VFIOConfigWindowQuirk
*window
= opaque
;
158 VFIOPCIDevice
*vdev
= window
->vdev
;
161 /* Always read data reg, discard if window enabled */
162 data
= vfio_region_read(&vdev
->bars
[window
->bar
].region
,
163 addr
+ window
->data_offset
, size
);
165 if (window
->window_enabled
) {
166 data
= vfio_pci_read_config(&vdev
->pdev
, window
->address_val
, size
);
167 trace_vfio_quirk_generic_window_data_read(vdev
->vbasedev
.name
,
168 memory_region_name(window
->data_mem
), data
);
174 static void vfio_generic_window_quirk_data_write(void *opaque
, hwaddr addr
,
175 uint64_t data
, unsigned size
)
177 VFIOConfigWindowQuirk
*window
= opaque
;
178 VFIOPCIDevice
*vdev
= window
->vdev
;
180 if (window
->window_enabled
) {
181 vfio_pci_write_config(&vdev
->pdev
, window
->address_val
, data
, size
);
182 trace_vfio_quirk_generic_window_data_write(vdev
->vbasedev
.name
,
183 memory_region_name(window
->data_mem
), data
);
187 vfio_region_write(&vdev
->bars
[window
->bar
].region
,
188 addr
+ window
->data_offset
, data
, size
);
191 static const MemoryRegionOps vfio_generic_window_data_quirk
= {
192 .read
= vfio_generic_window_quirk_data_read
,
193 .write
= vfio_generic_window_quirk_data_write
,
194 .endianness
= DEVICE_LITTLE_ENDIAN
,
198 * The generic mirror quirk handles devices which expose PCI config space
199 * through a region within a BAR. When enabled, reads and writes are
200 * redirected through to emulated PCI config space. XXX if PCI config space
201 * used memory regions, this could just be an alias.
203 typedef struct VFIOConfigMirrorQuirk
{
204 struct VFIOPCIDevice
*vdev
;
209 } VFIOConfigMirrorQuirk
;
211 static uint64_t vfio_generic_quirk_mirror_read(void *opaque
,
212 hwaddr addr
, unsigned size
)
214 VFIOConfigMirrorQuirk
*mirror
= opaque
;
215 VFIOPCIDevice
*vdev
= mirror
->vdev
;
218 /* Read and discard in case the hardware cares */
219 (void)vfio_region_read(&vdev
->bars
[mirror
->bar
].region
,
220 addr
+ mirror
->offset
, size
);
222 data
= vfio_pci_read_config(&vdev
->pdev
, addr
, size
);
223 trace_vfio_quirk_generic_mirror_read(vdev
->vbasedev
.name
,
224 memory_region_name(mirror
->mem
),
229 static void vfio_generic_quirk_mirror_write(void *opaque
, hwaddr addr
,
230 uint64_t data
, unsigned size
)
232 VFIOConfigMirrorQuirk
*mirror
= opaque
;
233 VFIOPCIDevice
*vdev
= mirror
->vdev
;
235 vfio_pci_write_config(&vdev
->pdev
, addr
, data
, size
);
236 trace_vfio_quirk_generic_mirror_write(vdev
->vbasedev
.name
,
237 memory_region_name(mirror
->mem
),
241 static const MemoryRegionOps vfio_generic_mirror_quirk
= {
242 .read
= vfio_generic_quirk_mirror_read
,
243 .write
= vfio_generic_quirk_mirror_write
,
244 .endianness
= DEVICE_LITTLE_ENDIAN
,
247 /* Is range1 fully contained within range2? */
248 static bool vfio_range_contained(uint64_t first1
, uint64_t len1
,
249 uint64_t first2
, uint64_t len2
) {
250 return (first1
>= first2
&& first1
+ len1
<= first2
+ len2
);
253 #define PCI_VENDOR_ID_ATI 0x1002
256 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
257 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always
258 * BAR4 (older cards like the X550 used BAR1, but we don't care to support
259 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the
260 * I/O port BAR address. Originally this was coded to return the virtual BAR
261 * address only if the physical register read returns the actual BAR address,
262 * but users have reported greater success if we return the virtual address
265 static uint64_t vfio_ati_3c3_quirk_read(void *opaque
,
266 hwaddr addr
, unsigned size
)
268 VFIOPCIDevice
*vdev
= opaque
;
269 uint64_t data
= vfio_pci_read_config(&vdev
->pdev
,
270 PCI_BASE_ADDRESS_4
+ 1, size
);
272 trace_vfio_quirk_ati_3c3_read(vdev
->vbasedev
.name
, data
);
277 static const MemoryRegionOps vfio_ati_3c3_quirk
= {
278 .read
= vfio_ati_3c3_quirk_read
,
279 .endianness
= DEVICE_LITTLE_ENDIAN
,
282 static VFIOQuirk
*vfio_quirk_alloc(int nr_mem
)
284 VFIOQuirk
*quirk
= g_new0(VFIOQuirk
, 1);
285 QLIST_INIT(&quirk
->ioeventfds
);
286 quirk
->mem
= g_new0(MemoryRegion
, nr_mem
);
287 quirk
->nr_mem
= nr_mem
;
292 static void vfio_ioeventfd_exit(VFIOPCIDevice
*vdev
, VFIOIOEventFD
*ioeventfd
)
294 QLIST_REMOVE(ioeventfd
, next
);
295 memory_region_del_eventfd(ioeventfd
->mr
, ioeventfd
->addr
, ioeventfd
->size
,
296 true, ioeventfd
->data
, &ioeventfd
->e
);
298 if (ioeventfd
->vfio
) {
299 struct vfio_device_ioeventfd vfio_ioeventfd
;
301 vfio_ioeventfd
.argsz
= sizeof(vfio_ioeventfd
);
302 vfio_ioeventfd
.flags
= ioeventfd
->size
;
303 vfio_ioeventfd
.data
= ioeventfd
->data
;
304 vfio_ioeventfd
.offset
= ioeventfd
->region
->fd_offset
+
305 ioeventfd
->region_addr
;
306 vfio_ioeventfd
.fd
= -1;
308 if (ioctl(vdev
->vbasedev
.fd
, VFIO_DEVICE_IOEVENTFD
, &vfio_ioeventfd
)) {
309 error_report("Failed to remove vfio ioeventfd for %s+0x%"
310 HWADDR_PRIx
"[%d]:0x%"PRIx64
" (%m)",
311 memory_region_name(ioeventfd
->mr
), ioeventfd
->addr
,
312 ioeventfd
->size
, ioeventfd
->data
);
315 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd
->e
),
319 event_notifier_cleanup(&ioeventfd
->e
);
320 trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd
->mr
),
321 (uint64_t)ioeventfd
->addr
, ioeventfd
->size
,
326 static void vfio_drop_dynamic_eventfds(VFIOPCIDevice
*vdev
, VFIOQuirk
*quirk
)
328 VFIOIOEventFD
*ioeventfd
, *tmp
;
330 QLIST_FOREACH_SAFE(ioeventfd
, &quirk
->ioeventfds
, next
, tmp
) {
331 if (ioeventfd
->dynamic
) {
332 vfio_ioeventfd_exit(vdev
, ioeventfd
);
337 static void vfio_ioeventfd_handler(void *opaque
)
339 VFIOIOEventFD
*ioeventfd
= opaque
;
341 if (event_notifier_test_and_clear(&ioeventfd
->e
)) {
342 vfio_region_write(ioeventfd
->region
, ioeventfd
->region_addr
,
343 ioeventfd
->data
, ioeventfd
->size
);
344 trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd
->mr
),
345 (uint64_t)ioeventfd
->addr
, ioeventfd
->size
,
350 static VFIOIOEventFD
*vfio_ioeventfd_init(VFIOPCIDevice
*vdev
,
351 MemoryRegion
*mr
, hwaddr addr
,
352 unsigned size
, uint64_t data
,
354 hwaddr region_addr
, bool dynamic
)
356 VFIOIOEventFD
*ioeventfd
;
358 if (vdev
->no_kvm_ioeventfd
) {
362 ioeventfd
= g_malloc0(sizeof(*ioeventfd
));
364 if (event_notifier_init(&ioeventfd
->e
, 0)) {
370 * MemoryRegion and relative offset, plus additional ioeventfd setup
371 * parameters for configuring and later tearing down KVM ioeventfd.
374 ioeventfd
->addr
= addr
;
375 ioeventfd
->size
= size
;
376 ioeventfd
->data
= data
;
377 ioeventfd
->dynamic
= dynamic
;
379 * VFIORegion and relative offset for implementing the userspace
380 * handler. data & size fields shared for both uses.
382 ioeventfd
->region
= region
;
383 ioeventfd
->region_addr
= region_addr
;
385 if (!vdev
->no_vfio_ioeventfd
) {
386 struct vfio_device_ioeventfd vfio_ioeventfd
;
388 vfio_ioeventfd
.argsz
= sizeof(vfio_ioeventfd
);
389 vfio_ioeventfd
.flags
= ioeventfd
->size
;
390 vfio_ioeventfd
.data
= ioeventfd
->data
;
391 vfio_ioeventfd
.offset
= ioeventfd
->region
->fd_offset
+
392 ioeventfd
->region_addr
;
393 vfio_ioeventfd
.fd
= event_notifier_get_fd(&ioeventfd
->e
);
395 ioeventfd
->vfio
= !ioctl(vdev
->vbasedev
.fd
,
396 VFIO_DEVICE_IOEVENTFD
, &vfio_ioeventfd
);
399 if (!ioeventfd
->vfio
) {
400 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd
->e
),
401 vfio_ioeventfd_handler
, NULL
, ioeventfd
);
404 memory_region_add_eventfd(ioeventfd
->mr
, ioeventfd
->addr
, ioeventfd
->size
,
405 true, ioeventfd
->data
, &ioeventfd
->e
);
406 trace_vfio_ioeventfd_init(memory_region_name(mr
), (uint64_t)addr
,
407 size
, data
, ioeventfd
->vfio
);
412 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice
*vdev
)
417 * As long as the BAR is >= 256 bytes it will be aligned such that the
418 * lower byte is always zero. Filter out anything else, if it exists.
