qapi: make query-cpu-definitions depend on specific targets
[qemu/ar7.git] / target / arm / helper.c
bloba018eb23fe2ed7f9a0a9b087d6a9957e92b8a9fb
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
15 #include "arm_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/cpus.h"
19 #include "sysemu/kvm.h"
20 #include "fpu/softfloat.h"
21 #include "qemu/range.h"
22 #include "qapi/qapi-commands-target.h"
24 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
26 #ifndef CONFIG_USER_ONLY
27 /* Cacheability and shareability attributes for a memory access */
28 typedef struct ARMCacheAttrs {
29 unsigned int attrs:8; /* as in the MAIR register encoding */
30 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
31 } ARMCacheAttrs;
33 static bool get_phys_addr(CPUARMState *env, target_ulong address,
34 MMUAccessType access_type, ARMMMUIdx mmu_idx,
35 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
36 target_ulong *page_size,
37 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
39 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
40 MMUAccessType access_type, ARMMMUIdx mmu_idx,
41 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
42 target_ulong *page_size_ptr,
43 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
45 /* Security attributes for an address, as returned by v8m_security_lookup. */
46 typedef struct V8M_SAttributes {
47 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
48 bool ns;
49 bool nsc;
50 uint8_t sregion;
51 bool srvalid;
52 uint8_t iregion;
53 bool irvalid;
54 } V8M_SAttributes;
56 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
57 MMUAccessType access_type, ARMMMUIdx mmu_idx,
58 V8M_SAttributes *sattrs);
59 #endif
61 static void switch_mode(CPUARMState *env, int mode);
63 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
65 int nregs;
67 /* VFP data registers are always little-endian. */
68 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
69 if (reg < nregs) {
70 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
71 return 8;
73 if (arm_feature(env, ARM_FEATURE_NEON)) {
74 /* Aliases for Q regs. */
75 nregs += 16;
76 if (reg < nregs) {
77 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
78 stq_le_p(buf, q[0]);
79 stq_le_p(buf + 8, q[1]);
80 return 16;
83 switch (reg - nregs) {
84 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
85 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
86 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
88 return 0;
91 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
93 int nregs;
95 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
96 if (reg < nregs) {
97 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
98 return 8;
100 if (arm_feature(env, ARM_FEATURE_NEON)) {
101 nregs += 16;
102 if (reg < nregs) {
103 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
104 q[0] = ldq_le_p(buf);
105 q[1] = ldq_le_p(buf + 8);
106 return 16;
109 switch (reg - nregs) {
110 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
111 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
112 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
114 return 0;
117 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
119 switch (reg) {
120 case 0 ... 31:
121 /* 128 bit FP register */
123 uint64_t *q = aa64_vfp_qreg(env, reg);
124 stq_le_p(buf, q[0]);
125 stq_le_p(buf + 8, q[1]);
126 return 16;
128 case 32:
129 /* FPSR */
130 stl_p(buf, vfp_get_fpsr(env));
131 return 4;
132 case 33:
133 /* FPCR */
134 stl_p(buf, vfp_get_fpcr(env));
135 return 4;
136 default:
137 return 0;
141 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
143 switch (reg) {
144 case 0 ... 31:
145 /* 128 bit FP register */
147 uint64_t *q = aa64_vfp_qreg(env, reg);
148 q[0] = ldq_le_p(buf);
149 q[1] = ldq_le_p(buf + 8);
150 return 16;
152 case 32:
153 /* FPSR */
154 vfp_set_fpsr(env, ldl_p(buf));
155 return 4;
156 case 33:
157 /* FPCR */
158 vfp_set_fpcr(env, ldl_p(buf));
159 return 4;
160 default:
161 return 0;
165 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
167 assert(ri->fieldoffset);
168 if (cpreg_field_is_64bit(ri)) {
169 return CPREG_FIELD64(env, ri);
170 } else {
171 return CPREG_FIELD32(env, ri);
175 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
176 uint64_t value)
178 assert(ri->fieldoffset);
179 if (cpreg_field_is_64bit(ri)) {
180 CPREG_FIELD64(env, ri) = value;
181 } else {
182 CPREG_FIELD32(env, ri) = value;
186 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
188 return (char *)env + ri->fieldoffset;
191 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
193 /* Raw read of a coprocessor register (as needed for migration, etc). */
194 if (ri->type & ARM_CP_CONST) {
195 return ri->resetvalue;
196 } else if (ri->raw_readfn) {
197 return ri->raw_readfn(env, ri);
198 } else if (ri->readfn) {
199 return ri->readfn(env, ri);
200 } else {
201 return raw_read(env, ri);
205 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
206 uint64_t v)
208 /* Raw write of a coprocessor register (as needed for migration, etc).
209 * Note that constant registers are treated as write-ignored; the
210 * caller should check for success by whether a readback gives the
211 * value written.
213 if (ri->type & ARM_CP_CONST) {
214 return;
215 } else if (ri->raw_writefn) {
216 ri->raw_writefn(env, ri, v);
217 } else if (ri->writefn) {
218 ri->writefn(env, ri, v);
219 } else {
220 raw_write(env, ri, v);
224 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
226 ARMCPU *cpu = arm_env_get_cpu(env);
227 const ARMCPRegInfo *ri;
228 uint32_t key;
230 key = cpu->dyn_xml.cpregs_keys[reg];
231 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
232 if (ri) {
233 if (cpreg_field_is_64bit(ri)) {
234 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
235 } else {
236 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
239 return 0;
242 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
244 return 0;
247 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
249 /* Return true if the regdef would cause an assertion if you called
250 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
251 * program bug for it not to have the NO_RAW flag).
252 * NB that returning false here doesn't necessarily mean that calling
253 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
254 * read/write access functions which are safe for raw use" from "has
255 * read/write access functions which have side effects but has forgotten
256 * to provide raw access functions".
257 * The tests here line up with the conditions in read/write_raw_cp_reg()
258 * and assertions in raw_read()/raw_write().
260 if ((ri->type & ARM_CP_CONST) ||
261 ri->fieldoffset ||
262 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
263 return false;
265 return true;
268 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
270 /* Write the coprocessor state from cpu->env to the (index,value) list. */
271 int i;
272 bool ok = true;
274 for (i = 0; i < cpu->cpreg_array_len; i++) {
275 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
276 const ARMCPRegInfo *ri;
277 uint64_t newval;
279 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
280 if (!ri) {
281 ok = false;
282 continue;
284 if (ri->type & ARM_CP_NO_RAW) {
285 continue;
288 newval = read_raw_cp_reg(&cpu->env, ri);
289 if (kvm_sync) {
291 * Only sync if the previous list->cpustate sync succeeded.
292 * Rather than tracking the success/failure state for every
293 * item in the list, we just recheck "does the raw write we must
294 * have made in write_list_to_cpustate() read back OK" here.
296 uint64_t oldval = cpu->cpreg_values[i];
298 if (oldval == newval) {
299 continue;
302 write_raw_cp_reg(&cpu->env, ri, oldval);
303 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
304 continue;
307 write_raw_cp_reg(&cpu->env, ri, newval);
309 cpu->cpreg_values[i] = newval;
311 return ok;
314 bool write_list_to_cpustate(ARMCPU *cpu)
316 int i;
317 bool ok = true;
319 for (i = 0; i < cpu->cpreg_array_len; i++) {
320 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
321 uint64_t v = cpu->cpreg_values[i];
322 const ARMCPRegInfo *ri;
324 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
325 if (!ri) {
326 ok = false;
327 continue;
329 if (ri->type & ARM_CP_NO_RAW) {
330 continue;
332 /* Write value and confirm it reads back as written
333 * (to catch read-only registers and partially read-only
334 * registers where the incoming migration value doesn't match)
336 write_raw_cp_reg(&cpu->env, ri, v);
337 if (read_raw_cp_reg(&cpu->env, ri) != v) {
338 ok = false;
341 return ok;
344 static void add_cpreg_to_list(gpointer key, gpointer opaque)
346 ARMCPU *cpu = opaque;
347 uint64_t regidx;
348 const ARMCPRegInfo *ri;
350 regidx = *(uint32_t *)key;
351 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
353 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
354 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
355 /* The value array need not be initialized at this point */
356 cpu->cpreg_array_len++;
360 static void count_cpreg(gpointer key, gpointer opaque)
362 ARMCPU *cpu = opaque;
363 uint64_t regidx;
364 const ARMCPRegInfo *ri;
366 regidx = *(uint32_t *)key;
367 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
369 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
370 cpu->cpreg_array_len++;
374 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
376 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
377 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
379 if (aidx > bidx) {
380 return 1;
382 if (aidx < bidx) {
383 return -1;
385 return 0;
388 void init_cpreg_list(ARMCPU *cpu)
390 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
391 * Note that we require cpreg_tuples[] to be sorted by key ID.
393 GList *keys;
394 int arraylen;
396 keys = g_hash_table_get_keys(cpu->cp_regs);
397 keys = g_list_sort(keys, cpreg_key_compare);
399 cpu->cpreg_array_len = 0;
401 g_list_foreach(keys, count_cpreg, cpu);
403 arraylen = cpu->cpreg_array_len;
404 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
405 cpu->cpreg_values = g_new(uint64_t, arraylen);
406 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
407 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
408 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
409 cpu->cpreg_array_len = 0;
411 g_list_foreach(keys, add_cpreg_to_list, cpu);
413 assert(cpu->cpreg_array_len == arraylen);
415 g_list_free(keys);
419 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
420 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
422 * access_el3_aa32ns: Used to check AArch32 register views.
423 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
425 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
426 const ARMCPRegInfo *ri,
427 bool isread)
429 bool secure = arm_is_secure_below_el3(env);
431 assert(!arm_el_is_aa64(env, 3));
432 if (secure) {
433 return CP_ACCESS_TRAP_UNCATEGORIZED;
435 return CP_ACCESS_OK;
438 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
439 const ARMCPRegInfo *ri,
440 bool isread)
442 if (!arm_el_is_aa64(env, 3)) {
443 return access_el3_aa32ns(env, ri, isread);
445 return CP_ACCESS_OK;
448 /* Some secure-only AArch32 registers trap to EL3 if used from
449 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
450 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
451 * We assume that the .access field is set to PL1_RW.
453 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
454 const ARMCPRegInfo *ri,
455 bool isread)
457 if (arm_current_el(env) == 3) {
458 return CP_ACCESS_OK;
460 if (arm_is_secure_below_el3(env)) {
461 return CP_ACCESS_TRAP_EL3;
463 /* This will be EL1 NS and EL2 NS, which just UNDEF */
464 return CP_ACCESS_TRAP_UNCATEGORIZED;
467 /* Check for traps to "powerdown debug" registers, which are controlled
468 * by MDCR.TDOSA
470 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
471 bool isread)
473 int el = arm_current_el(env);
474 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
475 (env->cp15.mdcr_el2 & MDCR_TDE) ||
476 (arm_hcr_el2_eff(env) & HCR_TGE);
478 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
479 return CP_ACCESS_TRAP_EL2;
481 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
482 return CP_ACCESS_TRAP_EL3;
484 return CP_ACCESS_OK;
487 /* Check for traps to "debug ROM" registers, which are controlled
488 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
490 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
491 bool isread)
493 int el = arm_current_el(env);
494 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
495 (env->cp15.mdcr_el2 & MDCR_TDE) ||
496 (arm_hcr_el2_eff(env) & HCR_TGE);
498 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
499 return CP_ACCESS_TRAP_EL2;
501 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
502 return CP_ACCESS_TRAP_EL3;
504 return CP_ACCESS_OK;
507 /* Check for traps to general debug registers, which are controlled
508 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
510 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
511 bool isread)
513 int el = arm_current_el(env);
514 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
515 (env->cp15.mdcr_el2 & MDCR_TDE) ||
516 (arm_hcr_el2_eff(env) & HCR_TGE);
518 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
519 return CP_ACCESS_TRAP_EL2;
521 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
522 return CP_ACCESS_TRAP_EL3;
524 return CP_ACCESS_OK;
527 /* Check for traps to performance monitor registers, which are controlled
528 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
530 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
531 bool isread)
533 int el = arm_current_el(env);
535 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
536 && !arm_is_secure_below_el3(env)) {
537 return CP_ACCESS_TRAP_EL2;
539 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
540 return CP_ACCESS_TRAP_EL3;
542 return CP_ACCESS_OK;
545 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
547 ARMCPU *cpu = arm_env_get_cpu(env);
549 raw_write(env, ri, value);
550 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
553 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
555 ARMCPU *cpu = arm_env_get_cpu(env);
557 if (raw_read(env, ri) != value) {
558 /* Unlike real hardware the qemu TLB uses virtual addresses,
559 * not modified virtual addresses, so this causes a TLB flush.
561 tlb_flush(CPU(cpu));
562 raw_write(env, ri, value);
566 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
567 uint64_t value)
569 ARMCPU *cpu = arm_env_get_cpu(env);
571 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
572 && !extended_addresses_enabled(env)) {
573 /* For VMSA (when not using the LPAE long descriptor page table
574 * format) this register includes the ASID, so do a TLB flush.
575 * For PMSA it is purely a process ID and no action is needed.
577 tlb_flush(CPU(cpu));
579 raw_write(env, ri, value);
582 /* IS variants of TLB operations must affect all cores */
583 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
584 uint64_t value)
586 CPUState *cs = ENV_GET_CPU(env);
588 tlb_flush_all_cpus_synced(cs);
591 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
592 uint64_t value)
594 CPUState *cs = ENV_GET_CPU(env);
596 tlb_flush_all_cpus_synced(cs);
599 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
600 uint64_t value)
602 CPUState *cs = ENV_GET_CPU(env);
604 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
607 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
608 uint64_t value)
610 CPUState *cs = ENV_GET_CPU(env);
612 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
616 * Non-IS variants of TLB operations are upgraded to
617 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
618 * force broadcast of these operations.
620 static bool tlb_force_broadcast(CPUARMState *env)
622 return (env->cp15.hcr_el2 & HCR_FB) &&
623 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
626 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
627 uint64_t value)
629 /* Invalidate all (TLBIALL) */
630 ARMCPU *cpu = arm_env_get_cpu(env);
632 if (tlb_force_broadcast(env)) {
633 tlbiall_is_write(env, NULL, value);
634 return;
637 tlb_flush(CPU(cpu));
640 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
641 uint64_t value)
643 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
644 ARMCPU *cpu = arm_env_get_cpu(env);
646 if (tlb_force_broadcast(env)) {
647 tlbimva_is_write(env, NULL, value);
648 return;
651 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
654 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
655 uint64_t value)
657 /* Invalidate by ASID (TLBIASID) */
658 ARMCPU *cpu = arm_env_get_cpu(env);
660 if (tlb_force_broadcast(env)) {
661 tlbiasid_is_write(env, NULL, value);
662 return;
665 tlb_flush(CPU(cpu));
668 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
669 uint64_t value)
671 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
672 ARMCPU *cpu = arm_env_get_cpu(env);
674 if (tlb_force_broadcast(env)) {
675 tlbimvaa_is_write(env, NULL, value);
676 return;
679 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
682 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
683 uint64_t value)
685 CPUState *cs = ENV_GET_CPU(env);
687 tlb_flush_by_mmuidx(cs,
688 ARMMMUIdxBit_S12NSE1 |
689 ARMMMUIdxBit_S12NSE0 |
690 ARMMMUIdxBit_S2NS);
693 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
694 uint64_t value)
696 CPUState *cs = ENV_GET_CPU(env);
698 tlb_flush_by_mmuidx_all_cpus_synced(cs,
699 ARMMMUIdxBit_S12NSE1 |
700 ARMMMUIdxBit_S12NSE0 |
701 ARMMMUIdxBit_S2NS);
704 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
705 uint64_t value)
707 /* Invalidate by IPA. This has to invalidate any structures that
708 * contain only stage 2 translation information, but does not need
709 * to apply to structures that contain combined stage 1 and stage 2
710 * translation information.
711 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
713 CPUState *cs = ENV_GET_CPU(env);
714 uint64_t pageaddr;
716 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
717 return;
720 pageaddr = sextract64(value << 12, 0, 40);
722 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
725 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
726 uint64_t value)
728 CPUState *cs = ENV_GET_CPU(env);
729 uint64_t pageaddr;
731 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
732 return;
735 pageaddr = sextract64(value << 12, 0, 40);
737 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
738 ARMMMUIdxBit_S2NS);
741 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
742 uint64_t value)
744 CPUState *cs = ENV_GET_CPU(env);
746 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
749 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
750 uint64_t value)
752 CPUState *cs = ENV_GET_CPU(env);
754 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
757 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
758 uint64_t value)
760 CPUState *cs = ENV_GET_CPU(env);
761 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
763 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
766 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
767 uint64_t value)
769 CPUState *cs = ENV_GET_CPU(env);
770 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
772 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
773 ARMMMUIdxBit_S1E2);
776 static const ARMCPRegInfo cp_reginfo[] = {
777 /* Define the secure and non-secure FCSE identifier CP registers
778 * separately because there is no secure bank in V8 (no _EL3). This allows
779 * the secure register to be properly reset and migrated. There is also no
780 * v8 EL1 version of the register so the non-secure instance stands alone.
782 { .name = "FCSEIDR",
783 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
784 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
785 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
786 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
787 { .name = "FCSEIDR_S",
788 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
789 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
790 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
791 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
792 /* Define the secure and non-secure context identifier CP registers
793 * separately because there is no secure bank in V8 (no _EL3). This allows
794 * the secure register to be properly reset and migrated. In the
795 * non-secure case, the 32-bit register will have reset and migration
796 * disabled during registration as it is handled by the 64-bit instance.
798 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
799 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
800 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
801 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
802 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
803 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
804 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
805 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
806 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
807 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
808 REGINFO_SENTINEL
811 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
812 /* NB: Some of these registers exist in v8 but with more precise
813 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
815 /* MMU Domain access control / MPU write buffer control */
816 { .name = "DACR",
817 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
818 .access = PL1_RW, .resetvalue = 0,
819 .writefn = dacr_write, .raw_writefn = raw_write,
820 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
821 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
822 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
823 * For v6 and v5, these mappings are overly broad.
825 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
826 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
827 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
828 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
829 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
830 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
831 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
832 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
833 /* Cache maintenance ops; some of this space may be overridden later. */
834 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
835 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
836 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
837 REGINFO_SENTINEL
840 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
841 /* Not all pre-v6 cores implemented this WFI, so this is slightly
842 * over-broad.
844 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
845 .access = PL1_W, .type = ARM_CP_WFI },
846 REGINFO_SENTINEL
849 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
850 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
851 * is UNPREDICTABLE; we choose to NOP as most implementations do).
853 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
854 .access = PL1_W, .type = ARM_CP_WFI },
855 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
856 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
857 * OMAPCP will override this space.
859 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
860 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
861 .resetvalue = 0 },
862 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
863 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
864 .resetvalue = 0 },
865 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
866 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
867 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
868 .resetvalue = 0 },
869 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
870 * implementing it as RAZ means the "debug architecture version" bits
871 * will read as a reserved value, which should cause Linux to not try
872 * to use the debug hardware.
874 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
875 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
876 /* MMU TLB control. Note that the wildcarding means we cover not just
877 * the unified TLB ops but also the dside/iside/inner-shareable variants.
879 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
880 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
881 .type = ARM_CP_NO_RAW },
882 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
883 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
884 .type = ARM_CP_NO_RAW },
885 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
886 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
887 .type = ARM_CP_NO_RAW },
888 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
889 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
890 .type = ARM_CP_NO_RAW },
891 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
892 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
893 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
894 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
895 REGINFO_SENTINEL
898 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
899 uint64_t value)
901 uint32_t mask = 0;
903 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
904 if (!arm_feature(env, ARM_FEATURE_V8)) {
905 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
906 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
907 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
909 if (arm_feature(env, ARM_FEATURE_VFP)) {
910 /* VFP coprocessor: cp10 & cp11 [23:20] */
911 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
913 if (!arm_feature(env, ARM_FEATURE_NEON)) {
914 /* ASEDIS [31] bit is RAO/WI */
915 value |= (1 << 31);
918 /* VFPv3 and upwards with NEON implement 32 double precision
919 * registers (D0-D31).
921 if (!arm_feature(env, ARM_FEATURE_NEON) ||
922 !arm_feature(env, ARM_FEATURE_VFP3)) {
923 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
924 value |= (1 << 30);
927 value &= mask;
929 env->cp15.cpacr_el1 = value;
932 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
934 /* Call cpacr_write() so that we reset with the correct RAO bits set
935 * for our CPU features.
937 cpacr_write(env, ri, 0);
940 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
941 bool isread)
943 if (arm_feature(env, ARM_FEATURE_V8)) {
944 /* Check if CPACR accesses are to be trapped to EL2 */
945 if (arm_current_el(env) == 1 &&
946 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
947 return CP_ACCESS_TRAP_EL2;
948 /* Check if CPACR accesses are to be trapped to EL3 */
949 } else if (arm_current_el(env) < 3 &&
950 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
951 return CP_ACCESS_TRAP_EL3;
955 return CP_ACCESS_OK;
958 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
959 bool isread)
961 /* Check if CPTR accesses are set to trap to EL3 */
962 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
963 return CP_ACCESS_TRAP_EL3;
966 return CP_ACCESS_OK;
969 static const ARMCPRegInfo v6_cp_reginfo[] = {
970 /* prefetch by MVA in v6, NOP in v7 */
971 { .name = "MVA_prefetch",
972 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
973 .access = PL1_W, .type = ARM_CP_NOP },
974 /* We need to break the TB after ISB to execute self-modifying code
975 * correctly and also to take any pending interrupts immediately.
976 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
978 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
979 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
980 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
981 .access = PL0_W, .type = ARM_CP_NOP },
982 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
983 .access = PL0_W, .type = ARM_CP_NOP },
984 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
985 .access = PL1_RW,
986 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
987 offsetof(CPUARMState, cp15.ifar_ns) },
988 .resetvalue = 0, },
989 /* Watchpoint Fault Address Register : should actually only be present
990 * for 1136, 1176, 11MPCore.
992 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
993 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
994 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
995 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
996 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
997 .resetfn = cpacr_reset, .writefn = cpacr_write },
998 REGINFO_SENTINEL
1001 /* Definitions for the PMU registers */
1002 #define PMCRN_MASK 0xf800
1003 #define PMCRN_SHIFT 11
1004 #define PMCRLC 0x40
1005 #define PMCRDP 0x10
1006 #define PMCRD 0x8
1007 #define PMCRC 0x4
1008 #define PMCRP 0x2
1009 #define PMCRE 0x1
1011 #define PMXEVTYPER_P 0x80000000
1012 #define PMXEVTYPER_U 0x40000000
1013 #define PMXEVTYPER_NSK 0x20000000
1014 #define PMXEVTYPER_NSU 0x10000000
1015 #define PMXEVTYPER_NSH 0x08000000
1016 #define PMXEVTYPER_M 0x04000000
1017 #define PMXEVTYPER_MT 0x02000000
1018 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1019 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1020 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1021 PMXEVTYPER_M | PMXEVTYPER_MT | \
1022 PMXEVTYPER_EVTCOUNT)
1024 #define PMCCFILTR 0xf8000000
1025 #define PMCCFILTR_M PMXEVTYPER_M
1026 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1028 static inline uint32_t pmu_num_counters(CPUARMState *env)
1030 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1033 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1034 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1036 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1039 typedef struct pm_event {
1040 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1041 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1042 bool (*supported)(CPUARMState *);
1044 * Retrieve the current count of the underlying event. The programmed
1045 * counters hold a difference from the return value from this function
1047 uint64_t (*get_count)(CPUARMState *);
1049 * Return how many nanoseconds it will take (at a minimum) for count events
1050 * to occur. A negative value indicates the counter will never overflow, or
1051 * that the counter has otherwise arranged for the overflow bit to be set
1052 * and the PMU interrupt to be raised on overflow.
1054 int64_t (*ns_per_count)(uint64_t);
1055 } pm_event;
1057 static bool event_always_supported(CPUARMState *env)
1059 return true;
1062 static uint64_t swinc_get_count(CPUARMState *env)
1065 * SW_INCR events are written directly to the pmevcntr's by writes to
1066 * PMSWINC, so there is no underlying count maintained by the PMU itself
1068 return 0;
1071 static int64_t swinc_ns_per(uint64_t ignored)
1073 return -1;
1077 * Return the underlying cycle count for the PMU cycle counters. If we're in
1078 * usermode, simply return 0.
1080 static uint64_t cycles_get_count(CPUARMState *env)
1082 #ifndef CONFIG_USER_ONLY
1083 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1084 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1085 #else
1086 return cpu_get_host_ticks();
1087 #endif
1090 #ifndef CONFIG_USER_ONLY
1091 static int64_t cycles_ns_per(uint64_t cycles)
1093 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1096 static bool instructions_supported(CPUARMState *env)
1098 return use_icount == 1 /* Precise instruction counting */;
1101 static uint64_t instructions_get_count(CPUARMState *env)
1103 return (uint64_t)cpu_get_icount_raw();
1106 static int64_t instructions_ns_per(uint64_t icount)
1108 return cpu_icount_to_ns((int64_t)icount);
1110 #endif
1112 static const pm_event pm_events[] = {
1113 { .number = 0x000, /* SW_INCR */
1114 .supported = event_always_supported,
1115 .get_count = swinc_get_count,
1116 .ns_per_count = swinc_ns_per,
1118 #ifndef CONFIG_USER_ONLY
1119 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1120 .supported = instructions_supported,
1121 .get_count = instructions_get_count,
1122 .ns_per_count = instructions_ns_per,
1124 { .number = 0x011, /* CPU_CYCLES, Cycle */
1125 .supported = event_always_supported,
1126 .get_count = cycles_get_count,
1127 .ns_per_count = cycles_ns_per,
1129 #endif
1133 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1134 * events (i.e. the statistical profiling extension), this implementation
1135 * should first be updated to something sparse instead of the current
1136 * supported_event_map[] array.
1138 #define MAX_EVENT_ID 0x11
1139 #define UNSUPPORTED_EVENT UINT16_MAX
1140 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1143 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1144 * of ARM event numbers to indices in our pm_events array.
1146 * Note: Events in the 0x40XX range are not currently supported.
1148 void pmu_init(ARMCPU *cpu)
1150 unsigned int i;
1153 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1154 * events to them
1156 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1157 supported_event_map[i] = UNSUPPORTED_EVENT;
1159 cpu->pmceid0 = 0;
1160 cpu->pmceid1 = 0;
1162 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1163 const pm_event *cnt = &pm_events[i];
1164 assert(cnt->number <= MAX_EVENT_ID);
1165 /* We do not currently support events in the 0x40xx range */
1166 assert(cnt->number <= 0x3f);
1168 if (cnt->supported(&cpu->env)) {
1169 supported_event_map[cnt->number] = i;
1170 uint64_t event_mask = 1 << (cnt->number & 0x1f);
1171 if (cnt->number & 0x20) {
1172 cpu->pmceid1 |= event_mask;
1173 } else {
1174 cpu->pmceid0 |= event_mask;
1181 * Check at runtime whether a PMU event is supported for the current machine
1183 static bool event_supported(uint16_t number)
1185 if (number > MAX_EVENT_ID) {
1186 return false;
1188 return supported_event_map[number] != UNSUPPORTED_EVENT;
1191 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1192 bool isread)
1194 /* Performance monitor registers user accessibility is controlled
1195 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1196 * trapping to EL2 or EL3 for other accesses.
1198 int el = arm_current_el(env);
1200 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1201 return CP_ACCESS_TRAP;
1203 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1204 && !arm_is_secure_below_el3(env)) {
1205 return CP_ACCESS_TRAP_EL2;
1207 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1208 return CP_ACCESS_TRAP_EL3;
1211 return CP_ACCESS_OK;
1214 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1215 const ARMCPRegInfo *ri,
1216 bool isread)
1218 /* ER: event counter read trap control */
1219 if (arm_feature(env, ARM_FEATURE_V8)
1220 && arm_current_el(env) == 0
1221 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1222 && isread) {
1223 return CP_ACCESS_OK;
1226 return pmreg_access(env, ri, isread);
1229 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1230 const ARMCPRegInfo *ri,
1231 bool isread)
1233 /* SW: software increment write trap control */
1234 if (arm_feature(env, ARM_FEATURE_V8)
1235 && arm_current_el(env) == 0
1236 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1237 && !isread) {
1238 return CP_ACCESS_OK;
1241 return pmreg_access(env, ri, isread);
1244 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1245 const ARMCPRegInfo *ri,
1246 bool isread)
1248 /* ER: event counter read trap control */
1249 if (arm_feature(env, ARM_FEATURE_V8)
1250 && arm_current_el(env) == 0
1251 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1252 return CP_ACCESS_OK;
1255 return pmreg_access(env, ri, isread);
1258 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1259 const ARMCPRegInfo *ri,
1260 bool isread)
1262 /* CR: cycle counter read trap control */
1263 if (arm_feature(env, ARM_FEATURE_V8)
1264 && arm_current_el(env) == 0
1265 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1266 && isread) {
1267 return CP_ACCESS_OK;
1270 return pmreg_access(env, ri, isread);
1273 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1274 * the current EL, security state, and register configuration.
1276 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1278 uint64_t filter;
1279 bool e, p, u, nsk, nsu, nsh, m;
1280 bool enabled, prohibited, filtered;
1281 bool secure = arm_is_secure(env);
1282 int el = arm_current_el(env);
1283 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1285 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1286 (counter < hpmn || counter == 31)) {
1287 e = env->cp15.c9_pmcr & PMCRE;
1288 } else {
1289 e = env->cp15.mdcr_el2 & MDCR_HPME;
1291 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1293 if (!secure) {
1294 if (el == 2 && (counter < hpmn || counter == 31)) {
1295 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1296 } else {
1297 prohibited = false;
1299 } else {
1300 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1301 (env->cp15.mdcr_el3 & MDCR_SPME);
1304 if (prohibited && counter == 31) {
1305 prohibited = env->cp15.c9_pmcr & PMCRDP;
1308 if (counter == 31) {
1309 filter = env->cp15.pmccfiltr_el0;
1310 } else {
1311 filter = env->cp15.c14_pmevtyper[counter];
1314 p = filter & PMXEVTYPER_P;
1315 u = filter & PMXEVTYPER_U;
1316 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1317 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1318 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1319 m = arm_el_is_aa64(env, 1) &&
1320 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1322 if (el == 0) {
1323 filtered = secure ? u : u != nsu;
1324 } else if (el == 1) {
1325 filtered = secure ? p : p != nsk;
1326 } else if (el == 2) {
1327 filtered = !nsh;
1328 } else { /* EL3 */
1329 filtered = m != p;
1332 if (counter != 31) {
1334 * If not checking PMCCNTR, ensure the counter is setup to an event we
1335 * support
1337 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1338 if (!event_supported(event)) {
1339 return false;
1343 return enabled && !prohibited && !filtered;
1346 static void pmu_update_irq(CPUARMState *env)
1348 ARMCPU *cpu = arm_env_get_cpu(env);
1349 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1350 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1354 * Ensure c15_ccnt is the guest-visible count so that operations such as
1355 * enabling/disabling the counter or filtering, modifying the count itself,
1356 * etc. can be done logically. This is essentially a no-op if the counter is
1357 * not enabled at the time of the call.
1359 void pmccntr_op_start(CPUARMState *env)
1361 uint64_t cycles = cycles_get_count(env);
1363 if (pmu_counter_enabled(env, 31)) {
1364 uint64_t eff_cycles = cycles;
1365 if (env->cp15.c9_pmcr & PMCRD) {
1366 /* Increment once every 64 processor clock cycles */
1367 eff_cycles /= 64;
1370 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1372 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1373 1ull << 63 : 1ull << 31;
1374 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1375 env->cp15.c9_pmovsr |= (1 << 31);
1376 pmu_update_irq(env);
1379 env->cp15.c15_ccnt = new_pmccntr;
1381 env->cp15.c15_ccnt_delta = cycles;
1385 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1386 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1387 * pmccntr_op_start.
1389 void pmccntr_op_finish(CPUARMState *env)
1391 if (pmu_counter_enabled(env, 31)) {
1392 #ifndef CONFIG_USER_ONLY
1393 /* Calculate when the counter will next overflow */
1394 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1395 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1396 remaining_cycles = (uint32_t)remaining_cycles;
1398 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1400 if (overflow_in > 0) {
1401 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1402 overflow_in;
1403 ARMCPU *cpu = arm_env_get_cpu(env);
1404 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1406 #endif
1408 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1409 if (env->cp15.c9_pmcr & PMCRD) {
1410 /* Increment once every 64 processor clock cycles */
1411 prev_cycles /= 64;
1413 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1417 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1420 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1421 uint64_t count = 0;
1422 if (event_supported(event)) {
1423 uint16_t event_idx = supported_event_map[event];
1424 count = pm_events[event_idx].get_count(env);
1427 if (pmu_counter_enabled(env, counter)) {
1428 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1430 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1431 env->cp15.c9_pmovsr |= (1 << counter);
1432 pmu_update_irq(env);
1434 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1436 env->cp15.c14_pmevcntr_delta[counter] = count;
1439 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1441 if (pmu_counter_enabled(env, counter)) {
1442 #ifndef CONFIG_USER_ONLY
1443 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1444 uint16_t event_idx = supported_event_map[event];
1445 uint64_t delta = UINT32_MAX -
1446 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1447 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1449 if (overflow_in > 0) {
1450 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1451 overflow_in;
1452 ARMCPU *cpu = arm_env_get_cpu(env);
1453 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1455 #endif
1457 env->cp15.c14_pmevcntr_delta[counter] -=
1458 env->cp15.c14_pmevcntr[counter];
1462 void pmu_op_start(CPUARMState *env)
1464 unsigned int i;
1465 pmccntr_op_start(env);
1466 for (i = 0; i < pmu_num_counters(env); i++) {
1467 pmevcntr_op_start(env, i);
1471 void pmu_op_finish(CPUARMState *env)
1473 unsigned int i;
1474 pmccntr_op_finish(env);
1475 for (i = 0; i < pmu_num_counters(env); i++) {
1476 pmevcntr_op_finish(env, i);
1480 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1482 pmu_op_start(&cpu->env);
1485 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1487 pmu_op_finish(&cpu->env);
1490 void arm_pmu_timer_cb(void *opaque)
1492 ARMCPU *cpu = opaque;
1495 * Update all the counter values based on the current underlying counts,
1496 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1497 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1498 * counter may expire.
1500 pmu_op_start(&cpu->env);
1501 pmu_op_finish(&cpu->env);
1504 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1505 uint64_t value)
1507 pmu_op_start(env);
1509 if (value & PMCRC) {
1510 /* The counter has been reset */
1511 env->cp15.c15_ccnt = 0;
1514 if (value & PMCRP) {
1515 unsigned int i;
1516 for (i = 0; i < pmu_num_counters(env); i++) {
1517 env->cp15.c14_pmevcntr[i] = 0;
1521 /* only the DP, X, D and E bits are writable */
1522 env->cp15.c9_pmcr &= ~0x39;
1523 env->cp15.c9_pmcr |= (value & 0x39);
1525 pmu_op_finish(env);
1528 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1529 uint64_t value)
1531 unsigned int i;
1532 for (i = 0; i < pmu_num_counters(env); i++) {
1533 /* Increment a counter's count iff: */
1534 if ((value & (1 << i)) && /* counter's bit is set */
1535 /* counter is enabled and not filtered */
1536 pmu_counter_enabled(env, i) &&
1537 /* counter is SW_INCR */
1538 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1539 pmevcntr_op_start(env, i);
1542 * Detect if this write causes an overflow since we can't predict
1543 * PMSWINC overflows like we can for other events
1545 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1547 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1548 env->cp15.c9_pmovsr |= (1 << i);
1549 pmu_update_irq(env);
1552 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1554 pmevcntr_op_finish(env, i);
1559 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1561 uint64_t ret;
1562 pmccntr_op_start(env);
1563 ret = env->cp15.c15_ccnt;
1564 pmccntr_op_finish(env);
1565 return ret;
1568 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1569 uint64_t value)
1571 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1572 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1573 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1574 * accessed.
1576 env->cp15.c9_pmselr = value & 0x1f;
1579 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1580 uint64_t value)
1582 pmccntr_op_start(env);
1583 env->cp15.c15_ccnt = value;
1584 pmccntr_op_finish(env);
1587 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1588 uint64_t value)
1590 uint64_t cur_val = pmccntr_read(env, NULL);
1592 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1595 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1596 uint64_t value)
1598 pmccntr_op_start(env);
1599 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1600 pmccntr_op_finish(env);
1603 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1604 uint64_t value)
1606 pmccntr_op_start(env);
1607 /* M is not accessible from AArch32 */
1608 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1609 (value & PMCCFILTR);
1610 pmccntr_op_finish(env);
1613 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1615 /* M is not visible in AArch32 */
1616 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1619 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1620 uint64_t value)
1622 value &= pmu_counter_mask(env);
1623 env->cp15.c9_pmcnten |= value;
1626 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1627 uint64_t value)
1629 value &= pmu_counter_mask(env);
1630 env->cp15.c9_pmcnten &= ~value;
1633 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1634 uint64_t value)
1636 value &= pmu_counter_mask(env);
1637 env->cp15.c9_pmovsr &= ~value;
1638 pmu_update_irq(env);
1641 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1642 uint64_t value)
1644 value &= pmu_counter_mask(env);
1645 env->cp15.c9_pmovsr |= value;
1646 pmu_update_irq(env);
1649 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1650 uint64_t value, const uint8_t counter)
1652 if (counter == 31) {
1653 pmccfiltr_write(env, ri, value);
1654 } else if (counter < pmu_num_counters(env)) {
1655 pmevcntr_op_start(env, counter);
1658 * If this counter's event type is changing, store the current
1659 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1660 * pmevcntr_op_finish has the correct baseline when it converts back to
1661 * a delta.
1663 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1664 PMXEVTYPER_EVTCOUNT;
1665 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1666 if (old_event != new_event) {
1667 uint64_t count = 0;
1668 if (event_supported(new_event)) {
1669 uint16_t event_idx = supported_event_map[new_event];
1670 count = pm_events[event_idx].get_count(env);
1672 env->cp15.c14_pmevcntr_delta[counter] = count;
1675 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1676 pmevcntr_op_finish(env, counter);
1678 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1679 * PMSELR value is equal to or greater than the number of implemented
1680 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1684 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1685 const uint8_t counter)
1687 if (counter == 31) {
1688 return env->cp15.pmccfiltr_el0;
1689 } else if (counter < pmu_num_counters(env)) {
1690 return env->cp15.c14_pmevtyper[counter];
1691 } else {
1693 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1694 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1696 return 0;
1700 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1701 uint64_t value)
1703 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1704 pmevtyper_write(env, ri, value, counter);
1707 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1708 uint64_t value)
1710 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1711 env->cp15.c14_pmevtyper[counter] = value;
1714 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1715 * pmu_op_finish calls when loading saved state for a migration. Because
1716 * we're potentially updating the type of event here, the value written to
1717 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1718 * different counter type. Therefore, we need to set this value to the
1719 * current count for the counter type we're writing so that pmu_op_finish
1720 * has the correct count for its calculation.