420 if (!vfio_pci_is(vdev
, PCI_VENDOR_ID_ATI
, PCI_ANY_ID
) ||
421 !vdev
->bars
[4].ioport
|| vdev
->bars
[4].region
.size
< 256) {
425 quirk
= vfio_quirk_alloc(1);
427 memory_region_init_io(quirk
->mem
, OBJECT(vdev
), &vfio_ati_3c3_quirk
, vdev
,
428 "vfio-ati-3c3-quirk", 1);
429 memory_region_add_subregion(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
].mem
,
430 3 /* offset 3 bytes from 0x3c0 */, quirk
->mem
);
432 QLIST_INSERT_HEAD(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
].quirks
,
435 trace_vfio_quirk_ati_3c3_probe(vdev
->vbasedev
.name
);
439 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
440 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access
441 * the MMIO space directly, but a window to this space is provided through
442 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the
443 * data register. When the address is programmed to a range of 0x4000-0x4fff
444 * PCI configuration space is available. Experimentation seems to indicate
445 * that read-only may be provided by hardware.
447 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice
*vdev
, int nr
)
450 VFIOConfigWindowQuirk
*window
;
452 /* This windows doesn't seem to be used except by legacy VGA code */
453 if (!vfio_pci_is(vdev
, PCI_VENDOR_ID_ATI
, PCI_ANY_ID
) ||
454 !vdev
->vga
|| nr
!= 4) {
458 quirk
= vfio_quirk_alloc(2);
459 window
= quirk
->data
= g_malloc0(sizeof(*window
) +
460 sizeof(VFIOConfigWindowMatch
));
462 window
->address_offset
= 0;
463 window
->data_offset
= 4;
464 window
->nr_matches
= 1;
465 window
->matches
[0].match
= 0x4000;
466 window
->matches
[0].mask
= vdev
->config_size
- 1;
468 window
->addr_mem
= &quirk
->mem
[0];
469 window
->data_mem
= &quirk
->mem
[1];
471 memory_region_init_io(window
->addr_mem
, OBJECT(vdev
),
472 &vfio_generic_window_address_quirk
, window
,
473 "vfio-ati-bar4-window-address-quirk", 4);
474 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
475 window
->address_offset
,
476 window
->addr_mem
, 1);
478 memory_region_init_io(window
->data_mem
, OBJECT(vdev
),
479 &vfio_generic_window_data_quirk
, window
,
480 "vfio-ati-bar4-window-data-quirk", 4);
481 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
483 window
->data_mem
, 1);
485 QLIST_INSERT_HEAD(&vdev
->bars
[nr
].quirks
, quirk
, next
);
487 trace_vfio_quirk_ati_bar4_probe(vdev
->vbasedev
.name
);
491 * Trap the BAR2 MMIO mirror to config space as well.
493 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice
*vdev
, int nr
)
496 VFIOConfigMirrorQuirk
*mirror
;
498 /* Only enable on newer devices where BAR2 is 64bit */
499 if (!vfio_pci_is(vdev
, PCI_VENDOR_ID_ATI
, PCI_ANY_ID
) ||
500 !vdev
->vga
|| nr
!= 2 || !vdev
->bars
[2].mem64
) {
504 quirk
= vfio_quirk_alloc(1);
505 mirror
= quirk
->data
= g_malloc0(sizeof(*mirror
));
506 mirror
->mem
= quirk
->mem
;
508 mirror
->offset
= 0x4000;
511 memory_region_init_io(mirror
->mem
, OBJECT(vdev
),
512 &vfio_generic_mirror_quirk
, mirror
,
513 "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE
);
514 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
515 mirror
->offset
, mirror
->mem
, 1);
517 QLIST_INSERT_HEAD(&vdev
->bars
[nr
].quirks
, quirk
, next
);
519 trace_vfio_quirk_ati_bar2_probe(vdev
->vbasedev
.name
);
523 * Older ATI/AMD cards like the X550 have a similar window to that above.
524 * I/O port BAR1 provides a window to a mirror of PCI config space located
525 * in BAR2 at offset 0xf00. We don't care to support such older cards, but
526 * note it for future reference.
529 #define PCI_VENDOR_ID_NVIDIA 0x10de
532 * Nvidia has several different methods to get to config space, the
533 * nouveu project has several of these documented here:
534 * https://github.com/pathscale/envytools/tree/master/hwdocs
536 * The first quirk is actually not documented in envytools and is found
537 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an
538 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access
539 * the mirror of PCI config space found at BAR0 offset 0x1800. The access
540 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is
541 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738
542 * is written for a write to 0x3d4. The BAR0 offset is then accessible
543 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards
544 * that use the I/O port BAR5 window but it doesn't hurt to leave it.
546 typedef enum {NONE
= 0, SELECT
, WINDOW
, READ
, WRITE
} VFIONvidia3d0State
;
547 static const char *nv3d0_states
[] = { "NONE", "SELECT",
548 "WINDOW", "READ", "WRITE" };
550 typedef struct VFIONvidia3d0Quirk
{
552 VFIONvidia3d0State state
;
554 } VFIONvidia3d0Quirk
;
556 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque
,
557 hwaddr addr
, unsigned size
)
559 VFIONvidia3d0Quirk
*quirk
= opaque
;
560 VFIOPCIDevice
*vdev
= quirk
->vdev
;
564 return vfio_vga_read(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
],
568 static void vfio_nvidia_3d4_quirk_write(void *opaque
, hwaddr addr
,
569 uint64_t data
, unsigned size
)
571 VFIONvidia3d0Quirk
*quirk
= opaque
;
572 VFIOPCIDevice
*vdev
= quirk
->vdev
;
573 VFIONvidia3d0State old_state
= quirk
->state
;
579 if (old_state
== NONE
) {
580 quirk
->state
= SELECT
;
581 trace_vfio_quirk_nvidia_3d0_state(vdev
->vbasedev
.name
,
582 nv3d0_states
[quirk
->state
]);
586 if (old_state
== WINDOW
) {
588 trace_vfio_quirk_nvidia_3d0_state(vdev
->vbasedev
.name
,
589 nv3d0_states
[quirk
->state
]);
593 if (old_state
== WINDOW
) {
594 quirk
->state
= WRITE
;
595 trace_vfio_quirk_nvidia_3d0_state(vdev
->vbasedev
.name
,
596 nv3d0_states
[quirk
->state
]);
601 vfio_vga_write(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
],
602 addr
+ 0x14, data
, size
);
605 static const MemoryRegionOps vfio_nvidia_3d4_quirk
= {
606 .read
= vfio_nvidia_3d4_quirk_read
,
607 .write
= vfio_nvidia_3d4_quirk_write
,
608 .endianness
= DEVICE_LITTLE_ENDIAN
,
611 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque
,
612 hwaddr addr
, unsigned size
)
614 VFIONvidia3d0Quirk
*quirk
= opaque
;
615 VFIOPCIDevice
*vdev
= quirk
->vdev
;
616 VFIONvidia3d0State old_state
= quirk
->state
;
617 uint64_t data
= vfio_vga_read(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
],
622 if (old_state
== READ
&&
623 (quirk
->offset
& ~(PCI_CONFIG_SPACE_SIZE
- 1)) == 0x1800) {
624 uint8_t offset
= quirk
->offset
& (PCI_CONFIG_SPACE_SIZE
- 1);
626 data
= vfio_pci_read_config(&vdev
->pdev
, offset
, size
);
627 trace_vfio_quirk_nvidia_3d0_read(vdev
->vbasedev
.name
,
634 static void vfio_nvidia_3d0_quirk_write(void *opaque
, hwaddr addr
,
635 uint64_t data
, unsigned size
)
637 VFIONvidia3d0Quirk
*quirk
= opaque
;
638 VFIOPCIDevice
*vdev
= quirk
->vdev
;
639 VFIONvidia3d0State old_state
= quirk
->state
;
643 if (old_state
== SELECT
) {
644 quirk
->offset
= (uint32_t)data
;
645 quirk
->state
= WINDOW
;
646 trace_vfio_quirk_nvidia_3d0_state(vdev
->vbasedev
.name
,
647 nv3d0_states
[quirk
->state
]);
648 } else if (old_state
== WRITE
) {
649 if ((quirk
->offset
& ~(PCI_CONFIG_SPACE_SIZE
- 1)) == 0x1800) {
650 uint8_t offset
= quirk
->offset
& (PCI_CONFIG_SPACE_SIZE
- 1);
652 vfio_pci_write_config(&vdev
->pdev
, offset
, data
, size
);
653 trace_vfio_quirk_nvidia_3d0_write(vdev
->vbasedev
.name
,
659 vfio_vga_write(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
],
660 addr
+ 0x10, data
, size
);
663 static const MemoryRegionOps vfio_nvidia_3d0_quirk
= {
664 .read
= vfio_nvidia_3d0_quirk_read
,
665 .write
= vfio_nvidia_3d0_quirk_write
,
666 .endianness
= DEVICE_LITTLE_ENDIAN
,
669 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice
*vdev
)
672 VFIONvidia3d0Quirk
*data
;
674 if (vdev
->no_geforce_quirks
||
675 !vfio_pci_is(vdev
, PCI_VENDOR_ID_NVIDIA
, PCI_ANY_ID
) ||
676 !vdev
->bars
[1].region
.size
) {
680 quirk
= vfio_quirk_alloc(2);
681 quirk
->data
= data
= g_malloc0(sizeof(*data
));
684 memory_region_init_io(&quirk
->mem
[0], OBJECT(vdev
), &vfio_nvidia_3d4_quirk
,
685 data
, "vfio-nvidia-3d4-quirk", 2);
686 memory_region_add_subregion(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
].mem
,
687 0x14 /* 0x3c0 + 0x14 */, &quirk
->mem
[0]);
689 memory_region_init_io(&quirk
->mem
[1], OBJECT(vdev
), &vfio_nvidia_3d0_quirk
,
690 data
, "vfio-nvidia-3d0-quirk", 2);
691 memory_region_add_subregion(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
].mem
,
692 0x10 /* 0x3c0 + 0x10 */, &quirk
->mem
[1]);
694 QLIST_INSERT_HEAD(&vdev
->vga
->region
[QEMU_PCI_VGA_IO_HI
].quirks
,
697 trace_vfio_quirk_nvidia_3d0_probe(vdev
->vbasedev
.name
);
701 * The second quirk is documented in envytools. The I/O port BAR5 is just
702 * a set of address/data ports to the MMIO BARs. The BAR we care about is
703 * again BAR0. This backdoor is apparently a bit newer than the one above
704 * so we need to not only trap 256 bytes @0x1800, but all of PCI config
705 * space, including extended space is available at the 4k @0x88000.
707 typedef struct VFIONvidiaBAR5Quirk
{
710 MemoryRegion
*addr_mem
;
711 MemoryRegion
*data_mem
;
713 VFIOConfigWindowQuirk window
; /* last for match data */
714 } VFIONvidiaBAR5Quirk
;
716 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk
*bar5
)
718 VFIOPCIDevice
*vdev
= bar5
->window
.vdev
;
720 if (((bar5
->master
& bar5
->enable
) & 0x1) == bar5
->enabled
) {
724 bar5
->enabled
= !bar5
->enabled
;
725 trace_vfio_quirk_nvidia_bar5_state(vdev
->vbasedev
.name
,
726 bar5
->enabled
? "Enable" : "Disable");
727 memory_region_set_enabled(bar5
->addr_mem
, bar5
->enabled
);
728 memory_region_set_enabled(bar5
->data_mem
, bar5
->enabled
);
731 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque
,
732 hwaddr addr
, unsigned size
)
734 VFIONvidiaBAR5Quirk
*bar5
= opaque
;
735 VFIOPCIDevice
*vdev
= bar5
->window
.vdev
;
737 return vfio_region_read(&vdev
->bars
[5].region
, addr
, size
);
740 static void vfio_nvidia_bar5_quirk_master_write(void *opaque
, hwaddr addr
,
741 uint64_t data
, unsigned size
)
743 VFIONvidiaBAR5Quirk
*bar5
= opaque
;
744 VFIOPCIDevice
*vdev
= bar5
->window
.vdev
;
746 vfio_region_write(&vdev
->bars
[5].region
, addr
, data
, size
);
749 vfio_nvidia_bar5_enable(bar5
);
752 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master
= {
753 .read
= vfio_nvidia_bar5_quirk_master_read
,
754 .write
= vfio_nvidia_bar5_quirk_master_write
,
755 .endianness
= DEVICE_LITTLE_ENDIAN
,
758 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque
,
759 hwaddr addr
, unsigned size
)
761 VFIONvidiaBAR5Quirk
*bar5
= opaque
;
762 VFIOPCIDevice
*vdev
= bar5
->window
.vdev
;
764 return vfio_region_read(&vdev
->bars
[5].region
, addr
+ 4, size
);
767 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque
, hwaddr addr
,
768 uint64_t data
, unsigned size
)
770 VFIONvidiaBAR5Quirk
*bar5
= opaque
;
771 VFIOPCIDevice
*vdev
= bar5
->window
.vdev
;
773 vfio_region_write(&vdev
->bars
[5].region
, addr
+ 4, data
, size
);
776 vfio_nvidia_bar5_enable(bar5
);
779 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable
= {
780 .read
= vfio_nvidia_bar5_quirk_enable_read
,
781 .write
= vfio_nvidia_bar5_quirk_enable_write
,
782 .endianness
= DEVICE_LITTLE_ENDIAN
,
785 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice
*vdev
, int nr
)
788 VFIONvidiaBAR5Quirk
*bar5
;
789 VFIOConfigWindowQuirk
*window
;
791 if (vdev
->no_geforce_quirks
||
792 !vfio_pci_is(vdev
, PCI_VENDOR_ID_NVIDIA
, PCI_ANY_ID
) ||
793 !vdev
->vga
|| nr
!= 5 || !vdev
->bars
[5].ioport
) {
797 quirk
= vfio_quirk_alloc(4);
798 bar5
= quirk
->data
= g_malloc0(sizeof(*bar5
) +
799 (sizeof(VFIOConfigWindowMatch
) * 2));
800 window
= &bar5
->window
;
803 window
->address_offset
= 0x8;
804 window
->data_offset
= 0xc;
805 window
->nr_matches
= 2;
806 window
->matches
[0].match
= 0x1800;
807 window
->matches
[0].mask
= PCI_CONFIG_SPACE_SIZE
- 1;
808 window
->matches
[1].match
= 0x88000;
809 window
->matches
[1].mask
= vdev
->config_size
- 1;
811 window
->addr_mem
= bar5
->addr_mem
= &quirk
->mem
[0];
812 window
->data_mem
= bar5
->data_mem
= &quirk
->mem
[1];
814 memory_region_init_io(window
->addr_mem
, OBJECT(vdev
),
815 &vfio_generic_window_address_quirk
, window
,
816 "vfio-nvidia-bar5-window-address-quirk", 4);
817 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
818 window
->address_offset
,
819 window
->addr_mem
, 1);
820 memory_region_set_enabled(window
->addr_mem
, false);
822 memory_region_init_io(window
->data_mem
, OBJECT(vdev
),
823 &vfio_generic_window_data_quirk
, window
,
824 "vfio-nvidia-bar5-window-data-quirk", 4);
825 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
827 window
->data_mem
, 1);
828 memory_region_set_enabled(window
->data_mem
, false);
830 memory_region_init_io(&quirk
->mem
[2], OBJECT(vdev
),
831 &vfio_nvidia_bar5_quirk_master
, bar5
,
832 "vfio-nvidia-bar5-master-quirk", 4);
833 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
834 0, &quirk
->mem
[2], 1);
836 memory_region_init_io(&quirk
->mem
[3], OBJECT(vdev
),
837 &vfio_nvidia_bar5_quirk_enable
, bar5
,
838 "vfio-nvidia-bar5-enable-quirk", 4);
839 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
840 4, &quirk
->mem
[3], 1);
842 QLIST_INSERT_HEAD(&vdev
->bars
[nr
].quirks
, quirk
, next
);
844 trace_vfio_quirk_nvidia_bar5_probe(vdev
->vbasedev
.name
);
847 typedef struct LastDataSet
{
856 #define MAX_DYN_IOEVENTFD 10
857 #define HITS_FOR_IOEVENTFD 10
860 * Finally, BAR0 itself. We want to redirect any accesses to either
861 * 0x1800 or 0x88000 through the PCI config space access functions.
863 static void vfio_nvidia_quirk_mirror_write(void *opaque
, hwaddr addr
,
864 uint64_t data
, unsigned size
)
866 VFIOConfigMirrorQuirk
*mirror
= opaque
;
867 VFIOPCIDevice
*vdev
= mirror
->vdev
;
868 PCIDevice
*pdev
= &vdev
->pdev
;
869 LastDataSet
*last
= (LastDataSet
*)&mirror
->data
;
871 vfio_generic_quirk_mirror_write(opaque
, addr
, data
, size
);
874 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
875 * MSI capability ID register. Both the ID and next register are
876 * read-only, so we allow writes covering either of those to real hw.
878 if ((pdev
->cap_present
& QEMU_PCI_CAP_MSI
) &&
879 vfio_range_contained(addr
, size
, pdev
->msi_cap
, PCI_MSI_FLAGS
)) {
880 vfio_region_write(&vdev
->bars
[mirror
->bar
].region
,
881 addr
+ mirror
->offset
, data
, size
);
882 trace_vfio_quirk_nvidia_bar0_msi_ack(vdev
->vbasedev
.name
);
886 * Automatically add an ioeventfd to handle any repeated write with the
887 * same data and size above the standard PCI config space header. This is
888 * primarily expected to accelerate the MSI-ACK behavior, such as noted
889 * above. Current hardware/drivers should trigger an ioeventfd at config
890 * offset 0x704 (region offset 0x88704), with data 0x0, size 4.
892 * The criteria of 10 successive hits is arbitrary but reliably adds the
893 * MSI-ACK region. Note that as some writes are bypassed via the ioeventfd,
894 * the remaining ones have a greater chance of being seen successively.