1722 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1723 if (event_supported(event)) {
1724 uint16_t event_idx = supported_event_map[event];
1725 env->cp15.c14_pmevcntr_delta[counter] =
1726 pm_events[event_idx].get_count(env);
1730 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1732 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1733 return pmevtyper_read(env, ri, counter);
1736 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1737 uint64_t value)
1739 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1742 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1744 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1747 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1748 uint64_t value, uint8_t counter)
1750 if (counter < pmu_num_counters(env)) {
1751 pmevcntr_op_start(env, counter);
1752 env->cp15.c14_pmevcntr[counter] = value;
1753 pmevcntr_op_finish(env, counter);
1756 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1757 * are CONSTRAINED UNPREDICTABLE.
1761 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1762 uint8_t counter)
1764 if (counter < pmu_num_counters(env)) {
1765 uint64_t ret;
1766 pmevcntr_op_start(env, counter);
1767 ret = env->cp15.c14_pmevcntr[counter];
1768 pmevcntr_op_finish(env, counter);
1769 return ret;
1770 } else {
1771 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1772 * are CONSTRAINED UNPREDICTABLE. */
1773 return 0;
1777 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1778 uint64_t value)
1780 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1781 pmevcntr_write(env, ri, value, counter);
1784 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1786 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1787 return pmevcntr_read(env, ri, counter);
1790 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1791 uint64_t value)
1793 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1794 assert(counter < pmu_num_counters(env));
1795 env->cp15.c14_pmevcntr[counter] = value;
1796 pmevcntr_write(env, ri, value, counter);
1799 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1801 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1802 assert(counter < pmu_num_counters(env));
1803 return env->cp15.c14_pmevcntr[counter];
1806 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807 uint64_t value)
1809 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1812 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1814 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1817 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1818 uint64_t value)
1820 if (arm_feature(env, ARM_FEATURE_V8)) {
1821 env->cp15.c9_pmuserenr = value & 0xf;
1822 } else {
1823 env->cp15.c9_pmuserenr = value & 1;
1827 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1828 uint64_t value)
1830 /* We have no event counters so only the C bit can be changed */
1831 value &= pmu_counter_mask(env);
1832 env->cp15.c9_pminten |= value;
1833 pmu_update_irq(env);
1836 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1837 uint64_t value)
1839 value &= pmu_counter_mask(env);
1840 env->cp15.c9_pminten &= ~value;
1841 pmu_update_irq(env);
1844 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1845 uint64_t value)
1847 /* Note that even though the AArch64 view of this register has bits
1848 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1849 * architectural requirements for bits which are RES0 only in some
1850 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1851 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1853 raw_write(env, ri, value & ~0x1FULL);
1856 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1858 /* Begin with base v8.0 state. */
1859 uint32_t valid_mask = 0x3fff;
1860 ARMCPU *cpu = arm_env_get_cpu(env);
1862 if (arm_el_is_aa64(env, 3)) {
1863 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1864 valid_mask &= ~SCR_NET;
1865 } else {
1866 valid_mask &= ~(SCR_RW | SCR_ST);
1869 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1870 valid_mask &= ~SCR_HCE;
1872 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1873 * supported if EL2 exists. The bit is UNK/SBZP when
1874 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1875 * when EL2 is unavailable.
1876 * On ARMv8, this bit is always available.
1878 if (arm_feature(env, ARM_FEATURE_V7) &&
1879 !arm_feature(env, ARM_FEATURE_V8)) {
1880 valid_mask &= ~SCR_SMD;
1883 if (cpu_isar_feature(aa64_lor, cpu)) {
1884 valid_mask |= SCR_TLOR;
1886 if (cpu_isar_feature(aa64_pauth, cpu)) {
1887 valid_mask |= SCR_API | SCR_APK;
1890 /* Clear all-context RES0 bits. */
1891 value &= valid_mask;
1892 raw_write(env, ri, value);
1895 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1897 ARMCPU *cpu = arm_env_get_cpu(env);
1899 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1900 * bank
1902 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1903 ri->secure & ARM_CP_SECSTATE_S);
1905 return cpu->ccsidr[index];
1908 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1909 uint64_t value)
1911 raw_write(env, ri, value & 0xf);
1914 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1916 CPUState *cs = ENV_GET_CPU(env);
1917 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1918 uint64_t ret = 0;
1920 if (hcr_el2 & HCR_IMO) {
1921 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1922 ret |= CPSR_I;
1924 } else {
1925 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1926 ret |= CPSR_I;
1930 if (hcr_el2 & HCR_FMO) {
1931 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1932 ret |= CPSR_F;
1934 } else {
1935 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1936 ret |= CPSR_F;
1940 /* External aborts are not possible in QEMU so A bit is always clear */
1941 return ret;
1944 static const ARMCPRegInfo v7_cp_reginfo[] = {
1945 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1946 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1947 .access = PL1_W, .type = ARM_CP_NOP },
1948 /* Performance monitors are implementation defined in v7,
1949 * but with an ARM recommended set of registers, which we
1950 * follow.
1952 * Performance registers fall into three categories:
1953 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1954 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1955 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1956 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1957 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1959 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1960 .access = PL0_RW, .type = ARM_CP_ALIAS,
1961 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1962 .writefn = pmcntenset_write,
1963 .accessfn = pmreg_access,
1964 .raw_writefn = raw_write },
1965 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1966 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1967 .access = PL0_RW, .accessfn = pmreg_access,
1968 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1969 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1970 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1971 .access = PL0_RW,
1972 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1973 .accessfn = pmreg_access,
1974 .writefn = pmcntenclr_write,
1975 .type = ARM_CP_ALIAS },
1976 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1977 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1978 .access = PL0_RW, .accessfn = pmreg_access,
1979 .type = ARM_CP_ALIAS,
1980 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1981 .writefn = pmcntenclr_write },
1982 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1983 .access = PL0_RW, .type = ARM_CP_IO,
1984 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1985 .accessfn = pmreg_access,
1986 .writefn = pmovsr_write,
1987 .raw_writefn = raw_write },
1988 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1989 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1990 .access = PL0_RW, .accessfn = pmreg_access,
1991 .type = ARM_CP_ALIAS | ARM_CP_IO,
1992 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1993 .writefn = pmovsr_write,
1994 .raw_writefn = raw_write },
1995 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1996 .access = PL0_W, .accessfn = pmreg_access_swinc,
1997 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1998 .writefn = pmswinc_write },
1999 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2000 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2001 .access = PL0_W, .accessfn = pmreg_access_swinc,
2002 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2003 .writefn = pmswinc_write },
2004 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2005 .access = PL0_RW, .type = ARM_CP_ALIAS,
2006 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2007 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2008 .raw_writefn = raw_write},
2009 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2010 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2011 .access = PL0_RW, .accessfn = pmreg_access_selr,
2012 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2013 .writefn = pmselr_write, .raw_writefn = raw_write, },
2014 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2015 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2016 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2017 .accessfn = pmreg_access_ccntr },
2018 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2019 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2020 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2021 .type = ARM_CP_IO,
2022 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2023 .readfn = pmccntr_read, .writefn = pmccntr_write,
2024 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2025 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2026 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2027 .access = PL0_RW, .accessfn = pmreg_access,
2028 .type = ARM_CP_ALIAS | ARM_CP_IO,
2029 .resetvalue = 0, },
2030 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2031 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2032 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2033 .access = PL0_RW, .accessfn = pmreg_access,
2034 .type = ARM_CP_IO,
2035 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2036 .resetvalue = 0, },
2037 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2038 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2039 .accessfn = pmreg_access,
2040 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2041 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2042 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2043 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2044 .accessfn = pmreg_access,
2045 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2046 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2047 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2048 .accessfn = pmreg_access_xevcntr,
2049 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2050 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2051 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2052 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2053 .accessfn = pmreg_access_xevcntr,
2054 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2055 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2056 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2057 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2058 .resetvalue = 0,
2059 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2060 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2061 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2062 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2063 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2064 .resetvalue = 0,
2065 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2066 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2067 .access = PL1_RW, .accessfn = access_tpm,
2068 .type = ARM_CP_ALIAS | ARM_CP_IO,
2069 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2070 .resetvalue = 0,
2071 .writefn = pmintenset_write, .raw_writefn = raw_write },
2072 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2073 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2074 .access = PL1_RW, .accessfn = access_tpm,
2075 .type = ARM_CP_IO,
2076 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2077 .writefn = pmintenset_write, .raw_writefn = raw_write,
2078 .resetvalue = 0x0 },
2079 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2080 .access = PL1_RW, .accessfn = access_tpm,
2081 .type = ARM_CP_ALIAS | ARM_CP_IO,
2082 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2083 .writefn = pmintenclr_write, },
2084 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2085 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2086 .access = PL1_RW, .accessfn = access_tpm,
2087 .type = ARM_CP_ALIAS | ARM_CP_IO,
2088 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2089 .writefn = pmintenclr_write },
2090 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2091 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2092 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2093 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2094 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2095 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2096 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2097 offsetof(CPUARMState, cp15.csselr_ns) } },
2098 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2099 * just RAZ for all cores:
2101 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2102 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2103 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2104 /* Auxiliary fault status registers: these also are IMPDEF, and we
2105 * choose to RAZ/WI for all cores.
2107 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2108 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2109 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2110 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2111 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2112 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2113 /* MAIR can just read-as-written because we don't implement caches
2114 * and so don't need to care about memory attributes.
2116 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2117 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2118 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2119 .resetvalue = 0 },
2120 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2121 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2122 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2123 .resetvalue = 0 },
2124 /* For non-long-descriptor page tables these are PRRR and NMRR;
2125 * regardless they still act as reads-as-written for QEMU.
2127 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2128 * allows them to assign the correct fieldoffset based on the endianness
2129 * handled in the field definitions.
2131 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2132 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2133 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2134 offsetof(CPUARMState, cp15.mair0_ns) },
2135 .resetfn = arm_cp_reset_ignore },
2136 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2137 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2138 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2139 offsetof(CPUARMState, cp15.mair1_ns) },
2140 .resetfn = arm_cp_reset_ignore },
2141 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2142 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2143 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2144 /* 32 bit ITLB invalidates */
2145 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2146 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2147 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2148 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2149 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2150 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2151 /* 32 bit DTLB invalidates */
2152 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2153 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2154 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2155 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2156 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2157 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2158 /* 32 bit TLB invalidates */
2159 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2160 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2161 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2162 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2163 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2164 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2165 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2166 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2167 REGINFO_SENTINEL
2170 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2171 /* 32 bit TLB invalidates, Inner Shareable */
2172 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2173 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2174 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2175 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2176 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2177 .type = ARM_CP_NO_RAW, .access = PL1_W,
2178 .writefn = tlbiasid_is_write },
2179 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2180 .type = ARM_CP_NO_RAW, .access = PL1_W,
2181 .writefn = tlbimvaa_is_write },
2182 REGINFO_SENTINEL
2185 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2186 /* PMOVSSET is not implemented in v7 before v7ve */
2187 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2188 .access = PL0_RW, .accessfn = pmreg_access,
2189 .type = ARM_CP_ALIAS | ARM_CP_IO,
2190 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2191 .writefn = pmovsset_write,
2192 .raw_writefn = raw_write },
2193 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2194 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2195 .access = PL0_RW, .accessfn = pmreg_access,
2196 .type = ARM_CP_ALIAS | ARM_CP_IO,
2197 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2198 .writefn = pmovsset_write,
2199 .raw_writefn = raw_write },
2200 REGINFO_SENTINEL
2203 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2204 uint64_t value)
2206 value &= 1;
2207 env->teecr = value;
2210 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2211 bool isread)
2213 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2214 return CP_ACCESS_TRAP;
2216 return CP_ACCESS_OK;
2219 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2220 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2221 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2222 .resetvalue = 0,
2223 .writefn = teecr_write },
2224 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2225 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2226 .accessfn = teehbr_access, .resetvalue = 0 },
2227 REGINFO_SENTINEL
2230 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2231 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2232 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2233 .access = PL0_RW,
2234 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2235 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2236 .access = PL0_RW,
2237 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2238 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2239 .resetfn = arm_cp_reset_ignore },
2240 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2241 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2242 .access = PL0_R|PL1_W,
2243 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2244 .resetvalue = 0},
2245 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2246 .access = PL0_R|PL1_W,
2247 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2248 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2249 .resetfn = arm_cp_reset_ignore },
2250 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2251 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2252 .access = PL1_RW,
2253 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2254 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2255 .access = PL1_RW,
2256 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2257 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2258 .resetvalue = 0 },
2259 REGINFO_SENTINEL
2262 #ifndef CONFIG_USER_ONLY
2264 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2265 bool isread)
2267 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2268 * Writable only at the highest implemented exception level.
2270 int el = arm_current_el(env);
2272 switch (el) {
2273 case 0:
2274 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2275 return CP_ACCESS_TRAP;
2277 break;
2278 case 1:
2279 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2280 arm_is_secure_below_el3(env)) {
2281 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2282 return CP_ACCESS_TRAP_UNCATEGORIZED;
2284 break;
2285 case 2:
2286 case 3:
2287 break;
2290 if (!isread && el < arm_highest_el(env)) {
2291 return CP_ACCESS_TRAP_UNCATEGORIZED;
2294 return CP_ACCESS_OK;
2297 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2298 bool isread)
2300 unsigned int cur_el = arm_current_el(env);
2301 bool secure = arm_is_secure(env);
2303 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2304 if (cur_el == 0 &&
2305 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2306 return CP_ACCESS_TRAP;
2309 if (arm_feature(env, ARM_FEATURE_EL2) &&
2310 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2311 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2312 return CP_ACCESS_TRAP_EL2;
2314 return CP_ACCESS_OK;
2317 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2318 bool isread)
2320 unsigned int cur_el = arm_current_el(env);
2321 bool secure = arm_is_secure(env);
2323 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2324 * EL0[PV]TEN is zero.
2326 if (cur_el == 0 &&
2327 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2328 return CP_ACCESS_TRAP;
2331 if (arm_feature(env, ARM_FEATURE_EL2) &&
2332 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2333 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2334 return CP_ACCESS_TRAP_EL2;
2336 return CP_ACCESS_OK;
2339 static CPAccessResult gt_pct_access(CPUARMState *env,
2340 const ARMCPRegInfo *ri,
2341 bool isread)
2343 return gt_counter_access(env, GTIMER_PHYS, isread);
2346 static CPAccessResult gt_vct_access(CPUARMState *env,
2347 const ARMCPRegInfo *ri,
2348 bool isread)
2350 return gt_counter_access(env, GTIMER_VIRT, isread);
2353 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2354 bool isread)
2356 return gt_timer_access(env, GTIMER_PHYS, isread);
2359 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2360 bool isread)
2362 return gt_timer_access(env, GTIMER_VIRT, isread);
2365 static CPAccessResult gt_stimer_access(CPUARMState *env,
2366 const ARMCPRegInfo *ri,
2367 bool isread)
2369 /* The AArch64 register view of the secure physical timer is
2370 * always accessible from EL3, and configurably accessible from
2371 * Secure EL1.
2373 switch (arm_current_el(env)) {
2374 case 1:
2375 if (!arm_is_secure(env)) {
2376 return CP_ACCESS_TRAP;
2378 if (!(env->cp15.scr_el3 & SCR_ST)) {
2379 return CP_ACCESS_TRAP_EL3;
2381 return CP_ACCESS_OK;
2382 case 0:
2383 case 2:
2384 return CP_ACCESS_TRAP;
2385 case 3:
2386 return CP_ACCESS_OK;
2387 default:
2388 g_assert_not_reached();
2392 static uint64_t gt_get_countervalue(CPUARMState *env)
2394 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2397 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2399 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2401 if (gt->ctl & 1) {
2402 /* Timer enabled: calculate and set current ISTATUS, irq, and
2403 * reset timer to when ISTATUS next has to change
2405 uint64_t offset = timeridx == GTIMER_VIRT ?
2406 cpu->env.cp15.cntvoff_el2 : 0;
2407 uint64_t count = gt_get_countervalue(&cpu->env);
2408 /* Note that this must be unsigned 64 bit arithmetic: */
2409 int istatus = count - offset >= gt->cval;
2410 uint64_t nexttick;
2411 int irqstate;
2413 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2415 irqstate = (istatus && !(gt->ctl & 2));
2416 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2418 if (istatus) {
2419 /* Next transition is when count rolls back over to zero */
2420 nexttick = UINT64_MAX;
2421 } else {
2422 /* Next transition is when we hit cval */
2423 nexttick = gt->cval + offset;
2425 /* Note that the desired next expiry time might be beyond the
2426 * signed-64-bit range of a QEMUTimer -- in this case we just
2427 * set the timer for as far in the future as possible. When the
2428 * timer expires we will reset the timer for any remaining period.
2430 if (nexttick > INT64_MAX / GTIMER_SCALE) {
2431 nexttick = INT64_MAX / GTIMER_SCALE;
2433 timer_mod(cpu->gt_timer[timeridx], nexttick);
2434 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2435 } else {
2436 /* Timer disabled: ISTATUS and timer output always clear */
2437 gt->ctl &= ~4;
2438 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2439 timer_del(cpu->gt_timer[timeridx]);
2440 trace_arm_gt_recalc_disabled(timeridx);
2444 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2445 int timeridx)
2447 ARMCPU *cpu = arm_env_get_cpu(env);
2449 timer_del(cpu->gt_timer[timeridx]);
2452 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2454 return gt_get_countervalue(env);
2457 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2459 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2462 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2463 int timeridx,
2464 uint64_t value)
2466 trace_arm_gt_cval_write(timeridx, value);
2467 env->cp15.c14_timer[timeridx].cval = value;
2468 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2471 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2472 int timeridx)
2474 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2476 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2477 (gt_get_countervalue(env) - offset));
2480 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2481 int timeridx,
2482 uint64_t value)
2484 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2486 trace_arm_gt_tval_write(timeridx, value);
2487 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2488 sextract64(value, 0, 32);
2489 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2492 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2493 int timeridx,
2494 uint64_t value)
2496 ARMCPU *cpu = arm_env_get_cpu(env);
2497 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2499 trace_arm_gt_ctl_write(timeridx, value);
2500 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2501 if ((oldval ^ value) & 1) {
2502 /* Enable toggled */
2503 gt_recalc_timer(cpu, timeridx);
2504 } else if ((oldval ^ value) & 2) {
2505 /* IMASK toggled: don't need to recalculate,
2506 * just set the interrupt line based on ISTATUS
2508 int irqstate = (oldval & 4) && !(value & 2);
2510 trace_arm_gt_imask_toggle(timeridx, irqstate);
2511 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2515 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2517 gt_timer_reset(env, ri, GTIMER_PHYS);
2520 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2521 uint64_t value)
2523 gt_cval_write(env, ri, GTIMER_PHYS, value);
2526 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2528 return gt_tval_read(env, ri, GTIMER_PHYS);
2531 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2532 uint64_t value)
2534 gt_tval_write(env, ri, GTIMER_PHYS, value);
2537 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2538 uint64_t value)
2540 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2543 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2545 gt_timer_reset(env, ri, GTIMER_VIRT);
2548 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2549 uint64_t value)
2551 gt_cval_write(env, ri, GTIMER_VIRT, value);
2554 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2556 return gt_tval_read(env, ri, GTIMER_VIRT);
2559 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2560 uint64_t value)
2562 gt_tval_write(env, ri, GTIMER_VIRT, value);
2565 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2566 uint64_t value)
2568 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2571 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2572 uint64_t value)
2574 ARMCPU *cpu = arm_env_get_cpu(env);
2576 trace_arm_gt_cntvoff_write(value);
2577 raw_write(env, ri, value);
2578 gt_recalc_timer(cpu, GTIMER_VIRT);
2581 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2583 gt_timer_reset(env, ri, GTIMER_HYP);
2586 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2587 uint64_t value)
2589 gt_cval_write(env, ri, GTIMER_HYP, value);
2592 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2594 return gt_tval_read(env, ri, GTIMER_HYP);
2597 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2598 uint64_t value)
2600 gt_tval_write(env, ri, GTIMER_HYP, value);
2603 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2604 uint64_t value)
2606 gt_ctl_write(env, ri, GTIMER_HYP, value);
2609 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2611 gt_timer_reset(env, ri, GTIMER_SEC);
2614 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2615 uint64_t value)
2617 gt_cval_write(env, ri, GTIMER_SEC, value);
2620 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2622 return gt_tval_read(env, ri, GTIMER_SEC);
2625 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2626 uint64_t value)
2628 gt_tval_write(env, ri, GTIMER_SEC, value);
2631 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2632 uint64_t value)
2634 gt_ctl_write(env, ri, GTIMER_SEC, value);
2637 void arm_gt_ptimer_cb(void *opaque)
2639 ARMCPU *cpu = opaque;
2641 gt_recalc_timer(cpu, GTIMER_PHYS);
2644 void arm_gt_vtimer_cb(void *opaque)
2646 ARMCPU *cpu = opaque;
2648 gt_recalc_timer(cpu, GTIMER_VIRT);
2651 void arm_gt_htimer_cb(void *opaque)
2653 ARMCPU *cpu = opaque;
2655 gt_recalc_timer(cpu, GTIMER_HYP);
2658 void arm_gt_stimer_cb(void *opaque)
2660 ARMCPU *cpu = opaque;
2662 gt_recalc_timer(cpu, GTIMER_SEC);
2665 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2666 /* Note that CNTFRQ is purely reads-as-written for the benefit
2667 * of software; writing it doesn't actually change the timer frequency.
2668 * Our reset value matches the fixed frequency we implement the timer at.
2670 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2671 .type = ARM_CP_ALIAS,
2672 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2673 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2675 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2676 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2677 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2678 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2679 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2681 /* overall control: mostly access permissions */
2682 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2683 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2684 .access = PL1_RW,
2685 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2686 .resetvalue = 0,
2688 /* per-timer control */
2689 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2690 .secure = ARM_CP_SECSTATE_NS,
2691 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2692 .accessfn = gt_ptimer_access,
2693 .fieldoffset = offsetoflow32(CPUARMState,
2694 cp15.c14_timer[GTIMER_PHYS].ctl),
2695 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2697 { .name = "CNTP_CTL_S",
2698 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2699 .secure = ARM_CP_SECSTATE_S,
2700 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2701 .accessfn = gt_ptimer_access,
2702 .fieldoffset = offsetoflow32(CPUARMState,
2703 cp15.c14_timer[GTIMER_SEC].ctl),
2704 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2706 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2707 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2708 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2709 .accessfn = gt_ptimer_access,
2710 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2711 .resetvalue = 0,
2712 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2714 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2715 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2716 .accessfn = gt_vtimer_access,
2717 .fieldoffset = offsetoflow32(CPUARMState,
2718 cp15.c14_timer[GTIMER_VIRT].ctl),
2719 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2721 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2722 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2723 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2724 .accessfn = gt_vtimer_access,
2725 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2726 .resetvalue = 0,
2727 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2729 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2730 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2731 .secure = ARM_CP_SECSTATE_NS,
2732 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2733 .accessfn = gt_ptimer_access,
2734 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2736 { .name = "CNTP_TVAL_S",
2737 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2738 .secure = ARM_CP_SECSTATE_S,
2739 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2740 .accessfn = gt_ptimer_access,
2741 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2743 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2744 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2745 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2746 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2747 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2749 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2750 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2751 .accessfn = gt_vtimer_access,
2752 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2754 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2755 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2756 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2757 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2758 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2760 /* The counter itself */
2761 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2762 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2763 .accessfn = gt_pct_access,
2764 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2766 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2767 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2768 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2769 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2771 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2772 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2773 .accessfn = gt_vct_access,
2774 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2776 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2777 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2778 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2779 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2781 /* Comparison value, indicating when the timer goes off */
2782 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2783 .secure = ARM_CP_SECSTATE_NS,
2784 .access = PL1_RW | PL0_R,
2785 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2786 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2787 .accessfn = gt_ptimer_access,
2788 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2790 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2791 .secure = ARM_CP_SECSTATE_S,
2792 .access = PL1_RW | PL0_R,
2793 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2794 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2795 .accessfn = gt_ptimer_access,
2796 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2798 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2799 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2800 .access = PL1_RW | PL0_R,
2801 .type = ARM_CP_IO,
2802 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2803 .resetvalue = 0, .accessfn = gt_ptimer_access,
2804 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2806 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2807 .access = PL1_RW | PL0_R,
2808 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2809 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2810 .accessfn = gt_vtimer_access,
2811 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2813 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2814 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2815 .access = PL1_RW | PL0_R,
2816 .type = ARM_CP_IO,
2817 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2818 .resetvalue = 0, .accessfn = gt_vtimer_access,
2819 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2821 /* Secure timer -- this is actually restricted to only EL3
2822 * and configurably Secure-EL1 via the accessfn.
2824 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2825 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2826 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2827 .accessfn = gt_stimer_access,
2828 .readfn = gt_sec_tval_read,
2829 .writefn = gt_sec_tval_write,
2830 .resetfn = gt_sec_timer_reset,
2832 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2833 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2834 .type = ARM_CP_IO, .access = PL1_RW,
2835 .accessfn = gt_stimer_access,
2836 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2837 .resetvalue = 0,
2838 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2840 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2841 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2842 .type = ARM_CP_IO, .access = PL1_RW,
2843 .accessfn = gt_stimer_access,
2844 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2845 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2847 REGINFO_SENTINEL
2850 #else
2852 /* In user-mode most of the generic timer registers are inaccessible
2853 * however modern kernels (4.12+) allow access to cntvct_el0
2856 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2858 /* Currently we have no support for QEMUTimer in linux-user so we
2859 * can't call gt_get_countervalue(env), instead we directly
2860 * call the lower level functions.
2862 return cpu_get_clock() / GTIMER_SCALE;
2865 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2866 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2867 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2868 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2869 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2870 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2872 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2873 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2874 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2875 .readfn = gt_virt_cnt_read,
2877 REGINFO_SENTINEL
2880 #endif
2882 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2884 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2885 raw_write(env, ri, value);
2886 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2887 raw_write(env, ri, value & 0xfffff6ff);
2888 } else {
2889 raw_write(env, ri, value & 0xfffff1ff);
2893 #ifndef CONFIG_USER_ONLY
2894 /* get_phys_addr() isn't present for user-mode-only targets */
2896 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2897 bool isread)
2899 if (ri->opc2 & 4) {
2900 /* The ATS12NSO* operations must trap to EL3 if executed in
2901 * Secure EL1 (which can only happen if EL3 is AArch64).
2902 * They are simply UNDEF if executed from NS EL1.
2903 * They function normally from EL2 or EL3.
2905 if (arm_current_el(env) == 1) {
2906 if (arm_is_secure_below_el3(env)) {
2907 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2909 return CP_ACCESS_TRAP_UNCATEGORIZED;
2912 return CP_ACCESS_OK;
2915 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2916 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2918 hwaddr phys_addr;
2919 target_ulong page_size;
2920 int prot;
2921 bool ret;
2922 uint64_t par64;
2923 bool format64 = false;
2924 MemTxAttrs attrs = {};
2925 ARMMMUFaultInfo fi = {};
2926 ARMCacheAttrs cacheattrs = {};
2928 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2929 &prot, &page_size, &fi, &cacheattrs);
2931 if (is_a64(env)) {
2932 format64 = true;
2933 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2935 * ATS1Cxx:
2936 * * TTBCR.EAE determines whether the result is returned using the
2937 * 32-bit or the 64-bit PAR format
2938 * * Instructions executed in Hyp mode always use the 64bit format
2940 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2941 * * The Non-secure TTBCR.EAE bit is set to 1
2942 * * The implementation includes EL2, and the value of HCR.VM is 1
2944 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2946 * ATS1Hx always uses the 64bit format.
2948 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2950 if (arm_feature(env, ARM_FEATURE_EL2)) {
2951 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2952 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
2953 } else {
2954 format64 |= arm_current_el(env) == 2;
2959 if (format64) {
2960 /* Create a 64-bit PAR */
2961 par64 = (1 << 11); /* LPAE bit always set */
2962 if (!ret) {
2963 par64 |= phys_addr & ~0xfffULL;
2964 if (!attrs.secure) {
2965 par64 |= (1 << 9); /* NS */
2967 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2968 par64 |= cacheattrs.shareability << 7; /* SH */
2969 } else {
2970 uint32_t fsr = arm_fi_to_lfsc(&fi);
2972 par64 |= 1; /* F */
2973 par64 |= (fsr & 0x3f) << 1; /* FS */
2974 if (fi.stage2) {
2975 par64 |= (1 << 9); /* S */
2977 if (fi.s1ptw) {
2978 par64 |= (1 << 8); /* PTW */
2981 } else {
2982 /* fsr is a DFSR/IFSR value for the short descriptor
2983 * translation table format (with WnR always clear).
2984 * Convert it to a 32-bit PAR.
2986 if (!ret) {
2987 /* We do not set any attribute bits in the PAR */
2988 if (page_size == (1 << 24)
2989 && arm_feature(env, ARM_FEATURE_V7)) {
2990 par64 = (phys_addr & 0xff000000) | (1 << 1);
2991 } else {
2992 par64 = phys_addr & 0xfffff000;
2994 if (!attrs.secure) {
2995 par64 |= (1 << 9); /* NS */
2997 } else {
2998 uint32_t fsr = arm_fi_to_sfsc(&fi);
3000 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3001 ((fsr & 0xf) << 1) | 1;
3004 return par64;
3007 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3009 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3010 uint64_t par64;
3011 ARMMMUIdx mmu_idx;
3012 int el = arm_current_el(env);
3013 bool secure = arm_is_secure_below_el3(env);
3015 switch (ri->opc2 & 6) {
3016 case 0:
3017 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3018 switch (el) {
3019 case 3:
3020 mmu_idx = ARMMMUIdx_S1E3;
3021 break;
3022 case 2:
3023 mmu_idx = ARMMMUIdx_S1NSE1;
3024 break;
3025 case 1:
3026 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3027 break;
3028 default:
3029 g_assert_not_reached();
3031 break;
3032 case 2:
3033 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3034 switch (el) {
3035 case 3:
3036 mmu_idx = ARMMMUIdx_S1SE0;
3037 break;
3038 case 2:
3039 mmu_idx = ARMMMUIdx_S1NSE0;
3040 break;
3041 case 1:
3042 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3043 break;
3044 default:
3045 g_assert_not_reached();
3047 break;
3048 case 4:
3049 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3050 mmu_idx = ARMMMUIdx_S12NSE1;
3051 break;
3052 case 6:
3053 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3054 mmu_idx = ARMMMUIdx_S12NSE0;
3055 break;
3056 default:
3057 g_assert_not_reached();
3060 par64 = do_ats_write(env, value, access_type, mmu_idx);
3062 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3065 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3066 uint64_t value)
3068 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3069 uint64_t par64;
3071 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3073 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3076 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3077 bool isread)
3079 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3080 return CP_ACCESS_TRAP;
3082 return CP_ACCESS_OK;
3085 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3086 uint64_t value)
3088 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3089 ARMMMUIdx mmu_idx;
3090 int secure = arm_is_secure_below_el3(env);
3092 switch (ri->opc2 & 6) {
3093 case 0:
3094 switch (ri->opc1) {
3095 case 0: /* AT S1E1R, AT S1E1W */
3096 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3097 break;
3098 case 4: /* AT S1E2R, AT S1E2W */
3099 mmu_idx = ARMMMUIdx_S1E2;
3100 break;
3101 case 6: /* AT S1E3R, AT S1E3W */
3102 mmu_idx = ARMMMUIdx_S1E3;
3103 break;
3104 default:
3105 g_assert_not_reached();
3107 break;
3108 case 2: /* AT S1E0R, AT S1E0W */
3109 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3110 break;
3111 case 4: /* AT S12E1R, AT S12E1W */
3112 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3113 break;
3114 case 6: /* AT S12E0R, AT S12E0W */
3115 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3116 break;
3117 default:
3118 g_assert_not_reached();
3121 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3123 #endif
3125 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3126 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3127 .access = PL1_RW, .resetvalue = 0,
3128 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3129 offsetoflow32(CPUARMState, cp15.par_ns) },
3130 .writefn = par_write },
3131 #ifndef CONFIG_USER_ONLY
3132 /* This underdecoding is safe because the reginfo is NO_RAW. */
3133 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3134 .access = PL1_W, .accessfn = ats_access,
3135 .writefn = ats_write, .type = ARM_CP_NO_RAW },
3136 #endif
3137 REGINFO_SENTINEL
3140 /* Return basic MPU access permission bits. */
3141 static uint32_t simple_mpu_ap_bits(uint32_t val)
3143 uint32_t ret;
3144 uint32_t mask;
3145 int i;
3146 ret = 0;
3147 mask = 3;
3148 for (i = 0; i < 16; i += 2) {
3149 ret |= (val >> i) & mask;
3150 mask <<= 2;
3152 return ret;
3155 /* Pad basic MPU access permission bits to extended format. */
3156 static uint32_t extended_mpu_ap_bits(uint32_t val)
3158 uint32_t ret;
3159 uint32_t mask;
3160 int i;
3161 ret = 0;
3162 mask = 3;
3163 for (i = 0; i < 16; i += 2) {
3164 ret |= (val & mask) << i;
3165 mask <<= 2;
3167 return ret;
3170 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3171 uint64_t value)
3173 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3176 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3178 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3181 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3182 uint64_t value)
3184 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3187 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3189 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3192 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3194 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3196 if (!u32p) {
3197 return 0;
3200 u32p += env->pmsav7.rnr[M_REG_NS];
3201 return *u32p;
3204 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3205 uint64_t value)
3207 ARMCPU *cpu = arm_env_get_cpu(env);
3208 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3210 if (!u32p) {
3211 return;
3214 u32p += env->pmsav7.rnr[M_REG_NS];
3215 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3216 *u32p = value;
3219 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3220 uint64_t value)
3222 ARMCPU *cpu = arm_env_get_cpu(env);
3223 uint32_t nrgs = cpu->pmsav7_dregion;
3225 if (value >= nrgs) {
3226 qemu_log_mask(LOG_GUEST_ERROR,
3227 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3228 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3229 return;
3232 raw_write(env, ri, value);
3235 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3236 /* Reset for all these registers is handled in arm_cpu_reset(),
3237 * because the PMSAv7 is also used by M-profile CPUs, which do
3238 * not register cpregs but still need the state to be reset.
3240 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3241 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3242 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3243 .readfn = pmsav7_read, .writefn = pmsav7_write,
3244 .resetfn = arm_cp_reset_ignore },
3245 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3246 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3247 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3248 .readfn = pmsav7_read, .writefn = pmsav7_write,
3249 .resetfn = arm_cp_reset_ignore },
3250 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3251 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3252 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3253 .readfn = pmsav7_read, .writefn = pmsav7_write,
3254 .resetfn = arm_cp_reset_ignore },
3255 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3256 .access = PL1_RW,
3257 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3258 .writefn = pmsav7_rgnr_write,
3259 .resetfn = arm_cp_reset_ignore },
3260 REGINFO_SENTINEL
3263 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3264 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3265 .access = PL1_RW, .type = ARM_CP_ALIAS,
3266 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3267 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3268 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3269 .access = PL1_RW, .type = ARM_CP_ALIAS,
3270 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3271 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3272 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3273 .access = PL1_RW,
3274 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3275 .resetvalue = 0, },
3276 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3277 .access = PL1_RW,
3278 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3279 .resetvalue = 0, },
3280 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3281 .access = PL1_RW,
3282 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3283 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3284 .access = PL1_RW,
3285 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3286 /* Protection region base and size registers */
3287 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3288 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3289 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3290 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3291 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3292 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3293 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3294 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3295 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3296 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3297 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3298 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3299 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3300 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3301 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3302 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3303 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3304 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3305 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3306 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3307 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3308 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3309 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3310 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3311 REGINFO_SENTINEL
3314 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3315 uint64_t value)
3317 TCR *tcr = raw_ptr(env, ri);
3318 int maskshift = extract32(value, 0, 3);
3320 if (!arm_feature(env, ARM_FEATURE_V8)) {
3321 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3322 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3323 * using Long-desciptor translation table format */
3324 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3325 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3326 /* In an implementation that includes the Security Extensions
3327 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3328 * Short-descriptor translation table format.
3330 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3331 } else {
3332 value &= TTBCR_N;
3336 /* Update the masks corresponding to the TCR bank being written
3337 * Note that we always calculate mask and base_mask, but
3338 * they are only used for short-descriptor tables (ie if EAE is 0);
3339 * for long-descriptor tables the TCR fields are used differently
3340 * and the mask and base_mask values are meaningless.
3342 tcr->raw_tcr = value;
3343 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3344 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3347 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3348 uint64_t value)
3350 ARMCPU *cpu = arm_env_get_cpu(env);
3351 TCR *tcr = raw_ptr(env, ri);
3353 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3354 /* With LPAE the TTBCR could result in a change of ASID
3355 * via the TTBCR.A1 bit, so do a TLB flush.
3357 tlb_flush(CPU(cpu));
3359 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3360 value = deposit64(tcr->raw_tcr, 0, 32, value);
3361 vmsa_ttbcr_raw_write(env, ri, value);
3364 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3366 TCR *tcr = raw_ptr(env, ri);
3368 /* Reset both the TCR as well as the masks corresponding to the bank of
3369 * the TCR being reset.
3371 tcr->raw_tcr = 0;
3372 tcr->mask = 0;
3373 tcr->base_mask = 0xffffc000u;
3376 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3377 uint64_t value)
3379 ARMCPU *cpu = arm_env_get_cpu(env);
3380 TCR *tcr = raw_ptr(env, ri);
3382 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3383 tlb_flush(CPU(cpu));
3384 tcr->raw_tcr = value;
3387 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3388 uint64_t value)
3390 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3391 if (cpreg_field_is_64bit(ri) &&
3392 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3393 ARMCPU *cpu = arm_env_get_cpu(env);
3394 tlb_flush(CPU(cpu));
3396 raw_write(env, ri, value);
3399 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3400 uint64_t value)
3402 ARMCPU *cpu = arm_env_get_cpu(env);
3403 CPUState *cs = CPU(cpu);
3405 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
3406 if (raw_read(env, ri) != value) {
3407 tlb_flush_by_mmuidx(cs,
3408 ARMMMUIdxBit_S12NSE1 |
3409 ARMMMUIdxBit_S12NSE0 |
3410 ARMMMUIdxBit_S2NS);
3411 raw_write(env, ri, value);
3415 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3416 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3417 .access = PL1_RW, .type = ARM_CP_ALIAS,
3418 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3419 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3420 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3421 .access = PL1_RW, .resetvalue = 0,
3422 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3423 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3424 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3425 .access = PL1_RW, .resetvalue = 0,
3426 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3427 offsetof(CPUARMState, cp15.dfar_ns) } },
3428 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3429 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3430 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3431 .resetvalue = 0, },
3432 REGINFO_SENTINEL
3435 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3436 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3437 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3438 .access = PL1_RW,
3439 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3440 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3441 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3442 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3443 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3444 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3445 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3446 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3447 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3448 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3449 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3450 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3451 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3452 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3453 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3454 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3455 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3456 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3457 .raw_writefn = vmsa_ttbcr_raw_write,
3458 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3459 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3460 REGINFO_SENTINEL
3463 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3464 * qemu tlbs nor adjusting cached masks.
3466 static const ARMCPRegInfo ttbcr2_reginfo = {
3467 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3468 .access = PL1_RW, .type = ARM_CP_ALIAS,
3469 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3470 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3473 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3474 uint64_t value)
3476 env->cp15.c15_ticonfig = value & 0xe7;
3477 /* The OS_TYPE bit in this register changes the reported CPUID! */
3478 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3479 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3482 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3483 uint64_t value)
3485 env->cp15.c15_threadid = value & 0xffff;
3488 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3489 uint64_t value)
3491 /* Wait-for-interrupt (deprecated) */
3492 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
3495 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3496 uint64_t value)
3498 /* On OMAP there are registers indicating the max/min index of dcache lines
3499 * containing a dirty line; cache flush operations have to reset these.
3501 env->cp15.c15_i_max = 0x000;
3502 env->cp15.c15_i_min = 0xff0;
3505 static const ARMCPRegInfo omap_cp_reginfo[] = {
3506 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3507 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3508 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3509 .resetvalue = 0, },
3510 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3511 .access = PL1_RW, .type = ARM_CP_NOP },
3512 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3513 .access = PL1_RW,
3514 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3515 .writefn = omap_ticonfig_write },
3516 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3517 .access = PL1_RW,
3518 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3519 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3520 .access = PL1_RW, .resetvalue = 0xff0,
3521 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3522 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3523 .access = PL1_RW,
3524 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3525 .writefn = omap_threadid_write },
3526 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3527 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3528 .type = ARM_CP_NO_RAW,
3529 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3530 /* TODO: Peripheral port remap register:
3531 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3532 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3533 * when MMU is off.
3535 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3536 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3537 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3538 .writefn = omap_cachemaint_write },
3539 { .name = "C9", .cp = 15, .crn = 9,
3540 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3541 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3542 REGINFO_SENTINEL
3545 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3546 uint64_t value)
3548 env->cp15.c15_cpar = value & 0x3fff;
3551 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3552 { .name = "XSCALE_CPAR",
3553 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3554 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3555 .writefn = xscale_cpar_write, },
3556 { .name = "XSCALE_AUXCR",
3557 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3558 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3559 .resetvalue = 0, },
3560 /* XScale specific cache-lockdown: since we have no cache we NOP these
3561 * and hope the guest does not really rely on cache behaviour.
3563 { .name = "XSCALE_LOCK_ICACHE_LINE",
3564 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3565 .access = PL1_W, .type = ARM_CP_NOP },
3566 { .name = "XSCALE_UNLOCK_ICACHE",
3567 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3568 .access = PL1_W, .type = ARM_CP_NOP },
3569 { .name = "XSCALE_DCACHE_LOCK",
3570 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3571 .access = PL1_RW, .type = ARM_CP_NOP },
3572 { .name = "XSCALE_UNLOCK_DCACHE",
3573 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3574 .access = PL1_W, .type = ARM_CP_NOP },
3575 REGINFO_SENTINEL
3578 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3579 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3580 * implementation of this implementation-defined space.
3581 * Ideally this should eventually disappear in favour of actually
3582 * implementing the correct behaviour for all cores.
3584 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3585 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3586 .access = PL1_RW,
3587 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3588 .resetvalue = 0 },
3589 REGINFO_SENTINEL
3592 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3593 /* Cache status: RAZ because we have no cache so it's always clean */
3594 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3595 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3596 .resetvalue = 0 },
3597 REGINFO_SENTINEL
3600 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3601 /* We never have a a block transfer operation in progress */
3602 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3603 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3604 .resetvalue = 0 },
3605 /* The cache ops themselves: these all NOP for QEMU */
3606 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3607 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3608 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3609 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3610 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3611 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3612 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3613 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3614 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3615 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3616 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3617 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3618 REGINFO_SENTINEL
3621 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3622 /* The cache test-and-clean instructions always return (1 << 30)
3623 * to indicate that there are no dirty cache lines.
3625 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3626 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3627 .resetvalue = (1 << 30) },
3628 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3629 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3630 .resetvalue = (1 << 30) },
3631 REGINFO_SENTINEL
3634 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3635 /* Ignore ReadBuffer accesses */
3636 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3637 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3638 .access = PL1_RW, .resetvalue = 0,
3639 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3640 REGINFO_SENTINEL
3643 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3645 ARMCPU *cpu = arm_env_get_cpu(env);
3646 unsigned int cur_el = arm_current_el(env);
3647 bool secure = arm_is_secure(env);
3649 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3650 return env->cp15.vpidr_el2;
3652 return raw_read(env, ri);
3655 static uint64_t mpidr_read_val(CPUARMState *env)
3657 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
3658 uint64_t mpidr = cpu->mp_affinity;
3660 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3661 mpidr |= (1U << 31);
3662 /* Cores which are uniprocessor (non-coherent)
3663 * but still implement the MP extensions set
3664 * bit 30. (For instance, Cortex-R5).
3666 if (cpu->mp_is_up) {
3667 mpidr |= (1u << 30);
3670 return mpidr;
3673 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3675 unsigned int cur_el = arm_current_el(env);
3676 bool secure = arm_is_secure(env);
3678 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3679 return env->cp15.vmpidr_el2;
3681 return mpidr_read_val(env);
3684 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3685 /* NOP AMAIR0/1 */
3686 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3687 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3688 .access = PL1_RW, .type = ARM_CP_CONST,
3689 .resetvalue = 0 },
3690 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3691 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3692 .access = PL1_RW, .type = ARM_CP_CONST,
3693 .resetvalue = 0 },
3694 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3695 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3696 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3697 offsetof(CPUARMState, cp15.par_ns)} },
3698 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3699 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3700 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3701 offsetof(CPUARMState, cp15.ttbr0_ns) },
3702 .writefn = vmsa_ttbr_write, },
3703 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3704 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3705 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3706 offsetof(CPUARMState, cp15.ttbr1_ns) },
3707 .writefn = vmsa_ttbr_write, },
3708 REGINFO_SENTINEL
3711 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3713 return vfp_get_fpcr(env);
3716 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3717 uint64_t value)
3719 vfp_set_fpcr(env, value);
3722 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3724 return vfp_get_fpsr(env);
3727 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3728 uint64_t value)
3730 vfp_set_fpsr(env, value);
3733 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3734 bool isread)
3736 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3737 return CP_ACCESS_TRAP;
3739 return CP_ACCESS_OK;
3742 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3743 uint64_t value)
3745 env->daif = value & PSTATE_DAIF;
3748 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3749 const ARMCPRegInfo *ri,
3750 bool isread)
3752 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3753 * SCTLR_EL1.UCI is set.
3755 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3756 return CP_ACCESS_TRAP;
3758 return CP_ACCESS_OK;
3761 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3762 * Page D4-1736 (DDI0487A.b)
3765 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3766 uint64_t value)
3768 CPUState *cs = ENV_GET_CPU(env);
3769 bool sec = arm_is_secure_below_el3(env);
3771 if (sec) {
3772 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3773 ARMMMUIdxBit_S1SE1 |
3774 ARMMMUIdxBit_S1SE0);
3775 } else {
3776 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3777 ARMMMUIdxBit_S12NSE1 |
3778 ARMMMUIdxBit_S12NSE0);
3782 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3783 uint64_t value)
3785 CPUState *cs = ENV_GET_CPU(env);
3787 if (tlb_force_broadcast(env)) {
3788 tlbi_aa64_vmalle1is_write(env, NULL, value);
3789 return;
3792 if (arm_is_secure_below_el3(env)) {
3793 tlb_flush_by_mmuidx(cs,
3794 ARMMMUIdxBit_S1SE1 |
3795 ARMMMUIdxBit_S1SE0);
3796 } else {
3797 tlb_flush_by_mmuidx(cs,
3798 ARMMMUIdxBit_S12NSE1 |
3799 ARMMMUIdxBit_S12NSE0);
3803 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3804 uint64_t value)
3806 /* Note that the 'ALL' scope must invalidate both stage 1 and
3807 * stage 2 translations, whereas most other scopes only invalidate
3808 * stage 1 translations.
3810 ARMCPU *cpu = arm_env_get_cpu(env);
3811 CPUState *cs = CPU(cpu);
3813 if (arm_is_secure_below_el3(env)) {
3814 tlb_flush_by_mmuidx(cs,
3815 ARMMMUIdxBit_S1SE1 |
3816 ARMMMUIdxBit_S1SE0);
3817 } else {
3818 if (arm_feature(env, ARM_FEATURE_EL2)) {
3819 tlb_flush_by_mmuidx(cs,
3820 ARMMMUIdxBit_S12NSE1 |
3821 ARMMMUIdxBit_S12NSE0 |
3822 ARMMMUIdxBit_S2NS);
3823 } else {
3824 tlb_flush_by_mmuidx(cs,
3825 ARMMMUIdxBit_S12NSE1 |
3826 ARMMMUIdxBit_S12NSE0);
3831 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3832 uint64_t value)
3834 ARMCPU *cpu = arm_env_get_cpu(env);
3835 CPUState *cs = CPU(cpu);
3837 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3840 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3841 uint64_t value)
3843 ARMCPU *cpu = arm_env_get_cpu(env);
3844 CPUState *cs = CPU(cpu);
3846 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3849 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3850 uint64_t value)
3852 /* Note that the 'ALL' scope must invalidate both stage 1 and
3853 * stage 2 translations, whereas most other scopes only invalidate
3854 * stage 1 translations.
3856 CPUState *cs = ENV_GET_CPU(env);
3857 bool sec = arm_is_secure_below_el3(env);
3858 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3860 if (sec) {
3861 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3862 ARMMMUIdxBit_S1SE1 |
3863 ARMMMUIdxBit_S1SE0);
3864 } else if (has_el2) {
3865 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3866 ARMMMUIdxBit_S12NSE1 |
3867 ARMMMUIdxBit_S12NSE0 |
3868 ARMMMUIdxBit_S2NS);
3869 } else {
3870 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3871 ARMMMUIdxBit_S12NSE1 |
3872 ARMMMUIdxBit_S12NSE0);
3876 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3877 uint64_t value)
3879 CPUState *cs = ENV_GET_CPU(env);
3881 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3884 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3885 uint64_t value)
3887 CPUState *cs = ENV_GET_CPU(env);
3889 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3892 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3893 uint64_t value)
3895 /* Invalidate by VA, EL2
3896 * Currently handles both VAE2 and VALE2, since we don't support
3897 * flush-last-level-only.
3899 ARMCPU *cpu = arm_env_get_cpu(env);
3900 CPUState *cs = CPU(cpu);
3901 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3903 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3906 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3907 uint64_t value)
3909 /* Invalidate by VA, EL3
3910 * Currently handles both VAE3 and VALE3, since we don't support
3911 * flush-last-level-only.
3913 ARMCPU *cpu = arm_env_get_cpu(env);
3914 CPUState *cs = CPU(cpu);
3915 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3917 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3920 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3921 uint64_t value)
3923 ARMCPU *cpu = arm_env_get_cpu(env);
3924 CPUState *cs = CPU(cpu);
3925 bool sec = arm_is_secure_below_el3(env);
3926 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3928 if (sec) {
3929 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3930 ARMMMUIdxBit_S1SE1 |
3931 ARMMMUIdxBit_S1SE0);
3932 } else {
3933 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3934 ARMMMUIdxBit_S12NSE1 |
3935 ARMMMUIdxBit_S12NSE0);
3939 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3940 uint64_t value)
3942 /* Invalidate by VA, EL1&0 (AArch64 version).
3943 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3944 * since we don't support flush-for-specific-ASID-only or
3945 * flush-last-level-only.
3947 ARMCPU *cpu = arm_env_get_cpu(env);
3948 CPUState *cs = CPU(cpu);
3949 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3951 if (tlb_force_broadcast(env)) {
3952 tlbi_aa64_vae1is_write(env, NULL, value);
3953 return;
3956 if (arm_is_secure_below_el3(env)) {
3957 tlb_flush_page_by_mmuidx(cs, pageaddr,
3958 ARMMMUIdxBit_S1SE1 |
3959 ARMMMUIdxBit_S1SE0);
3960 } else {
3961 tlb_flush_page_by_mmuidx(cs, pageaddr,
3962 ARMMMUIdxBit_S12NSE1 |
3963 ARMMMUIdxBit_S12NSE0);
3967 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3968 uint64_t value)
3970 CPUState *cs = ENV_GET_CPU(env);
3971 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3973 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3974 ARMMMUIdxBit_S1E2);
3977 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3978 uint64_t value)
3980 CPUState *cs = ENV_GET_CPU(env);
3981 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3983 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3984 ARMMMUIdxBit_S1E3);
3987 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3988 uint64_t value)
3990 /* Invalidate by IPA. This has to invalidate any structures that
3991 * contain only stage 2 translation information, but does not need
3992 * to apply to structures that contain combined stage 1 and stage 2
3993 * translation information.
3994 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3996 ARMCPU *cpu = arm_env_get_cpu(env);
3997 CPUState *cs = CPU(cpu);
3998 uint64_t pageaddr;
4000 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4001 return;
4004 pageaddr = sextract64(value << 12, 0, 48);
4006 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
4009 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4010 uint64_t value)
4012 CPUState *cs = ENV_GET_CPU(env);
4013 uint64_t pageaddr;
4015 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4016 return;
4019 pageaddr = sextract64(value << 12, 0, 48);
4021 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4022 ARMMMUIdxBit_S2NS);
4025 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4026 bool isread)
4028 /* We don't implement EL2, so the only control on DC ZVA is the
4029 * bit in the SCTLR which can prohibit access for EL0.
4031 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4032 return CP_ACCESS_TRAP;
4034 return CP_ACCESS_OK;
4037 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4039 ARMCPU *cpu = arm_env_get_cpu(env);
4040 int dzp_bit = 1 << 4;
4042 /* DZP indicates whether DC ZVA access is allowed */
4043 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4044 dzp_bit = 0;
4046 return cpu->dcz_blocksize | dzp_bit;
4049 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4050 bool isread)
4052 if (!(env->pstate & PSTATE_SP)) {
4053 /* Access to SP_EL0 is undefined if it's being used as
4054 * the stack pointer.
4056 return CP_ACCESS_TRAP_UNCATEGORIZED;
4058 return CP_ACCESS_OK;
4061 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4063 return env->pstate & PSTATE_SP;
4066 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4068 update_spsel(env, val);
4071 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4072 uint64_t value)
4074 ARMCPU *cpu = arm_env_get_cpu(env);
4076 if (raw_read(env, ri) == value) {
4077 /* Skip the TLB flush if nothing actually changed; Linux likes
4078 * to do a lot of pointless SCTLR writes.
4080 return;
4083 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4084 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4085 value &= ~SCTLR_M;
4088 raw_write(env, ri, value);
4089 /* ??? Lots of these bits are not implemented. */
4090 /* This may enable/disable the MMU, so do a TLB flush. */
4091 tlb_flush(CPU(cpu));
4094 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4095 bool isread)
4097 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4098 return CP_ACCESS_TRAP_FP_EL2;
4100 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4101 return CP_ACCESS_TRAP_FP_EL3;
4103 return CP_ACCESS_OK;
4106 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4107 uint64_t value)
4109 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4112 static const ARMCPRegInfo v8_cp_reginfo[] = {
4113 /* Minimal set of EL0-visible registers. This will need to be expanded
4114 * significantly for system emulation of AArch64 CPUs.
4116 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4117 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4118 .access = PL0_RW, .type = ARM_CP_NZCV },
4119 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4120 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4121 .type = ARM_CP_NO_RAW,
4122 .access = PL0_RW, .accessfn = aa64_daif_access,
4123 .fieldoffset = offsetof(CPUARMState, daif),
4124 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4125 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4126 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4127 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4128 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4129 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4130 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4131 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4132 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4133 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4134 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4135 .access = PL0_R, .type = ARM_CP_NO_RAW,
4136 .readfn = aa64_dczid_read },
4137 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4138 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4139 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4140 #ifndef CONFIG_USER_ONLY
4141 /* Avoid overhead of an access check that always passes in user-mode */
4142 .accessfn = aa64_zva_access,
4143 #endif
4145 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4146 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4147 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4148 /* Cache ops: all NOPs since we don't emulate caches */
4149 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4150 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4151 .access = PL1_W, .type = ARM_CP_NOP },
4152 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4153 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4154 .access = PL1_W, .type = ARM_CP_NOP },
4155 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4156 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4157 .access = PL0_W, .type = ARM_CP_NOP,
4158 .accessfn = aa64_cacheop_access },
4159 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4160 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4161 .access = PL1_W, .type = ARM_CP_NOP },
4162 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4163 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4164 .access = PL1_W, .type = ARM_CP_NOP },
4165 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4166 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4167 .access = PL0_W, .type = ARM_CP_NOP,
4168 .accessfn = aa64_cacheop_access },
4169 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4170 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4171 .access = PL1_W, .type = ARM_CP_NOP },
4172 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4173 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4174 .access = PL0_W, .type = ARM_CP_NOP,
4175 .accessfn = aa64_cacheop_access },
4176 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4177 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4178 .access = PL0_W, .type = ARM_CP_NOP,
4179 .accessfn = aa64_cacheop_access },
4180 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4181 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4182 .access = PL1_W, .type = ARM_CP_NOP },
4183 /* TLBI operations */
4184 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4185 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4186 .access = PL1_W, .type = ARM_CP_NO_RAW,
4187 .writefn = tlbi_aa64_vmalle1is_write },
4188 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4189 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4190 .access = PL1_W, .type = ARM_CP_NO_RAW,
4191 .writefn = tlbi_aa64_vae1is_write },
4192 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4193 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4194 .access = PL1_W, .type = ARM_CP_NO_RAW,
4195 .writefn = tlbi_aa64_vmalle1is_write },
4196 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4197 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4198 .access = PL1_W, .type = ARM_CP_NO_RAW,
4199 .writefn = tlbi_aa64_vae1is_write },
4200 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4201 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4202 .access = PL1_W, .type = ARM_CP_NO_RAW,
4203 .writefn = tlbi_aa64_vae1is_write },
4204 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4205 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4206 .access = PL1_W, .type = ARM_CP_NO_RAW,
4207 .writefn = tlbi_aa64_vae1is_write },
4208 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4209 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4210 .access = PL1_W, .type = ARM_CP_NO_RAW,
4211 .writefn = tlbi_aa64_vmalle1_write },
4212 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4213 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4214 .access = PL1_W, .type = ARM_CP_NO_RAW,
4215 .writefn = tlbi_aa64_vae1_write },
4216 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4217 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4218 .access = PL1_W, .type = ARM_CP_NO_RAW,
4219 .writefn = tlbi_aa64_vmalle1_write },
4220 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4221 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4222 .access = PL1_W, .type = ARM_CP_NO_RAW,
4223 .writefn = tlbi_aa64_vae1_write },
4224 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4225 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4226 .access = PL1_W, .type = ARM_CP_NO_RAW,
4227 .writefn = tlbi_aa64_vae1_write },
4228 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4229 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4230 .access = PL1_W, .type = ARM_CP_NO_RAW,
4231 .writefn = tlbi_aa64_vae1_write },
4232 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4233 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4234 .access = PL2_W, .type = ARM_CP_NO_RAW,
4235 .writefn = tlbi_aa64_ipas2e1is_write },
4236 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4237 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4238 .access = PL2_W, .type = ARM_CP_NO_RAW,
4239 .writefn = tlbi_aa64_ipas2e1is_write },
4240 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4241 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4242 .access = PL2_W, .type = ARM_CP_NO_RAW,
4243 .writefn = tlbi_aa64_alle1is_write },
4244 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4245 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4246 .access = PL2_W, .type = ARM_CP_NO_RAW,
4247 .writefn = tlbi_aa64_alle1is_write },
4248 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4249 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4250 .access = PL2_W, .type = ARM_CP_NO_RAW,
4251 .writefn = tlbi_aa64_ipas2e1_write },
4252 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4253 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4254 .access = PL2_W, .type = ARM_CP_NO_RAW,
4255 .writefn = tlbi_aa64_ipas2e1_write },
4256 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4257 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4258 .access = PL2_W, .type = ARM_CP_NO_RAW,
4259 .writefn = tlbi_aa64_alle1_write },
4260 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4261 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4262 .access = PL2_W, .type = ARM_CP_NO_RAW,
4263 .writefn = tlbi_aa64_alle1is_write },
4264 #ifndef CONFIG_USER_ONLY
4265 /* 64 bit address translation operations */
4266 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4267 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4268 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4269 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4270 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4271 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4272 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4273 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4274 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4275 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4276 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4277 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4278 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4279 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4280 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4281 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4282 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4283 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4284 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4285 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4286 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4287 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4288 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4289 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4290 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4291 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4292 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4293 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4294 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4295 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4296 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4297 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4298 .type = ARM_CP_ALIAS,
4299 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4300 .access = PL1_RW, .resetvalue = 0,
4301 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4302 .writefn = par_write },
4303 #endif
4304 /* TLB invalidate last level of translation table walk */
4305 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4306 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4307 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4308 .type = ARM_CP_NO_RAW, .access = PL1_W,
4309 .writefn = tlbimvaa_is_write },
4310 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4311 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4312 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4313 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4314 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4315 .type = ARM_CP_NO_RAW, .access = PL2_W,
4316 .writefn = tlbimva_hyp_write },
4317 { .name = "TLBIMVALHIS",
4318 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4319 .type = ARM_CP_NO_RAW, .access = PL2_W,
4320 .writefn = tlbimva_hyp_is_write },
4321 { .name = "TLBIIPAS2",
4322 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4323 .type = ARM_CP_NO_RAW, .access = PL2_W,
4324 .writefn = tlbiipas2_write },
4325 { .name = "TLBIIPAS2IS",
4326 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4327 .type = ARM_CP_NO_RAW, .access = PL2_W,
4328 .writefn = tlbiipas2_is_write },
4329 { .name = "TLBIIPAS2L",
4330 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4331 .type = ARM_CP_NO_RAW, .access = PL2_W,
4332 .writefn = tlbiipas2_write },
4333 { .name = "TLBIIPAS2LIS",
4334 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4335 .type = ARM_CP_NO_RAW, .access = PL2_W,
4336 .writefn = tlbiipas2_is_write },
4337 /* 32 bit cache operations */
4338 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4339 .type = ARM_CP_NOP, .access = PL1_W },
4340 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4341 .type = ARM_CP_NOP, .access = PL1_W },
4342 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4343 .type = ARM_CP_NOP, .access = PL1_W },
4344 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4345 .type = ARM_CP_NOP, .access = PL1_W },
4346 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4347 .type = ARM_CP_NOP, .access = PL1_W },
4348 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4349 .type = ARM_CP_NOP, .access = PL1_W },
4350 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4351 .type = ARM_CP_NOP, .access = PL1_W },
4352 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4353 .type = ARM_CP_NOP, .access = PL1_W },
4354 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4355 .type = ARM_CP_NOP, .access = PL1_W },
4356 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4357 .type = ARM_CP_NOP, .access = PL1_W },
4358 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4359 .type = ARM_CP_NOP, .access = PL1_W },
4360 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4361 .type = ARM_CP_NOP, .access = PL1_W },
4362 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4363 .type = ARM_CP_NOP, .access = PL1_W },
4364 /* MMU Domain access control / MPU write buffer control */
4365 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4366 .access = PL1_RW, .resetvalue = 0,
4367 .writefn = dacr_write, .raw_writefn = raw_write,
4368 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4369 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4370 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4371 .type = ARM_CP_ALIAS,
4372 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4373 .access = PL1_RW,
4374 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4375 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4376 .type = ARM_CP_ALIAS,
4377 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4378 .access = PL1_RW,
4379 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4380 /* We rely on the access checks not allowing the guest to write to the
4381 * state field when SPSel indicates that it's being used as the stack
4382 * pointer.
4384 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4385 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4386 .access = PL1_RW, .accessfn = sp_el0_access,
4387 .type = ARM_CP_ALIAS,
4388 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4389 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4390 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4391 .access = PL2_RW, .type = ARM_CP_ALIAS,
4392 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4393 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4394 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4395 .type = ARM_CP_NO_RAW,
4396 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4397 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4398 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4399 .type = ARM_CP_ALIAS,
4400 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4401 .access = PL2_RW, .accessfn = fpexc32_access },
4402 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4403 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4404 .access = PL2_RW, .resetvalue = 0,
4405 .writefn = dacr_write, .raw_writefn = raw_write,
4406 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4407 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4408 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4409 .access = PL2_RW, .resetvalue = 0,
4410 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4411 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4412 .type = ARM_CP_ALIAS,
4413 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4414 .access = PL2_RW,
4415 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4416 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4417 .type = ARM_CP_ALIAS,
4418 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4419 .access = PL2_RW,
4420 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4421 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4422 .type = ARM_CP_ALIAS,
4423 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4424 .access = PL2_RW,
4425 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4426 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4427 .type = ARM_CP_ALIAS,
4428 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4429 .access = PL2_RW,
4430 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4431 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4432 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4433 .resetvalue = 0,
4434 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4435 { .name = "SDCR", .type = ARM_CP_ALIAS,
4436 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4437 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4438 .writefn = sdcr_write,
4439 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4440 REGINFO_SENTINEL
4443 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4444 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4445 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4446 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4447 .access = PL2_RW,
4448 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4449 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4450 .type = ARM_CP_NO_RAW,
4451 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4452 .access = PL2_RW,
4453 .type = ARM_CP_CONST, .resetvalue = 0 },
4454 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4455 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4456 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4457 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4458 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4459 .access = PL2_RW,
4460 .type = ARM_CP_CONST, .resetvalue = 0 },
4461 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4462 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4463 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4464 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4465 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4466 .access = PL2_RW, .type = ARM_CP_CONST,
4467 .resetvalue = 0 },
4468 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4469 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4470 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4471 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4472 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4473 .access = PL2_RW, .type = ARM_CP_CONST,
4474 .resetvalue = 0 },
4475 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4476 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4477 .access = PL2_RW, .type = ARM_CP_CONST,
4478 .resetvalue = 0 },
4479 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4480 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4481 .access = PL2_RW, .type = ARM_CP_CONST,
4482 .resetvalue = 0 },
4483 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4484 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4485 .access = PL2_RW, .type = ARM_CP_CONST,
4486 .resetvalue = 0 },
4487 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4488 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4489 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4490 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4491 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4492 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4493 .type = ARM_CP_CONST, .resetvalue = 0 },
4494 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4495 .cp = 15, .opc1 = 6, .crm = 2,
4496 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4497 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4498 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4499 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4500 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4501 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4502 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4503 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4504 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4505 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4506 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4507 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4508 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4509 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4510 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4511 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4512 .resetvalue = 0 },
4513 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4514 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4515 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4516 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4517 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4518 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4519 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4520 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4521 .resetvalue = 0 },
4522 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4523 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4524 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4525 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4526 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4527 .resetvalue = 0 },
4528 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4529 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4530 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4531 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4532 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4533 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4534 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4535 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4536 .access = PL2_RW, .accessfn = access_tda,
4537 .type = ARM_CP_CONST, .resetvalue = 0 },
4538 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4539 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4540 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4541 .type = ARM_CP_CONST, .resetvalue = 0 },
4542 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4543 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4544 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4545 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4546 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4547 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4548 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4549 .type = ARM_CP_CONST,
4550 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4551 .access = PL2_RW, .resetvalue = 0 },
4552 REGINFO_SENTINEL
4555 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4556 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4557 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4558 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4559 .access = PL2_RW,
4560 .type = ARM_CP_CONST, .resetvalue = 0 },
4561 REGINFO_SENTINEL
4564 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4566 ARMCPU *cpu = arm_env_get_cpu(env);
4567 uint64_t valid_mask = HCR_MASK;
4569 if (arm_feature(env, ARM_FEATURE_EL3)) {
4570 valid_mask &= ~HCR_HCD;
4571 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4572 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4573 * However, if we're using the SMC PSCI conduit then QEMU is
4574 * effectively acting like EL3 firmware and so the guest at
4575 * EL2 should retain the ability to prevent EL1 from being
4576 * able to make SMC calls into the ersatz firmware, so in
4577 * that case HCR.TSC should be read/write.
4579 valid_mask &= ~HCR_TSC;
4581 if (cpu_isar_feature(aa64_lor, cpu)) {
4582 valid_mask |= HCR_TLOR;
4584 if (cpu_isar_feature(aa64_pauth, cpu)) {
4585 valid_mask |= HCR_API | HCR_APK;
4588 /* Clear RES0 bits. */
4589 value &= valid_mask;
4591 /* These bits change the MMU setup:
4592 * HCR_VM enables stage 2 translation
4593 * HCR_PTW forbids certain page-table setups
4594 * HCR_DC Disables stage1 and enables stage2 translation
4596 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4597 tlb_flush(CPU(cpu));
4599 env->cp15.hcr_el2 = value;
4602 * Updates to VI and VF require us to update the status of
4603 * virtual interrupts, which are the logical OR of these bits
4604 * and the state of the input lines from the GIC. (This requires
4605 * that we have the iothread lock, which is done by marking the
4606 * reginfo structs as ARM_CP_IO.)
4607 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4608 * possible for it to be taken immediately, because VIRQ and
4609 * VFIQ are masked unless running at EL0 or EL1, and HCR
4610 * can only be written at EL2.
4612 g_assert(qemu_mutex_iothread_locked());
4613 arm_cpu_update_virq(cpu);
4614 arm_cpu_update_vfiq(cpu);
4617 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4618 uint64_t value)
4620 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4621 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4622 hcr_write(env, NULL, value);
4625 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4626 uint64_t value)
4628 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4629 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4630 hcr_write(env, NULL, value);
4634 * Return the effective value of HCR_EL2.
4635 * Bits that are not included here:
4636 * RW (read from SCR_EL3.RW as needed)
4638 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4640 uint64_t ret = env->cp15.hcr_el2;
4642 if (arm_is_secure_below_el3(env)) {
4644 * "This register has no effect if EL2 is not enabled in the
4645 * current Security state". This is ARMv8.4-SecEL2 speak for
4646 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4648 * Prior to that, the language was "In an implementation that
4649 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4650 * as if this field is 0 for all purposes other than a direct
4651 * read or write access of HCR_EL2". With lots of enumeration
4652 * on a per-field basis. In current QEMU, this is condition
4653 * is arm_is_secure_below_el3.
4655 * Since the v8.4 language applies to the entire register, and
4656 * appears to be backward compatible, use that.
4658 ret = 0;
4659 } else if (ret & HCR_TGE) {
4660 /* These bits are up-to-date as of ARMv8.4. */
4661 if (ret & HCR_E2H) {
4662 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4663 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4664 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4665 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4666 } else {
4667 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4669 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4670 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4671 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4672 HCR_TLOR);
4675 return ret;
4678 static const ARMCPRegInfo el2_cp_reginfo[] = {
4679 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4680 .type = ARM_CP_IO,
4681 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4682 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4683 .writefn = hcr_write },
4684 { .name = "HCR", .state = ARM_CP_STATE_AA32,
4685 .type = ARM_CP_ALIAS | ARM_CP_IO,
4686 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4687 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4688 .writefn = hcr_writelow },
4689 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4690 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4691 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4692 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4693 .type = ARM_CP_ALIAS,
4694 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4695 .access = PL2_RW,
4696 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4697 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4698 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4699 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4700 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4701 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4702 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4703 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4704 .type = ARM_CP_ALIAS,
4705 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4706 .access = PL2_RW,
4707 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4708 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4709 .type = ARM_CP_ALIAS,
4710 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4711 .access = PL2_RW,
4712 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4713 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4714 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4715 .access = PL2_RW, .writefn = vbar_write,
4716 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4717 .resetvalue = 0 },
4718 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4719 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4720 .access = PL3_RW, .type = ARM_CP_ALIAS,
4721 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4722 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4723 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4724 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4725 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
4726 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4727 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4728 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4729 .resetvalue = 0 },
4730 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4731 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4732 .access = PL2_RW, .type = ARM_CP_ALIAS,
4733 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4734 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4735 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4736 .access = PL2_RW, .type = ARM_CP_CONST,
4737 .resetvalue = 0 },
4738 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4739 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4740 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4741 .access = PL2_RW, .type = ARM_CP_CONST,
4742 .resetvalue = 0 },
4743 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4744 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4745 .access = PL2_RW, .type = ARM_CP_CONST,
4746 .resetvalue = 0 },
4747 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4748 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4749 .access = PL2_RW, .type = ARM_CP_CONST,
4750 .resetvalue = 0 },
4751 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4752 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4753 .access = PL2_RW,
4754 /* no .writefn needed as this can't cause an ASID change;
4755 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4757 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4758 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4759 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4760 .type = ARM_CP_ALIAS,
4761 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4762 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4763 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4764 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4765 .access = PL2_RW,
4766 /* no .writefn needed as this can't cause an ASID change;
4767 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4769 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4770 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4771 .cp = 15, .opc1 = 6, .crm = 2,
4772 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4773 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4774 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4775 .writefn = vttbr_write },
4776 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4777 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4778 .access = PL2_RW, .writefn = vttbr_write,
4779 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4780 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4781 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4782 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4783 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4784 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4785 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4786 .access = PL2_RW, .resetvalue = 0,
4787 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4788 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4789 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4790 .access = PL2_RW, .resetvalue = 0,
4791 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4792 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4793 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4794 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4795 { .name = "TLBIALLNSNH",
4796 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4797 .type = ARM_CP_NO_RAW, .access = PL2_W,
4798 .writefn = tlbiall_nsnh_write },
4799 { .name = "TLBIALLNSNHIS",
4800 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4801 .type = ARM_CP_NO_RAW, .access = PL2_W,
4802 .writefn = tlbiall_nsnh_is_write },
4803 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4804 .type = ARM_CP_NO_RAW, .access = PL2_W,
4805 .writefn = tlbiall_hyp_write },
4806 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4807 .type = ARM_CP_NO_RAW, .access = PL2_W,
4808 .writefn = tlbiall_hyp_is_write },
4809 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4810 .type = ARM_CP_NO_RAW, .access = PL2_W,
4811 .writefn = tlbimva_hyp_write },
4812 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4813 .type = ARM_CP_NO_RAW, .access = PL2_W,
4814 .writefn = tlbimva_hyp_is_write },
4815 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4816 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4817 .type = ARM_CP_NO_RAW, .access = PL2_W,
4818 .writefn = tlbi_aa64_alle2_write },
4819 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4820 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4821 .type = ARM_CP_NO_RAW, .access = PL2_W,
4822 .writefn = tlbi_aa64_vae2_write },
4823 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4824 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4825 .access = PL2_W, .type = ARM_CP_NO_RAW,
4826 .writefn = tlbi_aa64_vae2_write },
4827 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4828 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4829 .access = PL2_W, .type = ARM_CP_NO_RAW,
4830 .writefn = tlbi_aa64_alle2is_write },
4831 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4832 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4833 .type = ARM_CP_NO_RAW, .access = PL2_W,
4834 .writefn = tlbi_aa64_vae2is_write },
4835 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4836 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4837 .access = PL2_W, .type = ARM_CP_NO_RAW,
4838 .writefn = tlbi_aa64_vae2is_write },
4839 #ifndef CONFIG_USER_ONLY
4840 /* Unlike the other EL2-related AT operations, these must
4841 * UNDEF from EL3 if EL2 is not implemented, which is why we
4842 * define them here rather than with the rest of the AT ops.
4844 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4845 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4846 .access = PL2_W, .accessfn = at_s1e2_access,
4847 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4848 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4849 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4850 .access = PL2_W, .accessfn = at_s1e2_access,
4851 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4852 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4853 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4854 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4855 * to behave as if SCR.NS was 1.
4857 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4858 .access = PL2_W,
4859 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4860 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4861 .access = PL2_W,
4862 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4863 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4864 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4865 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4866 * reset values as IMPDEF. We choose to reset to 3 to comply with
4867 * both ARMv7 and ARMv8.
4869 .access = PL2_RW, .resetvalue = 3,
4870 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4871 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4872 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4873 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4874 .writefn = gt_cntvoff_write,
4875 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4876 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4877 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4878 .writefn = gt_cntvoff_write,
4879 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4880 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4881 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4882 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4883 .type = ARM_CP_IO, .access = PL2_RW,
4884 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4885 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4886 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4887 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4888 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4889 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4890 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4891 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4892 .resetfn = gt_hyp_timer_reset,
4893 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4894 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4895 .type = ARM_CP_IO,
4896 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4897 .access = PL2_RW,
4898 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4899 .resetvalue = 0,
4900 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4901 #endif
4902 /* The only field of MDCR_EL2 that has a defined architectural reset value
4903 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4904 * don't implement any PMU event counters, so using zero as a reset
4905 * value for MDCR_EL2 is okay
4907 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4908 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4909 .access = PL2_RW, .resetvalue = 0,
4910 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4911 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4912 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4913 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4914 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4915 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4916 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4917 .access = PL2_RW,
4918 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4919 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4920 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4921 .access = PL2_RW,
4922 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4923 REGINFO_SENTINEL
4926 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4927 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4928 .type = ARM_CP_ALIAS | ARM_CP_IO,
4929 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4930 .access = PL2_RW,
4931 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4932 .writefn = hcr_writehigh },
4933 REGINFO_SENTINEL
4936 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4937 bool isread)
4939 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4940 * At Secure EL1 it traps to EL3.
4942 if (arm_current_el(env) == 3) {
4943 return CP_ACCESS_OK;
4945 if (arm_is_secure_below_el3(env)) {
4946 return CP_ACCESS_TRAP_EL3;
4948 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4949 if (isread) {
4950 return CP_ACCESS_OK;
4952 return CP_ACCESS_TRAP_UNCATEGORIZED;
4955 static const ARMCPRegInfo el3_cp_reginfo[] = {
4956 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4957 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4958 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4959 .resetvalue = 0, .writefn = scr_write },
4960 { .name = "SCR", .type = ARM_CP_ALIAS,
4961 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4962 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4963 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4964 .writefn = scr_write },
4965 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4966 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4967 .access = PL3_RW, .resetvalue = 0,
4968 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4969 { .name = "SDER",
4970 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4971 .access = PL3_RW, .resetvalue = 0,
4972 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4973 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4974 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4975 .writefn = vbar_write, .resetvalue = 0,
4976 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4977 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4978 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4979 .access = PL3_RW, .resetvalue = 0,
4980 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4981 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4982 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4983 .access = PL3_RW,
4984 /* no .writefn needed as this can't cause an ASID change;
4985 * we must provide a .raw_writefn and .resetfn because we handle
4986 * reset and migration for the AArch32 TTBCR(S), which might be
4987 * using mask and base_mask.