895 * To avoid the pathological case of burning up all of QEMU's open file
896 * handles, arbitrarily limit this algorithm from adding no more than 10
897 * ioeventfds, print an error if we would have added an 11th, and then
900 if (!vdev
->no_kvm_ioeventfd
&&
901 addr
>= PCI_STD_HEADER_SIZEOF
&& last
->added
<= MAX_DYN_IOEVENTFD
) {
902 if (addr
!= last
->addr
|| data
!= last
->data
|| size
!= last
->size
) {
907 } else if (++last
->hits
>= HITS_FOR_IOEVENTFD
) {
908 if (last
->added
< MAX_DYN_IOEVENTFD
) {
909 VFIOIOEventFD
*ioeventfd
;
910 ioeventfd
= vfio_ioeventfd_init(vdev
, mirror
->mem
, addr
, size
,
911 data
, &vdev
->bars
[mirror
->bar
].region
,
912 mirror
->offset
+ addr
, true);
914 VFIOQuirk
*quirk
= last
->quirk
;
916 QLIST_INSERT_HEAD(&quirk
->ioeventfds
, ioeventfd
, next
);
921 warn_report("NVIDIA ioeventfd queue full for %s, unable to "
922 "accelerate 0x%"HWADDR_PRIx
", data 0x%"PRIx64
", "
923 "size %u", vdev
->vbasedev
.name
, addr
, data
, size
);
929 static const MemoryRegionOps vfio_nvidia_mirror_quirk
= {
930 .read
= vfio_generic_quirk_mirror_read
,
931 .write
= vfio_nvidia_quirk_mirror_write
,
932 .endianness
= DEVICE_LITTLE_ENDIAN
,
935 static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice
*vdev
, VFIOQuirk
*quirk
)
937 VFIOConfigMirrorQuirk
*mirror
= quirk
->data
;
938 LastDataSet
*last
= (LastDataSet
*)&mirror
->data
;
940 last
->addr
= last
->data
= last
->size
= last
->hits
= last
->added
= 0;
942 vfio_drop_dynamic_eventfds(vdev
, quirk
);
945 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice
*vdev
, int nr
)
948 VFIOConfigMirrorQuirk
*mirror
;
951 if (vdev
->no_geforce_quirks
||
952 !vfio_pci_is(vdev
, PCI_VENDOR_ID_NVIDIA
, PCI_ANY_ID
) ||
953 !vfio_is_vga(vdev
) || nr
!= 0) {
957 quirk
= vfio_quirk_alloc(1);
958 quirk
->reset
= vfio_nvidia_bar0_quirk_reset
;
959 mirror
= quirk
->data
= g_malloc0(sizeof(*mirror
) + sizeof(LastDataSet
));
960 mirror
->mem
= quirk
->mem
;
962 mirror
->offset
= 0x88000;
964 last
= (LastDataSet
*)&mirror
->data
;
967 memory_region_init_io(mirror
->mem
, OBJECT(vdev
),
968 &vfio_nvidia_mirror_quirk
, mirror
,
969 "vfio-nvidia-bar0-88000-mirror-quirk",
971 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
972 mirror
->offset
, mirror
->mem
, 1);
974 QLIST_INSERT_HEAD(&vdev
->bars
[nr
].quirks
, quirk
, next
);
976 /* The 0x1800 offset mirror only seems to get used by legacy VGA */
978 quirk
= vfio_quirk_alloc(1);
979 quirk
->reset
= vfio_nvidia_bar0_quirk_reset
;
980 mirror
= quirk
->data
= g_malloc0(sizeof(*mirror
) + sizeof(LastDataSet
));
981 mirror
->mem
= quirk
->mem
;
983 mirror
->offset
= 0x1800;
985 last
= (LastDataSet
*)&mirror
->data
;
988 memory_region_init_io(mirror
->mem
, OBJECT(vdev
),
989 &vfio_nvidia_mirror_quirk
, mirror
,
990 "vfio-nvidia-bar0-1800-mirror-quirk",
991 PCI_CONFIG_SPACE_SIZE
);
992 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
993 mirror
->offset
, mirror
->mem
, 1);
995 QLIST_INSERT_HEAD(&vdev
->bars
[nr
].quirks
, quirk
, next
);
998 trace_vfio_quirk_nvidia_bar0_probe(vdev
->vbasedev
.name
);
1002 * TODO - Some Nvidia devices provide config access to their companion HDA
1003 * device and even to their parent bridge via these config space mirrors.
1004 * Add quirks for those regions.
1007 #define PCI_VENDOR_ID_REALTEK 0x10ec
1010 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2
1011 * offset 0x70 there is a dword data register, offset 0x74 is a dword address
1012 * register. According to the Linux r8169 driver, the MSI-X table is addressed
1013 * when the "type" portion of the address register is set to 0x1. This appears
1014 * to be bits 16:30. Bit 31 is both a write indicator and some sort of
1015 * "address latched" indicator. Bits 12:15 are a mask field, which we can
1016 * ignore because the MSI-X table should always be accessed as a dword (full
1017 * mask). Bits 0:11 is offset within the type.
1021 * Read from MSI-X table offset 0
1022 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
1023 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
1024 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
1026 * Write 0xfee00000 to MSI-X table offset 0
1027 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
1028 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
1029 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
1031 typedef struct VFIOrtl8168Quirk
{
1032 VFIOPCIDevice
*vdev
;
1038 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque
,
1039 hwaddr addr
, unsigned size
)
1041 VFIOrtl8168Quirk
*rtl
= opaque
;
1042 VFIOPCIDevice
*vdev
= rtl
->vdev
;
1043 uint64_t data
= vfio_region_read(&vdev
->bars
[2].region
, addr
+ 0x74, size
);
1046 data
= rtl
->addr
^ 0x80000000U
; /* latch/complete */
1047 trace_vfio_quirk_rtl8168_fake_latch(vdev
->vbasedev
.name
, data
);
1053 static void vfio_rtl8168_quirk_address_write(void *opaque
, hwaddr addr
,
1054 uint64_t data
, unsigned size
)
1056 VFIOrtl8168Quirk
*rtl
= opaque
;
1057 VFIOPCIDevice
*vdev
= rtl
->vdev
;
1059 rtl
->enabled
= false;
1061 if ((data
& 0x7fff0000) == 0x10000) { /* MSI-X table */
1062 rtl
->enabled
= true;
1063 rtl
->addr
= (uint32_t)data
;
1065 if (data
& 0x80000000U
) { /* Do write */
1066 if (vdev
->pdev
.cap_present
& QEMU_PCI_CAP_MSIX
) {
1067 hwaddr offset
= data
& 0xfff;
1068 uint64_t val
= rtl
->data
;
1070 trace_vfio_quirk_rtl8168_msix_write(vdev
->vbasedev
.name
,
1071 (uint16_t)offset
, val
);
1073 /* Write to the proper guest MSI-X table instead */
1074 memory_region_dispatch_write(&vdev
->pdev
.msix_table_mmio
,
1076 MEMTXATTRS_UNSPECIFIED
);
1078 return; /* Do not write guest MSI-X data to hardware */
1082 vfio_region_write(&vdev
->bars
[2].region
, addr
+ 0x74, data
, size
);
1085 static const MemoryRegionOps vfio_rtl_address_quirk
= {
1086 .read
= vfio_rtl8168_quirk_address_read
,
1087 .write
= vfio_rtl8168_quirk_address_write
,
1089 .min_access_size
= 4,
1090 .max_access_size
= 4,
1093 .endianness
= DEVICE_LITTLE_ENDIAN
,
1096 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque
,
1097 hwaddr addr
, unsigned size
)
1099 VFIOrtl8168Quirk
*rtl
= opaque
;
1100 VFIOPCIDevice
*vdev
= rtl
->vdev
;
1101 uint64_t data
= vfio_region_read(&vdev
->bars
[2].region
, addr
+ 0x70, size
);
1103 if (rtl
->enabled
&& (vdev
->pdev
.cap_present
& QEMU_PCI_CAP_MSIX
)) {
1104 hwaddr offset
= rtl
->addr
& 0xfff;
1105 memory_region_dispatch_read(&vdev
->pdev
.msix_table_mmio
, offset
,
1106 &data
, size
, MEMTXATTRS_UNSPECIFIED
);
1107 trace_vfio_quirk_rtl8168_msix_read(vdev
->vbasedev
.name
, offset
, data
);
1113 static void vfio_rtl8168_quirk_data_write(void *opaque
, hwaddr addr
,
1114 uint64_t data
, unsigned size
)
1116 VFIOrtl8168Quirk
*rtl
= opaque
;
1117 VFIOPCIDevice
*vdev
= rtl
->vdev
;
1119 rtl
->data
= (uint32_t)data
;
1121 vfio_region_write(&vdev
->bars
[2].region
, addr
+ 0x70, data
, size
);
1124 static const MemoryRegionOps vfio_rtl_data_quirk
= {
1125 .read
= vfio_rtl8168_quirk_data_read
,
1126 .write
= vfio_rtl8168_quirk_data_write
,
1128 .min_access_size
= 4,
1129 .max_access_size
= 4,
1132 .endianness
= DEVICE_LITTLE_ENDIAN
,
1135 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice
*vdev
, int nr
)
1138 VFIOrtl8168Quirk
*rtl
;
1140 if (!vfio_pci_is(vdev
, PCI_VENDOR_ID_REALTEK
, 0x8168) || nr
!= 2) {
1144 quirk
= vfio_quirk_alloc(2);
1145 quirk
->data
= rtl
= g_malloc0(sizeof(*rtl
));
1148 memory_region_init_io(&quirk
->mem
[0], OBJECT(vdev
),
1149 &vfio_rtl_address_quirk
, rtl
,
1150 "vfio-rtl8168-window-address-quirk", 4);
1151 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
1152 0x74, &quirk
->mem
[0], 1);
1154 memory_region_init_io(&quirk
->mem
[1], OBJECT(vdev
),
1155 &vfio_rtl_data_quirk
, rtl
,
1156 "vfio-rtl8168-window-data-quirk", 4);
1157 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
1158 0x70, &quirk
->mem
[1], 1);
1160 QLIST_INSERT_HEAD(&vdev
->bars
[nr
].quirks
, quirk
, next
);
1162 trace_vfio_quirk_rtl8168_probe(vdev
->vbasedev
.name
);
1168 * Obviously IGD is not a discrete device, this is evidenced not only by it
1169 * being integrated into the CPU, but by the various chipset and BIOS
1170 * dependencies that it brings along with it. Intel is trying to move away
1171 * from this and Broadwell and newer devices can run in what Intel calls
1172 * "Universal Pass-Through" mode, or UPT. Theoretically in UPT mode, nothing
1173 * more is required beyond assigning the IGD device to a VM. There are
1174 * however support limitations to this mode. It only supports IGD as a
1175 * secondary graphics device in the VM and it doesn't officially support any
1178 * The code here attempts to enable what we'll call legacy mode assignment,
1179 * IGD retains most of the capabilities we expect for it to have on bare
1180 * metal. To enable this mode, the IGD device must be assigned to the VM
1181 * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA
1182 * support, we must have VM BIOS support for reserving and populating some
1183 * of the required tables, and we need to tweak the chipset with revisions
1184 * and IDs and an LPC/ISA bridge device. The intention is to make all of
1185 * this happen automatically by installing the device at the correct VM PCI
1186 * bus address. If any of the conditions are not met, we cross our fingers
1187 * and hope the user knows better.