4989 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4990 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4991 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4992 .type = ARM_CP_ALIAS,
4993 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4994 .access = PL3_RW,
4995 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4996 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4997 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4998 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4999 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5000 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5001 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5002 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5003 .type = ARM_CP_ALIAS,
5004 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5005 .access = PL3_RW,
5006 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5007 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5008 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5009 .access = PL3_RW, .writefn = vbar_write,
5010 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5011 .resetvalue = 0 },
5012 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5013 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5014 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5015 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5016 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5017 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5018 .access = PL3_RW, .resetvalue = 0,
5019 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5020 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5021 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5022 .access = PL3_RW, .type = ARM_CP_CONST,
5023 .resetvalue = 0 },
5024 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5025 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5026 .access = PL3_RW, .type = ARM_CP_CONST,
5027 .resetvalue = 0 },
5028 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5029 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5030 .access = PL3_RW, .type = ARM_CP_CONST,
5031 .resetvalue = 0 },
5032 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5033 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5034 .access = PL3_W, .type = ARM_CP_NO_RAW,
5035 .writefn = tlbi_aa64_alle3is_write },
5036 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5037 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5038 .access = PL3_W, .type = ARM_CP_NO_RAW,
5039 .writefn = tlbi_aa64_vae3is_write },
5040 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5041 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5042 .access = PL3_W, .type = ARM_CP_NO_RAW,
5043 .writefn = tlbi_aa64_vae3is_write },
5044 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5045 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5046 .access = PL3_W, .type = ARM_CP_NO_RAW,
5047 .writefn = tlbi_aa64_alle3_write },
5048 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5049 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5050 .access = PL3_W, .type = ARM_CP_NO_RAW,
5051 .writefn = tlbi_aa64_vae3_write },
5052 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5053 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5054 .access = PL3_W, .type = ARM_CP_NO_RAW,
5055 .writefn = tlbi_aa64_vae3_write },
5056 REGINFO_SENTINEL
5059 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5060 bool isread)
5062 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5063 * but the AArch32 CTR has its own reginfo struct)
5065 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5066 return CP_ACCESS_TRAP;
5068 return CP_ACCESS_OK;
5071 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5072 uint64_t value)
5074 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5075 * read via a bit in OSLSR_EL1.
5077 int oslock;
5079 if (ri->state == ARM_CP_STATE_AA32) {
5080 oslock = (value == 0xC5ACCE55);
5081 } else {
5082 oslock = value & 1;
5085 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5088 static const ARMCPRegInfo debug_cp_reginfo[] = {
5089 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5090 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5091 * unlike DBGDRAR it is never accessible from EL0.
5092 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5093 * accessor.
5095 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5096 .access = PL0_R, .accessfn = access_tdra,
5097 .type = ARM_CP_CONST, .resetvalue = 0 },
5098 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5099 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5100 .access = PL1_R, .accessfn = access_tdra,
5101 .type = ARM_CP_CONST, .resetvalue = 0 },
5102 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5103 .access = PL0_R, .accessfn = access_tdra,
5104 .type = ARM_CP_CONST, .resetvalue = 0 },
5105 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5106 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5107 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5108 .access = PL1_RW, .accessfn = access_tda,
5109 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5110 .resetvalue = 0 },
5111 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5112 * We don't implement the configurable EL0 access.
5114 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5115 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5116 .type = ARM_CP_ALIAS,
5117 .access = PL1_R, .accessfn = access_tda,
5118 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5119 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5120 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5121 .access = PL1_W, .type = ARM_CP_NO_RAW,
5122 .accessfn = access_tdosa,
5123 .writefn = oslar_write },
5124 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5125 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5126 .access = PL1_R, .resetvalue = 10,
5127 .accessfn = access_tdosa,
5128 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5129 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5130 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5131 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5132 .access = PL1_RW, .accessfn = access_tdosa,
5133 .type = ARM_CP_NOP },
5134 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5135 * implement vector catch debug events yet.
5137 { .name = "DBGVCR",
5138 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5139 .access = PL1_RW, .accessfn = access_tda,
5140 .type = ARM_CP_NOP },
5141 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5142 * to save and restore a 32-bit guest's DBGVCR)
5144 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5145 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5146 .access = PL2_RW, .accessfn = access_tda,
5147 .type = ARM_CP_NOP },
5148 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5149 * Channel but Linux may try to access this register. The 32-bit
5150 * alias is DBGDCCINT.
5152 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5153 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5154 .access = PL1_RW, .accessfn = access_tda,
5155 .type = ARM_CP_NOP },
5156 REGINFO_SENTINEL
5159 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5160 /* 64 bit access versions of the (dummy) debug registers */
5161 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5162 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5163 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5164 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5165 REGINFO_SENTINEL
5168 /* Return the exception level to which exceptions should be taken
5169 * via SVEAccessTrap. If an exception should be routed through
5170 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5171 * take care of raising that exception.
5172 * C.f. the ARM pseudocode function CheckSVEEnabled.
5174 int sve_exception_el(CPUARMState *env, int el)
5176 #ifndef CONFIG_USER_ONLY
5177 if (el <= 1) {
5178 bool disabled = false;
5180 /* The CPACR.ZEN controls traps to EL1:
5181 * 0, 2 : trap EL0 and EL1 accesses
5182 * 1 : trap only EL0 accesses
5183 * 3 : trap no accesses
5185 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5186 disabled = true;
5187 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5188 disabled = el == 0;
5190 if (disabled) {
5191 /* route_to_el2 */
5192 return (arm_feature(env, ARM_FEATURE_EL2)
5193 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5196 /* Check CPACR.FPEN. */
5197 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5198 disabled = true;
5199 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5200 disabled = el == 0;
5202 if (disabled) {
5203 return 0;
5207 /* CPTR_EL2. Since TZ and TFP are positive,
5208 * they will be zero when EL2 is not present.
5210 if (el <= 2 && !arm_is_secure_below_el3(env)) {
5211 if (env->cp15.cptr_el[2] & CPTR_TZ) {
5212 return 2;
5214 if (env->cp15.cptr_el[2] & CPTR_TFP) {
5215 return 0;
5219 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5220 if (arm_feature(env, ARM_FEATURE_EL3)
5221 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5222 return 3;
5224 #endif
5225 return 0;
5229 * Given that SVE is enabled, return the vector length for EL.
5231 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5233 ARMCPU *cpu = arm_env_get_cpu(env);
5234 uint32_t zcr_len = cpu->sve_max_vq - 1;
5236 if (el <= 1) {
5237 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5239 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5240 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5242 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
5243 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5245 return zcr_len;
5248 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5249 uint64_t value)
5251 int cur_el = arm_current_el(env);
5252 int old_len = sve_zcr_len_for_el(env, cur_el);
5253 int new_len;
5255 /* Bits other than [3:0] are RAZ/WI. */
5256 raw_write(env, ri, value & 0xf);
5259 * Because we arrived here, we know both FP and SVE are enabled;
5260 * otherwise we would have trapped access to the ZCR_ELn register.
5262 new_len = sve_zcr_len_for_el(env, cur_el);
5263 if (new_len < old_len) {
5264 aarch64_sve_narrow_vq(env, new_len + 1);
5268 static const ARMCPRegInfo zcr_el1_reginfo = {
5269 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5270 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5271 .access = PL1_RW, .type = ARM_CP_SVE,
5272 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5273 .writefn = zcr_write, .raw_writefn = raw_write
5276 static const ARMCPRegInfo zcr_el2_reginfo = {
5277 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5278 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5279 .access = PL2_RW, .type = ARM_CP_SVE,
5280 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5281 .writefn = zcr_write, .raw_writefn = raw_write
5284 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5285 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5286 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5287 .access = PL2_RW, .type = ARM_CP_SVE,
5288 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5291 static const ARMCPRegInfo zcr_el3_reginfo = {
5292 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5293 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5294 .access = PL3_RW, .type = ARM_CP_SVE,
5295 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5296 .writefn = zcr_write, .raw_writefn = raw_write
5299 void hw_watchpoint_update(ARMCPU *cpu, int n)
5301 CPUARMState *env = &cpu->env;
5302 vaddr len = 0;
5303 vaddr wvr = env->cp15.dbgwvr[n];
5304 uint64_t wcr = env->cp15.dbgwcr[n];
5305 int mask;
5306 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5308 if (env->cpu_watchpoint[n]) {
5309 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5310 env->cpu_watchpoint[n] = NULL;
5313 if (!extract64(wcr, 0, 1)) {
5314 /* E bit clear : watchpoint disabled */
5315 return;
5318 switch (extract64(wcr, 3, 2)) {
5319 case 0:
5320 /* LSC 00 is reserved and must behave as if the wp is disabled */
5321 return;
5322 case 1:
5323 flags |= BP_MEM_READ;
5324 break;
5325 case 2:
5326 flags |= BP_MEM_WRITE;
5327 break;
5328 case 3:
5329 flags |= BP_MEM_ACCESS;
5330 break;
5333 /* Attempts to use both MASK and BAS fields simultaneously are
5334 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5335 * thus generating a watchpoint for every byte in the masked region.
5337 mask = extract64(wcr, 24, 4);
5338 if (mask == 1 || mask == 2) {
5339 /* Reserved values of MASK; we must act as if the mask value was
5340 * some non-reserved value, or as if the watchpoint were disabled.
5341 * We choose the latter.
5343 return;
5344 } else if (mask) {
5345 /* Watchpoint covers an aligned area up to 2GB in size */
5346 len = 1ULL << mask;
5347 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5348 * whether the watchpoint fires when the unmasked bits match; we opt
5349 * to generate the exceptions.
5351 wvr &= ~(len - 1);
5352 } else {
5353 /* Watchpoint covers bytes defined by the byte address select bits */
5354 int bas = extract64(wcr, 5, 8);
5355 int basstart;
5357 if (bas == 0) {
5358 /* This must act as if the watchpoint is disabled */
5359 return;
5362 if (extract64(wvr, 2, 1)) {
5363 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5364 * ignored, and BAS[3:0] define which bytes to watch.
5366 bas &= 0xf;
5368 /* The BAS bits are supposed to be programmed to indicate a contiguous
5369 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5370 * we fire for each byte in the word/doubleword addressed by the WVR.
5371 * We choose to ignore any non-zero bits after the first range of 1s.
5373 basstart = ctz32(bas);
5374 len = cto32(bas >> basstart);
5375 wvr += basstart;
5378 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5379 &env->cpu_watchpoint[n]);
5382 void hw_watchpoint_update_all(ARMCPU *cpu)
5384 int i;
5385 CPUARMState *env = &cpu->env;
5387 /* Completely clear out existing QEMU watchpoints and our array, to
5388 * avoid possible stale entries following migration load.
5390 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5391 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5393 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5394 hw_watchpoint_update(cpu, i);
5398 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5399 uint64_t value)
5401 ARMCPU *cpu = arm_env_get_cpu(env);
5402 int i = ri->crm;
5404 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5405 * register reads and behaves as if values written are sign extended.
5406 * Bits [1:0] are RES0.
5408 value = sextract64(value, 0, 49) & ~3ULL;
5410 raw_write(env, ri, value);
5411 hw_watchpoint_update(cpu, i);
5414 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5415 uint64_t value)
5417 ARMCPU *cpu = arm_env_get_cpu(env);
5418 int i = ri->crm;
5420 raw_write(env, ri, value);
5421 hw_watchpoint_update(cpu, i);
5424 void hw_breakpoint_update(ARMCPU *cpu, int n)
5426 CPUARMState *env = &cpu->env;
5427 uint64_t bvr = env->cp15.dbgbvr[n];
5428 uint64_t bcr = env->cp15.dbgbcr[n];
5429 vaddr addr;
5430 int bt;
5431 int flags = BP_CPU;
5433 if (env->cpu_breakpoint[n]) {
5434 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5435 env->cpu_breakpoint[n] = NULL;
5438 if (!extract64(bcr, 0, 1)) {
5439 /* E bit clear : watchpoint disabled */
5440 return;
5443 bt = extract64(bcr, 20, 4);
5445 switch (bt) {
5446 case 4: /* unlinked address mismatch (reserved if AArch64) */
5447 case 5: /* linked address mismatch (reserved if AArch64) */
5448 qemu_log_mask(LOG_UNIMP,
5449 "arm: address mismatch breakpoint types not implemented\n");
5450 return;
5451 case 0: /* unlinked address match */
5452 case 1: /* linked address match */
5454 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5455 * we behave as if the register was sign extended. Bits [1:0] are
5456 * RES0. The BAS field is used to allow setting breakpoints on 16
5457 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5458 * a bp will fire if the addresses covered by the bp and the addresses
5459 * covered by the insn overlap but the insn doesn't start at the
5460 * start of the bp address range. We choose to require the insn and
5461 * the bp to have the same address. The constraints on writing to
5462 * BAS enforced in dbgbcr_write mean we have only four cases:
5463 * 0b0000 => no breakpoint
5464 * 0b0011 => breakpoint on addr
5465 * 0b1100 => breakpoint on addr + 2
5466 * 0b1111 => breakpoint on addr
5467 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5469 int bas = extract64(bcr, 5, 4);
5470 addr = sextract64(bvr, 0, 49) & ~3ULL;
5471 if (bas == 0) {
5472 return;
5474 if (bas == 0xc) {
5475 addr += 2;
5477 break;
5479 case 2: /* unlinked context ID match */
5480 case 8: /* unlinked VMID match (reserved if no EL2) */
5481 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5482 qemu_log_mask(LOG_UNIMP,
5483 "arm: unlinked context breakpoint types not implemented\n");
5484 return;
5485 case 9: /* linked VMID match (reserved if no EL2) */
5486 case 11: /* linked context ID and VMID match (reserved if no EL2) */
5487 case 3: /* linked context ID match */
5488 default:
5489 /* We must generate no events for Linked context matches (unless
5490 * they are linked to by some other bp/wp, which is handled in
5491 * updates for the linking bp/wp). We choose to also generate no events
5492 * for reserved values.
5494 return;
5497 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5500 void hw_breakpoint_update_all(ARMCPU *cpu)
5502 int i;
5503 CPUARMState *env = &cpu->env;
5505 /* Completely clear out existing QEMU breakpoints and our array, to
5506 * avoid possible stale entries following migration load.
5508 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5509 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5511 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5512 hw_breakpoint_update(cpu, i);
5516 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5517 uint64_t value)
5519 ARMCPU *cpu = arm_env_get_cpu(env);
5520 int i = ri->crm;
5522 raw_write(env, ri, value);
5523 hw_breakpoint_update(cpu, i);
5526 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5527 uint64_t value)
5529 ARMCPU *cpu = arm_env_get_cpu(env);
5530 int i = ri->crm;
5532 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5533 * copy of BAS[0].
5535 value = deposit64(value, 6, 1, extract64(value, 5, 1));
5536 value = deposit64(value, 8, 1, extract64(value, 7, 1));
5538 raw_write(env, ri, value);
5539 hw_breakpoint_update(cpu, i);
5542 static void define_debug_regs(ARMCPU *cpu)
5544 /* Define v7 and v8 architectural debug registers.
5545 * These are just dummy implementations for now.
5547 int i;
5548 int wrps, brps, ctx_cmps;
5549 ARMCPRegInfo dbgdidr = {
5550 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5551 .access = PL0_R, .accessfn = access_tda,
5552 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5555 /* Note that all these register fields hold "number of Xs minus 1". */
5556 brps = extract32(cpu->dbgdidr, 24, 4);
5557 wrps = extract32(cpu->dbgdidr, 28, 4);
5558 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5560 assert(ctx_cmps <= brps);
5562 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5563 * of the debug registers such as number of breakpoints;
5564 * check that if they both exist then they agree.
5566 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5567 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5568 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5569 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5572 define_one_arm_cp_reg(cpu, &dbgdidr);
5573 define_arm_cp_regs(cpu, debug_cp_reginfo);
5575 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5576 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5579 for (i = 0; i < brps + 1; i++) {
5580 ARMCPRegInfo dbgregs[] = {
5581 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5582 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5583 .access = PL1_RW, .accessfn = access_tda,
5584 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5585 .writefn = dbgbvr_write, .raw_writefn = raw_write
5587 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5588 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5589 .access = PL1_RW, .accessfn = access_tda,
5590 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5591 .writefn = dbgbcr_write, .raw_writefn = raw_write
5593 REGINFO_SENTINEL
5595 define_arm_cp_regs(cpu, dbgregs);
5598 for (i = 0; i < wrps + 1; i++) {
5599 ARMCPRegInfo dbgregs[] = {
5600 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5601 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5602 .access = PL1_RW, .accessfn = access_tda,
5603 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5604 .writefn = dbgwvr_write, .raw_writefn = raw_write
5606 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5607 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5608 .access = PL1_RW, .accessfn = access_tda,
5609 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5610 .writefn = dbgwcr_write, .raw_writefn = raw_write
5612 REGINFO_SENTINEL
5614 define_arm_cp_regs(cpu, dbgregs);
5618 /* We don't know until after realize whether there's a GICv3
5619 * attached, and that is what registers the gicv3 sysregs.
5620 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5621 * at runtime.
5623 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5625 ARMCPU *cpu = arm_env_get_cpu(env);
5626 uint64_t pfr1 = cpu->id_pfr1;
5628 if (env->gicv3state) {
5629 pfr1 |= 1 << 28;
5631 return pfr1;
5634 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5636 ARMCPU *cpu = arm_env_get_cpu(env);
5637 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5639 if (env->gicv3state) {
5640 pfr0 |= 1 << 24;
5642 return pfr0;
5645 /* Shared logic between LORID and the rest of the LOR* registers.
5646 * Secure state has already been delt with.
5648 static CPAccessResult access_lor_ns(CPUARMState *env)
5650 int el = arm_current_el(env);
5652 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5653 return CP_ACCESS_TRAP_EL2;
5655 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5656 return CP_ACCESS_TRAP_EL3;
5658 return CP_ACCESS_OK;
5661 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5662 bool isread)
5664 if (arm_is_secure_below_el3(env)) {
5665 /* Access ok in secure mode. */
5666 return CP_ACCESS_OK;
5668 return access_lor_ns(env);
5671 static CPAccessResult access_lor_other(CPUARMState *env,
5672 const ARMCPRegInfo *ri, bool isread)
5674 if (arm_is_secure_below_el3(env)) {
5675 /* Access denied in secure mode. */
5676 return CP_ACCESS_TRAP;
5678 return access_lor_ns(env);
5681 #ifdef TARGET_AARCH64
5682 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5683 bool isread)
5685 int el = arm_current_el(env);
5687 if (el < 2 &&
5688 arm_feature(env, ARM_FEATURE_EL2) &&
5689 !(arm_hcr_el2_eff(env) & HCR_APK)) {
5690 return CP_ACCESS_TRAP_EL2;
5692 if (el < 3 &&
5693 arm_feature(env, ARM_FEATURE_EL3) &&
5694 !(env->cp15.scr_el3 & SCR_APK)) {
5695 return CP_ACCESS_TRAP_EL3;
5697 return CP_ACCESS_OK;
5700 static const ARMCPRegInfo pauth_reginfo[] = {
5701 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5702 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5703 .access = PL1_RW, .accessfn = access_pauth,
5704 .fieldoffset = offsetof(CPUARMState, apda_key.lo) },
5705 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5706 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5707 .access = PL1_RW, .accessfn = access_pauth,
5708 .fieldoffset = offsetof(CPUARMState, apda_key.hi) },
5709 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5710 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5711 .access = PL1_RW, .accessfn = access_pauth,
5712 .fieldoffset = offsetof(CPUARMState, apdb_key.lo) },
5713 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5714 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5715 .access = PL1_RW, .accessfn = access_pauth,
5716 .fieldoffset = offsetof(CPUARMState, apdb_key.hi) },
5717 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5718 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5719 .access = PL1_RW, .accessfn = access_pauth,
5720 .fieldoffset = offsetof(CPUARMState, apga_key.lo) },
5721 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5722 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5723 .access = PL1_RW, .accessfn = access_pauth,
5724 .fieldoffset = offsetof(CPUARMState, apga_key.hi) },
5725 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5726 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5727 .access = PL1_RW, .accessfn = access_pauth,
5728 .fieldoffset = offsetof(CPUARMState, apia_key.lo) },
5729 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5730 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5731 .access = PL1_RW, .accessfn = access_pauth,
5732 .fieldoffset = offsetof(CPUARMState, apia_key.hi) },
5733 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5734 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5735 .access = PL1_RW, .accessfn = access_pauth,
5736 .fieldoffset = offsetof(CPUARMState, apib_key.lo) },
5737 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5738 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5739 .access = PL1_RW, .accessfn = access_pauth,
5740 .fieldoffset = offsetof(CPUARMState, apib_key.hi) },
5741 REGINFO_SENTINEL
5743 #endif
5745 void register_cp_regs_for_features(ARMCPU *cpu)
5747 /* Register all the coprocessor registers based on feature bits */
5748 CPUARMState *env = &cpu->env;
5749 if (arm_feature(env, ARM_FEATURE_M)) {
5750 /* M profile has no coprocessor registers */
5751 return;
5754 define_arm_cp_regs(cpu, cp_reginfo);
5755 if (!arm_feature(env, ARM_FEATURE_V8)) {
5756 /* Must go early as it is full of wildcards that may be
5757 * overridden by later definitions.
5759 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5762 if (arm_feature(env, ARM_FEATURE_V6)) {
5763 /* The ID registers all have impdef reset values */
5764 ARMCPRegInfo v6_idregs[] = {
5765 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5766 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5767 .access = PL1_R, .type = ARM_CP_CONST,
5768 .resetvalue = cpu->id_pfr0 },
5769 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5770 * the value of the GIC field until after we define these regs.
5772 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5773 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
5774 .access = PL1_R, .type = ARM_CP_NO_RAW,
5775 .readfn = id_pfr1_read,
5776 .writefn = arm_cp_write_ignore },
5777 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5778 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5779 .access = PL1_R, .type = ARM_CP_CONST,
5780 .resetvalue = cpu->id_dfr0 },
5781 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5783 .access = PL1_R, .type = ARM_CP_CONST,
5784 .resetvalue = cpu->id_afr0 },
5785 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5786 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5787 .access = PL1_R, .type = ARM_CP_CONST,
5788 .resetvalue = cpu->id_mmfr0 },
5789 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5791 .access = PL1_R, .type = ARM_CP_CONST,
5792 .resetvalue = cpu->id_mmfr1 },
5793 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5795 .access = PL1_R, .type = ARM_CP_CONST,
5796 .resetvalue = cpu->id_mmfr2 },
5797 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5798 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5799 .access = PL1_R, .type = ARM_CP_CONST,
5800 .resetvalue = cpu->id_mmfr3 },
5801 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5803 .access = PL1_R, .type = ARM_CP_CONST,
5804 .resetvalue = cpu->isar.id_isar0 },
5805 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5807 .access = PL1_R, .type = ARM_CP_CONST,
5808 .resetvalue = cpu->isar.id_isar1 },
5809 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5811 .access = PL1_R, .type = ARM_CP_CONST,
5812 .resetvalue = cpu->isar.id_isar2 },
5813 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5814 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5815 .access = PL1_R, .type = ARM_CP_CONST,
5816 .resetvalue = cpu->isar.id_isar3 },
5817 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5818 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5819 .access = PL1_R, .type = ARM_CP_CONST,
5820 .resetvalue = cpu->isar.id_isar4 },
5821 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5823 .access = PL1_R, .type = ARM_CP_CONST,
5824 .resetvalue = cpu->isar.id_isar5 },
5825 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5826 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5827 .access = PL1_R, .type = ARM_CP_CONST,
5828 .resetvalue = cpu->id_mmfr4 },
5829 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
5830 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5831 .access = PL1_R, .type = ARM_CP_CONST,
5832 .resetvalue = cpu->isar.id_isar6 },
5833 REGINFO_SENTINEL
5835 define_arm_cp_regs(cpu, v6_idregs);
5836 define_arm_cp_regs(cpu, v6_cp_reginfo);
5837 } else {
5838 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5840 if (arm_feature(env, ARM_FEATURE_V6K)) {
5841 define_arm_cp_regs(cpu, v6k_cp_reginfo);
5843 if (arm_feature(env, ARM_FEATURE_V7MP) &&
5844 !arm_feature(env, ARM_FEATURE_PMSA)) {
5845 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5847 if (arm_feature(env, ARM_FEATURE_V7VE)) {
5848 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
5850 if (arm_feature(env, ARM_FEATURE_V7)) {
5851 /* v7 performance monitor control register: same implementor
5852 * field as main ID register, and we implement four counters in
5853 * addition to the cycle count register.
5855 unsigned int i, pmcrn = 4;
5856 ARMCPRegInfo pmcr = {
5857 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
5858 .access = PL0_RW,
5859 .type = ARM_CP_IO | ARM_CP_ALIAS,
5860 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
5861 .accessfn = pmreg_access, .writefn = pmcr_write,
5862 .raw_writefn = raw_write,
5864 ARMCPRegInfo pmcr64 = {
5865 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5866 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5867 .access = PL0_RW, .accessfn = pmreg_access,
5868 .type = ARM_CP_IO,
5869 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
5870 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
5871 .writefn = pmcr_write, .raw_writefn = raw_write,
5873 define_one_arm_cp_reg(cpu, &pmcr);
5874 define_one_arm_cp_reg(cpu, &pmcr64);
5875 for (i = 0; i < pmcrn; i++) {
5876 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
5877 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
5878 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
5879 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
5880 ARMCPRegInfo pmev_regs[] = {
5881 { .name = pmevcntr_name, .cp = 15, .crn = 14,
5882 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5883 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5884 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5885 .accessfn = pmreg_access },
5886 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
5887 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
5888 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5889 .type = ARM_CP_IO,
5890 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5891 .raw_readfn = pmevcntr_rawread,
5892 .raw_writefn = pmevcntr_rawwrite },
5893 { .name = pmevtyper_name, .cp = 15, .crn = 14,
5894 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5895 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5896 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5897 .accessfn = pmreg_access },
5898 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
5899 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
5900 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5901 .type = ARM_CP_IO,
5902 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5903 .raw_writefn = pmevtyper_rawwrite },
5904 REGINFO_SENTINEL
5906 define_arm_cp_regs(cpu, pmev_regs);
5907 g_free(pmevcntr_name);
5908 g_free(pmevcntr_el0_name);
5909 g_free(pmevtyper_name);
5910 g_free(pmevtyper_el0_name);
5912 ARMCPRegInfo clidr = {
5913 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
5914 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
5915 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
5917 define_one_arm_cp_reg(cpu, &clidr);
5918 define_arm_cp_regs(cpu, v7_cp_reginfo);
5919 define_debug_regs(cpu);
5920 } else {
5921 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
5923 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
5924 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
5925 ARMCPRegInfo v81_pmu_regs[] = {
5926 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
5927 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
5928 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5929 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
5930 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
5931 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
5932 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5933 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
5934 REGINFO_SENTINEL
5936 define_arm_cp_regs(cpu, v81_pmu_regs);
5938 if (arm_feature(env, ARM_FEATURE_V8)) {
5939 /* AArch64 ID registers, which all have impdef reset values.
5940 * Note that within the ID register ranges the unused slots
5941 * must all RAZ, not UNDEF; future architecture versions may
5942 * define new registers here.
5944 ARMCPRegInfo v8_idregs[] = {
5945 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
5946 * know the right value for the GIC field until after we
5947 * define these regs.
5949 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
5950 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
5951 .access = PL1_R, .type = ARM_CP_NO_RAW,
5952 .readfn = id_aa64pfr0_read,
5953 .writefn = arm_cp_write_ignore },
5954 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
5955 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
5956 .access = PL1_R, .type = ARM_CP_CONST,
5957 .resetvalue = cpu->isar.id_aa64pfr1},
5958 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5959 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
5960 .access = PL1_R, .type = ARM_CP_CONST,
5961 .resetvalue = 0 },
5962 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5963 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
5964 .access = PL1_R, .type = ARM_CP_CONST,
5965 .resetvalue = 0 },
5966 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
5967 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
5968 .access = PL1_R, .type = ARM_CP_CONST,
5969 /* At present, only SVEver == 0 is defined anyway. */
5970 .resetvalue = 0 },
5971 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5972 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
5973 .access = PL1_R, .type = ARM_CP_CONST,
5974 .resetvalue = 0 },
5975 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5976 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
5977 .access = PL1_R, .type = ARM_CP_CONST,
5978 .resetvalue = 0 },
5979 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5980 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
5981 .access = PL1_R, .type = ARM_CP_CONST,
5982 .resetvalue = 0 },
5983 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
5984 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
5985 .access = PL1_R, .type = ARM_CP_CONST,
5986 .resetvalue = cpu->id_aa64dfr0 },
5987 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
5988 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
5989 .access = PL1_R, .type = ARM_CP_CONST,
5990 .resetvalue = cpu->id_aa64dfr1 },
5991 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5992 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
5993 .access = PL1_R, .type = ARM_CP_CONST,
5994 .resetvalue = 0 },
5995 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
5997 .access = PL1_R, .type = ARM_CP_CONST,
5998 .resetvalue = 0 },
5999 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6000 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6001 .access = PL1_R, .type = ARM_CP_CONST,
6002 .resetvalue = cpu->id_aa64afr0 },
6003 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6004 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6005 .access = PL1_R, .type = ARM_CP_CONST,
6006 .resetvalue = cpu->id_aa64afr1 },
6007 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6008 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6009 .access = PL1_R, .type = ARM_CP_CONST,
6010 .resetvalue = 0 },
6011 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6012 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6013 .access = PL1_R, .type = ARM_CP_CONST,
6014 .resetvalue = 0 },
6015 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6016 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6017 .access = PL1_R, .type = ARM_CP_CONST,
6018 .resetvalue = cpu->isar.id_aa64isar0 },
6019 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6020 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6021 .access = PL1_R, .type = ARM_CP_CONST,
6022 .resetvalue = cpu->isar.id_aa64isar1 },
6023 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6024 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6025 .access = PL1_R, .type = ARM_CP_CONST,
6026 .resetvalue = 0 },
6027 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6028 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6029 .access = PL1_R, .type = ARM_CP_CONST,
6030 .resetvalue = 0 },
6031 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6032 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6033 .access = PL1_R, .type = ARM_CP_CONST,
6034 .resetvalue = 0 },
6035 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6036 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6037 .access = PL1_R, .type = ARM_CP_CONST,
6038 .resetvalue = 0 },
6039 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6040 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6041 .access = PL1_R, .type = ARM_CP_CONST,
6042 .resetvalue = 0 },
6043 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6044 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6045 .access = PL1_R, .type = ARM_CP_CONST,
6046 .resetvalue = 0 },
6047 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6048 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6049 .access = PL1_R, .type = ARM_CP_CONST,
6050 .resetvalue = cpu->isar.id_aa64mmfr0 },
6051 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6052 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6053 .access = PL1_R, .type = ARM_CP_CONST,
6054 .resetvalue = cpu->isar.id_aa64mmfr1 },
6055 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6056 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6057 .access = PL1_R, .type = ARM_CP_CONST,
6058 .resetvalue = 0 },
6059 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6060 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6061 .access = PL1_R, .type = ARM_CP_CONST,
6062 .resetvalue = 0 },
6063 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6064 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6065 .access = PL1_R, .type = ARM_CP_CONST,
6066 .resetvalue = 0 },
6067 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6068 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6069 .access = PL1_R, .type = ARM_CP_CONST,
6070 .resetvalue = 0 },
6071 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6072 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6073 .access = PL1_R, .type = ARM_CP_CONST,
6074 .resetvalue = 0 },
6075 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6076 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6077 .access = PL1_R, .type = ARM_CP_CONST,
6078 .resetvalue = 0 },
6079 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6080 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6081 .access = PL1_R, .type = ARM_CP_CONST,
6082 .resetvalue = cpu->isar.mvfr0 },
6083 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6084 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6085 .access = PL1_R, .type = ARM_CP_CONST,
6086 .resetvalue = cpu->isar.mvfr1 },
6087 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6088 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6089 .access = PL1_R, .type = ARM_CP_CONST,
6090 .resetvalue = cpu->isar.mvfr2 },
6091 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6092 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6093 .access = PL1_R, .type = ARM_CP_CONST,
6094 .resetvalue = 0 },
6095 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6096 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6097 .access = PL1_R, .type = ARM_CP_CONST,
6098 .resetvalue = 0 },
6099 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6100 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6101 .access = PL1_R, .type = ARM_CP_CONST,
6102 .resetvalue = 0 },
6103 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6104 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6105 .access = PL1_R, .type = ARM_CP_CONST,
6106 .resetvalue = 0 },
6107 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6108 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6109 .access = PL1_R, .type = ARM_CP_CONST,
6110 .resetvalue = 0 },
6111 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6112 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6113 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6114 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6115 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6116 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6117 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6118 .resetvalue = cpu->pmceid0 },
6119 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6120 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6121 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6122 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6123 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6124 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6125 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6126 .resetvalue = cpu->pmceid1 },
6127 REGINFO_SENTINEL
6129 #ifdef CONFIG_USER_ONLY
6130 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6131 { .name = "ID_AA64PFR0_EL1",
6132 .exported_bits = 0x000f000f00ff0000,
6133 .fixed_bits = 0x0000000000000011 },
6134 { .name = "ID_AA64PFR1_EL1",
6135 .exported_bits = 0x00000000000000f0 },
6136 { .name = "ID_AA64PFR*_EL1_RESERVED",
6137 .is_glob = true },
6138 { .name = "ID_AA64ZFR0_EL1" },
6139 { .name = "ID_AA64MMFR0_EL1",
6140 .fixed_bits = 0x00000000ff000000 },
6141 { .name = "ID_AA64MMFR1_EL1" },
6142 { .name = "ID_AA64MMFR*_EL1_RESERVED",
6143 .is_glob = true },
6144 { .name = "ID_AA64DFR0_EL1",
6145 .fixed_bits = 0x0000000000000006 },
6146 { .name = "ID_AA64DFR1_EL1" },
6147 { .name = "ID_AA64DFR*_EL1_RESERVED",
6148 .is_glob = true },
6149 { .name = "ID_AA64AFR*",
6150 .is_glob = true },
6151 { .name = "ID_AA64ISAR0_EL1",
6152 .exported_bits = 0x00fffffff0fffff0 },
6153 { .name = "ID_AA64ISAR1_EL1",
6154 .exported_bits = 0x000000f0ffffffff },
6155 { .name = "ID_AA64ISAR*_EL1_RESERVED",
6156 .is_glob = true },
6157 REGUSERINFO_SENTINEL
6159 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6160 #endif
6161 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6162 if (!arm_feature(env, ARM_FEATURE_EL3) &&
6163 !arm_feature(env, ARM_FEATURE_EL2)) {
6164 ARMCPRegInfo rvbar = {
6165 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6166 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6167 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6169 define_one_arm_cp_reg(cpu, &rvbar);
6171 define_arm_cp_regs(cpu, v8_idregs);
6172 define_arm_cp_regs(cpu, v8_cp_reginfo);
6174 if (arm_feature(env, ARM_FEATURE_EL2)) {
6175 uint64_t vmpidr_def = mpidr_read_val(env);
6176 ARMCPRegInfo vpidr_regs[] = {
6177 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6178 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6179 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6180 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6181 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6182 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6183 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6184 .access = PL2_RW, .resetvalue = cpu->midr,
6185 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6186 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6187 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6188 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6189 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6190 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6191 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6192 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6193 .access = PL2_RW,
6194 .resetvalue = vmpidr_def,
6195 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6196 REGINFO_SENTINEL
6198 define_arm_cp_regs(cpu, vpidr_regs);
6199 define_arm_cp_regs(cpu, el2_cp_reginfo);
6200 if (arm_feature(env, ARM_FEATURE_V8)) {
6201 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6203 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6204 if (!arm_feature(env, ARM_FEATURE_EL3)) {
6205 ARMCPRegInfo rvbar = {
6206 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6207 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6208 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6210 define_one_arm_cp_reg(cpu, &rvbar);
6212 } else {
6213 /* If EL2 is missing but higher ELs are enabled, we need to
6214 * register the no_el2 reginfos.
6216 if (arm_feature(env, ARM_FEATURE_EL3)) {
6217 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6218 * of MIDR_EL1 and MPIDR_EL1.
6220 ARMCPRegInfo vpidr_regs[] = {
6221 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6222 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6223 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6224 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6225 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6226 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6227 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6228 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6229 .type = ARM_CP_NO_RAW,
6230 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6231 REGINFO_SENTINEL
6233 define_arm_cp_regs(cpu, vpidr_regs);
6234 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6235 if (arm_feature(env, ARM_FEATURE_V8)) {
6236 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6240 if (arm_feature(env, ARM_FEATURE_EL3)) {
6241 define_arm_cp_regs(cpu, el3_cp_reginfo);
6242 ARMCPRegInfo el3_regs[] = {
6243 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6244 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6245 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6246 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6247 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6248 .access = PL3_RW,
6249 .raw_writefn = raw_write, .writefn = sctlr_write,
6250 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6251 .resetvalue = cpu->reset_sctlr },
6252 REGINFO_SENTINEL
6255 define_arm_cp_regs(cpu, el3_regs);
6257 /* The behaviour of NSACR is sufficiently various that we don't
6258 * try to describe it in a single reginfo:
6259 * if EL3 is 64 bit, then trap to EL3 from S EL1,
6260 * reads as constant 0xc00 from NS EL1 and NS EL2
6261 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6262 * if v7 without EL3, register doesn't exist
6263 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6265 if (arm_feature(env, ARM_FEATURE_EL3)) {
6266 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6267 ARMCPRegInfo nsacr = {
6268 .name = "NSACR", .type = ARM_CP_CONST,
6269 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6270 .access = PL1_RW, .accessfn = nsacr_access,
6271 .resetvalue = 0xc00
6273 define_one_arm_cp_reg(cpu, &nsacr);
6274 } else {
6275 ARMCPRegInfo nsacr = {
6276 .name = "NSACR",
6277 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6278 .access = PL3_RW | PL1_R,
6279 .resetvalue = 0,
6280 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6282 define_one_arm_cp_reg(cpu, &nsacr);
6284 } else {
6285 if (arm_feature(env, ARM_FEATURE_V8)) {
6286 ARMCPRegInfo nsacr = {
6287 .name = "NSACR", .type = ARM_CP_CONST,
6288 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6289 .access = PL1_R,
6290 .resetvalue = 0xc00
6292 define_one_arm_cp_reg(cpu, &nsacr);
6296 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6297 if (arm_feature(env, ARM_FEATURE_V6)) {
6298 /* PMSAv6 not implemented */
6299 assert(arm_feature(env, ARM_FEATURE_V7));
6300 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6301 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6302 } else {
6303 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6305 } else {
6306 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6307 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6308 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
6309 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6310 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6313 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6314 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6316 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6317 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6319 if (arm_feature(env, ARM_FEATURE_VAPA)) {
6320 define_arm_cp_regs(cpu, vapa_cp_reginfo);
6322 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6323 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6325 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6326 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6328 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6329 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6331 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6332 define_arm_cp_regs(cpu, omap_cp_reginfo);
6334 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6335 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6337 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6338 define_arm_cp_regs(cpu, xscale_cp_reginfo);
6340 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6341 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6343 if (arm_feature(env, ARM_FEATURE_LPAE)) {
6344 define_arm_cp_regs(cpu, lpae_cp_reginfo);
6346 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6347 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6348 * be read-only (ie write causes UNDEF exception).
6351 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6352 /* Pre-v8 MIDR space.
6353 * Note that the MIDR isn't a simple constant register because
6354 * of the TI925 behaviour where writes to another register can
6355 * cause the MIDR value to change.
6357 * Unimplemented registers in the c15 0 0 0 space default to
6358 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6359 * and friends override accordingly.
6361 { .name = "MIDR",
6362 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6363 .access = PL1_R, .resetvalue = cpu->midr,
6364 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6365 .readfn = midr_read,
6366 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6367 .type = ARM_CP_OVERRIDE },
6368 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6369 { .name = "DUMMY",
6370 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6371 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6372 { .name = "DUMMY",
6373 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6374 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6375 { .name = "DUMMY",
6376 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6377 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6378 { .name = "DUMMY",
6379 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6380 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6381 { .name = "DUMMY",
6382 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6383 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6384 REGINFO_SENTINEL
6386 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6387 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6388 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6389 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6390 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6391 .readfn = midr_read },
6392 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6393 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6394 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6395 .access = PL1_R, .resetvalue = cpu->midr },
6396 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6397 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6398 .access = PL1_R, .resetvalue = cpu->midr },
6399 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6400 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6401 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6402 REGINFO_SENTINEL
6404 ARMCPRegInfo id_cp_reginfo[] = {
6405 /* These are common to v8 and pre-v8 */
6406 { .name = "CTR",
6407 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6408 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6409 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6410 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6411 .access = PL0_R, .accessfn = ctr_el0_access,
6412 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6413 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6414 { .name = "TCMTR",
6415 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6416 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6417 REGINFO_SENTINEL
6419 /* TLBTR is specific to VMSA */
6420 ARMCPRegInfo id_tlbtr_reginfo = {
6421 .name = "TLBTR",
6422 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6423 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6425 /* MPUIR is specific to PMSA V6+ */
6426 ARMCPRegInfo id_mpuir_reginfo = {
6427 .name = "MPUIR",
6428 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6429 .access = PL1_R, .type = ARM_CP_CONST,
6430 .resetvalue = cpu->pmsav7_dregion << 8
6432 ARMCPRegInfo crn0_wi_reginfo = {
6433 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6434 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6435 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6437 #ifdef CONFIG_USER_ONLY
6438 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6439 { .name = "MIDR_EL1",
6440 .exported_bits = 0x00000000ffffffff },
6441 { .name = "REVIDR_EL1" },
6442 REGUSERINFO_SENTINEL
6444 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6445 #endif
6446 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6447 arm_feature(env, ARM_FEATURE_STRONGARM)) {
6448 ARMCPRegInfo *r;
6449 /* Register the blanket "writes ignored" value first to cover the
6450 * whole space. Then update the specific ID registers to allow write
6451 * access, so that they ignore writes rather than causing them to
6452 * UNDEF.
6454 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6455 for (r = id_pre_v8_midr_cp_reginfo;
6456 r->type != ARM_CP_SENTINEL; r++) {
6457 r->access = PL1_RW;
6459 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6460 r->access = PL1_RW;
6462 id_mpuir_reginfo.access = PL1_RW;
6463 id_tlbtr_reginfo.access = PL1_RW;
6465 if (arm_feature(env, ARM_FEATURE_V8)) {
6466 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6467 } else {
6468 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6470 define_arm_cp_regs(cpu, id_cp_reginfo);
6471 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6472 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6473 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6474 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6478 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6479 ARMCPRegInfo mpidr_cp_reginfo[] = {
6480 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6481 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6482 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6483 REGINFO_SENTINEL
6485 #ifdef CONFIG_USER_ONLY
6486 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6487 { .name = "MPIDR_EL1",
6488 .fixed_bits = 0x0000000080000000 },
6489 REGUSERINFO_SENTINEL
6491 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6492 #endif
6493 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6496 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6497 ARMCPRegInfo auxcr_reginfo[] = {
6498 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6499 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6500 .access = PL1_RW, .type = ARM_CP_CONST,
6501 .resetvalue = cpu->reset_auxcr },
6502 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6503 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6504 .access = PL2_RW, .type = ARM_CP_CONST,
6505 .resetvalue = 0 },
6506 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6507 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6508 .access = PL3_RW, .type = ARM_CP_CONST,
6509 .resetvalue = 0 },
6510 REGINFO_SENTINEL
6512 define_arm_cp_regs(cpu, auxcr_reginfo);
6513 if (arm_feature(env, ARM_FEATURE_V8)) {
6514 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6515 ARMCPRegInfo hactlr2_reginfo = {
6516 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6517 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6518 .access = PL2_RW, .type = ARM_CP_CONST,
6519 .resetvalue = 0
6521 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6525 if (arm_feature(env, ARM_FEATURE_CBAR)) {
6526 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6527 /* 32 bit view is [31:18] 0...0 [43:32]. */
6528 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6529 | extract64(cpu->reset_cbar, 32, 12);
6530 ARMCPRegInfo cbar_reginfo[] = {
6531 { .name = "CBAR",
6532 .type = ARM_CP_CONST,
6533 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6534 .access = PL1_R, .resetvalue = cpu->reset_cbar },
6535 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6536 .type = ARM_CP_CONST,
6537 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6538 .access = PL1_R, .resetvalue = cbar32 },
6539 REGINFO_SENTINEL
6541 /* We don't implement a r/w 64 bit CBAR currently */
6542 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6543 define_arm_cp_regs(cpu, cbar_reginfo);
6544 } else {
6545 ARMCPRegInfo cbar = {
6546 .name = "CBAR",
6547 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6548 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6549 .fieldoffset = offsetof(CPUARMState,
6550 cp15.c15_config_base_address)
6552 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6553 cbar.access = PL1_R;
6554 cbar.fieldoffset = 0;
6555 cbar.type = ARM_CP_CONST;
6557 define_one_arm_cp_reg(cpu, &cbar);
6561 if (arm_feature(env, ARM_FEATURE_VBAR)) {
6562 ARMCPRegInfo vbar_cp_reginfo[] = {
6563 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6564 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6565 .access = PL1_RW, .writefn = vbar_write,
6566 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6567 offsetof(CPUARMState, cp15.vbar_ns) },
6568 .resetvalue = 0 },
6569 REGINFO_SENTINEL
6571 define_arm_cp_regs(cpu, vbar_cp_reginfo);
6574 /* Generic registers whose values depend on the implementation */
6576 ARMCPRegInfo sctlr = {
6577 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6578 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6579 .access = PL1_RW,
6580 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6581 offsetof(CPUARMState, cp15.sctlr_ns) },
6582 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6583 .raw_writefn = raw_write,
6585 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6586 /* Normally we would always end the TB on an SCTLR write, but Linux
6587 * arch/arm/mach-pxa/sleep.S expects two instructions following
6588 * an MMU enable to execute from cache. Imitate this behaviour.
6590 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6592 define_one_arm_cp_reg(cpu, &sctlr);
6595 if (cpu_isar_feature(aa64_lor, cpu)) {
6597 * A trivial implementation of ARMv8.1-LOR leaves all of these
6598 * registers fixed at 0, which indicates that there are zero
6599 * supported Limited Ordering regions.
6601 static const ARMCPRegInfo lor_reginfo[] = {
6602 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6603 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6604 .access = PL1_RW, .accessfn = access_lor_other,
6605 .type = ARM_CP_CONST, .resetvalue = 0 },
6606 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6607 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6608 .access = PL1_RW, .accessfn = access_lor_other,
6609 .type = ARM_CP_CONST, .resetvalue = 0 },
6610 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6611 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6612 .access = PL1_RW, .accessfn = access_lor_other,
6613 .type = ARM_CP_CONST, .resetvalue = 0 },
6614 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6615 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6616 .access = PL1_RW, .accessfn = access_lor_other,
6617 .type = ARM_CP_CONST, .resetvalue = 0 },
6618 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6619 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6620 .access = PL1_R, .accessfn = access_lorid,
6621 .type = ARM_CP_CONST, .resetvalue = 0 },
6622 REGINFO_SENTINEL
6624 define_arm_cp_regs(cpu, lor_reginfo);
6627 if (cpu_isar_feature(aa64_sve, cpu)) {
6628 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6629 if (arm_feature(env, ARM_FEATURE_EL2)) {
6630 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6631 } else {
6632 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6634 if (arm_feature(env, ARM_FEATURE_EL3)) {
6635 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6639 #ifdef TARGET_AARCH64
6640 if (cpu_isar_feature(aa64_pauth, cpu)) {
6641 define_arm_cp_regs(cpu, pauth_reginfo);
6643 #endif
6646 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6648 CPUState *cs = CPU(cpu);
6649 CPUARMState *env = &cpu->env;
6651 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6652 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6653 aarch64_fpu_gdb_set_reg,
6654 34, "aarch64-fpu.xml", 0);
6655 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6656 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6657 51, "arm-neon.xml", 0);
6658 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6659 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6660 35, "arm-vfp3.xml", 0);
6661 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
6662 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6663 19, "arm-vfp.xml", 0);
6665 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6666 arm_gen_dynamic_xml(cs),
6667 "system-registers.xml", 0);
6670 /* Sort alphabetically by type name, except for "any". */
6671 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
6673 ObjectClass *class_a = (ObjectClass *)a;
6674 ObjectClass *class_b = (ObjectClass *)b;
6675 const char *name_a, *name_b;
6677 name_a = object_class_get_name(class_a);
6678 name_b = object_class_get_name(class_b);
6679 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
6680 return 1;
6681 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
6682 return -1;
6683 } else {
6684 return strcmp(name_a, name_b);
6688 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
6690 ObjectClass *oc = data;
6691 CPUListState *s = user_data;
6692 const char *typename;
6693 char *name;
6695 typename = object_class_get_name(oc);
6696 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
6697 (*s->cpu_fprintf)(s->file, " %s\n",
6698 name);
6699 g_free(name);
6702 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
6704 CPUListState s = {
6705 .file = f,
6706 .cpu_fprintf = cpu_fprintf,
6708 GSList *list;
6710 list = object_class_get_list(TYPE_ARM_CPU, false);
6711 list = g_slist_sort(list, arm_cpu_list_compare);
6712 (*cpu_fprintf)(f, "Available CPUs:\n");
6713 g_slist_foreach(list, arm_cpu_list_entry, &s);
6714 g_slist_free(list);
6717 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6719 ObjectClass *oc = data;
6720 CpuDefinitionInfoList **cpu_list = user_data;
6721 CpuDefinitionInfoList *entry;
6722 CpuDefinitionInfo *info;
6723 const char *typename;
6725 typename = object_class_get_name(oc);
6726 info = g_malloc0(sizeof(*info));
6727 info->name = g_strndup(typename,
6728 strlen(typename) - strlen("-" TYPE_ARM_CPU));
6729 info->q_typename = g_strdup(typename);
6731 entry = g_malloc0(sizeof(*entry));
6732 entry->value = info;
6733 entry->next = *cpu_list;
6734 *cpu_list = entry;
6737 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
6739 CpuDefinitionInfoList *cpu_list = NULL;
6740 GSList *list;
6742 list = object_class_get_list(TYPE_ARM_CPU, false);
6743 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6744 g_slist_free(list);
6746 return cpu_list;
6749 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
6750 void *opaque, int state, int secstate,
6751 int crm, int opc1, int opc2,
6752 const char *name)
6754 /* Private utility function for define_one_arm_cp_reg_with_opaque():
6755 * add a single reginfo struct to the hash table.
6757 uint32_t *key = g_new(uint32_t, 1);
6758 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
6759 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
6760 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
6762 r2->name = g_strdup(name);
6763 /* Reset the secure state to the specific incoming state. This is
6764 * necessary as the register may have been defined with both states.
6766 r2->secure = secstate;
6768 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6769 /* Register is banked (using both entries in array).
6770 * Overwriting fieldoffset as the array is only used to define
6771 * banked registers but later only fieldoffset is used.
6773 r2->fieldoffset = r->bank_fieldoffsets[ns];
6776 if (state == ARM_CP_STATE_AA32) {
6777 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6778 /* If the register is banked then we don't need to migrate or
6779 * reset the 32-bit instance in certain cases:
6781 * 1) If the register has both 32-bit and 64-bit instances then we
6782 * can count on the 64-bit instance taking care of the
6783 * non-secure bank.
6784 * 2) If ARMv8 is enabled then we can count on a 64-bit version
6785 * taking care of the secure bank. This requires that separate
6786 * 32 and 64-bit definitions are provided.
6788 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
6789 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
6790 r2->type |= ARM_CP_ALIAS;
6792 } else if ((secstate != r->secure) && !ns) {
6793 /* The register is not banked so we only want to allow migration of
6794 * the non-secure instance.
6796 r2->type |= ARM_CP_ALIAS;
6799 if (r->state == ARM_CP_STATE_BOTH) {
6800 /* We assume it is a cp15 register if the .cp field is left unset.
6802 if (r2->cp == 0) {
6803 r2->cp = 15;
6806 #ifdef HOST_WORDS_BIGENDIAN
6807 if (r2->fieldoffset) {
6808 r2->fieldoffset += sizeof(uint32_t);
6810 #endif
6813 if (state == ARM_CP_STATE_AA64) {
6814 /* To allow abbreviation of ARMCPRegInfo
6815 * definitions, we treat cp == 0 as equivalent to
6816 * the value for "standard guest-visible sysreg".
6817 * STATE_BOTH definitions are also always "standard
6818 * sysreg" in their AArch64 view (the .cp value may
6819 * be non-zero for the benefit of the AArch32 view).
6821 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
6822 r2->cp = CP_REG_ARM64_SYSREG_CP;
6824 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
6825 r2->opc0, opc1, opc2);
6826 } else {
6827 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
6829 if (opaque) {
6830 r2->opaque = opaque;
6832 /* reginfo passed to helpers is correct for the actual access,
6833 * and is never ARM_CP_STATE_BOTH:
6835 r2->state = state;
6836 /* Make sure reginfo passed to helpers for wildcarded regs
6837 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6839 r2->crm = crm;
6840 r2->opc1 = opc1;
6841 r2->opc2 = opc2;
6842 /* By convention, for wildcarded registers only the first
6843 * entry is used for migration; the others are marked as
6844 * ALIAS so we don't try to transfer the register
6845 * multiple times. Special registers (ie NOP/WFI) are
6846 * never migratable and not even raw-accessible.
6848 if ((r->type & ARM_CP_SPECIAL)) {
6849 r2->type |= ARM_CP_NO_RAW;
6851 if (((r->crm == CP_ANY) && crm != 0) ||
6852 ((r->opc1 == CP_ANY) && opc1 != 0) ||
6853 ((r->opc2 == CP_ANY) && opc2 != 0)) {
6854 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6857 /* Check that raw accesses are either forbidden or handled. Note that
6858 * we can't assert this earlier because the setup of fieldoffset for
6859 * banked registers has to be done first.
6861 if (!(r2->type & ARM_CP_NO_RAW)) {
6862 assert(!raw_accessors_invalid(r2));
6865 /* Overriding of an existing definition must be explicitly
6866 * requested.
6868 if (!(r->type & ARM_CP_OVERRIDE)) {
6869 ARMCPRegInfo *oldreg;
6870 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
6871 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
6872 fprintf(stderr, "Register redefined: cp=%d %d bit "
6873 "crn=%d crm=%d opc1=%d opc2=%d, "
6874 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
6875 r2->crn, r2->crm, r2->opc1, r2->opc2,
6876 oldreg->name, r2->name);
6877 g_assert_not_reached();
6880 g_hash_table_insert(cpu->cp_regs, key, r2);
6884 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
6885 const ARMCPRegInfo *r, void *opaque)
6887 /* Define implementations of coprocessor registers.
6888 * We store these in a hashtable because typically
6889 * there are less than 150 registers in a space which
6890 * is 16*16*16*8*8 = 262144 in size.
6891 * Wildcarding is supported for the crm, opc1 and opc2 fields.
6892 * If a register is defined twice then the second definition is
6893 * used, so this can be used to define some generic registers and
6894 * then override them with implementation specific variations.
6895 * At least one of the original and the second definition should
6896 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
6897 * against accidental use.
6899 * The state field defines whether the register is to be
6900 * visible in the AArch32 or AArch64 execution state. If the
6901 * state is set to ARM_CP_STATE_BOTH then we synthesise a
6902 * reginfo structure for the AArch32 view, which sees the lower
6903 * 32 bits of the 64 bit register.
6905 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
6906 * be wildcarded. AArch64 registers are always considered to be 64
6907 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
6908 * the register, if any.
6910 int crm, opc1, opc2, state;
6911 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
6912 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
6913 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
6914 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
6915 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
6916 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
6917 /* 64 bit registers have only CRm and Opc1 fields */
6918 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
6919 /* op0 only exists in the AArch64 encodings */
6920 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
6921 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
6922 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
6923 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
6924 * encodes a minimum access level for the register. We roll this
6925 * runtime check into our general permission check code, so check
6926 * here that the reginfo's specified permissions are strict enough
6927 * to encompass the generic architectural permission check.
6929 if (r->state != ARM_CP_STATE_AA32) {
6930 int mask = 0;
6931 switch (r->opc1) {
6932 case 0:
6933 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
6934 mask = PL0U_R | PL1_RW;
6935 break;
6936 case 1: case 2:
6937 /* min_EL EL1 */
6938 mask = PL1_RW;
6939 break;
6940 case 3:
6941 /* min_EL EL0 */
6942 mask = PL0_RW;
6943 break;
6944 case 4:
6945 /* min_EL EL2 */
6946 mask = PL2_RW;
6947 break;
6948 case 5:
6949 /* unallocated encoding, so not possible */
6950 assert(false);
6951 break;
6952 case 6:
6953 /* min_EL EL3 */
6954 mask = PL3_RW;
6955 break;
6956 case 7:
6957 /* min_EL EL1, secure mode only (we don't check the latter) */
6958 mask = PL1_RW;
6959 break;
6960 default:
6961 /* broken reginfo with out-of-range opc1 */
6962 assert(false);
6963 break;
6965 /* assert our permissions are not too lax (stricter is fine) */
6966 assert((r->access & ~mask) == 0);
6969 /* Check that the register definition has enough info to handle
6970 * reads and writes if they are permitted.
6972 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
6973 if (r->access & PL3_R) {
6974 assert((r->fieldoffset ||
6975 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6976 r->readfn);
6978 if (r->access & PL3_W) {
6979 assert((r->fieldoffset ||
6980 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6981 r->writefn);
6984 /* Bad type field probably means missing sentinel at end of reg list */
6985 assert(cptype_valid(r->type));
6986 for (crm = crmmin; crm <= crmmax; crm++) {
6987 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
6988 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
6989 for (state = ARM_CP_STATE_AA32;
6990 state <= ARM_CP_STATE_AA64; state++) {
6991 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
6992 continue;
6994 if (state == ARM_CP_STATE_AA32) {
6995 /* Under AArch32 CP registers can be common
6996 * (same for secure and non-secure world) or banked.
6998 char *name;
7000 switch (r->secure) {
7001 case ARM_CP_SECSTATE_S:
7002 case ARM_CP_SECSTATE_NS:
7003 add_cpreg_to_hashtable(cpu, r, opaque, state,
7004 r->secure, crm, opc1, opc2,
7005 r->name);
7006 break;
7007 default:
7008 name = g_strdup_printf("%s_S", r->name);
7009 add_cpreg_to_hashtable(cpu, r, opaque, state,
7010 ARM_CP_SECSTATE_S,
7011 crm, opc1, opc2, name);
7012 g_free(name);
7013 add_cpreg_to_hashtable(cpu, r, opaque, state,
7014 ARM_CP_SECSTATE_NS,
7015 crm, opc1, opc2, r->name);
7016 break;
7018 } else {
7019 /* AArch64 registers get mapped to non-secure instance
7020 * of AArch32 */
7021 add_cpreg_to_hashtable(cpu, r, opaque, state,
7022 ARM_CP_SECSTATE_NS,
7023 crm, opc1, opc2, r->name);
7031 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7032 const ARMCPRegInfo *regs, void *opaque)
7034 /* Define a whole list of registers */
7035 const ARMCPRegInfo *r;
7036 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7037 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7042 * Modify ARMCPRegInfo for access from userspace.
7044 * This is a data driven modification directed by
7045 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7046 * user-space cannot alter any values and dynamic values pertaining to
7047 * execution state are hidden from user space view anyway.
7049 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7051 const ARMCPRegUserSpaceInfo *m;
7052 ARMCPRegInfo *r;
7054 for (m = mods; m->name; m++) {
7055 GPatternSpec *pat = NULL;
7056 if (m->is_glob) {
7057 pat = g_pattern_spec_new(m->name);
7059 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7060 if (pat && g_pattern_match_string(pat, r->name)) {
7061 r->type = ARM_CP_CONST;
7062 r->access = PL0U_R;
7063 r->resetvalue = 0;
7064 /* continue */
7065 } else if (strcmp(r->name, m->name) == 0) {
7066 r->type = ARM_CP_CONST;
7067 r->access = PL0U_R;
7068 r->resetvalue &= m->exported_bits;
7069 r->resetvalue |= m->fixed_bits;
7070 break;
7073 if (pat) {
7074 g_pattern_spec_free(pat);
7079 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7081 return g_hash_table_lookup(cpregs, &encoded_cp);
7084 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7085 uint64_t value)
7087 /* Helper coprocessor write function for write-ignore registers */
7090 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7092 /* Helper coprocessor write function for read-as-zero registers */
7093 return 0;
7096 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7098 /* Helper coprocessor reset function for do-nothing-on-reset registers */
7101 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7103 /* Return true if it is not valid for us to switch to
7104 * this CPU mode (ie all the UNPREDICTABLE cases in
7105 * the ARM ARM CPSRWriteByInstr pseudocode).
7108 /* Changes to or from Hyp via MSR and CPS are illegal. */
7109 if (write_type == CPSRWriteByInstr &&
7110 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7111 mode == ARM_CPU_MODE_HYP)) {
7112 return 1;
7115 switch (mode) {
7116 case ARM_CPU_MODE_USR:
7117 return 0;
7118 case ARM_CPU_MODE_SYS:
7119 case ARM_CPU_MODE_SVC:
7120 case ARM_CPU_MODE_ABT:
7121 case ARM_CPU_MODE_UND:
7122 case ARM_CPU_MODE_IRQ:
7123 case ARM_CPU_MODE_FIQ:
7124 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7125 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7127 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7128 * and CPS are treated as illegal mode changes.
7130 if (write_type == CPSRWriteByInstr &&
7131 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7132 (arm_hcr_el2_eff(env) & HCR_TGE)) {
7133 return 1;
7135 return 0;
7136 case ARM_CPU_MODE_HYP:
7137 return !arm_feature(env, ARM_FEATURE_EL2)
7138 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7139 case ARM_CPU_MODE_MON:
7140 return arm_current_el(env) < 3;
7141 default:
7142 return 1;
7146 uint32_t cpsr_read(CPUARMState *env)
7148 int ZF;
7149 ZF = (env->ZF == 0);
7150 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7151 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7152 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7153 | ((env->condexec_bits & 0xfc) << 8)
7154 | (env->GE << 16) | (env->daif & CPSR_AIF);
7157 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7158 CPSRWriteType write_type)
7160 uint32_t changed_daif;
7162 if (mask & CPSR_NZCV) {
7163 env->ZF = (~val) & CPSR_Z;
7164 env->NF = val;
7165 env->CF = (val >> 29) & 1;
7166 env->VF = (val << 3) & 0x80000000;
7168 if (mask & CPSR_Q)
7169 env->QF = ((val & CPSR_Q) != 0);
7170 if (mask & CPSR_T)
7171 env->thumb = ((val & CPSR_T) != 0);
7172 if (mask & CPSR_IT_0_1) {
7173 env->condexec_bits &= ~3;
7174 env->condexec_bits |= (val >> 25) & 3;
7176 if (mask & CPSR_IT_2_7) {
7177 env->condexec_bits &= 3;
7178 env->condexec_bits |= (val >> 8) & 0xfc;
7180 if (mask & CPSR_GE) {
7181 env->GE = (val >> 16) & 0xf;
7184 /* In a V7 implementation that includes the security extensions but does
7185 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7186 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7187 * bits respectively.
7189 * In a V8 implementation, it is permitted for privileged software to
7190 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7192 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7193 arm_feature(env, ARM_FEATURE_EL3) &&
7194 !arm_feature(env, ARM_FEATURE_EL2) &&
7195 !arm_is_secure(env)) {
7197 changed_daif = (env->daif ^ val) & mask;
7199 if (changed_daif & CPSR_A) {
7200 /* Check to see if we are allowed to change the masking of async
7201 * abort exceptions from a non-secure state.
7203 if (!(env->cp15.scr_el3 & SCR_AW)) {
7204 qemu_log_mask(LOG_GUEST_ERROR,
7205 "Ignoring attempt to switch CPSR_A flag from "
7206 "non-secure world with SCR.AW bit clear\n");
7207 mask &= ~CPSR_A;
7211 if (changed_daif & CPSR_F) {
7212 /* Check to see if we are allowed to change the masking of FIQ
7213 * exceptions from a non-secure state.
7215 if (!(env->cp15.scr_el3 & SCR_FW)) {
7216 qemu_log_mask(LOG_GUEST_ERROR,
7217 "Ignoring attempt to switch CPSR_F flag from "
7218 "non-secure world with SCR.FW bit clear\n");
7219 mask &= ~CPSR_F;
7222 /* Check whether non-maskable FIQ (NMFI) support is enabled.
7223 * If this bit is set software is not allowed to mask
7224 * FIQs, but is allowed to set CPSR_F to 0.
7226 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7227 (val & CPSR_F)) {
7228 qemu_log_mask(LOG_GUEST_ERROR,
7229 "Ignoring attempt to enable CPSR_F flag "
7230 "(non-maskable FIQ [NMFI] support enabled)\n");
7231 mask &= ~CPSR_F;
7236 env->daif &= ~(CPSR_AIF & mask);
7237 env->daif |= val & CPSR_AIF & mask;
7239 if (write_type != CPSRWriteRaw &&
7240 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7241 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7242 /* Note that we can only get here in USR mode if this is a
7243 * gdb stub write; for this case we follow the architectural
7244 * behaviour for guest writes in USR mode of ignoring an attempt
7245 * to switch mode. (Those are caught by translate.c for writes
7246 * triggered by guest instructions.)
7248 mask &= ~CPSR_M;
7249 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7250 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7251 * v7, and has defined behaviour in v8:
7252 * + leave CPSR.M untouched
7253 * + allow changes to the other CPSR fields
7254 * + set PSTATE.IL
7255 * For user changes via the GDB stub, we don't set PSTATE.IL,
7256 * as this would be unnecessarily harsh for a user error.
7258 mask &= ~CPSR_M;
7259 if (write_type != CPSRWriteByGDBStub &&
7260 arm_feature(env, ARM_FEATURE_V8)) {
7261 mask |= CPSR_IL;
7262 val |= CPSR_IL;
7264 qemu_log_mask(LOG_GUEST_ERROR,
7265 "Illegal AArch32 mode switch attempt from %s to %s\n",
7266 aarch32_mode_name(env->uncached_cpsr),
7267 aarch32_mode_name(val));
7268 } else {
7269 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7270 write_type == CPSRWriteExceptionReturn ?
7271 "Exception return from AArch32" :
7272 "AArch32 mode switch from",
7273 aarch32_mode_name(env->uncached_cpsr),
7274 aarch32_mode_name(val), env->regs[15]);
7275 switch_mode(env, val & CPSR_M);
7278 mask &= ~CACHED_CPSR_BITS;
7279 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7282 /* Sign/zero extend */
7283 uint32_t HELPER(sxtb16)(uint32_t x)
7285 uint32_t res;
7286 res = (uint16_t)(int8_t)x;
7287 res |= (uint32_t)(int8_t)(x >> 16) << 16;
7288 return res;
7291 uint32_t HELPER(uxtb16)(uint32_t x)
7293 uint32_t res;
7294 res = (uint16_t)(uint8_t)x;
7295 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7296 return res;
7299 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7301 if (den == 0)
7302 return 0;
7303 if (num == INT_MIN && den == -1)
7304 return INT_MIN;
7305 return num / den;
7308 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7310 if (den == 0)
7311 return 0;
7312 return num / den;
7315 uint32_t HELPER(rbit)(uint32_t x)
7317 return revbit32(x);
7320 #ifdef CONFIG_USER_ONLY
7322 /* These should probably raise undefined insn exceptions. */
7323 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7325 ARMCPU *cpu = arm_env_get_cpu(env);
7327 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
7330 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7332 ARMCPU *cpu = arm_env_get_cpu(env);
7334 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
7335 return 0;
7338 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7340 /* translate.c should never generate calls here in user-only mode */
7341 g_assert_not_reached();
7344 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7346 /* translate.c should never generate calls here in user-only mode */
7347 g_assert_not_reached();
7350 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
7352 /* The TT instructions can be used by unprivileged code, but in
7353 * user-only emulation we don't have the MPU.
7354 * Luckily since we know we are NonSecure unprivileged (and that in
7355 * turn means that the A flag wasn't specified), all the bits in the
7356 * register must be zero:
7357 * IREGION: 0 because IRVALID is 0
7358 * IRVALID: 0 because NS
7359 * S: 0 because NS
7360 * NSRW: 0 because NS
7361 * NSR: 0 because NS
7362 * RW: 0 because unpriv and A flag not set
7363 * R: 0 because unpriv and A flag not set
7364 * SRVALID: 0 because NS
7365 * MRVALID: 0 because unpriv and A flag not set
7366 * SREGION: 0 becaus SRVALID is 0
7367 * MREGION: 0 because MRVALID is 0
7369 return 0;
7372 static void switch_mode(CPUARMState *env, int mode)
7374 ARMCPU *cpu = arm_env_get_cpu(env);
7376 if (mode != ARM_CPU_MODE_USR) {
7377 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7381 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7382 uint32_t cur_el, bool secure)
7384 return 1;
7387 void aarch64_sync_64_to_32(CPUARMState *env)
7389 g_assert_not_reached();
7392 #else
7394 static void switch_mode(CPUARMState *env, int mode)
7396 int old_mode;
7397 int i;
7399 old_mode = env->uncached_cpsr & CPSR_M;
7400 if (mode == old_mode)
7401 return;
7403 if (old_mode == ARM_CPU_MODE_FIQ) {
7404 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7405 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7406 } else if (mode == ARM_CPU_MODE_FIQ) {
7407 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7408 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7411 i = bank_number(old_mode);
7412 env->banked_r13[i] = env->regs[13];
7413 env->banked_spsr[i] = env->spsr;
7415 i = bank_number(mode);
7416 env->regs[13] = env->banked_r13[i];
7417 env->spsr = env->banked_spsr[i];
7419 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7420 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7423 /* Physical Interrupt Target EL Lookup Table
7425 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7427 * The below multi-dimensional table is used for looking up the target
7428 * exception level given numerous condition criteria. Specifically, the
7429 * target EL is based on SCR and HCR routing controls as well as the
7430 * currently executing EL and secure state.
7432 * Dimensions:
7433 * target_el_table[2][2][2][2][2][4]
7434 * | | | | | +--- Current EL
7435 * | | | | +------ Non-secure(0)/Secure(1)
7436 * | | | +--------- HCR mask override
7437 * | | +------------ SCR exec state control
7438 * | +--------------- SCR mask override
7439 * +------------------ 32-bit(0)/64-bit(1) EL3
7441 * The table values are as such:
7442 * 0-3 = EL0-EL3
7443 * -1 = Cannot occur
7445 * The ARM ARM target EL table includes entries indicating that an "exception
7446 * is not taken". The two cases where this is applicable are:
7447 * 1) An exception is taken from EL3 but the SCR does not have the exception
7448 * routed to EL3.
7449 * 2) An exception is taken from EL2 but the HCR does not have the exception
7450 * routed to EL2.
7451 * In these two cases, the below table contain a target of EL1. This value is
7452 * returned as it is expected that the consumer of the table data will check
7453 * for "target EL >= current EL" to ensure the exception is not taken.
7455 * SCR HCR
7456 * 64 EA AMO From
7457 * BIT IRQ IMO Non-secure Secure
7458 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
7460 static const int8_t target_el_table[2][2][2][2][2][4] = {
7461 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7462 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
7463 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7464 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
7465 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7466 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
7467 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7468 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
7469 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
7470 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
7471 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
7472 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
7473 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7474 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
7475 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7476 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
7480 * Determine the target EL for physical exceptions
7482 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7483 uint32_t cur_el, bool secure)
7485 CPUARMState *env = cs->env_ptr;
7486 bool rw;
7487 bool scr;
7488 bool hcr;
7489 int target_el;
7490 /* Is the highest EL AArch64? */
7491 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7492 uint64_t hcr_el2;
7494 if (arm_feature(env, ARM_FEATURE_EL3)) {
7495 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7496 } else {
7497 /* Either EL2 is the highest EL (and so the EL2 register width
7498 * is given by is64); or there is no EL2 or EL3, in which case
7499 * the value of 'rw' does not affect the table lookup anyway.
7501 rw = is64;
7504 hcr_el2 = arm_hcr_el2_eff(env);
7505 switch (excp_idx) {
7506 case EXCP_IRQ:
7507 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7508 hcr = hcr_el2 & HCR_IMO;
7509 break;
7510 case EXCP_FIQ:
7511 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7512 hcr = hcr_el2 & HCR_FMO;
7513 break;
7514 default:
7515 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7516 hcr = hcr_el2 & HCR_AMO;
7517 break;
7520 /* Perform a table-lookup for the target EL given the current state */
7521 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7523 assert(target_el > 0);
7525 return target_el;
7528 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
7529 ARMMMUIdx mmu_idx, bool ignfault)
7531 CPUState *cs = CPU(cpu);
7532 CPUARMState *env = &cpu->env;
7533 MemTxAttrs attrs = {};
7534 MemTxResult txres;
7535 target_ulong page_size;
7536 hwaddr physaddr;
7537 int prot;
7538 ARMMMUFaultInfo fi = {};
7539 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7540 int exc;
7541 bool exc_secure;
7543 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
7544 &attrs, &prot, &page_size, &fi, NULL)) {
7545 /* MPU/SAU lookup failed */
7546 if (fi.type == ARMFault_QEMU_SFault) {
7547 qemu_log_mask(CPU_LOG_INT,
7548 "...SecureFault with SFSR.AUVIOL during stacking\n");
7549 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7550 env->v7m.sfar = addr;
7551 exc = ARMV7M_EXCP_SECURE;
7552 exc_secure = false;
7553 } else {
7554 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
7555 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
7556 exc = ARMV7M_EXCP_MEM;
7557 exc_secure = secure;
7559 goto pend_fault;
7561 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
7562 attrs, &txres);
7563 if (txres != MEMTX_OK) {
7564 /* BusFault trying to write the data */
7565 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
7566 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
7567 exc = ARMV7M_EXCP_BUS;
7568 exc_secure = false;
7569 goto pend_fault;
7571 return true;
7573 pend_fault:
7574 /* By pending the exception at this point we are making
7575 * the IMPDEF choice "overridden exceptions pended" (see the
7576 * MergeExcInfo() pseudocode). The other choice would be to not
7577 * pend them now and then make a choice about which to throw away
7578 * later if we have two derived exceptions.
7579 * The only case when we must not pend the exception but instead
7580 * throw it away is if we are doing the push of the callee registers
7581 * and we've already generated a derived exception. Even in this
7582 * case we will still update the fault status registers.
7584 if (!ignfault) {
7585 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
7587 return false;
7590 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
7591 ARMMMUIdx mmu_idx)
7593 CPUState *cs = CPU(cpu);
7594 CPUARMState *env = &cpu->env;
7595 MemTxAttrs attrs = {};
7596 MemTxResult txres;
7597 target_ulong page_size;
7598 hwaddr physaddr;
7599 int prot;
7600 ARMMMUFaultInfo fi = {};
7601 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7602 int exc;
7603 bool exc_secure;
7604 uint32_t value;
7606 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
7607 &attrs, &prot, &page_size, &fi, NULL)) {
7608 /* MPU/SAU lookup failed */
7609 if (fi.type == ARMFault_QEMU_SFault) {
7610 qemu_log_mask(CPU_LOG_INT,
7611 "...SecureFault with SFSR.AUVIOL during unstack\n");
7612 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7613 env->v7m.sfar = addr;
7614 exc = ARMV7M_EXCP_SECURE;
7615 exc_secure = false;
7616 } else {
7617 qemu_log_mask(CPU_LOG_INT,
7618 "...MemManageFault with CFSR.MUNSTKERR\n");
7619 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
7620 exc = ARMV7M_EXCP_MEM;
7621 exc_secure = secure;
7623 goto pend_fault;
7626 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
7627 attrs, &txres);
7628 if (txres != MEMTX_OK) {
7629 /* BusFault trying to read the data */
7630 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
7631 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
7632 exc = ARMV7M_EXCP_BUS;
7633 exc_secure = false;
7634 goto pend_fault;
7637 *dest = value;
7638 return true;
7640 pend_fault:
7641 /* By pending the exception at this point we are making
7642 * the IMPDEF choice "overridden exceptions pended" (see the
7643 * MergeExcInfo() pseudocode). The other choice would be to not
7644 * pend them now and then make a choice about which to throw away
7645 * later if we have two derived exceptions.
7647 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
7648 return false;
7651 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
7652 * This may change the current stack pointer between Main and Process
7653 * stack pointers if it is done for the CONTROL register for the current
7654 * security state.
7656 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
7657 bool new_spsel,
7658 bool secstate)
7660 bool old_is_psp = v7m_using_psp(env);
7662 env->v7m.control[secstate] =
7663 deposit32(env->v7m.control[secstate],
7664 R_V7M_CONTROL_SPSEL_SHIFT,
7665 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
7667 if (secstate == env->v7m.secure) {
7668 bool new_is_psp = v7m_using_psp(env);
7669 uint32_t tmp;
7671 if (old_is_psp != new_is_psp) {
7672 tmp = env->v7m.other_sp;
7673 env->v7m.other_sp = env->regs[13];
7674 env->regs[13] = tmp;
7679 /* Write to v7M CONTROL.SPSEL bit. This may change the current
7680 * stack pointer between Main and Process stack pointers.
7682 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
7684 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
7687 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
7689 /* Write a new value to v7m.exception, thus transitioning into or out
7690 * of Handler mode; this may result in a change of active stack pointer.