1189 * NB - It is possible to enable physical outputs in UPT mode by supplying
1190 * an OpRegion table. We don't do this by default because the guest driver
1191 * behaves differently if an OpRegion is provided and no monitor is attached
1192 * vs no OpRegion and a monitor being attached or not. Effectively, if a
1193 * headless setup is desired, the OpRegion gets in the way of that.
1197 * This presumes the device is already known to be an Intel VGA device, so we
1198 * take liberties in which device ID bits match which generation. This should
1199 * not be taken as an indication that all the devices are supported, or even
1200 * supportable, some of them don't even support VT-d.
1201 * See linux:include/drm/i915_pciids.h for IDs.
1203 static int igd_gen(VFIOPCIDevice
*vdev
)
1205 if ((vdev
->device_id
& 0xfff) == 0xa84) {
1206 return 8; /* Broxton */
1209 switch (vdev
->device_id
& 0xff00) {
1210 /* Old, untested, unavailable, unknown */
1220 /* SandyBridge, IvyBridge, ValleyView, Haswell */
1228 /* BroadWell, CherryView, SkyLake, KabyLake */
1236 return 8; /* Assume newer is compatible */
1239 typedef struct VFIOIGDQuirk
{
1240 struct VFIOPCIDevice
*vdev
;
1245 #define IGD_GMCH 0x50 /* Graphics Control Register */
1246 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */
1247 #define IGD_ASLS 0xfc /* ASL Storage Register */
1250 * The OpRegion includes the Video BIOS Table, which seems important for
1251 * telling the driver what sort of outputs it has. Without this, the device
1252 * may work in the guest, but we may not get output. This also requires BIOS
1253 * support to reserve and populate a section of guest memory sufficient for
1254 * the table and to write the base address of that memory to the ASLS register
1255 * of the IGD device.
1257 int vfio_pci_igd_opregion_init(VFIOPCIDevice
*vdev
,
1258 struct vfio_region_info
*info
, Error
**errp
)
1262 vdev
->igd_opregion
= g_malloc0(info
->size
);
1263 ret
= pread(vdev
->vbasedev
.fd
, vdev
->igd_opregion
,
1264 info
->size
, info
->offset
);
1265 if (ret
!= info
->size
) {
1266 error_setg(errp
, "failed to read IGD OpRegion");
1267 g_free(vdev
->igd_opregion
);
1268 vdev
->igd_opregion
= NULL
;
1273 * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
1274 * allocate 32bit reserved memory for, copy these contents into, and write
1275 * the reserved memory base address to the device ASLS register at 0xFC.
1276 * Alignment of this reserved region seems flexible, but using a 4k page
1277 * alignment seems to work well. This interface assumes a single IGD
1278 * device, which may be at VM address 00:02.0 in legacy mode or another
1279 * address in UPT mode.
1281 * NB, there may be future use cases discovered where the VM should have
1282 * direct interaction with the host OpRegion, in which case the write to
1283 * the ASLS register would trigger MemoryRegion setup to enable that.
1285 fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
1286 vdev
->igd_opregion
, info
->size
);
1288 trace_vfio_pci_igd_opregion_enabled(vdev
->vbasedev
.name
);
1290 pci_set_long(vdev
->pdev
.config
+ IGD_ASLS
, 0);
1291 pci_set_long(vdev
->pdev
.wmask
+ IGD_ASLS
, ~0);
1292 pci_set_long(vdev
->emulated_config_bits
+ IGD_ASLS
, ~0);
1298 * The rather short list of registers that we copy from the host devices.
1299 * The LPC/ISA bridge values are definitely needed to support the vBIOS, the
1300 * host bridge values may or may not be needed depending on the guest OS.
1301 * Since we're only munging revision and subsystem values on the host bridge,
1302 * we don't require our own device. The LPC/ISA bridge needs to be our very
1310 static const IGDHostInfo igd_host_bridge_infos
[] = {
1311 {PCI_REVISION_ID
, 2},
1312 {PCI_SUBSYSTEM_VENDOR_ID
, 2},
1313 {PCI_SUBSYSTEM_ID
, 2},
1316 static const IGDHostInfo igd_lpc_bridge_infos
[] = {
1319 {PCI_REVISION_ID
, 2},
1320 {PCI_SUBSYSTEM_VENDOR_ID
, 2},
1321 {PCI_SUBSYSTEM_ID
, 2},
1324 static int vfio_pci_igd_copy(VFIOPCIDevice
*vdev
, PCIDevice
*pdev
,
1325 struct vfio_region_info
*info
,
1326 const IGDHostInfo
*list
, int len
)
1330 for (i
= 0; i
< len
; i
++) {
1331 ret
= pread(vdev
->vbasedev
.fd
, pdev
->config
+ list
[i
].offset
,
1332 list
[i
].len
, info
->offset
+ list
[i
].offset
);
1333 if (ret
!= list
[i
].len
) {
1334 error_report("IGD copy failed: %m");
1343 * Stuff a few values into the host bridge.
1345 static int vfio_pci_igd_host_init(VFIOPCIDevice
*vdev
,
1346 struct vfio_region_info
*info
)
1349 PCIDevice
*host_bridge
;
1352 bus
= pci_device_root_bus(&vdev
->pdev
);
1353 host_bridge
= pci_find_device(bus
, 0, PCI_DEVFN(0, 0));
1356 error_report("Can't find host bridge");
1360 ret
= vfio_pci_igd_copy(vdev
, host_bridge
, info
, igd_host_bridge_infos
,
1361 ARRAY_SIZE(igd_host_bridge_infos
));
1363 trace_vfio_pci_igd_host_bridge_enabled(vdev
->vbasedev
.name
);
1370 * IGD LPC/ISA bridge support code. The vBIOS needs this, but we can't write
1371 * arbitrary values into just any bridge, so we must create our own. We try
1372 * to handle if the user has created it for us, which they might want to do
1373 * to enable multifunction so we don't occupy the whole PCI slot.
1375 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice
*pdev
, Error
**errp
)
1377 if (pdev
->devfn
!= PCI_DEVFN(0x1f, 0)) {
1378 error_setg(errp
, "VFIO dummy ISA/LPC bridge must have address 1f.0");
1382 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass
*klass
, void *data
)
1384 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1385 PCIDeviceClass
*k
= PCI_DEVICE_CLASS(klass
);
1387 set_bit(DEVICE_CATEGORY_BRIDGE
, dc
->categories
);
1388 dc
->desc
= "VFIO dummy ISA/LPC bridge for IGD assignment";
1389 dc
->hotpluggable
= false;
1390 k
->realize
= vfio_pci_igd_lpc_bridge_realize
;
1391 k
->class_id
= PCI_CLASS_BRIDGE_ISA
;
1394 static TypeInfo vfio_pci_igd_lpc_bridge_info
= {
1395 .name
= "vfio-pci-igd-lpc-bridge",
1396 .parent
= TYPE_PCI_DEVICE
,
1397 .class_init
= vfio_pci_igd_lpc_bridge_class_init
,
1398 .interfaces
= (InterfaceInfo
[]) {
1399 { INTERFACE_CONVENTIONAL_PCI_DEVICE
},
1404 static void vfio_pci_igd_register_types(void)
1406 type_register_static(&vfio_pci_igd_lpc_bridge_info
);
1409 type_init(vfio_pci_igd_register_types
)
1411 static int vfio_pci_igd_lpc_init(VFIOPCIDevice
*vdev
,
1412 struct vfio_region_info
*info
)
1414 PCIDevice
*lpc_bridge
;
1417 lpc_bridge
= pci_find_device(pci_device_root_bus(&vdev
->pdev
),
1418 0, PCI_DEVFN(0x1f, 0));
1420 lpc_bridge
= pci_create_simple(pci_device_root_bus(&vdev
->pdev
),
1421 PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge");
1424 ret
= vfio_pci_igd_copy(vdev
, lpc_bridge
, info
, igd_lpc_bridge_infos
,
1425 ARRAY_SIZE(igd_lpc_bridge_infos
));
1427 trace_vfio_pci_igd_lpc_bridge_enabled(vdev
->vbasedev
.name
);
1434 * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE
1435 * entry, older IGDs use 2MB and 32bit. Each PTE maps a 4k page. Therefore
1436 * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index
1437 * for programming the GTT.
1439 * See linux:include/drm/i915_drm.h for shift and mask values.
1441 static int vfio_igd_gtt_max(VFIOPCIDevice
*vdev
)
1443 uint32_t gmch
= vfio_pci_read_config(&vdev
->pdev
, IGD_GMCH
, sizeof(gmch
));
1444 int ggms
, gen
= igd_gen(vdev
);
1446 gmch
= vfio_pci_read_config(&vdev
->pdev
, IGD_GMCH
, sizeof(gmch
));
1447 ggms
= (gmch
>> (gen
< 8 ? 8 : 6)) & 0x3;
1454 return (ggms
/ (4 * KiB
)) * (gen
< 8 ? 4 : 8);
1458 * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes.
1459 * Somehow the host stolen memory range is used for this, but how the ROM gets
1460 * it is a mystery, perhaps it's hardcoded into the ROM. Thankfully though, it
1461 * reprograms the GTT through the IOBAR where we can trap it and transpose the
1462 * programming to the VM allocated buffer. That buffer gets reserved by the VM
1463 * firmware via the fw_cfg entry added below. Here we're just monitoring the
1464 * IOBAR address and data registers to detect a write sequence targeting the
1465 * GTTADR. This code is developed by observed behavior and doesn't have a
1466 * direct spec reference, unfortunately.
1468 static uint64_t vfio_igd_quirk_data_read(void *opaque
,
1469 hwaddr addr
, unsigned size
)
1471 VFIOIGDQuirk
*igd
= opaque
;
1472 VFIOPCIDevice
*vdev
= igd
->vdev
;
1476 return vfio_region_read(&vdev
->bars
[4].region
, addr
+ 4, size
);
1479 static void vfio_igd_quirk_data_write(void *opaque
, hwaddr addr
,
1480 uint64_t data
, unsigned size
)
1482 VFIOIGDQuirk
*igd
= opaque
;
1483 VFIOPCIDevice
*vdev
= igd
->vdev
;
1484 uint64_t val
= data
;
1485 int gen
= igd_gen(vdev
);
1488 * Programming the GGMS starts at index 0x1 and uses every 4th index (ie.
1489 * 0x1, 0x5, 0x9, 0xd,...). For pre-Gen8 each 4-byte write is a whole PTE
1490 * entry, with 0th bit enable set. For Gen8 and up, PTEs are 64bit, so
1491 * entries 0x5 & 0xd are the high dword, in our case zero. Each PTE points
1492 * to a 4k page, which we translate to a page from the VM allocated region,
1493 * pointed to by the BDSM register. If this is not set, we fail.
1495 * We trap writes to the full configured GTT size, but we typically only
1496 * see the vBIOS writing up to (nearly) the 1MB barrier. In fact it often
1497 * seems to miss the last entry for an even 1MB GTT. Doing a gratuitous
1498 * write of that last entry does work, but is hopefully unnecessary since
1499 * we clear the previous GTT on initialization.
1501 if ((igd
->index
% 4 == 1) && igd
->index
< vfio_igd_gtt_max(vdev
)) {
1502 if (gen
< 8 || (igd
->index
% 8 == 1)) {
1505 base
= pci_get_long(vdev
->pdev
.config
+ IGD_BDSM
);
1507 hw_error("vfio-igd: Guest attempted to program IGD GTT before "
1508 "BIOS reserved stolen memory. Unsupported BIOS?");
1511 val
= data
- igd
->bdsm
+ base
;
1513 val
= 0; /* upper 32bits of pte, we only enable below 4G PTEs */
1516 trace_vfio_pci_igd_bar4_write(vdev
->vbasedev
.name
,
1517 igd
->index
, data
, val
);
1520 vfio_region_write(&vdev
->bars
[4].region
, addr
+ 4, val
, size
);
1525 static const MemoryRegionOps vfio_igd_data_quirk
= {
1526 .read
= vfio_igd_quirk_data_read
,
1527 .write
= vfio_igd_quirk_data_write
,
1528 .endianness
= DEVICE_LITTLE_ENDIAN
,
1531 static uint64_t vfio_igd_quirk_index_read(void *opaque
,
1532 hwaddr addr
, unsigned size
)
1534 VFIOIGDQuirk
*igd
= opaque
;
1535 VFIOPCIDevice
*vdev
= igd
->vdev
;
1539 return vfio_region_read(&vdev
->bars
[4].region
, addr
, size
);
1542 static void vfio_igd_quirk_index_write(void *opaque
, hwaddr addr
,
1543 uint64_t data
, unsigned size
)
1545 VFIOIGDQuirk
*igd
= opaque
;
1546 VFIOPCIDevice
*vdev
= igd
->vdev
;
1550 vfio_region_write(&vdev
->bars
[4].region
, addr
, data
, size
);
1553 static const MemoryRegionOps vfio_igd_index_quirk
= {
1554 .read
= vfio_igd_quirk_index_read
,
1555 .write
= vfio_igd_quirk_index_write
,
1556 .endianness
= DEVICE_LITTLE_ENDIAN
,
1559 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice
*vdev
, int nr
)
1561 struct vfio_region_info
*rom
= NULL
, *opregion
= NULL
,
1562 *host
= NULL
, *lpc
= NULL
;
1565 PCIDevice
*lpc_bridge
;
1566 int i
, ret
, ggms_mb
, gms_mb
= 0, gen
;
1567 uint64_t *bdsm_size
;
1569 uint16_t cmd_orig
, cmd
;
1573 * This must be an Intel VGA device at address 00:02.0 for us to even
1574 * consider enabling legacy mode. The vBIOS has dependencies on the
1577 if (!vfio_pci_is(vdev
, PCI_VENDOR_ID_INTEL
, PCI_ANY_ID
) ||
1578 !vfio_is_vga(vdev
) || nr
!= 4 ||
1579 &vdev
->pdev
!= pci_find_device(pci_device_root_bus(&vdev
->pdev
),
1580 0, PCI_DEVFN(0x2, 0))) {
1585 * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we
1586 * can stuff host values into, so if there's already one there and it's not
1587 * one we can hack on, legacy mode is no-go. Sorry Q35.
1589 lpc_bridge
= pci_find_device(pci_device_root_bus(&vdev
->pdev
),
1590 0, PCI_DEVFN(0x1f, 0));
1591 if (lpc_bridge
&& !object_dynamic_cast(OBJECT(lpc_bridge
),
1592 "vfio-pci-igd-lpc-bridge")) {
1593 error_report("IGD device %s cannot support legacy mode due to existing "
1594 "devices at address 1f.0", vdev
->vbasedev
.name
);
1599 * IGD is not a standard, they like to change their specs often. We
1600 * only attempt to support back to SandBridge and we hope that newer
1601 * devices maintain compatibility with generation 8.
1603 gen
= igd_gen(vdev
);
1604 if (gen
!= 6 && gen
!= 8) {
1605 error_report("IGD device %s is unsupported in legacy mode, "
1606 "try SandyBridge or newer", vdev
->vbasedev
.name
);
1611 * Most of what we're doing here is to enable the ROM to run, so if
1612 * there's no ROM, there's no point in setting up this quirk.
1613 * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support.
1615 ret
= vfio_get_region_info(&vdev
->vbasedev
,
1616 VFIO_PCI_ROM_REGION_INDEX
, &rom
);
1617 if ((ret
|| !rom
->size
) && !vdev
->pdev
.romfile
) {
1618 error_report("IGD device %s has no ROM, legacy mode disabled",
1619 vdev
->vbasedev
.name
);
1624 * Ignore the hotplug corner case, mark the ROM failed, we can't
1625 * create the devices we need for legacy mode in the hotplug scenario.
1627 if (vdev
->pdev
.qdev
.hotplugged
) {
1628 error_report("IGD device %s hotplugged, ROM disabled, "
1629 "legacy mode disabled", vdev
->vbasedev
.name
);
1630 vdev
->rom_read_failed
= true;
1635 * Check whether we have all the vfio device specific regions to
1636 * support legacy mode (added in Linux v4.6). If not, bail.
1638 ret
= vfio_get_dev_region_info(&vdev
->vbasedev
,
1639 VFIO_REGION_TYPE_PCI_VENDOR_TYPE
| PCI_VENDOR_ID_INTEL
,
1640 VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION
, &opregion
);
1642 error_report("IGD device %s does not support OpRegion access,"
1643 "legacy mode disabled", vdev
->vbasedev
.name
);
1647 ret
= vfio_get_dev_region_info(&vdev
->vbasedev
,
1648 VFIO_REGION_TYPE_PCI_VENDOR_TYPE
| PCI_VENDOR_ID_INTEL
,
1649 VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG
, &host
);
1651 error_report("IGD device %s does not support host bridge access,"
1652 "legacy mode disabled", vdev
->vbasedev
.name
);
1656 ret
= vfio_get_dev_region_info(&vdev
->vbasedev
,
1657 VFIO_REGION_TYPE_PCI_VENDOR_TYPE
| PCI_VENDOR_ID_INTEL
,
1658 VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG
, &lpc
);
1660 error_report("IGD device %s does not support LPC bridge access,"
1661 "legacy mode disabled", vdev
->vbasedev
.name
);
1665 gmch
= vfio_pci_read_config(&vdev
->pdev
, IGD_GMCH
, 4);
1668 * If IGD VGA Disable is clear (expected) and VGA is not already enabled,
1669 * try to enable it. Probably shouldn't be using legacy mode without VGA,
1670 * but also no point in us enabling VGA if disabled in hardware.