7692 bool new_is_psp, old_is_psp = v7m_using_psp(env);
7693 uint32_t tmp;
7695 env->v7m.exception = new_exc;
7697 new_is_psp = v7m_using_psp(env);
7699 if (old_is_psp != new_is_psp) {
7700 tmp = env->v7m.other_sp;
7701 env->v7m.other_sp = env->regs[13];
7702 env->regs[13] = tmp;
7706 /* Switch M profile security state between NS and S */
7707 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
7709 uint32_t new_ss_msp, new_ss_psp;
7711 if (env->v7m.secure == new_secstate) {
7712 return;
7715 /* All the banked state is accessed by looking at env->v7m.secure
7716 * except for the stack pointer; rearrange the SP appropriately.
7718 new_ss_msp = env->v7m.other_ss_msp;
7719 new_ss_psp = env->v7m.other_ss_psp;
7721 if (v7m_using_psp(env)) {
7722 env->v7m.other_ss_psp = env->regs[13];
7723 env->v7m.other_ss_msp = env->v7m.other_sp;
7724 } else {
7725 env->v7m.other_ss_msp = env->regs[13];
7726 env->v7m.other_ss_psp = env->v7m.other_sp;
7729 env->v7m.secure = new_secstate;
7731 if (v7m_using_psp(env)) {
7732 env->regs[13] = new_ss_psp;
7733 env->v7m.other_sp = new_ss_msp;
7734 } else {
7735 env->regs[13] = new_ss_msp;
7736 env->v7m.other_sp = new_ss_psp;
7740 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7742 /* Handle v7M BXNS:
7743 * - if the return value is a magic value, do exception return (like BX)
7744 * - otherwise bit 0 of the return value is the target security state
7746 uint32_t min_magic;
7748 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7749 /* Covers FNC_RETURN and EXC_RETURN magic */
7750 min_magic = FNC_RETURN_MIN_MAGIC;
7751 } else {
7752 /* EXC_RETURN magic only */
7753 min_magic = EXC_RETURN_MIN_MAGIC;
7756 if (dest >= min_magic) {
7757 /* This is an exception return magic value; put it where
7758 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
7759 * Note that if we ever add gen_ss_advance() singlestep support to
7760 * M profile this should count as an "instruction execution complete"
7761 * event (compare gen_bx_excret_final_code()).
7763 env->regs[15] = dest & ~1;
7764 env->thumb = dest & 1;
7765 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
7766 /* notreached */
7769 /* translate.c should have made BXNS UNDEF unless we're secure */
7770 assert(env->v7m.secure);
7772 switch_v7m_security_state(env, dest & 1);
7773 env->thumb = 1;
7774 env->regs[15] = dest & ~1;
7777 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7779 /* Handle v7M BLXNS:
7780 * - bit 0 of the destination address is the target security state
7783 /* At this point regs[15] is the address just after the BLXNS */
7784 uint32_t nextinst = env->regs[15] | 1;
7785 uint32_t sp = env->regs[13] - 8;
7786 uint32_t saved_psr;
7788 /* translate.c will have made BLXNS UNDEF unless we're secure */
7789 assert(env->v7m.secure);
7791 if (dest & 1) {
7792 /* target is Secure, so this is just a normal BLX,
7793 * except that the low bit doesn't indicate Thumb/not.
7795 env->regs[14] = nextinst;
7796 env->thumb = 1;
7797 env->regs[15] = dest & ~1;
7798 return;
7801 /* Target is non-secure: first push a stack frame */
7802 if (!QEMU_IS_ALIGNED(sp, 8)) {
7803 qemu_log_mask(LOG_GUEST_ERROR,
7804 "BLXNS with misaligned SP is UNPREDICTABLE\n");
7807 if (sp < v7m_sp_limit(env)) {
7808 raise_exception(env, EXCP_STKOF, 0, 1);
7811 saved_psr = env->v7m.exception;
7812 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
7813 saved_psr |= XPSR_SFPA;
7816 /* Note that these stores can throw exceptions on MPU faults */
7817 cpu_stl_data(env, sp, nextinst);
7818 cpu_stl_data(env, sp + 4, saved_psr);
7820 env->regs[13] = sp;
7821 env->regs[14] = 0xfeffffff;
7822 if (arm_v7m_is_handler_mode(env)) {
7823 /* Write a dummy value to IPSR, to avoid leaking the current secure
7824 * exception number to non-secure code. This is guaranteed not
7825 * to cause write_v7m_exception() to actually change stacks.
7827 write_v7m_exception(env, 1);
7829 switch_v7m_security_state(env, 0);
7830 env->thumb = 1;
7831 env->regs[15] = dest;
7834 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
7835 bool spsel)
7837 /* Return a pointer to the location where we currently store the
7838 * stack pointer for the requested security state and thread mode.
7839 * This pointer will become invalid if the CPU state is updated
7840 * such that the stack pointers are switched around (eg changing
7841 * the SPSEL control bit).
7842 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
7843 * Unlike that pseudocode, we require the caller to pass us in the
7844 * SPSEL control bit value; this is because we also use this
7845 * function in handling of pushing of the callee-saves registers
7846 * part of the v8M stack frame (pseudocode PushCalleeStack()),
7847 * and in the tailchain codepath the SPSEL bit comes from the exception
7848 * return magic LR value from the previous exception. The pseudocode
7849 * opencodes the stack-selection in PushCalleeStack(), but we prefer
7850 * to make this utility function generic enough to do the job.
7852 bool want_psp = threadmode && spsel;
7854 if (secure == env->v7m.secure) {
7855 if (want_psp == v7m_using_psp(env)) {
7856 return &env->regs[13];
7857 } else {
7858 return &env->v7m.other_sp;
7860 } else {
7861 if (want_psp) {
7862 return &env->v7m.other_ss_psp;
7863 } else {
7864 return &env->v7m.other_ss_msp;
7869 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
7870 uint32_t *pvec)
7872 CPUState *cs = CPU(cpu);
7873 CPUARMState *env = &cpu->env;
7874 MemTxResult result;
7875 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
7876 uint32_t vector_entry;
7877 MemTxAttrs attrs = {};
7878 ARMMMUIdx mmu_idx;
7879 bool exc_secure;
7881 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
7883 /* We don't do a get_phys_addr() here because the rules for vector
7884 * loads are special: they always use the default memory map, and
7885 * the default memory map permits reads from all addresses.
7886 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
7887 * that we want this special case which would always say "yes",
7888 * we just do the SAU lookup here followed by a direct physical load.
7890 attrs.secure = targets_secure;
7891 attrs.user = false;
7893 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7894 V8M_SAttributes sattrs = {};
7896 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
7897 if (sattrs.ns) {
7898 attrs.secure = false;
7899 } else if (!targets_secure) {
7900 /* NS access to S memory */
7901 goto load_fail;
7905 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
7906 attrs, &result);
7907 if (result != MEMTX_OK) {
7908 goto load_fail;
7910 *pvec = vector_entry;
7911 return true;
7913 load_fail:
7914 /* All vector table fetch fails are reported as HardFault, with
7915 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
7916 * technically the underlying exception is a MemManage or BusFault
7917 * that is escalated to HardFault.) This is a terminal exception,
7918 * so we will either take the HardFault immediately or else enter
7919 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
7921 exc_secure = targets_secure ||
7922 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
7923 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
7924 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
7925 return false;
7928 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
7929 bool ignore_faults)
7931 /* For v8M, push the callee-saves register part of the stack frame.
7932 * Compare the v8M pseudocode PushCalleeStack().
7933 * In the tailchaining case this may not be the current stack.
7935 CPUARMState *env = &cpu->env;
7936 uint32_t *frame_sp_p;
7937 uint32_t frameptr;
7938 ARMMMUIdx mmu_idx;
7939 bool stacked_ok;
7940 uint32_t limit;
7941 bool want_psp;
7943 if (dotailchain) {
7944 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
7945 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
7946 !mode;
7948 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
7949 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
7950 lr & R_V7M_EXCRET_SPSEL_MASK);
7951 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
7952 if (want_psp) {
7953 limit = env->v7m.psplim[M_REG_S];
7954 } else {
7955 limit = env->v7m.msplim[M_REG_S];
7957 } else {
7958 mmu_idx = arm_mmu_idx(env);
7959 frame_sp_p = &env->regs[13];
7960 limit = v7m_sp_limit(env);
7963 frameptr = *frame_sp_p - 0x28;
7964 if (frameptr < limit) {
7966 * Stack limit failure: set SP to the limit value, and generate
7967 * STKOF UsageFault. Stack pushes below the limit must not be
7968 * performed. It is IMPDEF whether pushes above the limit are
7969 * performed; we choose not to.
7971 qemu_log_mask(CPU_LOG_INT,
7972 "...STKOF during callee-saves register stacking\n");
7973 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
7974 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7975 env->v7m.secure);
7976 *frame_sp_p = limit;
7977 return true;
7980 /* Write as much of the stack frame as we can. A write failure may
7981 * cause us to pend a derived exception.
7983 stacked_ok =
7984 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
7985 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
7986 ignore_faults) &&
7987 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
7988 ignore_faults) &&
7989 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
7990 ignore_faults) &&
7991 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
7992 ignore_faults) &&
7993 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
7994 ignore_faults) &&
7995 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
7996 ignore_faults) &&
7997 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
7998 ignore_faults) &&
7999 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
8000 ignore_faults);
8002 /* Update SP regardless of whether any of the stack accesses failed. */
8003 *frame_sp_p = frameptr;
8005 return !stacked_ok;
8008 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
8009 bool ignore_stackfaults)
8011 /* Do the "take the exception" parts of exception entry,
8012 * but not the pushing of state to the stack. This is
8013 * similar to the pseudocode ExceptionTaken() function.
8015 CPUARMState *env = &cpu->env;
8016 uint32_t addr;
8017 bool targets_secure;
8018 int exc;
8019 bool push_failed = false;
8021 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
8022 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
8023 targets_secure ? "secure" : "nonsecure", exc);
8025 if (arm_feature(env, ARM_FEATURE_V8)) {
8026 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8027 (lr & R_V7M_EXCRET_S_MASK)) {
8028 /* The background code (the owner of the registers in the
8029 * exception frame) is Secure. This means it may either already
8030 * have or now needs to push callee-saves registers.
8032 if (targets_secure) {
8033 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
8034 /* We took an exception from Secure to NonSecure
8035 * (which means the callee-saved registers got stacked)
8036 * and are now tailchaining to a Secure exception.
8037 * Clear DCRS so eventual return from this Secure
8038 * exception unstacks the callee-saved registers.
8040 lr &= ~R_V7M_EXCRET_DCRS_MASK;
8042 } else {
8043 /* We're going to a non-secure exception; push the
8044 * callee-saves registers to the stack now, if they're
8045 * not already saved.
8047 if (lr & R_V7M_EXCRET_DCRS_MASK &&
8048 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
8049 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
8050 ignore_stackfaults);
8052 lr |= R_V7M_EXCRET_DCRS_MASK;
8056 lr &= ~R_V7M_EXCRET_ES_MASK;
8057 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8058 lr |= R_V7M_EXCRET_ES_MASK;
8060 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
8061 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
8062 lr |= R_V7M_EXCRET_SPSEL_MASK;
8065 /* Clear registers if necessary to prevent non-secure exception
8066 * code being able to see register values from secure code.
8067 * Where register values become architecturally UNKNOWN we leave
8068 * them with their previous values.
8070 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8071 if (!targets_secure) {
8072 /* Always clear the caller-saved registers (they have been
8073 * pushed to the stack earlier in v7m_push_stack()).
8074 * Clear callee-saved registers if the background code is
8075 * Secure (in which case these regs were saved in
8076 * v7m_push_callee_stack()).
8078 int i;
8080 for (i = 0; i < 13; i++) {
8081 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
8082 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
8083 env->regs[i] = 0;
8086 /* Clear EAPSR */
8087 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
8092 if (push_failed && !ignore_stackfaults) {
8093 /* Derived exception on callee-saves register stacking:
8094 * we might now want to take a different exception which
8095 * targets a different security state, so try again from the top.
8097 qemu_log_mask(CPU_LOG_INT,
8098 "...derived exception on callee-saves register stacking");
8099 v7m_exception_taken(cpu, lr, true, true);
8100 return;
8103 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
8104 /* Vector load failed: derived exception */
8105 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
8106 v7m_exception_taken(cpu, lr, true, true);
8107 return;
8110 /* Now we've done everything that might cause a derived exception
8111 * we can go ahead and activate whichever exception we're going to
8112 * take (which might now be the derived exception).
8114 armv7m_nvic_acknowledge_irq(env->nvic);
8116 /* Switch to target security state -- must do this before writing SPSEL */
8117 switch_v7m_security_state(env, targets_secure);
8118 write_v7m_control_spsel(env, 0);
8119 arm_clear_exclusive(env);
8120 /* Clear IT bits */
8121 env->condexec_bits = 0;
8122 env->regs[14] = lr;
8123 env->regs[15] = addr & 0xfffffffe;
8124 env->thumb = addr & 1;
8127 static bool v7m_push_stack(ARMCPU *cpu)
8129 /* Do the "set up stack frame" part of exception entry,
8130 * similar to pseudocode PushStack().
8131 * Return true if we generate a derived exception (and so
8132 * should ignore further stack faults trying to process
8133 * that derived exception.)
8135 bool stacked_ok;
8136 CPUARMState *env = &cpu->env;
8137 uint32_t xpsr = xpsr_read(env);
8138 uint32_t frameptr = env->regs[13];
8139 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
8141 /* Align stack pointer if the guest wants that */
8142 if ((frameptr & 4) &&
8143 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
8144 frameptr -= 4;
8145 xpsr |= XPSR_SPREALIGN;
8148 frameptr -= 0x20;
8150 if (arm_feature(env, ARM_FEATURE_V8)) {
8151 uint32_t limit = v7m_sp_limit(env);
8153 if (frameptr < limit) {
8155 * Stack limit failure: set SP to the limit value, and generate
8156 * STKOF UsageFault. Stack pushes below the limit must not be
8157 * performed. It is IMPDEF whether pushes above the limit are
8158 * performed; we choose not to.
8160 qemu_log_mask(CPU_LOG_INT,
8161 "...STKOF during stacking\n");
8162 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8163 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8164 env->v7m.secure);
8165 env->regs[13] = limit;
8166 return true;
8170 /* Write as much of the stack frame as we can. If we fail a stack
8171 * write this will result in a derived exception being pended
8172 * (which may be taken in preference to the one we started with
8173 * if it has higher priority).
8175 stacked_ok =
8176 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
8177 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
8178 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
8179 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
8180 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
8181 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
8182 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
8183 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
8185 /* Update SP regardless of whether any of the stack accesses failed. */
8186 env->regs[13] = frameptr;
8188 return !stacked_ok;
8191 static void do_v7m_exception_exit(ARMCPU *cpu)
8193 CPUARMState *env = &cpu->env;
8194 uint32_t excret;
8195 uint32_t xpsr;
8196 bool ufault = false;
8197 bool sfault = false;
8198 bool return_to_sp_process;
8199 bool return_to_handler;
8200 bool rettobase = false;
8201 bool exc_secure = false;
8202 bool return_to_secure;
8204 /* If we're not in Handler mode then jumps to magic exception-exit
8205 * addresses don't have magic behaviour. However for the v8M
8206 * security extensions the magic secure-function-return has to
8207 * work in thread mode too, so to avoid doing an extra check in
8208 * the generated code we allow exception-exit magic to also cause the
8209 * internal exception and bring us here in thread mode. Correct code
8210 * will never try to do this (the following insn fetch will always
8211 * fault) so we the overhead of having taken an unnecessary exception
8212 * doesn't matter.
8214 if (!arm_v7m_is_handler_mode(env)) {
8215 return;
8218 /* In the spec pseudocode ExceptionReturn() is called directly
8219 * from BXWritePC() and gets the full target PC value including
8220 * bit zero. In QEMU's implementation we treat it as a normal
8221 * jump-to-register (which is then caught later on), and so split
8222 * the target value up between env->regs[15] and env->thumb in
8223 * gen_bx(). Reconstitute it.
8225 excret = env->regs[15];
8226 if (env->thumb) {
8227 excret |= 1;
8230 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
8231 " previous exception %d\n",
8232 excret, env->v7m.exception);
8234 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
8235 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
8236 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
8237 excret);
8240 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8241 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
8242 * we pick which FAULTMASK to clear.
8244 if (!env->v7m.secure &&
8245 ((excret & R_V7M_EXCRET_ES_MASK) ||
8246 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
8247 sfault = 1;
8248 /* For all other purposes, treat ES as 0 (R_HXSR) */
8249 excret &= ~R_V7M_EXCRET_ES_MASK;
8251 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
8254 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
8255 /* Auto-clear FAULTMASK on return from other than NMI.
8256 * If the security extension is implemented then this only
8257 * happens if the raw execution priority is >= 0; the
8258 * value of the ES bit in the exception return value indicates
8259 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
8261 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8262 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
8263 env->v7m.faultmask[exc_secure] = 0;
8265 } else {
8266 env->v7m.faultmask[M_REG_NS] = 0;
8270 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
8271 exc_secure)) {
8272 case -1:
8273 /* attempt to exit an exception that isn't active */
8274 ufault = true;
8275 break;
8276 case 0:
8277 /* still an irq active now */
8278 break;
8279 case 1:
8280 /* we returned to base exception level, no nesting.
8281 * (In the pseudocode this is written using "NestedActivation != 1"
8282 * where we have 'rettobase == false'.)
8284 rettobase = true;
8285 break;
8286 default:
8287 g_assert_not_reached();
8290 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
8291 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
8292 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8293 (excret & R_V7M_EXCRET_S_MASK);
8295 if (arm_feature(env, ARM_FEATURE_V8)) {
8296 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8297 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
8298 * we choose to take the UsageFault.
8300 if ((excret & R_V7M_EXCRET_S_MASK) ||
8301 (excret & R_V7M_EXCRET_ES_MASK) ||
8302 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
8303 ufault = true;
8306 if (excret & R_V7M_EXCRET_RES0_MASK) {
8307 ufault = true;
8309 } else {
8310 /* For v7M we only recognize certain combinations of the low bits */
8311 switch (excret & 0xf) {
8312 case 1: /* Return to Handler */
8313 break;
8314 case 13: /* Return to Thread using Process stack */
8315 case 9: /* Return to Thread using Main stack */
8316 /* We only need to check NONBASETHRDENA for v7M, because in
8317 * v8M this bit does not exist (it is RES1).
8319 if (!rettobase &&
8320 !(env->v7m.ccr[env->v7m.secure] &
8321 R_V7M_CCR_NONBASETHRDENA_MASK)) {
8322 ufault = true;
8324 break;
8325 default:
8326 ufault = true;
8331 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
8332 * Handler mode (and will be until we write the new XPSR.Interrupt
8333 * field) this does not switch around the current stack pointer.
8334 * We must do this before we do any kind of tailchaining, including
8335 * for the derived exceptions on integrity check failures, or we will
8336 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
8338 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
8340 if (sfault) {
8341 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
8342 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8343 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8344 "stackframe: failed EXC_RETURN.ES validity check\n");
8345 v7m_exception_taken(cpu, excret, true, false);
8346 return;
8349 if (ufault) {
8350 /* Bad exception return: instead of popping the exception
8351 * stack, directly take a usage fault on the current stack.
8353 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8354 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8355 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8356 "stackframe: failed exception return integrity check\n");
8357 v7m_exception_taken(cpu, excret, true, false);
8358 return;
8362 * Tailchaining: if there is currently a pending exception that
8363 * is high enough priority to preempt execution at the level we're
8364 * about to return to, then just directly take that exception now,
8365 * avoiding an unstack-and-then-stack. Note that now we have
8366 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
8367 * our current execution priority is already the execution priority we are
8368 * returning to -- none of the state we would unstack or set based on
8369 * the EXCRET value affects it.
8371 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
8372 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
8373 v7m_exception_taken(cpu, excret, true, false);
8374 return;
8377 switch_v7m_security_state(env, return_to_secure);
8380 /* The stack pointer we should be reading the exception frame from
8381 * depends on bits in the magic exception return type value (and
8382 * for v8M isn't necessarily the stack pointer we will eventually
8383 * end up resuming execution with). Get a pointer to the location
8384 * in the CPU state struct where the SP we need is currently being
8385 * stored; we will use and modify it in place.
8386 * We use this limited C variable scope so we don't accidentally
8387 * use 'frame_sp_p' after we do something that makes it invalid.
8389 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
8390 return_to_secure,
8391 !return_to_handler,
8392 return_to_sp_process);
8393 uint32_t frameptr = *frame_sp_p;
8394 bool pop_ok = true;
8395 ARMMMUIdx mmu_idx;
8396 bool return_to_priv = return_to_handler ||
8397 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
8399 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
8400 return_to_priv);
8402 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
8403 arm_feature(env, ARM_FEATURE_V8)) {
8404 qemu_log_mask(LOG_GUEST_ERROR,
8405 "M profile exception return with non-8-aligned SP "
8406 "for destination state is UNPREDICTABLE\n");
8409 /* Do we need to pop callee-saved registers? */
8410 if (return_to_secure &&
8411 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
8412 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
8413 uint32_t expected_sig = 0xfefa125b;
8414 uint32_t actual_sig;
8416 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
8418 if (pop_ok && expected_sig != actual_sig) {
8419 /* Take a SecureFault on the current stack */
8420 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
8421 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8422 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8423 "stackframe: failed exception return integrity "
8424 "signature check\n");
8425 v7m_exception_taken(cpu, excret, true, false);
8426 return;
8429 pop_ok = pop_ok &&
8430 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
8431 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
8432 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
8433 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
8434 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
8435 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
8436 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
8437 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
8439 frameptr += 0x28;
8442 /* Pop registers */
8443 pop_ok = pop_ok &&
8444 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
8445 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
8446 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
8447 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
8448 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
8449 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
8450 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
8451 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
8453 if (!pop_ok) {
8454 /* v7m_stack_read() pended a fault, so take it (as a tail
8455 * chained exception on the same stack frame)
8457 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
8458 v7m_exception_taken(cpu, excret, true, false);
8459 return;
8462 /* Returning from an exception with a PC with bit 0 set is defined
8463 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
8464 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
8465 * the lsbit, and there are several RTOSes out there which incorrectly
8466 * assume the r15 in the stack frame should be a Thumb-style "lsbit
8467 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
8468 * complain about the badly behaved guest.
8470 if (env->regs[15] & 1) {
8471 env->regs[15] &= ~1U;
8472 if (!arm_feature(env, ARM_FEATURE_V8)) {
8473 qemu_log_mask(LOG_GUEST_ERROR,
8474 "M profile return from interrupt with misaligned "
8475 "PC is UNPREDICTABLE on v7M\n");
8479 if (arm_feature(env, ARM_FEATURE_V8)) {
8480 /* For v8M we have to check whether the xPSR exception field
8481 * matches the EXCRET value for return to handler/thread
8482 * before we commit to changing the SP and xPSR.
8484 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
8485 if (return_to_handler != will_be_handler) {
8486 /* Take an INVPC UsageFault on the current stack.
8487 * By this point we will have switched to the security state
8488 * for the background state, so this UsageFault will target
8489 * that state.
8491 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8492 env->v7m.secure);
8493 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8494 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8495 "stackframe: failed exception return integrity "
8496 "check\n");
8497 v7m_exception_taken(cpu, excret, true, false);
8498 return;
8502 /* Commit to consuming the stack frame */
8503 frameptr += 0x20;
8504 /* Undo stack alignment (the SPREALIGN bit indicates that the original
8505 * pre-exception SP was not 8-aligned and we added a padding word to
8506 * align it, so we undo this by ORing in the bit that increases it
8507 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
8508 * would work too but a logical OR is how the pseudocode specifies it.)
8510 if (xpsr & XPSR_SPREALIGN) {
8511 frameptr |= 4;
8513 *frame_sp_p = frameptr;
8515 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
8516 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
8518 /* The restored xPSR exception field will be zero if we're
8519 * resuming in Thread mode. If that doesn't match what the
8520 * exception return excret specified then this is a UsageFault.
8521 * v7M requires we make this check here; v8M did it earlier.
8523 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
8524 /* Take an INVPC UsageFault by pushing the stack again;
8525 * we know we're v7M so this is never a Secure UsageFault.
8527 bool ignore_stackfaults;
8529 assert(!arm_feature(env, ARM_FEATURE_V8));
8530 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
8531 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8532 ignore_stackfaults = v7m_push_stack(cpu);
8533 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
8534 "failed exception return integrity check\n");
8535 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
8536 return;
8539 /* Otherwise, we have a successful exception exit. */
8540 arm_clear_exclusive(env);
8541 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
8544 static bool do_v7m_function_return(ARMCPU *cpu)
8546 /* v8M security extensions magic function return.
8547 * We may either:
8548 * (1) throw an exception (longjump)
8549 * (2) return true if we successfully handled the function return
8550 * (3) return false if we failed a consistency check and have
8551 * pended a UsageFault that needs to be taken now
8553 * At this point the magic return value is split between env->regs[15]
8554 * and env->thumb. We don't bother to reconstitute it because we don't
8555 * need it (all values are handled the same way).
8557 CPUARMState *env = &cpu->env;
8558 uint32_t newpc, newpsr, newpsr_exc;
8560 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
8563 bool threadmode, spsel;
8564 TCGMemOpIdx oi;
8565 ARMMMUIdx mmu_idx;
8566 uint32_t *frame_sp_p;
8567 uint32_t frameptr;
8569 /* Pull the return address and IPSR from the Secure stack */
8570 threadmode = !arm_v7m_is_handler_mode(env);
8571 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
8573 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
8574 frameptr = *frame_sp_p;
8576 /* These loads may throw an exception (for MPU faults). We want to
8577 * do them as secure, so work out what MMU index that is.
8579 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8580 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
8581 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
8582 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
8584 /* Consistency checks on new IPSR */
8585 newpsr_exc = newpsr & XPSR_EXCP;
8586 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
8587 (env->v7m.exception == 1 && newpsr_exc != 0))) {
8588 /* Pend the fault and tell our caller to take it */
8589 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8590 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8591 env->v7m.secure);
8592 qemu_log_mask(CPU_LOG_INT,
8593 "...taking INVPC UsageFault: "
8594 "IPSR consistency check failed\n");
8595 return false;
8598 *frame_sp_p = frameptr + 8;
8601 /* This invalidates frame_sp_p */
8602 switch_v7m_security_state(env, true);
8603 env->v7m.exception = newpsr_exc;
8604 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8605 if (newpsr & XPSR_SFPA) {
8606 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
8608 xpsr_write(env, 0, XPSR_IT);
8609 env->thumb = newpc & 1;
8610 env->regs[15] = newpc & ~1;
8612 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
8613 return true;
8616 static void arm_log_exception(int idx)
8618 if (qemu_loglevel_mask(CPU_LOG_INT)) {
8619 const char *exc = NULL;
8620 static const char * const excnames[] = {
8621 [EXCP_UDEF] = "Undefined Instruction",
8622 [EXCP_SWI] = "SVC",
8623 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
8624 [EXCP_DATA_ABORT] = "Data Abort",
8625 [EXCP_IRQ] = "IRQ",
8626 [EXCP_FIQ] = "FIQ",
8627 [EXCP_BKPT] = "Breakpoint",
8628 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
8629 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
8630 [EXCP_HVC] = "Hypervisor Call",
8631 [EXCP_HYP_TRAP] = "Hypervisor Trap",
8632 [EXCP_SMC] = "Secure Monitor Call",
8633 [EXCP_VIRQ] = "Virtual IRQ",
8634 [EXCP_VFIQ] = "Virtual FIQ",
8635 [EXCP_SEMIHOST] = "Semihosting call",
8636 [EXCP_NOCP] = "v7M NOCP UsageFault",
8637 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
8638 [EXCP_STKOF] = "v8M STKOF UsageFault",
8641 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8642 exc = excnames[idx];
8644 if (!exc) {
8645 exc = "unknown";
8647 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8651 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
8652 uint32_t addr, uint16_t *insn)
8654 /* Load a 16-bit portion of a v7M instruction, returning true on success,
8655 * or false on failure (in which case we will have pended the appropriate
8656 * exception).
8657 * We need to do the instruction fetch's MPU and SAU checks
8658 * like this because there is no MMU index that would allow
8659 * doing the load with a single function call. Instead we must
8660 * first check that the security attributes permit the load
8661 * and that they don't mismatch on the two halves of the instruction,
8662 * and then we do the load as a secure load (ie using the security
8663 * attributes of the address, not the CPU, as architecturally required).
8665 CPUState *cs = CPU(cpu);
8666 CPUARMState *env = &cpu->env;
8667 V8M_SAttributes sattrs = {};
8668 MemTxAttrs attrs = {};
8669 ARMMMUFaultInfo fi = {};
8670 MemTxResult txres;
8671 target_ulong page_size;
8672 hwaddr physaddr;
8673 int prot;
8675 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
8676 if (!sattrs.nsc || sattrs.ns) {
8677 /* This must be the second half of the insn, and it straddles a
8678 * region boundary with the second half not being S&NSC.
8680 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8681 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8682 qemu_log_mask(CPU_LOG_INT,
8683 "...really SecureFault with SFSR.INVEP\n");
8684 return false;
8686 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
8687 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
8688 /* the MPU lookup failed */
8689 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
8690 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
8691 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
8692 return false;
8694 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
8695 attrs, &txres);
8696 if (txres != MEMTX_OK) {
8697 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8698 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
8699 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
8700 return false;
8702 return true;
8705 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
8707 /* Check whether this attempt to execute code in a Secure & NS-Callable
8708 * memory region is for an SG instruction; if so, then emulate the
8709 * effect of the SG instruction and return true. Otherwise pend
8710 * the correct kind of exception and return false.
8712 CPUARMState *env = &cpu->env;
8713 ARMMMUIdx mmu_idx;
8714 uint16_t insn;
8716 /* We should never get here unless get_phys_addr_pmsav8() caused
8717 * an exception for NS executing in S&NSC memory.
8719 assert(!env->v7m.secure);
8720 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8722 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
8723 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8725 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
8726 return false;
8729 if (!env->thumb) {
8730 goto gen_invep;
8733 if (insn != 0xe97f) {
8734 /* Not an SG instruction first half (we choose the IMPDEF
8735 * early-SG-check option).
8737 goto gen_invep;
8740 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
8741 return false;
8744 if (insn != 0xe97f) {
8745 /* Not an SG instruction second half (yes, both halves of the SG
8746 * insn have the same hex value)
8748 goto gen_invep;
8751 /* OK, we have confirmed that we really have an SG instruction.
8752 * We know we're NS in S memory so don't need to repeat those checks.
8754 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
8755 ", executing it\n", env->regs[15]);
8756 env->regs[14] &= ~1;
8757 switch_v7m_security_state(env, true);
8758 xpsr_write(env, 0, XPSR_IT);
8759 env->regs[15] += 4;
8760 return true;
8762 gen_invep:
8763 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8764 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8765 qemu_log_mask(CPU_LOG_INT,
8766 "...really SecureFault with SFSR.INVEP\n");
8767 return false;
8770 void arm_v7m_cpu_do_interrupt(CPUState *cs)
8772 ARMCPU *cpu = ARM_CPU(cs);
8773 CPUARMState *env = &cpu->env;
8774 uint32_t lr;
8775 bool ignore_stackfaults;
8777 arm_log_exception(cs->exception_index);
8779 /* For exceptions we just mark as pending on the NVIC, and let that
8780 handle it. */
8781 switch (cs->exception_index) {
8782 case EXCP_UDEF:
8783 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8784 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
8785 break;
8786 case EXCP_NOCP:
8787 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8788 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
8789 break;
8790 case EXCP_INVSTATE:
8791 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8792 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
8793 break;
8794 case EXCP_STKOF:
8795 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8796 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8797 break;
8798 case EXCP_SWI:
8799 /* The PC already points to the next instruction. */
8800 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
8801 break;
8802 case EXCP_PREFETCH_ABORT:
8803 case EXCP_DATA_ABORT:
8804 /* Note that for M profile we don't have a guest facing FSR, but
8805 * the env->exception.fsr will be populated by the code that
8806 * raises the fault, in the A profile short-descriptor format.
8808 switch (env->exception.fsr & 0xf) {
8809 case M_FAKE_FSR_NSC_EXEC:
8810 /* Exception generated when we try to execute code at an address
8811 * which is marked as Secure & Non-Secure Callable and the CPU
8812 * is in the Non-Secure state. The only instruction which can
8813 * be executed like this is SG (and that only if both halves of
8814 * the SG instruction have the same security attributes.)
8815 * Everything else must generate an INVEP SecureFault, so we
8816 * emulate the SG instruction here.
8818 if (v7m_handle_execute_nsc(cpu)) {
8819 return;
8821 break;
8822 case M_FAKE_FSR_SFAULT:
8823 /* Various flavours of SecureFault for attempts to execute or
8824 * access data in the wrong security state.
8826 switch (cs->exception_index) {
8827 case EXCP_PREFETCH_ABORT:
8828 if (env->v7m.secure) {
8829 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
8830 qemu_log_mask(CPU_LOG_INT,
8831 "...really SecureFault with SFSR.INVTRAN\n");
8832 } else {
8833 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8834 qemu_log_mask(CPU_LOG_INT,
8835 "...really SecureFault with SFSR.INVEP\n");
8837 break;
8838 case EXCP_DATA_ABORT:
8839 /* This must be an NS access to S memory */
8840 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
8841 qemu_log_mask(CPU_LOG_INT,
8842 "...really SecureFault with SFSR.AUVIOL\n");
8843 break;
8845 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8846 break;
8847 case 0x8: /* External Abort */
8848 switch (cs->exception_index) {
8849 case EXCP_PREFETCH_ABORT:
8850 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8851 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
8852 break;
8853 case EXCP_DATA_ABORT:
8854 env->v7m.cfsr[M_REG_NS] |=
8855 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
8856 env->v7m.bfar = env->exception.vaddress;
8857 qemu_log_mask(CPU_LOG_INT,
8858 "...with CFSR.PRECISERR and BFAR 0x%x\n",
8859 env->v7m.bfar);
8860 break;
8862 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
8863 break;
8864 default:
8865 /* All other FSR values are either MPU faults or "can't happen
8866 * for M profile" cases.
8868 switch (cs->exception_index) {
8869 case EXCP_PREFETCH_ABORT:
8870 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
8871 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
8872 break;
8873 case EXCP_DATA_ABORT:
8874 env->v7m.cfsr[env->v7m.secure] |=
8875 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
8876 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
8877 qemu_log_mask(CPU_LOG_INT,
8878 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
8879 env->v7m.mmfar[env->v7m.secure]);
8880 break;
8882 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
8883 env->v7m.secure);
8884 break;
8886 break;
8887 case EXCP_BKPT:
8888 if (semihosting_enabled()) {
8889 int nr;
8890 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
8891 if (nr == 0xab) {
8892 env->regs[15] += 2;
8893 qemu_log_mask(CPU_LOG_INT,
8894 "...handling as semihosting call 0x%x\n",
8895 env->regs[0]);
8896 env->regs[0] = do_arm_semihosting(env);
8897 return;
8900 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
8901 break;
8902 case EXCP_IRQ:
8903 break;
8904 case EXCP_EXCEPTION_EXIT:
8905 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
8906 /* Must be v8M security extension function return */
8907 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
8908 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8909 if (do_v7m_function_return(cpu)) {
8910 return;
8912 } else {
8913 do_v7m_exception_exit(cpu);
8914 return;
8916 break;
8917 default:
8918 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8919 return; /* Never happens. Keep compiler happy. */
8922 if (arm_feature(env, ARM_FEATURE_V8)) {
8923 lr = R_V7M_EXCRET_RES1_MASK |
8924 R_V7M_EXCRET_DCRS_MASK |
8925 R_V7M_EXCRET_FTYPE_MASK;
8926 /* The S bit indicates whether we should return to Secure
8927 * or NonSecure (ie our current state).
8928 * The ES bit indicates whether we're taking this exception
8929 * to Secure or NonSecure (ie our target state). We set it
8930 * later, in v7m_exception_taken().
8931 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
8932 * This corresponds to the ARM ARM pseudocode for v8M setting
8933 * some LR bits in PushStack() and some in ExceptionTaken();
8934 * the distinction matters for the tailchain cases where we
8935 * can take an exception without pushing the stack.
8937 if (env->v7m.secure) {
8938 lr |= R_V7M_EXCRET_S_MASK;
8940 } else {
8941 lr = R_V7M_EXCRET_RES1_MASK |
8942 R_V7M_EXCRET_S_MASK |
8943 R_V7M_EXCRET_DCRS_MASK |
8944 R_V7M_EXCRET_FTYPE_MASK |
8945 R_V7M_EXCRET_ES_MASK;
8946 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
8947 lr |= R_V7M_EXCRET_SPSEL_MASK;
8950 if (!arm_v7m_is_handler_mode(env)) {
8951 lr |= R_V7M_EXCRET_MODE_MASK;
8954 ignore_stackfaults = v7m_push_stack(cpu);
8955 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
8958 /* Function used to synchronize QEMU's AArch64 register set with AArch32
8959 * register set. This is necessary when switching between AArch32 and AArch64
8960 * execution state.
8962 void aarch64_sync_32_to_64(CPUARMState *env)
8964 int i;
8965 uint32_t mode = env->uncached_cpsr & CPSR_M;
8967 /* We can blanket copy R[0:7] to X[0:7] */
8968 for (i = 0; i < 8; i++) {
8969 env->xregs[i] = env->regs[i];
8972 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8973 * Otherwise, they come from the banked user regs.
8975 if (mode == ARM_CPU_MODE_FIQ) {
8976 for (i = 8; i < 13; i++) {
8977 env->xregs[i] = env->usr_regs[i - 8];
8979 } else {
8980 for (i = 8; i < 13; i++) {
8981 env->xregs[i] = env->regs[i];
8985 /* Registers x13-x23 are the various mode SP and FP registers. Registers
8986 * r13 and r14 are only copied if we are in that mode, otherwise we copy
8987 * from the mode banked register.
8989 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8990 env->xregs[13] = env->regs[13];
8991 env->xregs[14] = env->regs[14];
8992 } else {
8993 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8994 /* HYP is an exception in that it is copied from r14 */
8995 if (mode == ARM_CPU_MODE_HYP) {
8996 env->xregs[14] = env->regs[14];
8997 } else {
8998 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9002 if (mode == ARM_CPU_MODE_HYP) {
9003 env->xregs[15] = env->regs[13];
9004 } else {
9005 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9008 if (mode == ARM_CPU_MODE_IRQ) {
9009 env->xregs[16] = env->regs[14];
9010 env->xregs[17] = env->regs[13];
9011 } else {
9012 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9013 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9016 if (mode == ARM_CPU_MODE_SVC) {
9017 env->xregs[18] = env->regs[14];
9018 env->xregs[19] = env->regs[13];
9019 } else {
9020 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9021 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9024 if (mode == ARM_CPU_MODE_ABT) {
9025 env->xregs[20] = env->regs[14];
9026 env->xregs[21] = env->regs[13];
9027 } else {
9028 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9029 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9032 if (mode == ARM_CPU_MODE_UND) {
9033 env->xregs[22] = env->regs[14];
9034 env->xregs[23] = env->regs[13];
9035 } else {
9036 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9037 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9040 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9041 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9042 * FIQ bank for r8-r14.