1672 if (!(gmch
& 0x2) && !vdev
->vga
&& vfio_populate_vga(vdev
, &err
)) {
1673 error_reportf_err(err
, VFIO_MSG_PREFIX
, vdev
->vbasedev
.name
);
1674 error_report("IGD device %s failed to enable VGA access, "
1675 "legacy mode disabled", vdev
->vbasedev
.name
);
1679 /* Create our LPC/ISA bridge */
1680 ret
= vfio_pci_igd_lpc_init(vdev
, lpc
);
1682 error_report("IGD device %s failed to create LPC bridge, "
1683 "legacy mode disabled", vdev
->vbasedev
.name
);
1687 /* Stuff some host values into the VM PCI host bridge */
1688 ret
= vfio_pci_igd_host_init(vdev
, host
);
1690 error_report("IGD device %s failed to modify host bridge, "
1691 "legacy mode disabled", vdev
->vbasedev
.name
);
1695 /* Setup OpRegion access */
1696 ret
= vfio_pci_igd_opregion_init(vdev
, opregion
, &err
);
1698 error_append_hint(&err
, "IGD legacy mode disabled\n");
1699 error_reportf_err(err
, VFIO_MSG_PREFIX
, vdev
->vbasedev
.name
);
1703 /* Setup our quirk to munge GTT addresses to the VM allocated buffer */
1704 quirk
= vfio_quirk_alloc(2);
1705 igd
= quirk
->data
= g_malloc0(sizeof(*igd
));
1708 igd
->bdsm
= vfio_pci_read_config(&vdev
->pdev
, IGD_BDSM
, 4);
1709 igd
->bdsm
&= ~((1 * MiB
) - 1); /* 1MB aligned */
1711 memory_region_init_io(&quirk
->mem
[0], OBJECT(vdev
), &vfio_igd_index_quirk
,
1712 igd
, "vfio-igd-index-quirk", 4);
1713 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
1714 0, &quirk
->mem
[0], 1);
1716 memory_region_init_io(&quirk
->mem
[1], OBJECT(vdev
), &vfio_igd_data_quirk
,
1717 igd
, "vfio-igd-data-quirk", 4);
1718 memory_region_add_subregion_overlap(vdev
->bars
[nr
].region
.mem
,
1719 4, &quirk
->mem
[1], 1);
1721 QLIST_INSERT_HEAD(&vdev
->bars
[nr
].quirks
, quirk
, next
);
1723 /* Determine the size of stolen memory needed for GTT */
1724 ggms_mb
= (gmch
>> (gen
< 8 ? 8 : 6)) & 0x3;
1726 ggms_mb
= 1 << ggms_mb
;
1730 * Assume we have no GMS memory, but allow it to be overrided by device
1731 * option (experimental). The spec doesn't actually allow zero GMS when
1732 * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused,
1733 * so let's not waste VM memory for it.
1735 gmch
&= ~((gen
< 8 ? 0x1f : 0xff) << (gen
< 8 ? 3 : 8));
1737 if (vdev
->igd_gms
) {
1738 if (vdev
->igd_gms
<= 0x10) {
1739 gms_mb
= vdev
->igd_gms
* 32;
1740 gmch
|= vdev
->igd_gms
<< (gen
< 8 ? 3 : 8);
1742 error_report("Unsupported IGD GMS value 0x%x", vdev
->igd_gms
);
1748 * Request reserved memory for stolen memory via fw_cfg. VM firmware
1749 * must allocate a 1MB aligned reserved memory region below 4GB with
1750 * the requested size (in bytes) for use by the Intel PCI class VGA
1751 * device at VM address 00:02.0. The base address of this reserved
1752 * memory region must be written to the device BDSM regsiter at PCI
1753 * config offset 0x5C.
1755 bdsm_size
= g_malloc(sizeof(*bdsm_size
));
1756 *bdsm_size
= cpu_to_le64((ggms_mb
+ gms_mb
) * MiB
);
1757 fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size",
1758 bdsm_size
, sizeof(*bdsm_size
));
1760 /* GMCH is read-only, emulated */
1761 pci_set_long(vdev
->pdev
.config
+ IGD_GMCH
, gmch
);
1762 pci_set_long(vdev
->pdev
.wmask
+ IGD_GMCH
, 0);
1763 pci_set_long(vdev
->emulated_config_bits
+ IGD_GMCH
, ~0);
1765 /* BDSM is read-write, emulated. The BIOS needs to be able to write it */
1766 pci_set_long(vdev
->pdev
.config
+ IGD_BDSM
, 0);
1767 pci_set_long(vdev
->pdev
.wmask
+ IGD_BDSM
, ~0);
1768 pci_set_long(vdev
->emulated_config_bits
+ IGD_BDSM
, ~0);
1771 * This IOBAR gives us access to GTTADR, which allows us to write to
1772 * the GTT itself. So let's go ahead and write zero to all the GTT
1773 * entries to avoid spurious DMA faults. Be sure I/O access is enabled
1774 * before talking to the device.
1776 if (pread(vdev
->vbasedev
.fd
, &cmd_orig
, sizeof(cmd_orig
),
1777 vdev
->config_offset
+ PCI_COMMAND
) != sizeof(cmd_orig
)) {
1778 error_report("IGD device %s - failed to read PCI command register",
1779 vdev
->vbasedev
.name
);
1782 cmd
= cmd_orig
| PCI_COMMAND_IO
;
1784 if (pwrite(vdev
->vbasedev
.fd
, &cmd
, sizeof(cmd
),
1785 vdev
->config_offset
+ PCI_COMMAND
) != sizeof(cmd
)) {
1786 error_report("IGD device %s - failed to write PCI command register",
1787 vdev
->vbasedev
.name
);
1790 for (i
= 1; i
< vfio_igd_gtt_max(vdev
); i
+= 4) {
1791 vfio_region_write(&vdev
->bars
[4].region
, 0, i
, 4);
1792 vfio_region_write(&vdev
->bars
[4].region
, 4, 0, 4);
1795 if (pwrite(vdev
->vbasedev
.fd
, &cmd_orig
, sizeof(cmd_orig
),
1796 vdev
->config_offset
+ PCI_COMMAND
) != sizeof(cmd_orig
)) {
1797 error_report("IGD device %s - failed to restore PCI command register",
1798 vdev
->vbasedev
.name
);
1801 trace_vfio_pci_igd_bdsm_enabled(vdev
->vbasedev
.name
, ggms_mb
+ gms_mb
);
1811 * Common quirk probe entry points.
1813 void vfio_vga_quirk_setup(VFIOPCIDevice
*vdev
)
1815 vfio_vga_probe_ati_3c3_quirk(vdev
);
1816 vfio_vga_probe_nvidia_3d0_quirk(vdev
);
1819 void vfio_vga_quirk_exit(VFIOPCIDevice
*vdev
)
1824 for (i
= 0; i
< ARRAY_SIZE(vdev
->vga
->region
); i
++) {
1825 QLIST_FOREACH(quirk
, &vdev
->vga
->region
[i
].quirks
, next
) {
1826 for (j
= 0; j
< quirk
->nr_mem
; j
++) {
1827 memory_region_del_subregion(&vdev
->vga
->region
[i
].mem
,
1834 void vfio_vga_quirk_finalize(VFIOPCIDevice
*vdev
)
1838 for (i
= 0; i
< ARRAY_SIZE(vdev
->vga
->region
); i
++) {
1839 while (!QLIST_EMPTY(&vdev
->vga
->region
[i
].quirks
)) {
1840 VFIOQuirk
*quirk
= QLIST_FIRST(&vdev
->vga
->region
[i
].quirks
);
1841 QLIST_REMOVE(quirk
, next
);
1842 for (j
= 0; j
< quirk
->nr_mem
; j
++) {
1843 object_unparent(OBJECT(&quirk
->mem
[j
]));
1846 g_free(quirk
->data
);
1852 void vfio_bar_quirk_setup(VFIOPCIDevice
*vdev
, int nr
)
1854 vfio_probe_ati_bar4_quirk(vdev
, nr
);
1855 vfio_probe_ati_bar2_quirk(vdev
, nr
);
1856 vfio_probe_nvidia_bar5_quirk(vdev
, nr
);
1857 vfio_probe_nvidia_bar0_quirk(vdev
, nr
);
1858 vfio_probe_rtl8168_bar2_quirk(vdev
, nr
);
1859 vfio_probe_igd_bar4_quirk(vdev
, nr
);
1862 void vfio_bar_quirk_exit(VFIOPCIDevice
*vdev
, int nr
)
1864 VFIOBAR
*bar
= &vdev
->bars
[nr
];
1868 QLIST_FOREACH(quirk
, &bar
->quirks
, next
) {
1869 while (!QLIST_EMPTY(&quirk
->ioeventfds
)) {
1870 vfio_ioeventfd_exit(vdev
, QLIST_FIRST(&quirk
->ioeventfds
));
1873 for (i
= 0; i
< quirk
->nr_mem
; i
++) {
1874 memory_region_del_subregion(bar
->region
.mem
, &quirk
->mem
[i
]);
1879 void vfio_bar_quirk_finalize(VFIOPCIDevice
*vdev
, int nr
)
1881 VFIOBAR
*bar
= &vdev
->bars
[nr
];
1884 while (!QLIST_EMPTY(&bar
->quirks
)) {
1885 VFIOQuirk
*quirk
= QLIST_FIRST(&bar
->quirks
);
1886 QLIST_REMOVE(quirk
, next
);
1887 for (i
= 0; i
< quirk
->nr_mem
; i
++) {
1888 object_unparent(OBJECT(&quirk
->mem
[i
]));
1891 g_free(quirk
->data
);
1899 void vfio_quirk_reset(VFIOPCIDevice
*vdev
)
1903 for (i
= 0; i
< PCI_ROM_SLOT
; i
++) {
1905 VFIOBAR
*bar
= &vdev
->bars
[i
];
1907 QLIST_FOREACH(quirk
, &bar
->quirks
, next
) {
1909 quirk
->reset(vdev
, quirk
);
1916 * AMD Radeon PCI config reset, based on Linux:
1917 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
1918 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
1919 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
1920 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
1921 * IDs: include/drm/drm_pciids.h
1922 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
1924 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the
1925 * hardware that should be fixed on future ASICs. The symptom of this is that
1926 * once the accerlated driver loads, Windows guests will bsod on subsequent
1927 * attmpts to load the driver, such as after VM reset or shutdown/restart. To
1928 * work around this, we do an AMD specific PCI config reset, followed by an SMC
1929 * reset. The PCI config reset only works if SMC firmware is running, so we
1930 * have a dependency on the state of the device as to whether this reset will
1931 * be effective. There are still cases where we won't be able to kick the
1932 * device into working, but this greatly improves the usability overall. The
1933 * config reset magic is relatively common on AMD GPUs, but the setup and SMC
1934 * poking is largely ASIC specific.
1936 static bool vfio_radeon_smc_is_running(VFIOPCIDevice
*vdev
)
1941 * Registers 200h and 204h are index and data registers for accessing
1942 * indirect configuration registers within the device.
1944 vfio_region_write(&vdev
->bars
[5].region
, 0x200, 0x80000004, 4);
1945 clk
= vfio_region_read(&vdev
->bars
[5].region
, 0x204, 4);
1946 vfio_region_write(&vdev
->bars
[5].region
, 0x200, 0x80000370, 4);
1947 pc_c
= vfio_region_read(&vdev
->bars
[5].region
, 0x204, 4);
1949 return (!(clk
& 1) && (0x20100 <= pc_c
));
1953 * The scope of a config reset is controlled by a mode bit in the misc register
1954 * and a fuse, exposed as a bit in another register. The fuse is the default
1955 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
1956 * scope = !(misc ^ fuse), where the resulting scope is defined the same as
1957 * the fuse. A truth table therefore tells us that if misc == fuse, we need
1958 * to flip the value of the bit in the misc register.
1960 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice
*vdev
)
1962 uint32_t misc
, fuse
;
1965 vfio_region_write(&vdev
->bars
[5].region
, 0x200, 0xc00c0000, 4);
1966 fuse
= vfio_region_read(&vdev
->bars
[5].region
, 0x204, 4);
1969 vfio_region_write(&vdev
->bars
[5].region
, 0x200, 0xc0000010, 4);
1970 misc
= vfio_region_read(&vdev
->bars
[5].region
, 0x204, 4);
1974 vfio_region_write(&vdev
->bars
[5].region
, 0x204, misc
^ 2, 4);
1975 vfio_region_read(&vdev
->bars
[5].region
, 0x204, 4); /* flush */
1979 static int vfio_radeon_reset(VFIOPCIDevice
*vdev
)
1981 PCIDevice
*pdev
= &vdev
->pdev
;
1985 /* Defer to a kernel implemented reset */
1986 if (vdev
->vbasedev
.reset_works
) {
1987 trace_vfio_quirk_ati_bonaire_reset_skipped(vdev
->vbasedev
.name
);
1991 /* Enable only memory BAR access */
1992 vfio_pci_write_config(pdev
, PCI_COMMAND
, PCI_COMMAND_MEMORY
, 2);
1994 /* Reset only works if SMC firmware is loaded and running */
1995 if (!vfio_radeon_smc_is_running(vdev
)) {
1997 trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev
->vbasedev
.name
);
2001 /* Make sure only the GFX function is reset */
2002 vfio_radeon_set_gfx_only_reset(vdev
);
2004 /* AMD PCI config reset */
2005 vfio_pci_write_config(pdev
, 0x7c, 0x39d5e86b, 4);
2008 /* Read back the memory size to make sure we're out of reset */
2009 for (i
= 0; i
< 100000; i
++) {
2010 if (vfio_region_read(&vdev
->bars
[5].region
, 0x5428, 4) != 0xffffffff) {
2016 trace_vfio_quirk_ati_bonaire_reset_timeout(vdev
->vbasedev
.name
);
2020 vfio_region_write(&vdev
->bars
[5].region
, 0x200, 0x80000000, 4);
2021 data
= vfio_region_read(&vdev
->bars
[5].region
, 0x204, 4);
2023 vfio_region_write(&vdev
->bars
[5].region
, 0x204, data
, 4);
2025 /* Disable SMC clock */
2026 vfio_region_write(&vdev
->bars
[5].region
, 0x200, 0x80000004, 4);
2027 data
= vfio_region_read(&vdev
->bars
[5].region
, 0x204, 4);
2029 vfio_region_write(&vdev
->bars
[5].region
, 0x204, data
, 4);
2031 trace_vfio_quirk_ati_bonaire_reset_done(vdev
->vbasedev
.name
);
2034 /* Restore PCI command register */
2035 vfio_pci_write_config(pdev
, PCI_COMMAND
, 0, 2);
2040 void vfio_setup_resetfn_quirk(VFIOPCIDevice
*vdev
)
2042 switch (vdev
->vendor_id
) {
2044 switch (vdev
->device_id
) {
2046 case 0x6649: /* Bonaire [FirePro W5100] */
2049 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
2050 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
2051 case 0x665d: /* Bonaire [Radeon R7 200 Series] */
2053 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
2054 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
2059 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
2060 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
2065 vdev
->resetfn
= vfio_radeon_reset
;
2066 trace_vfio_quirk_ati_bonaire_reset(vdev
->vbasedev
.name
);
2074 * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify
2075 * devices as a member of a clique. Devices within the same clique ID
2076 * are capable of direct P2P. It's the user's responsibility that this
2077 * is correct. The spec says that this may reside at any unused config
2078 * offset, but reserves and recommends hypervisors place this at C8h.
2079 * The spec also states that the hypervisor should place this capability
2080 * at the end of the capability list, thus next is defined as 0h.
2082 * +----------------+----------------+----------------+----------------+
2083 * | sig 7:0 ('P') | vndr len (8h) | next (0h) | cap id (9h) |
2084 * +----------------+----------------+----------------+----------------+
2085 * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)| sig 23:8 ('P2') |
2086 * +---------------------------------+---------------------------------+
2088 * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf
2090 static void get_nv_gpudirect_clique_id(Object
*obj
, Visitor
*v
,
2091 const char *name
, void *opaque
,
2094 DeviceState
*dev
= DEVICE(obj
);
2095 Property
*prop
= opaque
;
2096 uint8_t *ptr
= qdev_get_prop_ptr(dev
, prop
);
2098 visit_type_uint8(v
, name
, ptr
, errp
);
2101 static void set_nv_gpudirect_clique_id(Object
*obj
, Visitor
*v
,
2102 const char *name
, void *opaque
,
2105 DeviceState
*dev
= DEVICE(obj
);
2106 Property
*prop
= opaque
;
2107 uint8_t value
, *ptr
= qdev_get_prop_ptr(dev
, prop
);
2108 Error
*local_err
= NULL
;
2110 if (dev
->realized
) {
2111 qdev_prop_set_after_realize(dev
, name
, errp
);
2115 visit_type_uint8(v
, name
, &value
, &local_err
);
2117 error_propagate(errp
, local_err
);
2122 error_setg(errp
, "Property %s: valid range 0-15", name
);
2129 const PropertyInfo qdev_prop_nv_gpudirect_clique
= {
2131 .description
= "NVIDIA GPUDirect Clique ID (0 - 15)",
2132 .get
= get_nv_gpudirect_clique_id
,
2133 .set
= set_nv_gpudirect_clique_id
,
2136 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice
*vdev
, Error
**errp
)
2138 PCIDevice
*pdev
= &vdev
->pdev
;
2139 int ret
, pos
= 0xC8;
2141 if (vdev
->nv_gpudirect_clique
== 0xFF) {
2145 if (!vfio_pci_is(vdev
, PCI_VENDOR_ID_NVIDIA
, PCI_ANY_ID
)) {
2146 error_setg(errp
, "NVIDIA GPUDirect Clique ID: invalid device vendor");
2150 if (pci_get_byte(pdev
->config
+ PCI_CLASS_DEVICE
+ 1) !=
2151 PCI_BASE_CLASS_DISPLAY
) {
2152 error_setg(errp
, "NVIDIA GPUDirect Clique ID: unsupported PCI class");
2156 ret
= pci_add_capability(pdev
, PCI_CAP_ID_VNDR
, pos
, 8, errp
);
2158 error_prepend(errp
, "Failed to add NVIDIA GPUDirect cap: ");
2162 memset(vdev
->emulated_config_bits
+ pos
, 0xFF, 8);
2163 pos
+= PCI_CAP_FLAGS
;
2164 pci_set_byte(pdev
->config
+ pos
++, 8);
2165 pci_set_byte(pdev
->config
+ pos
++, 'P');
2166 pci_set_byte(pdev
->config
+ pos
++, '2');
2167 pci_set_byte(pdev
->config
+ pos
++, 'P');
2168 pci_set_byte(pdev
->config
+ pos
++, vdev
->nv_gpudirect_clique
<< 3);
2169 pci_set_byte(pdev
->config
+ pos
, 0);
2174 int vfio_add_virt_caps(VFIOPCIDevice
*vdev
, Error
**errp
)
2178 ret
= vfio_add_nv_gpudirect_cap(vdev
, errp
);