9044 if (mode == ARM_CPU_MODE_FIQ) {
9045 for (i = 24; i < 31; i++) {
9046 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9048 } else {
9049 for (i = 24; i < 29; i++) {
9050 env->xregs[i] = env->fiq_regs[i - 24];
9052 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9053 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9056 env->pc = env->regs[15];
9059 /* Function used to synchronize QEMU's AArch32 register set with AArch64
9060 * register set. This is necessary when switching between AArch32 and AArch64
9061 * execution state.
9063 void aarch64_sync_64_to_32(CPUARMState *env)
9065 int i;
9066 uint32_t mode = env->uncached_cpsr & CPSR_M;
9068 /* We can blanket copy X[0:7] to R[0:7] */
9069 for (i = 0; i < 8; i++) {
9070 env->regs[i] = env->xregs[i];
9073 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9074 * Otherwise, we copy x8-x12 into the banked user regs.
9076 if (mode == ARM_CPU_MODE_FIQ) {
9077 for (i = 8; i < 13; i++) {
9078 env->usr_regs[i - 8] = env->xregs[i];
9080 } else {
9081 for (i = 8; i < 13; i++) {
9082 env->regs[i] = env->xregs[i];
9086 /* Registers r13 & r14 depend on the current mode.
9087 * If we are in a given mode, we copy the corresponding x registers to r13
9088 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9089 * for the mode.
9091 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9092 env->regs[13] = env->xregs[13];
9093 env->regs[14] = env->xregs[14];
9094 } else {
9095 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9097 /* HYP is an exception in that it does not have its own banked r14 but
9098 * shares the USR r14
9100 if (mode == ARM_CPU_MODE_HYP) {
9101 env->regs[14] = env->xregs[14];
9102 } else {
9103 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9107 if (mode == ARM_CPU_MODE_HYP) {
9108 env->regs[13] = env->xregs[15];
9109 } else {
9110 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9113 if (mode == ARM_CPU_MODE_IRQ) {
9114 env->regs[14] = env->xregs[16];
9115 env->regs[13] = env->xregs[17];
9116 } else {
9117 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9118 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9121 if (mode == ARM_CPU_MODE_SVC) {
9122 env->regs[14] = env->xregs[18];
9123 env->regs[13] = env->xregs[19];
9124 } else {
9125 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9126 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9129 if (mode == ARM_CPU_MODE_ABT) {
9130 env->regs[14] = env->xregs[20];
9131 env->regs[13] = env->xregs[21];
9132 } else {
9133 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9134 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9137 if (mode == ARM_CPU_MODE_UND) {
9138 env->regs[14] = env->xregs[22];
9139 env->regs[13] = env->xregs[23];
9140 } else {
9141 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9142 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9145 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9146 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9147 * FIQ bank for r8-r14.
9149 if (mode == ARM_CPU_MODE_FIQ) {
9150 for (i = 24; i < 31; i++) {
9151 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9153 } else {
9154 for (i = 24; i < 29; i++) {
9155 env->fiq_regs[i - 24] = env->xregs[i];
9157 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9158 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9161 env->regs[15] = env->pc;
9164 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9165 uint32_t mask, uint32_t offset,
9166 uint32_t newpc)
9168 /* Change the CPU state so as to actually take the exception. */
9169 switch_mode(env, new_mode);
9171 * For exceptions taken to AArch32 we must clear the SS bit in both
9172 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9174 env->uncached_cpsr &= ~PSTATE_SS;
9175 env->spsr = cpsr_read(env);
9176 /* Clear IT bits. */
9177 env->condexec_bits = 0;
9178 /* Switch to the new mode, and to the correct instruction set. */
9179 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9180 /* Set new mode endianness */
9181 env->uncached_cpsr &= ~CPSR_E;
9182 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
9183 env->uncached_cpsr |= CPSR_E;
9185 /* J and IL must always be cleared for exception entry */
9186 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9187 env->daif |= mask;
9189 if (new_mode == ARM_CPU_MODE_HYP) {
9190 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9191 env->elr_el[2] = env->regs[15];
9192 } else {
9194 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9195 * and we should just guard the thumb mode on V4
9197 if (arm_feature(env, ARM_FEATURE_V4T)) {
9198 env->thumb =
9199 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9201 env->regs[14] = env->regs[15] + offset;
9203 env->regs[15] = newpc;
9206 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9209 * Handle exception entry to Hyp mode; this is sufficiently
9210 * different to entry to other AArch32 modes that we handle it
9211 * separately here.
9213 * The vector table entry used is always the 0x14 Hyp mode entry point,
9214 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9215 * The offset applied to the preferred return address is always zero
9216 * (see DDI0487C.a section G1.12.3).
9217 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9219 uint32_t addr, mask;
9220 ARMCPU *cpu = ARM_CPU(cs);
9221 CPUARMState *env = &cpu->env;
9223 switch (cs->exception_index) {
9224 case EXCP_UDEF:
9225 addr = 0x04;
9226 break;
9227 case EXCP_SWI:
9228 addr = 0x14;
9229 break;
9230 case EXCP_BKPT:
9231 /* Fall through to prefetch abort. */
9232 case EXCP_PREFETCH_ABORT:
9233 env->cp15.ifar_s = env->exception.vaddress;
9234 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9235 (uint32_t)env->exception.vaddress);
9236 addr = 0x0c;
9237 break;
9238 case EXCP_DATA_ABORT:
9239 env->cp15.dfar_s = env->exception.vaddress;
9240 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9241 (uint32_t)env->exception.vaddress);
9242 addr = 0x10;
9243 break;
9244 case EXCP_IRQ:
9245 addr = 0x18;
9246 break;
9247 case EXCP_FIQ:
9248 addr = 0x1c;
9249 break;
9250 case EXCP_HVC:
9251 addr = 0x08;
9252 break;
9253 case EXCP_HYP_TRAP:
9254 addr = 0x14;
9255 default:
9256 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9259 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9260 if (!arm_feature(env, ARM_FEATURE_V8)) {
9262 * QEMU syndrome values are v8-style. v7 has the IL bit
9263 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9264 * If this is a v7 CPU, squash the IL bit in those cases.
9266 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9267 (cs->exception_index == EXCP_DATA_ABORT &&
9268 !(env->exception.syndrome & ARM_EL_ISV)) ||
9269 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9270 env->exception.syndrome &= ~ARM_EL_IL;
9273 env->cp15.esr_el[2] = env->exception.syndrome;
9276 if (arm_current_el(env) != 2 && addr < 0x14) {
9277 addr = 0x14;
9280 mask = 0;
9281 if (!(env->cp15.scr_el3 & SCR_EA)) {
9282 mask |= CPSR_A;
9284 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9285 mask |= CPSR_I;
9287 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9288 mask |= CPSR_F;
9291 addr += env->cp15.hvbar;
9293 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9296 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9298 ARMCPU *cpu = ARM_CPU(cs);
9299 CPUARMState *env = &cpu->env;
9300 uint32_t addr;
9301 uint32_t mask;
9302 int new_mode;
9303 uint32_t offset;
9304 uint32_t moe;
9306 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9307 switch (syn_get_ec(env->exception.syndrome)) {
9308 case EC_BREAKPOINT:
9309 case EC_BREAKPOINT_SAME_EL:
9310 moe = 1;
9311 break;
9312 case EC_WATCHPOINT:
9313 case EC_WATCHPOINT_SAME_EL:
9314 moe = 10;
9315 break;
9316 case EC_AA32_BKPT:
9317 moe = 3;
9318 break;
9319 case EC_VECTORCATCH:
9320 moe = 5;
9321 break;
9322 default:
9323 moe = 0;
9324 break;
9327 if (moe) {
9328 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9331 if (env->exception.target_el == 2) {
9332 arm_cpu_do_interrupt_aarch32_hyp(cs);
9333 return;
9336 switch (cs->exception_index) {
9337 case EXCP_UDEF:
9338 new_mode = ARM_CPU_MODE_UND;
9339 addr = 0x04;
9340 mask = CPSR_I;
9341 if (env->thumb)
9342 offset = 2;
9343 else
9344 offset = 4;
9345 break;
9346 case EXCP_SWI:
9347 new_mode = ARM_CPU_MODE_SVC;
9348 addr = 0x08;
9349 mask = CPSR_I;
9350 /* The PC already points to the next instruction. */
9351 offset = 0;
9352 break;
9353 case EXCP_BKPT:
9354 /* Fall through to prefetch abort. */
9355 case EXCP_PREFETCH_ABORT:
9356 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9357 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9358 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9359 env->exception.fsr, (uint32_t)env->exception.vaddress);
9360 new_mode = ARM_CPU_MODE_ABT;
9361 addr = 0x0c;
9362 mask = CPSR_A | CPSR_I;
9363 offset = 4;
9364 break;
9365 case EXCP_DATA_ABORT:
9366 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9367 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9368 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9369 env->exception.fsr,
9370 (uint32_t)env->exception.vaddress);
9371 new_mode = ARM_CPU_MODE_ABT;
9372 addr = 0x10;
9373 mask = CPSR_A | CPSR_I;
9374 offset = 8;
9375 break;
9376 case EXCP_IRQ:
9377 new_mode = ARM_CPU_MODE_IRQ;
9378 addr = 0x18;
9379 /* Disable IRQ and imprecise data aborts. */
9380 mask = CPSR_A | CPSR_I;
9381 offset = 4;
9382 if (env->cp15.scr_el3 & SCR_IRQ) {
9383 /* IRQ routed to monitor mode */
9384 new_mode = ARM_CPU_MODE_MON;
9385 mask |= CPSR_F;
9387 break;
9388 case EXCP_FIQ:
9389 new_mode = ARM_CPU_MODE_FIQ;
9390 addr = 0x1c;
9391 /* Disable FIQ, IRQ and imprecise data aborts. */
9392 mask = CPSR_A | CPSR_I | CPSR_F;
9393 if (env->cp15.scr_el3 & SCR_FIQ) {
9394 /* FIQ routed to monitor mode */
9395 new_mode = ARM_CPU_MODE_MON;
9397 offset = 4;
9398 break;
9399 case EXCP_VIRQ:
9400 new_mode = ARM_CPU_MODE_IRQ;
9401 addr = 0x18;
9402 /* Disable IRQ and imprecise data aborts. */
9403 mask = CPSR_A | CPSR_I;
9404 offset = 4;
9405 break;
9406 case EXCP_VFIQ:
9407 new_mode = ARM_CPU_MODE_FIQ;
9408 addr = 0x1c;
9409 /* Disable FIQ, IRQ and imprecise data aborts. */
9410 mask = CPSR_A | CPSR_I | CPSR_F;
9411 offset = 4;
9412 break;
9413 case EXCP_SMC:
9414 new_mode = ARM_CPU_MODE_MON;
9415 addr = 0x08;
9416 mask = CPSR_A | CPSR_I | CPSR_F;
9417 offset = 0;
9418 break;
9419 default:
9420 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9421 return; /* Never happens. Keep compiler happy. */
9424 if (new_mode == ARM_CPU_MODE_MON) {
9425 addr += env->cp15.mvbar;
9426 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9427 /* High vectors. When enabled, base address cannot be remapped. */
9428 addr += 0xffff0000;
9429 } else {
9430 /* ARM v7 architectures provide a vector base address register to remap
9431 * the interrupt vector table.
9432 * This register is only followed in non-monitor mode, and is banked.
9433 * Note: only bits 31:5 are valid.
9435 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9438 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9439 env->cp15.scr_el3 &= ~SCR_NS;
9442 take_aarch32_exception(env, new_mode, mask, offset, addr);
9445 /* Handle exception entry to a target EL which is using AArch64 */
9446 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9448 ARMCPU *cpu = ARM_CPU(cs);
9449 CPUARMState *env = &cpu->env;
9450 unsigned int new_el = env->exception.target_el;
9451 target_ulong addr = env->cp15.vbar_el[new_el];
9452 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9453 unsigned int cur_el = arm_current_el(env);
9456 * Note that new_el can never be 0. If cur_el is 0, then
9457 * el0_a64 is is_a64(), else el0_a64 is ignored.
9459 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9461 if (cur_el < new_el) {
9462 /* Entry vector offset depends on whether the implemented EL
9463 * immediately lower than the target level is using AArch32 or AArch64
9465 bool is_aa64;
9467 switch (new_el) {
9468 case 3:
9469 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9470 break;
9471 case 2:
9472 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
9473 break;
9474 case 1:
9475 is_aa64 = is_a64(env);
9476 break;
9477 default:
9478 g_assert_not_reached();
9481 if (is_aa64) {
9482 addr += 0x400;
9483 } else {
9484 addr += 0x600;
9486 } else if (pstate_read(env) & PSTATE_SP) {
9487 addr += 0x200;
9490 switch (cs->exception_index) {
9491 case EXCP_PREFETCH_ABORT:
9492 case EXCP_DATA_ABORT:
9493 env->cp15.far_el[new_el] = env->exception.vaddress;
9494 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9495 env->cp15.far_el[new_el]);
9496 /* fall through */
9497 case EXCP_BKPT:
9498 case EXCP_UDEF:
9499 case EXCP_SWI:
9500 case EXCP_HVC:
9501 case EXCP_HYP_TRAP:
9502 case EXCP_SMC:
9503 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
9505 * QEMU internal FP/SIMD syndromes from AArch32 include the
9506 * TA and coproc fields which are only exposed if the exception
9507 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9508 * AArch64 format syndrome.
9510 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9512 env->cp15.esr_el[new_el] = env->exception.syndrome;
9513 break;
9514 case EXCP_IRQ:
9515 case EXCP_VIRQ:
9516 addr += 0x80;
9517 break;
9518 case EXCP_FIQ:
9519 case EXCP_VFIQ:
9520 addr += 0x100;
9521 break;
9522 case EXCP_SEMIHOST:
9523 qemu_log_mask(CPU_LOG_INT,
9524 "...handling as semihosting call 0x%" PRIx64 "\n",
9525 env->xregs[0]);
9526 env->xregs[0] = do_arm_semihosting(env);
9527 return;
9528 default:
9529 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9532 if (is_a64(env)) {
9533 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
9534 aarch64_save_sp(env, arm_current_el(env));
9535 env->elr_el[new_el] = env->pc;
9536 } else {
9537 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
9538 env->elr_el[new_el] = env->regs[15];
9540 aarch64_sync_32_to_64(env);
9542 env->condexec_bits = 0;
9544 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9545 env->elr_el[new_el]);
9547 pstate_write(env, PSTATE_DAIF | new_mode);
9548 env->aarch64 = 1;
9549 aarch64_restore_sp(env, new_el);
9551 env->pc = addr;
9553 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9554 new_el, env->pc, pstate_read(env));
9557 static inline bool check_for_semihosting(CPUState *cs)
9559 /* Check whether this exception is a semihosting call; if so
9560 * then handle it and return true; otherwise return false.
9562 ARMCPU *cpu = ARM_CPU(cs);
9563 CPUARMState *env = &cpu->env;
9565 if (is_a64(env)) {
9566 if (cs->exception_index == EXCP_SEMIHOST) {
9567 /* This is always the 64-bit semihosting exception.
9568 * The "is this usermode" and "is semihosting enabled"
9569 * checks have been done at translate time.
9571 qemu_log_mask(CPU_LOG_INT,
9572 "...handling as semihosting call 0x%" PRIx64 "\n",
9573 env->xregs[0]);
9574 env->xregs[0] = do_arm_semihosting(env);
9575 return true;
9577 return false;
9578 } else {
9579 uint32_t imm;
9581 /* Only intercept calls from privileged modes, to provide some
9582 * semblance of security.
9584 if (cs->exception_index != EXCP_SEMIHOST &&
9585 (!semihosting_enabled() ||
9586 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
9587 return false;
9590 switch (cs->exception_index) {
9591 case EXCP_SEMIHOST:
9592 /* This is always a semihosting call; the "is this usermode"
9593 * and "is semihosting enabled" checks have been done at
9594 * translate time.
9596 break;
9597 case EXCP_SWI:
9598 /* Check for semihosting interrupt. */
9599 if (env->thumb) {
9600 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
9601 & 0xff;
9602 if (imm == 0xab) {
9603 break;
9605 } else {
9606 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
9607 & 0xffffff;
9608 if (imm == 0x123456) {
9609 break;
9612 return false;
9613 case EXCP_BKPT:
9614 /* See if this is a semihosting syscall. */
9615 if (env->thumb) {
9616 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
9617 & 0xff;
9618 if (imm == 0xab) {
9619 env->regs[15] += 2;
9620 break;
9623 return false;
9624 default:
9625 return false;
9628 qemu_log_mask(CPU_LOG_INT,
9629 "...handling as semihosting call 0x%x\n",
9630 env->regs[0]);
9631 env->regs[0] = do_arm_semihosting(env);
9632 return true;
9636 /* Handle a CPU exception for A and R profile CPUs.
9637 * Do any appropriate logging, handle PSCI calls, and then hand off
9638 * to the AArch64-entry or AArch32-entry function depending on the
9639 * target exception level's register width.
9641 void arm_cpu_do_interrupt(CPUState *cs)
9643 ARMCPU *cpu = ARM_CPU(cs);
9644 CPUARMState *env = &cpu->env;
9645 unsigned int new_el = env->exception.target_el;
9647 assert(!arm_feature(env, ARM_FEATURE_M));
9649 arm_log_exception(cs->exception_index);
9650 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9651 new_el);
9652 if (qemu_loglevel_mask(CPU_LOG_INT)
9653 && !excp_is_internal(cs->exception_index)) {
9654 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9655 syn_get_ec(env->exception.syndrome),
9656 env->exception.syndrome);
9659 if (arm_is_psci_call(cpu, cs->exception_index)) {
9660 arm_handle_psci_call(cpu);
9661 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9662 return;
9665 /* Semihosting semantics depend on the register width of the
9666 * code that caused the exception, not the target exception level,
9667 * so must be handled here.
9669 if (check_for_semihosting(cs)) {
9670 return;
9673 /* Hooks may change global state so BQL should be held, also the
9674 * BQL needs to be held for any modification of
9675 * cs->interrupt_request.
9677 g_assert(qemu_mutex_iothread_locked());
9679 arm_call_pre_el_change_hook(cpu);
9681 assert(!excp_is_internal(cs->exception_index));
9682 if (arm_el_is_aa64(env, new_el)) {
9683 arm_cpu_do_interrupt_aarch64(cs);
9684 } else {
9685 arm_cpu_do_interrupt_aarch32(cs);
9688 arm_call_el_change_hook(cpu);
9690 if (!kvm_enabled()) {
9691 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9694 #endif /* !CONFIG_USER_ONLY */
9696 /* Return the exception level which controls this address translation regime */
9697 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
9699 switch (mmu_idx) {
9700 case ARMMMUIdx_S2NS:
9701 case ARMMMUIdx_S1E2:
9702 return 2;
9703 case ARMMMUIdx_S1E3:
9704 return 3;
9705 case ARMMMUIdx_S1SE0:
9706 return arm_el_is_aa64(env, 3) ? 1 : 3;
9707 case ARMMMUIdx_S1SE1:
9708 case ARMMMUIdx_S1NSE0:
9709 case ARMMMUIdx_S1NSE1:
9710 case ARMMMUIdx_MPrivNegPri:
9711 case ARMMMUIdx_MUserNegPri:
9712 case ARMMMUIdx_MPriv:
9713 case ARMMMUIdx_MUser:
9714 case ARMMMUIdx_MSPrivNegPri:
9715 case ARMMMUIdx_MSUserNegPri:
9716 case ARMMMUIdx_MSPriv:
9717 case ARMMMUIdx_MSUser:
9718 return 1;
9719 default:
9720 g_assert_not_reached();
9724 #ifndef CONFIG_USER_ONLY
9726 /* Return the SCTLR value which controls this address translation regime */
9727 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9729 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9732 /* Return true if the specified stage of address translation is disabled */
9733 static inline bool regime_translation_disabled(CPUARMState *env,
9734 ARMMMUIdx mmu_idx)
9736 if (arm_feature(env, ARM_FEATURE_M)) {
9737 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9738 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9739 case R_V7M_MPU_CTRL_ENABLE_MASK:
9740 /* Enabled, but not for HardFault and NMI */
9741 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9742 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9743 /* Enabled for all cases */
9744 return false;
9745 case 0:
9746 default:
9747 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9748 * we warned about that in armv7m_nvic.c when the guest set it.
9750 return true;
9754 if (mmu_idx == ARMMMUIdx_S2NS) {
9755 /* HCR.DC means HCR.VM behaves as 1 */
9756 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9759 if (env->cp15.hcr_el2 & HCR_TGE) {
9760 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9761 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9762 return true;
9766 if ((env->cp15.hcr_el2 & HCR_DC) &&
9767 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
9768 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9769 return true;
9772 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9775 static inline bool regime_translation_big_endian(CPUARMState *env,
9776 ARMMMUIdx mmu_idx)
9778 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
9781 /* Return the TTBR associated with this translation regime */
9782 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
9783 int ttbrn)
9785 if (mmu_idx == ARMMMUIdx_S2NS) {
9786 return env->cp15.vttbr_el2;
9788 if (ttbrn == 0) {
9789 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
9790 } else {
9791 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
9795 #endif /* !CONFIG_USER_ONLY */
9797 /* Return the TCR controlling this translation regime */
9798 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
9800 if (mmu_idx == ARMMMUIdx_S2NS) {
9801 return &env->cp15.vtcr_el2;
9803 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
9806 /* Convert a possible stage1+2 MMU index into the appropriate
9807 * stage 1 MMU index
9809 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
9811 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9812 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
9814 return mmu_idx;
9817 /* Return true if the translation regime is using LPAE format page tables */
9818 static inline bool regime_using_lpae_format(CPUARMState *env,
9819 ARMMMUIdx mmu_idx)
9821 int el = regime_el(env, mmu_idx);
9822 if (el == 2 || arm_el_is_aa64(env, el)) {
9823 return true;
9825 if (arm_feature(env, ARM_FEATURE_LPAE)
9826 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
9827 return true;
9829 return false;
9832 /* Returns true if the stage 1 translation regime is using LPAE format page
9833 * tables. Used when raising alignment exceptions, whose FSR changes depending
9834 * on whether the long or short descriptor format is in use. */
9835 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
9837 mmu_idx = stage_1_mmu_idx(mmu_idx);
9839 return regime_using_lpae_format(env, mmu_idx);
9842 #ifndef CONFIG_USER_ONLY
9843 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
9845 switch (mmu_idx) {
9846 case ARMMMUIdx_S1SE0:
9847 case ARMMMUIdx_S1NSE0:
9848 case ARMMMUIdx_MUser:
9849 case ARMMMUIdx_MSUser:
9850 case ARMMMUIdx_MUserNegPri:
9851 case ARMMMUIdx_MSUserNegPri:
9852 return true;
9853 default:
9854 return false;
9855 case ARMMMUIdx_S12NSE0:
9856 case ARMMMUIdx_S12NSE1:
9857 g_assert_not_reached();
9861 /* Translate section/page access permissions to page
9862 * R/W protection flags
9864 * @env: CPUARMState
9865 * @mmu_idx: MMU index indicating required translation regime
9866 * @ap: The 3-bit access permissions (AP[2:0])
9867 * @domain_prot: The 2-bit domain access permissions
9869 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
9870 int ap, int domain_prot)
9872 bool is_user = regime_is_user(env, mmu_idx);
9874 if (domain_prot == 3) {
9875 return PAGE_READ | PAGE_WRITE;
9878 switch (ap) {
9879 case 0:
9880 if (arm_feature(env, ARM_FEATURE_V7)) {
9881 return 0;
9883 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
9884 case SCTLR_S:
9885 return is_user ? 0 : PAGE_READ;
9886 case SCTLR_R:
9887 return PAGE_READ;
9888 default:
9889 return 0;
9891 case 1:
9892 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9893 case 2:
9894 if (is_user) {
9895 return PAGE_READ;
9896 } else {
9897 return PAGE_READ | PAGE_WRITE;
9899 case 3:
9900 return PAGE_READ | PAGE_WRITE;
9901 case 4: /* Reserved. */
9902 return 0;
9903 case 5:
9904 return is_user ? 0 : PAGE_READ;
9905 case 6:
9906 return PAGE_READ;
9907 case 7:
9908 if (!arm_feature(env, ARM_FEATURE_V6K)) {
9909 return 0;
9911 return PAGE_READ;
9912 default:
9913 g_assert_not_reached();
9917 /* Translate section/page access permissions to page
9918 * R/W protection flags.
9920 * @ap: The 2-bit simple AP (AP[2:1])
9921 * @is_user: TRUE if accessing from PL0
9923 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
9925 switch (ap) {
9926 case 0:
9927 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9928 case 1:
9929 return PAGE_READ | PAGE_WRITE;
9930 case 2:
9931 return is_user ? 0 : PAGE_READ;
9932 case 3:
9933 return PAGE_READ;
9934 default:
9935 g_assert_not_reached();
9939 static inline int
9940 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9942 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9945 /* Translate S2 section/page access permissions to protection flags
9947 * @env: CPUARMState
9948 * @s2ap: The 2-bit stage2 access permissions (S2AP)
9949 * @xn: XN (execute-never) bit
9951 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
9953 int prot = 0;
9955 if (s2ap & 1) {
9956 prot |= PAGE_READ;
9958 if (s2ap & 2) {
9959 prot |= PAGE_WRITE;
9961 if (!xn) {
9962 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
9963 prot |= PAGE_EXEC;
9966 return prot;
9969 /* Translate section/page access permissions to protection flags
9971 * @env: CPUARMState
9972 * @mmu_idx: MMU index indicating required translation regime
9973 * @is_aa64: TRUE if AArch64
9974 * @ap: The 2-bit simple AP (AP[2:1])
9975 * @ns: NS (non-secure) bit
9976 * @xn: XN (execute-never) bit
9977 * @pxn: PXN (privileged execute-never) bit
9979 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
9980 int ap, int ns, int xn, int pxn)
9982 bool is_user = regime_is_user(env, mmu_idx);
9983 int prot_rw, user_rw;
9984 bool have_wxn;
9985 int wxn = 0;
9987 assert(mmu_idx != ARMMMUIdx_S2NS);
9989 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
9990 if (is_user) {
9991 prot_rw = user_rw;
9992 } else {
9993 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
9996 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
9997 return prot_rw;
10000 /* TODO have_wxn should be replaced with
10001 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10002 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10003 * compatible processors have EL2, which is required for [U]WXN.
10005 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10007 if (have_wxn) {
10008 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10011 if (is_aa64) {
10012 switch (regime_el(env, mmu_idx)) {
10013 case 1:
10014 if (!is_user) {
10015 xn = pxn || (user_rw & PAGE_WRITE);
10017 break;
10018 case 2:
10019 case 3:
10020 break;
10022 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10023 switch (regime_el(env, mmu_idx)) {
10024 case 1:
10025 case 3:
10026 if (is_user) {
10027 xn = xn || !(user_rw & PAGE_READ);
10028 } else {
10029 int uwxn = 0;
10030 if (have_wxn) {
10031 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10033 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10034 (uwxn && (user_rw & PAGE_WRITE));
10036 break;
10037 case 2:
10038 break;
10040 } else {
10041 xn = wxn = 0;
10044 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10045 return prot_rw;
10047 return prot_rw | PAGE_EXEC;
10050 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10051 uint32_t *table, uint32_t address)
10053 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10054 TCR *tcr = regime_tcr(env, mmu_idx);
10056 if (address & tcr->mask) {
10057 if (tcr->raw_tcr & TTBCR_PD1) {
10058 /* Translation table walk disabled for TTBR1 */
10059 return false;
10061 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10062 } else {
10063 if (tcr->raw_tcr & TTBCR_PD0) {
10064 /* Translation table walk disabled for TTBR0 */
10065 return false;
10067 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10069 *table |= (address >> 18) & 0x3ffc;
10070 return true;
10073 /* Translate a S1 pagetable walk through S2 if needed. */
10074 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10075 hwaddr addr, MemTxAttrs txattrs,
10076 ARMMMUFaultInfo *fi)
10078 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
10079 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10080 target_ulong s2size;
10081 hwaddr s2pa;
10082 int s2prot;
10083 int ret;
10084 ARMCacheAttrs cacheattrs = {};
10085 ARMCacheAttrs *pcacheattrs = NULL;
10087 if (env->cp15.hcr_el2 & HCR_PTW) {
10089 * PTW means we must fault if this S1 walk touches S2 Device
10090 * memory; otherwise we don't care about the attributes and can
10091 * save the S2 translation the effort of computing them.
10093 pcacheattrs = &cacheattrs;
10096 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
10097 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
10098 if (ret) {
10099 assert(fi->type != ARMFault_None);
10100 fi->s2addr = addr;
10101 fi->stage2 = true;
10102 fi->s1ptw = true;
10103 return ~0;
10105 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
10106 /* Access was to Device memory: generate Permission fault */
10107 fi->type = ARMFault_Permission;
10108 fi->s2addr = addr;
10109 fi->stage2 = true;
10110 fi->s1ptw = true;
10111 return ~0;
10113 addr = s2pa;
10115 return addr;
10118 /* All loads done in the course of a page table walk go through here. */
10119 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10120 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10122 ARMCPU *cpu = ARM_CPU(cs);
10123 CPUARMState *env = &cpu->env;
10124 MemTxAttrs attrs = {};
10125 MemTxResult result = MEMTX_OK;
10126 AddressSpace *as;
10127 uint32_t data;
10129 attrs.secure = is_secure;
10130 as = arm_addressspace(cs, attrs);
10131 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10132 if (fi->s1ptw) {
10133 return 0;
10135 if (regime_translation_big_endian(env, mmu_idx)) {
10136 data = address_space_ldl_be(as, addr, attrs, &result);
10137 } else {
10138 data = address_space_ldl_le(as, addr, attrs, &result);
10140 if (result == MEMTX_OK) {
10141 return data;
10143 fi->type = ARMFault_SyncExternalOnWalk;
10144 fi->ea = arm_extabort_type(result);
10145 return 0;
10148 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10149 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10151 ARMCPU *cpu = ARM_CPU(cs);
10152 CPUARMState *env = &cpu->env;
10153 MemTxAttrs attrs = {};
10154 MemTxResult result = MEMTX_OK;
10155 AddressSpace *as;
10156 uint64_t data;
10158 attrs.secure = is_secure;
10159 as = arm_addressspace(cs, attrs);
10160 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10161 if (fi->s1ptw) {
10162 return 0;
10164 if (regime_translation_big_endian(env, mmu_idx)) {
10165 data = address_space_ldq_be(as, addr, attrs, &result);
10166 } else {
10167 data = address_space_ldq_le(as, addr, attrs, &result);
10169 if (result == MEMTX_OK) {
10170 return data;
10172 fi->type = ARMFault_SyncExternalOnWalk;
10173 fi->ea = arm_extabort_type(result);
10174 return 0;
10177 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10178 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10179 hwaddr *phys_ptr, int *prot,
10180 target_ulong *page_size,
10181 ARMMMUFaultInfo *fi)
10183 CPUState *cs = CPU(arm_env_get_cpu(env));
10184 int level = 1;
10185 uint32_t table;
10186 uint32_t desc;
10187 int type;
10188 int ap;
10189 int domain = 0;
10190 int domain_prot;
10191 hwaddr phys_addr;
10192 uint32_t dacr;
10194 /* Pagetable walk. */
10195 /* Lookup l1 descriptor. */
10196 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10197 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10198 fi->type = ARMFault_Translation;
10199 goto do_fault;
10201 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10202 mmu_idx, fi);
10203 if (fi->type != ARMFault_None) {
10204 goto do_fault;
10206 type = (desc & 3);
10207 domain = (desc >> 5) & 0x0f;
10208 if (regime_el(env, mmu_idx) == 1) {
10209 dacr = env->cp15.dacr_ns;
10210 } else {
10211 dacr = env->cp15.dacr_s;
10213 domain_prot = (dacr >> (domain * 2)) & 3;
10214 if (type == 0) {
10215 /* Section translation fault. */
10216 fi->type = ARMFault_Translation;
10217 goto do_fault;
10219 if (type != 2) {
10220 level = 2;
10222 if (domain_prot == 0 || domain_prot == 2) {
10223 fi->type = ARMFault_Domain;
10224 goto do_fault;
10226 if (type == 2) {
10227 /* 1Mb section. */
10228 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10229 ap = (desc >> 10) & 3;
10230 *page_size = 1024 * 1024;
10231 } else {
10232 /* Lookup l2 entry. */
10233 if (type == 1) {
10234 /* Coarse pagetable. */
10235 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10236 } else {
10237 /* Fine pagetable. */
10238 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10240 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10241 mmu_idx, fi);
10242 if (fi->type != ARMFault_None) {
10243 goto do_fault;
10245 switch (desc & 3) {
10246 case 0: /* Page translation fault. */
10247 fi->type = ARMFault_Translation;
10248 goto do_fault;
10249 case 1: /* 64k page. */
10250 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10251 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10252 *page_size = 0x10000;
10253 break;
10254 case 2: /* 4k page. */
10255 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10256 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10257 *page_size = 0x1000;
10258 break;
10259 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10260 if (type == 1) {
10261 /* ARMv6/XScale extended small page format */
10262 if (arm_feature(env, ARM_FEATURE_XSCALE)
10263 || arm_feature(env, ARM_FEATURE_V6)) {
10264 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10265 *page_size = 0x1000;
10266 } else {
10267 /* UNPREDICTABLE in ARMv5; we choose to take a
10268 * page translation fault.
10270 fi->type = ARMFault_Translation;
10271 goto do_fault;
10273 } else {
10274 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10275 *page_size = 0x400;
10277 ap = (desc >> 4) & 3;
10278 break;
10279 default:
10280 /* Never happens, but compiler isn't smart enough to tell. */
10281 abort();
10284 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10285 *prot |= *prot ? PAGE_EXEC : 0;
10286 if (!(*prot & (1 << access_type))) {
10287 /* Access permission fault. */
10288 fi->type = ARMFault_Permission;
10289 goto do_fault;
10291 *phys_ptr = phys_addr;
10292 return false;
10293 do_fault:
10294 fi->domain = domain;
10295 fi->level = level;
10296 return true;
10299 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10300 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10301 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10302 target_ulong *page_size, ARMMMUFaultInfo *fi)
10304 CPUState *cs = CPU(arm_env_get_cpu(env));
10305 int level = 1;
10306 uint32_t table;
10307 uint32_t desc;
10308 uint32_t xn;
10309 uint32_t pxn = 0;
10310 int type;
10311 int ap;
10312 int domain = 0;
10313 int domain_prot;
10314 hwaddr phys_addr;
10315 uint32_t dacr;
10316 bool ns;
10318 /* Pagetable walk. */
10319 /* Lookup l1 descriptor. */
10320 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10321 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10322 fi->type = ARMFault_Translation;
10323 goto do_fault;
10325 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10326 mmu_idx, fi);
10327 if (fi->type != ARMFault_None) {
10328 goto do_fault;
10330 type = (desc & 3);
10331 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
10332 /* Section translation fault, or attempt to use the encoding
10333 * which is Reserved on implementations without PXN.
10335 fi->type = ARMFault_Translation;
10336 goto do_fault;
10338 if ((type == 1) || !(desc & (1 << 18))) {
10339 /* Page or Section. */
10340 domain = (desc >> 5) & 0x0f;
10342 if (regime_el(env, mmu_idx) == 1) {
10343 dacr = env->cp15.dacr_ns;
10344 } else {
10345 dacr = env->cp15.dacr_s;
10347 if (type == 1) {
10348 level = 2;
10350 domain_prot = (dacr >> (domain * 2)) & 3;
10351 if (domain_prot == 0 || domain_prot == 2) {
10352 /* Section or Page domain fault */
10353 fi->type = ARMFault_Domain;
10354 goto do_fault;
10356 if (type != 1) {
10357 if (desc & (1 << 18)) {
10358 /* Supersection. */
10359 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10360 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10361 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10362 *page_size = 0x1000000;
10363 } else {
10364 /* Section. */
10365 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10366 *page_size = 0x100000;
10368 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10369 xn = desc & (1 << 4);
10370 pxn = desc & 1;
10371 ns = extract32(desc, 19, 1);
10372 } else {
10373 if (arm_feature(env, ARM_FEATURE_PXN)) {
10374 pxn = (desc >> 2) & 1;
10376 ns = extract32(desc, 3, 1);
10377 /* Lookup l2 entry. */
10378 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10379 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10380 mmu_idx, fi);
10381 if (fi->type != ARMFault_None) {
10382 goto do_fault;
10384 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10385 switch (desc & 3) {
10386 case 0: /* Page translation fault. */
10387 fi->type = ARMFault_Translation;
10388 goto do_fault;
10389 case 1: /* 64k page. */
10390 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10391 xn = desc & (1 << 15);
10392 *page_size = 0x10000;
10393 break;
10394 case 2: case 3: /* 4k page. */
10395 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10396 xn = desc & 1;
10397 *page_size = 0x1000;
10398 break;
10399 default:
10400 /* Never happens, but compiler isn't smart enough to tell. */
10401 abort();
10404 if (domain_prot == 3) {
10405 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10406 } else {
10407 if (pxn && !regime_is_user(env, mmu_idx)) {
10408 xn = 1;
10410 if (xn && access_type == MMU_INST_FETCH) {
10411 fi->type = ARMFault_Permission;
10412 goto do_fault;
10415 if (arm_feature(env, ARM_FEATURE_V6K) &&
10416 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10417 /* The simplified model uses AP[0] as an access control bit. */
10418 if ((ap & 1) == 0) {
10419 /* Access flag fault. */
10420 fi->type = ARMFault_AccessFlag;
10421 goto do_fault;
10423 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10424 } else {
10425 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10427 if (*prot && !xn) {
10428 *prot |= PAGE_EXEC;
10430 if (!(*prot & (1 << access_type))) {
10431 /* Access permission fault. */
10432 fi->type = ARMFault_Permission;
10433 goto do_fault;
10436 if (ns) {
10437 /* The NS bit will (as required by the architecture) have no effect if
10438 * the CPU doesn't support TZ or this is a non-secure translation
10439 * regime, because the attribute will already be non-secure.
10441 attrs->secure = false;
10443 *phys_ptr = phys_addr;
10444 return false;
10445 do_fault:
10446 fi->domain = domain;
10447 fi->level = level;
10448 return true;
10452 * check_s2_mmu_setup
10453 * @cpu: ARMCPU
10454 * @is_aa64: True if the translation regime is in AArch64 state
10455 * @startlevel: Suggested starting level
10456 * @inputsize: Bitsize of IPAs
10457 * @stride: Page-table stride (See the ARM ARM)
10459 * Returns true if the suggested S2 translation parameters are OK and
10460 * false otherwise.
10462 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10463 int inputsize, int stride)
10465 const int grainsize = stride + 3;
10466 int startsizecheck;
10468 /* Negative levels are never allowed. */
10469 if (level < 0) {
10470 return false;
10473 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10474 if (startsizecheck < 1 || startsizecheck > stride + 4) {
10475 return false;
10478 if (is_aa64) {
10479 CPUARMState *env = &cpu->env;
10480 unsigned int pamax = arm_pamax(cpu);
10482 switch (stride) {
10483 case 13: /* 64KB Pages. */
10484 if (level == 0 || (level == 1 && pamax <= 42)) {
10485 return false;
10487 break;
10488 case 11: /* 16KB Pages. */
10489 if (level == 0 || (level == 1 && pamax <= 40)) {
10490 return false;
10492 break;
10493 case 9: /* 4KB Pages. */
10494 if (level == 0 && pamax <= 42) {
10495 return false;
10497 break;
10498 default:
10499 g_assert_not_reached();
10502 /* Inputsize checks. */
10503 if (inputsize > pamax &&
10504 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10505 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
10506 return false;
10508 } else {
10509 /* AArch32 only supports 4KB pages. Assert on that. */
10510 assert(stride == 9);
10512 if (level == 0) {
10513 return false;
10516 return true;
10519 /* Translate from the 4-bit stage 2 representation of
10520 * memory attributes (without cache-allocation hints) to
10521 * the 8-bit representation of the stage 1 MAIR registers
10522 * (which includes allocation hints).
10524 * ref: shared/translation/attrs/S2AttrDecode()
10525 * .../S2ConvertAttrsHints()
10527 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10529 uint8_t hiattr = extract32(s2attrs, 2, 2);
10530 uint8_t loattr = extract32(s2attrs, 0, 2);
10531 uint8_t hihint = 0, lohint = 0;
10533 if (hiattr != 0) { /* normal memory */
10534 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10535 hiattr = loattr = 1; /* non-cacheable */
10536 } else {
10537 if (hiattr != 1) { /* Write-through or write-back */
10538 hihint = 3; /* RW allocate */
10540 if (loattr != 1) { /* Write-through or write-back */
10541 lohint = 3; /* RW allocate */
10546 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10548 #endif /* !CONFIG_USER_ONLY */
10550 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
10551 ARMMMUIdx mmu_idx)
10553 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10554 uint32_t el = regime_el(env, mmu_idx);
10555 bool tbi, tbid, epd, hpd, using16k, using64k;
10556 int select, tsz;
10559 * Bit 55 is always between the two regions, and is canonical for
10560 * determining if address tagging is enabled.
10562 select = extract64(va, 55, 1);
10564 if (el > 1) {
10565 tsz = extract32(tcr, 0, 6);
10566 using64k = extract32(tcr, 14, 1);
10567 using16k = extract32(tcr, 15, 1);
10568 if (mmu_idx == ARMMMUIdx_S2NS) {
10569 /* VTCR_EL2 */
10570 tbi = tbid = hpd = false;
10571 } else {
10572 tbi = extract32(tcr, 20, 1);
10573 hpd = extract32(tcr, 24, 1);
10574 tbid = extract32(tcr, 29, 1);
10576 epd = false;
10577 } else if (!select) {
10578 tsz = extract32(tcr, 0, 6);
10579 epd = extract32(tcr, 7, 1);
10580 using64k = extract32(tcr, 14, 1);
10581 using16k = extract32(tcr, 15, 1);
10582 tbi = extract64(tcr, 37, 1);
10583 hpd = extract64(tcr, 41, 1);
10584 tbid = extract64(tcr, 51, 1);
10585 } else {
10586 int tg = extract32(tcr, 30, 2);
10587 using16k = tg == 1;
10588 using64k = tg == 3;
10589 tsz = extract32(tcr, 16, 6);
10590 epd = extract32(tcr, 23, 1);
10591 tbi = extract64(tcr, 38, 1);
10592 hpd = extract64(tcr, 42, 1);
10593 tbid = extract64(tcr, 52, 1);
10595 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
10596 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
10598 return (ARMVAParameters) {
10599 .tsz = tsz,
10600 .select = select,
10601 .tbi = tbi,
10602 .tbid = tbid,
10603 .epd = epd,
10604 .hpd = hpd,
10605 .using16k = using16k,
10606 .using64k = using64k,
10610 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10611 ARMMMUIdx mmu_idx, bool data)
10613 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
10615 /* Present TBI as a composite with TBID. */
10616 ret.tbi &= (data || !ret.tbid);
10617 return ret;
10620 #ifndef CONFIG_USER_ONLY
10621 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10622 ARMMMUIdx mmu_idx)
10624 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10625 uint32_t el = regime_el(env, mmu_idx);
10626 int select, tsz;
10627 bool epd, hpd;
10629 if (mmu_idx == ARMMMUIdx_S2NS) {
10630 /* VTCR */
10631 bool sext = extract32(tcr, 4, 1);
10632 bool sign = extract32(tcr, 3, 1);
10635 * If the sign-extend bit is not the same as t0sz[3], the result
10636 * is unpredictable. Flag this as a guest error.
10638 if (sign != sext) {
10639 qemu_log_mask(LOG_GUEST_ERROR,
10640 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10642 tsz = sextract32(tcr, 0, 4) + 8;
10643 select = 0;
10644 hpd = false;
10645 epd = false;
10646 } else if (el == 2) {
10647 /* HTCR */
10648 tsz = extract32(tcr, 0, 3);
10649 select = 0;
10650 hpd = extract64(tcr, 24, 1);
10651 epd = false;
10652 } else {
10653 int t0sz = extract32(tcr, 0, 3);
10654 int t1sz = extract32(tcr, 16, 3);
10656 if (t1sz == 0) {
10657 select = va > (0xffffffffu >> t0sz);
10658 } else {
10659 /* Note that we will detect errors later. */
10660 select = va >= ~(0xffffffffu >> t1sz);
10662 if (!select) {
10663 tsz = t0sz;
10664 epd = extract32(tcr, 7, 1);
10665 hpd = extract64(tcr, 41, 1);
10666 } else {
10667 tsz = t1sz;
10668 epd = extract32(tcr, 23, 1);
10669 hpd = extract64(tcr, 42, 1);
10671 /* For aarch32, hpd0 is not enabled without t2e as well. */
10672 hpd &= extract32(tcr, 6, 1);
10675 return (ARMVAParameters) {
10676 .tsz = tsz,
10677 .select = select,
10678 .epd = epd,
10679 .hpd = hpd,
10683 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10684 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10685 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10686 target_ulong *page_size_ptr,
10687 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10689 ARMCPU *cpu = arm_env_get_cpu(env);
10690 CPUState *cs = CPU(cpu);
10691 /* Read an LPAE long-descriptor translation table. */
10692 ARMFaultType fault_type = ARMFault_Translation;
10693 uint32_t level;
10694 ARMVAParameters param;
10695 uint64_t ttbr;
10696 hwaddr descaddr, indexmask, indexmask_grainsize;
10697 uint32_t tableattrs;
10698 target_ulong page_size;
10699 uint32_t attrs;
10700 int32_t stride;
10701 int addrsize, inputsize;
10702 TCR *tcr = regime_tcr(env, mmu_idx);
10703 int ap, ns, xn, pxn;
10704 uint32_t el = regime_el(env, mmu_idx);
10705 bool ttbr1_valid;
10706 uint64_t descaddrmask;
10707 bool aarch64 = arm_el_is_aa64(env, el);
10708 bool guarded = false;
10710 /* TODO:
10711 * This code does not handle the different format TCR for VTCR_EL2.
10712 * This code also does not support shareability levels.
10713 * Attribute and permission bit handling should also be checked when adding
10714 * support for those page table walks.
10716 if (aarch64) {
10717 param = aa64_va_parameters(env, address, mmu_idx,
10718 access_type != MMU_INST_FETCH);
10719 level = 0;
10720 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
10721 * invalid.
10723 ttbr1_valid = (el < 2);
10724 addrsize = 64 - 8 * param.tbi;
10725 inputsize = 64 - param.tsz;
10726 } else {
10727 param = aa32_va_parameters(env, address, mmu_idx);
10728 level = 1;
10729 /* There is no TTBR1 for EL2 */
10730 ttbr1_valid = (el != 2);
10731 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
10732 inputsize = addrsize - param.tsz;
10736 * We determined the region when collecting the parameters, but we
10737 * have not yet validated that the address is valid for the region.
10738 * Extract the top bits and verify that they all match select.
10740 * For aa32, if inputsize == addrsize, then we have selected the
10741 * region by exclusion in aa32_va_parameters and there is no more
10742 * validation to do here.
10744 if (inputsize < addrsize) {
10745 target_ulong top_bits = sextract64(address, inputsize,
10746 addrsize - inputsize);
10747 if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
10748 /* The gap between the two regions is a Translation fault */
10749 fault_type = ARMFault_Translation;
10750 goto do_fault;
10754 if (param.using64k) {
10755 stride = 13;
10756 } else if (param.using16k) {
10757 stride = 11;
10758 } else {
10759 stride = 9;
10762 /* Note that QEMU ignores shareability and cacheability attributes,
10763 * so we don't need to do anything with the SH, ORGN, IRGN fields
10764 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
10765 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
10766 * implement any ASID-like capability so we can ignore it (instead
10767 * we will always flush the TLB any time the ASID is changed).
10769 ttbr = regime_ttbr(env, mmu_idx, param.select);
10771 /* Here we should have set up all the parameters for the translation:
10772 * inputsize, ttbr, epd, stride, tbi
10775 if (param.epd) {
10776 /* Translation table walk disabled => Translation fault on TLB miss
10777 * Note: This is always 0 on 64-bit EL2 and EL3.
10779 goto do_fault;
10782 if (mmu_idx != ARMMMUIdx_S2NS) {
10783 /* The starting level depends on the virtual address size (which can
10784 * be up to 48 bits) and the translation granule size. It indicates
10785 * the number of strides (stride bits at a time) needed to
10786 * consume the bits of the input address. In the pseudocode this is:
10787 * level = 4 - RoundUp((inputsize - grainsize) / stride)
10788 * where their 'inputsize' is our 'inputsize', 'grainsize' is
10789 * our 'stride + 3' and 'stride' is our 'stride'.
10790 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
10791 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
10792 * = 4 - (inputsize - 4) / stride;
10794 level = 4 - (inputsize - 4) / stride;
10795 } else {
10796 /* For stage 2 translations the starting level is specified by the
10797 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
10799 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
10800 uint32_t startlevel;
10801 bool ok;
10803 if (!aarch64 || stride == 9) {
10804 /* AArch32 or 4KB pages */
10805 startlevel = 2 - sl0;
10806 } else {
10807 /* 16KB or 64KB pages */
10808 startlevel = 3 - sl0;
10811 /* Check that the starting level is valid. */
10812 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
10813 inputsize, stride);
10814 if (!ok) {
10815 fault_type = ARMFault_Translation;
10816 goto do_fault;
10818 level = startlevel;
10821 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
10822 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
10824 /* Now we can extract the actual base address from the TTBR */
10825 descaddr = extract64(ttbr, 0, 48);
10826 descaddr &= ~indexmask;
10828 /* The address field in the descriptor goes up to bit 39 for ARMv7
10829 * but up to bit 47 for ARMv8, but we use the descaddrmask
10830 * up to bit 39 for AArch32, because we don't need other bits in that case
10831 * to construct next descriptor address (anyway they should be all zeroes).
10833 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
10834 ~indexmask_grainsize;
10836 /* Secure accesses start with the page table in secure memory and
10837 * can be downgraded to non-secure at any step. Non-secure accesses
10838 * remain non-secure. We implement this by just ORing in the NSTable/NS
10839 * bits at each step.
10841 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
10842 for (;;) {
10843 uint64_t descriptor;
10844 bool nstable;
10846 descaddr |= (address >> (stride * (4 - level))) & indexmask;
10847 descaddr &= ~7ULL;
10848 nstable = extract32(tableattrs, 4, 1);
10849 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
10850 if (fi->type != ARMFault_None) {
10851 goto do_fault;
10854 if (!(descriptor & 1) ||
10855 (!(descriptor & 2) && (level == 3))) {
10856 /* Invalid, or the Reserved level 3 encoding */
10857 goto do_fault;
10859 descaddr = descriptor & descaddrmask;
10861 if ((descriptor & 2) && (level < 3)) {
10862 /* Table entry. The top five bits are attributes which may
10863 * propagate down through lower levels of the table (and
10864 * which are all arranged so that 0 means "no effect", so
10865 * we can gather them up by ORing in the bits at each level).
10867 tableattrs |= extract64(descriptor, 59, 5);
10868 level++;
10869 indexmask = indexmask_grainsize;
10870 continue;
10872 /* Block entry at level 1 or 2, or page entry at level 3.
10873 * These are basically the same thing, although the number
10874 * of bits we pull in from the vaddr varies.
10876 page_size = (1ULL << ((stride * (4 - level)) + 3));
10877 descaddr |= (address & (page_size - 1));
10878 /* Extract attributes from the descriptor */
10879 attrs = extract64(descriptor, 2, 10)
10880 | (extract64(descriptor, 52, 12) << 10);
10882 if (mmu_idx == ARMMMUIdx_S2NS) {
10883 /* Stage 2 table descriptors do not include any attribute fields */
10884 break;
10886 /* Merge in attributes from table descriptors */
10887 attrs |= nstable << 3; /* NS */
10888 guarded = extract64(descriptor, 50, 1); /* GP */
10889 if (param.hpd) {
10890 /* HPD disables all the table attributes except NSTable. */
10891 break;
10893 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
10894 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10895 * means "force PL1 access only", which means forcing AP[1] to 0.
10897 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
10898 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
10899 break;
10901 /* Here descaddr is the final physical address, and attributes
10902 * are all in attrs.
10904 fault_type = ARMFault_AccessFlag;
10905 if ((attrs & (1 << 8)) == 0) {
10906 /* Access flag */
10907 goto do_fault;
10910 ap = extract32(attrs, 4, 2);
10911 xn = extract32(attrs, 12, 1);
10913 if (mmu_idx == ARMMMUIdx_S2NS) {
10914 ns = true;
10915 *prot = get_S2prot(env, ap, xn);
10916 } else {
10917 ns = extract32(attrs, 3, 1);
10918 pxn = extract32(attrs, 11, 1);
10919 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
10922 fault_type = ARMFault_Permission;
10923 if (!(*prot & (1 << access_type))) {
10924 goto do_fault;
10927 if (ns) {
10928 /* The NS bit will (as required by the architecture) have no effect if
10929 * the CPU doesn't support TZ or this is a non-secure translation
10930 * regime, because the attribute will already be non-secure.
10932 txattrs->secure = false;
10934 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
10935 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
10936 txattrs->target_tlb_bit0 = true;
10939 if (cacheattrs != NULL) {
10940 if (mmu_idx == ARMMMUIdx_S2NS) {
10941 cacheattrs->attrs = convert_stage2_attrs(env,
10942 extract32(attrs, 0, 4));
10943 } else {
10944 /* Index into MAIR registers for cache attributes */
10945 uint8_t attrindx = extract32(attrs, 0, 3);
10946 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
10947 assert(attrindx <= 7);
10948 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
10950 cacheattrs->shareability = extract32(attrs, 6, 2);
10953 *phys_ptr = descaddr;
10954 *page_size_ptr = page_size;
10955 return false;
10957 do_fault:
10958 fi->type = fault_type;
10959 fi->level = level;
10960 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
10961 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
10962 return true;
10965 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
10966 ARMMMUIdx mmu_idx,
10967 int32_t address, int *prot)
10969 if (!arm_feature(env, ARM_FEATURE_M)) {
10970 *prot = PAGE_READ | PAGE_WRITE;
10971 switch (address) {
10972 case 0xF0000000 ... 0xFFFFFFFF:
10973 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
10974 /* hivecs execing is ok */
10975 *prot |= PAGE_EXEC;
10977 break;
10978 case 0x00000000 ... 0x7FFFFFFF:
10979 *prot |= PAGE_EXEC;
10980 break;
10982 } else {
10983 /* Default system address map for M profile cores.
10984 * The architecture specifies which regions are execute-never;
10985 * at the MPU level no other checks are defined.
10987 switch (address) {
10988 case 0x00000000 ... 0x1fffffff: /* ROM */
10989 case 0x20000000 ... 0x3fffffff: /* SRAM */
10990 case 0x60000000 ... 0x7fffffff: /* RAM */
10991 case 0x80000000 ... 0x9fffffff: /* RAM */
10992 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10993 break;
10994 case 0x40000000 ... 0x5fffffff: /* Peripheral */
10995 case 0xa0000000 ... 0xbfffffff: /* Device */
10996 case 0xc0000000 ... 0xdfffffff: /* Device */
10997 case 0xe0000000 ... 0xffffffff: /* System */
10998 *prot = PAGE_READ | PAGE_WRITE;
10999 break;
11000 default:
11001 g_assert_not_reached();
11006 static bool pmsav7_use_background_region(ARMCPU *cpu,
11007 ARMMMUIdx mmu_idx, bool is_user)
11009 /* Return true if we should use the default memory map as a
11010 * "background" region if there are no hits against any MPU regions.
11012 CPUARMState *env = &cpu->env;
11014 if (is_user) {
11015 return false;
11018 if (arm_feature(env, ARM_FEATURE_M)) {
11019 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11020 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11021 } else {
11022 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11026 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11028 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11029 return arm_feature(env, ARM_FEATURE_M) &&
11030 extract32(address, 20, 12) == 0xe00;
11033 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11035 /* True if address is in the M profile system region
11036 * 0xe0000000 - 0xffffffff
11038 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11041 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11042 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11043 hwaddr *phys_ptr, int *prot,
11044 target_ulong *page_size,
11045 ARMMMUFaultInfo *fi)
11047 ARMCPU *cpu = arm_env_get_cpu(env);
11048 int n;
11049 bool is_user = regime_is_user(env, mmu_idx);
11051 *phys_ptr = address;
11052 *page_size = TARGET_PAGE_SIZE;
11053 *prot = 0;
11055 if (regime_translation_disabled(env, mmu_idx) ||
11056 m_is_ppb_region(env, address)) {
11057 /* MPU disabled or M profile PPB access: use default memory map.
11058 * The other case which uses the default memory map in the
11059 * v7M ARM ARM pseudocode is exception vector reads from the vector
11060 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11061 * which always does a direct read using address_space_ldl(), rather
11062 * than going via this function, so we don't need to check that here.
11064 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11065 } else { /* MPU enabled */
11066 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11067 /* region search */
11068 uint32_t base = env->pmsav7.drbar[n];
11069 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11070 uint32_t rmask;
11071 bool srdis = false;
11073 if (!(env->pmsav7.drsr[n] & 0x1)) {
11074 continue;
11077 if (!rsize) {
11078 qemu_log_mask(LOG_GUEST_ERROR,
11079 "DRSR[%d]: Rsize field cannot be 0\n", n);
11080 continue;
11082 rsize++;
11083 rmask = (1ull << rsize) - 1;
11085 if (base & rmask) {
11086 qemu_log_mask(LOG_GUEST_ERROR,
11087 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11088 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11089 n, base, rmask);
11090 continue;
11093 if (address < base || address > base + rmask) {
11095 * Address not in this region. We must check whether the
11096 * region covers addresses in the same page as our address.
11097 * In that case we must not report a size that covers the
11098 * whole page for a subsequent hit against a different MPU
11099 * region or the background region, because it would result in
11100 * incorrect TLB hits for subsequent accesses to addresses that
11101 * are in this MPU region.
11103 if (ranges_overlap(base, rmask,
11104 address & TARGET_PAGE_MASK,
11105 TARGET_PAGE_SIZE)) {
11106 *page_size = 1;
11108 continue;
11111 /* Region matched */
11113 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11114 int i, snd;
11115 uint32_t srdis_mask;
11117 rsize -= 3; /* sub region size (power of 2) */
11118 snd = ((address - base) >> rsize) & 0x7;
11119 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11121 srdis_mask = srdis ? 0x3 : 0x0;
11122 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11123 /* This will check in groups of 2, 4 and then 8, whether
11124 * the subregion bits are consistent. rsize is incremented
11125 * back up to give the region size, considering consistent
11126 * adjacent subregions as one region. Stop testing if rsize
11127 * is already big enough for an entire QEMU page.
11129 int snd_rounded = snd & ~(i - 1);
11130 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11131 snd_rounded + 8, i);
11132 if (srdis_mask ^ srdis_multi) {
11133 break;
11135 srdis_mask = (srdis_mask << i) | srdis_mask;
11136 rsize++;
11139 if (srdis) {
11140 continue;
11142 if (rsize < TARGET_PAGE_BITS) {
11143 *page_size = 1 << rsize;
11145 break;
11148 if (n == -1) { /* no hits */
11149 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11150 /* background fault */
11151 fi->type = ARMFault_Background;
11152 return true;
11154 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11155 } else { /* a MPU hit! */
11156 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11157 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11159 if (m_is_system_region(env, address)) {
11160 /* System space is always execute never */
11161 xn = 1;
11164 if (is_user) { /* User mode AP bit decoding */
11165 switch (ap) {
11166 case 0:
11167 case 1:
11168 case 5:
11169 break; /* no access */
11170 case 3:
11171 *prot |= PAGE_WRITE;
11172 /* fall through */
11173 case 2:
11174 case 6:
11175 *prot |= PAGE_READ | PAGE_EXEC;
11176 break;
11177 case 7:
11178 /* for v7M, same as 6; for R profile a reserved value */
11179 if (arm_feature(env, ARM_FEATURE_M)) {
11180 *prot |= PAGE_READ | PAGE_EXEC;
11181 break;
11183 /* fall through */
11184 default:
11185 qemu_log_mask(LOG_GUEST_ERROR,
11186 "DRACR[%d]: Bad value for AP bits: 0x%"
11187 PRIx32 "\n", n, ap);
11189 } else { /* Priv. mode AP bits decoding */
11190 switch (ap) {
11191 case 0:
11192 break; /* no access */
11193 case 1:
11194 case 2:
11195 case 3:
11196 *prot |= PAGE_WRITE;
11197 /* fall through */
11198 case 5:
11199 case 6:
11200 *prot |= PAGE_READ | PAGE_EXEC;
11201 break;
11202 case 7:
11203 /* for v7M, same as 6; for R profile a reserved value */
11204 if (arm_feature(env, ARM_FEATURE_M)) {
11205 *prot |= PAGE_READ | PAGE_EXEC;
11206 break;
11208 /* fall through */
11209 default:
11210 qemu_log_mask(LOG_GUEST_ERROR,
11211 "DRACR[%d]: Bad value for AP bits: 0x%"
11212 PRIx32 "\n", n, ap);
11216 /* execute never */
11217 if (xn) {
11218 *prot &= ~PAGE_EXEC;
11223 fi->type = ARMFault_Permission;
11224 fi->level = 1;
11225 return !(*prot & (1 << access_type));
11228 static bool v8m_is_sau_exempt(CPUARMState *env,
11229 uint32_t address, MMUAccessType access_type)
11231 /* The architecture specifies that certain address ranges are
11232 * exempt from v8M SAU/IDAU checks.
11234 return
11235 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11236 (address >= 0xe0000000 && address <= 0xe0002fff) ||
11237 (address >= 0xe000e000 && address <= 0xe000efff) ||
11238 (address >= 0xe002e000 && address <= 0xe002efff) ||
11239 (address >= 0xe0040000 && address <= 0xe0041fff) ||
11240 (address >= 0xe00ff000 && address <= 0xe00fffff);
11243 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
11244 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11245 V8M_SAttributes *sattrs)
11247 /* Look up the security attributes for this address. Compare the
11248 * pseudocode SecurityCheck() function.
11249 * We assume the caller has zero-initialized *sattrs.
11251 ARMCPU *cpu = arm_env_get_cpu(env);
11252 int r;
11253 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11254 int idau_region = IREGION_NOTVALID;
11255 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11256 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11258 if (cpu->idau) {
11259 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11260 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11262 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11263 &idau_nsc);
11266 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11267 /* 0xf0000000..0xffffffff is always S for insn fetches */
11268 return;
11271 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11272 sattrs->ns = !regime_is_secure(env, mmu_idx);
11273 return;
11276 if (idau_region != IREGION_NOTVALID) {
11277 sattrs->irvalid = true;
11278 sattrs->iregion = idau_region;
11281 switch (env->sau.ctrl & 3) {
11282 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11283 break;
11284 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11285 sattrs->ns = true;
11286 break;
11287 default: /* SAU.ENABLE == 1 */
11288 for (r = 0; r < cpu->sau_sregion; r++) {
11289 if (env->sau.rlar[r] & 1) {
11290 uint32_t base = env->sau.rbar[r] & ~0x1f;
11291 uint32_t limit = env->sau.rlar[r] | 0x1f;
11293 if (base <= address && limit >= address) {
11294 if (base > addr_page_base || limit < addr_page_limit) {
11295 sattrs->subpage = true;
11297 if (sattrs->srvalid) {
11298 /* If we hit in more than one region then we must report
11299 * as Secure, not NS-Callable, with no valid region
11300 * number info.
11302 sattrs->ns = false;
11303 sattrs->nsc = false;
11304 sattrs->sregion = 0;
11305 sattrs->srvalid = false;
11306 break;
11307 } else {
11308 if (env->sau.rlar[r] & 2) {
11309 sattrs->nsc = true;
11310 } else {
11311 sattrs->ns = true;
11313 sattrs->srvalid = true;
11314 sattrs->sregion = r;
11316 } else {
11318 * Address not in this region. We must check whether the
11319 * region covers addresses in the same page as our address.
11320 * In that case we must not report a size that covers the
11321 * whole page for a subsequent hit against a different MPU
11322 * region or the background region, because it would result
11323 * in incorrect TLB hits for subsequent accesses to
11324 * addresses that are in this MPU region.
11326 if (limit >= base &&
11327 ranges_overlap(base, limit - base + 1,
11328 addr_page_base,
11329 TARGET_PAGE_SIZE)) {
11330 sattrs->subpage = true;
11335 break;
11339 * The IDAU will override the SAU lookup results if it specifies
11340 * higher security than the SAU does.
11342 if (!idau_ns) {
11343 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11344 sattrs->ns = false;
11345 sattrs->nsc = idau_nsc;
11350 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11351 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11352 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11353 int *prot, bool *is_subpage,
11354 ARMMMUFaultInfo *fi, uint32_t *mregion)
11356 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11357 * that a full phys-to-virt translation does).
11358 * mregion is (if not NULL) set to the region number which matched,
11359 * or -1 if no region number is returned (MPU off, address did not
11360 * hit a region, address hit in multiple regions).
11361 * We set is_subpage to true if the region hit doesn't cover the
11362 * entire TARGET_PAGE the address is within.
11364 ARMCPU *cpu = arm_env_get_cpu(env);
11365 bool is_user = regime_is_user(env, mmu_idx);
11366 uint32_t secure = regime_is_secure(env, mmu_idx);
11367 int n;
11368 int matchregion = -1;
11369 bool hit = false;
11370 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11371 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11373 *is_subpage = false;
11374 *phys_ptr = address;
11375 *prot = 0;
11376 if (mregion) {
11377 *mregion = -1;
11380 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11381 * was an exception vector read from the vector table (which is always
11382 * done using the default system address map), because those accesses
11383 * are done in arm_v7m_load_vector(), which always does a direct
11384 * read using address_space_ldl(), rather than going via this function.
11386 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11387 hit = true;
11388 } else if (m_is_ppb_region(env, address)) {
11389 hit = true;
11390 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11391 hit = true;
11392 } else {
11393 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11394 /* region search */
11395 /* Note that the base address is bits [31:5] from the register
11396 * with bits [4:0] all zeroes, but the limit address is bits
11397 * [31:5] from the register with bits [4:0] all ones.
11399 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11400 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11402 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11403 /* Region disabled */
11404 continue;
11407 if (address < base || address > limit) {
11409 * Address not in this region. We must check whether the
11410 * region covers addresses in the same page as our address.
11411 * In that case we must not report a size that covers the
11412 * whole page for a subsequent hit against a different MPU
11413 * region or the background region, because it would result in
11414 * incorrect TLB hits for subsequent accesses to addresses that
11415 * are in this MPU region.
11417 if (limit >= base &&
11418 ranges_overlap(base, limit - base + 1,
11419 addr_page_base,
11420 TARGET_PAGE_SIZE)) {
11421 *is_subpage = true;
11423 continue;
11426 if (base > addr_page_base || limit < addr_page_limit) {
11427 *is_subpage = true;
11430 if (hit) {
11431 /* Multiple regions match -- always a failure (unlike
11432 * PMSAv7 where highest-numbered-region wins)
11434 fi->type = ARMFault_Permission;
11435 fi->level = 1;
11436 return true;
11439 matchregion = n;
11440 hit = true;
11444 if (!hit) {
11445 /* background fault */
11446 fi->type = ARMFault_Background;
11447 return true;
11450 if (matchregion == -1) {
11451 /* hit using the background region */
11452 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11453 } else {
11454 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11455 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11457 if (m_is_system_region(env, address)) {
11458 /* System space is always execute never */
11459 xn = 1;
11462 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11463 if (*prot && !xn) {
11464 *prot |= PAGE_EXEC;
11466 /* We don't need to look the attribute up in the MAIR0/MAIR1
11467 * registers because that only tells us about cacheability.
11469 if (mregion) {
11470 *mregion = matchregion;
11474 fi->type = ARMFault_Permission;
11475 fi->level = 1;
11476 return !(*prot & (1 << access_type));
11480 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11481 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11482 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11483 int *prot, target_ulong *page_size,
11484 ARMMMUFaultInfo *fi)
11486 uint32_t secure = regime_is_secure(env, mmu_idx);
11487 V8M_SAttributes sattrs = {};
11488 bool ret;
11489 bool mpu_is_subpage;
11491 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11492 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11493 if (access_type == MMU_INST_FETCH) {
11494 /* Instruction fetches always use the MMU bank and the
11495 * transaction attribute determined by the fetch address,
11496 * regardless of CPU state. This is painful for QEMU
11497 * to handle, because it would mean we need to encode
11498 * into the mmu_idx not just the (user, negpri) information
11499 * for the current security state but also that for the
11500 * other security state, which would balloon the number
11501 * of mmu_idx values needed alarmingly.
11502 * Fortunately we can avoid this because it's not actually
11503 * possible to arbitrarily execute code from memory with
11504 * the wrong security attribute: it will always generate
11505 * an exception of some kind or another, apart from the
11506 * special case of an NS CPU executing an SG instruction
11507 * in S&NSC memory. So we always just fail the translation
11508 * here and sort things out in the exception handler
11509 * (including possibly emulating an SG instruction).
11511 if (sattrs.ns != !secure) {
11512 if (sattrs.nsc) {
11513 fi->type = ARMFault_QEMU_NSCExec;
11514 } else {
11515 fi->type = ARMFault_QEMU_SFault;
11517 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11518 *phys_ptr = address;
11519 *prot = 0;
11520 return true;
11522 } else {
11523 /* For data accesses we always use the MMU bank indicated
11524 * by the current CPU state, but the security attributes
11525 * might downgrade a secure access to nonsecure.
11527 if (sattrs.ns) {
11528 txattrs->secure = false;
11529 } else if (!secure) {
11530 /* NS access to S memory must fault.
11531 * Architecturally we should first check whether the
11532 * MPU information for this address indicates that we
11533 * are doing an unaligned access to Device memory, which
11534 * should generate a UsageFault instead. QEMU does not
11535 * currently check for that kind of unaligned access though.
11536 * If we added it we would need to do so as a special case
11537 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11539 fi->type = ARMFault_QEMU_SFault;
11540 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11541 *phys_ptr = address;
11542 *prot = 0;
11543 return true;
11548 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11549 txattrs, prot, &mpu_is_subpage, fi, NULL);
11550 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11551 return ret;
11554 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11555 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11556 hwaddr *phys_ptr, int *prot,
11557 ARMMMUFaultInfo *fi)
11559 int n;
11560 uint32_t mask;
11561 uint32_t base;
11562 bool is_user = regime_is_user(env, mmu_idx);
11564 if (regime_translation_disabled(env, mmu_idx)) {
11565 /* MPU disabled. */
11566 *phys_ptr = address;
11567 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11568 return false;
11571 *phys_ptr = address;
11572 for (n = 7; n >= 0; n--) {
11573 base = env->cp15.c6_region[n];
11574 if ((base & 1) == 0) {
11575 continue;
11577 mask = 1 << ((base >> 1) & 0x1f);
11578 /* Keep this shift separate from the above to avoid an
11579 (undefined) << 32. */
11580 mask = (mask << 1) - 1;
11581 if (((base ^ address) & ~mask) == 0) {
11582 break;
11585 if (n < 0) {
11586 fi->type = ARMFault_Background;
11587 return true;
11590 if (access_type == MMU_INST_FETCH) {
11591 mask = env->cp15.pmsav5_insn_ap;
11592 } else {
11593 mask = env->cp15.pmsav5_data_ap;
11595 mask = (mask >> (n * 4)) & 0xf;
11596 switch (mask) {
11597 case 0:
11598 fi->type = ARMFault_Permission;
11599 fi->level = 1;
11600 return true;
11601 case 1:
11602 if (is_user) {
11603 fi->type = ARMFault_Permission;
11604 fi->level = 1;
11605 return true;
11607 *prot = PAGE_READ | PAGE_WRITE;
11608 break;
11609 case 2:
11610 *prot = PAGE_READ;
11611 if (!is_user) {
11612 *prot |= PAGE_WRITE;
11614 break;
11615 case 3:
11616 *prot = PAGE_READ | PAGE_WRITE;
11617 break;
11618 case 5:
11619 if (is_user) {
11620 fi->type = ARMFault_Permission;
11621 fi->level = 1;
11622 return true;
11624 *prot = PAGE_READ;
11625 break;
11626 case 6:
11627 *prot = PAGE_READ;
11628 break;
11629 default:
11630 /* Bad permission. */
11631 fi->type = ARMFault_Permission;
11632 fi->level = 1;
11633 return true;
11635 *prot |= PAGE_EXEC;
11636 return false;
11639 /* Combine either inner or outer cacheability attributes for normal
11640 * memory, according to table D4-42 and pseudocode procedure
11641 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11643 * NB: only stage 1 includes allocation hints (RW bits), leading to
11644 * some asymmetry.
11646 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11648 if (s1 == 4 || s2 == 4) {
11649 /* non-cacheable has precedence */
11650 return 4;
11651 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11652 /* stage 1 write-through takes precedence */
11653 return s1;
11654 } else if (extract32(s2, 2, 2) == 2) {
11655 /* stage 2 write-through takes precedence, but the allocation hint
11656 * is still taken from stage 1
11658 return (2 << 2) | extract32(s1, 0, 2);
11659 } else { /* write-back */
11660 return s1;
11664 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11665 * and CombineS1S2Desc()
11667 * @s1: Attributes from stage 1 walk
11668 * @s2: Attributes from stage 2 walk
11670 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11672 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
11673 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
11674 ARMCacheAttrs ret;
11676 /* Combine shareability attributes (table D4-43) */
11677 if (s1.shareability == 2 || s2.shareability == 2) {
11678 /* if either are outer-shareable, the result is outer-shareable */
11679 ret.shareability = 2;
11680 } else if (s1.shareability == 3 || s2.shareability == 3) {
11681 /* if either are inner-shareable, the result is inner-shareable */
11682 ret.shareability = 3;
11683 } else {
11684 /* both non-shareable */
11685 ret.shareability = 0;
11688 /* Combine memory type and cacheability attributes */
11689 if (s1hi == 0 || s2hi == 0) {
11690 /* Device has precedence over normal */
11691 if (s1lo == 0 || s2lo == 0) {
11692 /* nGnRnE has precedence over anything */
11693 ret.attrs = 0;
11694 } else if (s1lo == 4 || s2lo == 4) {
11695 /* non-Reordering has precedence over Reordering */
11696 ret.attrs = 4; /* nGnRE */
11697 } else if (s1lo == 8 || s2lo == 8) {
11698 /* non-Gathering has precedence over Gathering */
11699 ret.attrs = 8; /* nGRE */
11700 } else {
11701 ret.attrs = 0xc; /* GRE */
11704 /* Any location for which the resultant memory type is any
11705 * type of Device memory is always treated as Outer Shareable.
11707 ret.shareability = 2;
11708 } else { /* Normal memory */
11709 /* Outer/inner cacheability combine independently */
11710 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11711 | combine_cacheattr_nibble(s1lo, s2lo);
11713 if (ret.attrs == 0x44) {
11714 /* Any location for which the resultant memory type is Normal
11715 * Inner Non-cacheable, Outer Non-cacheable is always treated
11716 * as Outer Shareable.
11718 ret.shareability = 2;
11722 return ret;
11726 /* get_phys_addr - get the physical address for this virtual address
11728 * Find the physical address corresponding to the given virtual address,
11729 * by doing a translation table walk on MMU based systems or using the
11730 * MPU state on MPU based systems.
11732 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11733 * prot and page_size may not be filled in, and the populated fsr value provides
11734 * information on why the translation aborted, in the format of a
11735 * DFSR/IFSR fault register, with the following caveats:
11736 * * we honour the short vs long DFSR format differences.
11737 * * the WnR bit is never set (the caller must do this).
11738 * * for PSMAv5 based systems we don't bother to return a full FSR format
11739 * value.
11741 * @env: CPUARMState
11742 * @address: virtual address to get physical address for
11743 * @access_type: 0 for read, 1 for write, 2 for execute
11744 * @mmu_idx: MMU index indicating required translation regime
11745 * @phys_ptr: set to the physical address corresponding to the virtual address
11746 * @attrs: set to the memory transaction attributes to use
11747 * @prot: set to the permissions for the page containing phys_ptr
11748 * @page_size: set to the size of the page containing phys_ptr
11749 * @fi: set to fault info if the translation fails
11750 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11752 static bool get_phys_addr(CPUARMState *env, target_ulong address,
11753 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11754 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11755 target_ulong *page_size,
11756 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11758 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
11759 /* Call ourselves recursively to do the stage 1 and then stage 2
11760 * translations.
11762 if (arm_feature(env, ARM_FEATURE_EL2)) {
11763 hwaddr ipa;
11764 int s2_prot;
11765 int ret;
11766 ARMCacheAttrs cacheattrs2 = {};
11768 ret = get_phys_addr(env, address, access_type,
11769 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
11770 prot, page_size, fi, cacheattrs);
11772 /* If S1 fails or S2 is disabled, return early. */
11773 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
11774 *phys_ptr = ipa;
11775 return ret;
11778 /* S1 is done. Now do S2 translation. */
11779 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
11780 phys_ptr, attrs, &s2_prot,
11781 page_size, fi,
11782 cacheattrs != NULL ? &cacheattrs2 : NULL);
11783 fi->s2addr = ipa;
11784 /* Combine the S1 and S2 perms. */
11785 *prot &= s2_prot;
11787 /* Combine the S1 and S2 cache attributes, if needed */
11788 if (!ret && cacheattrs != NULL) {
11789 if (env->cp15.hcr_el2 & HCR_DC) {
11791 * HCR.DC forces the first stage attributes to
11792 * Normal Non-Shareable,
11793 * Inner Write-Back Read-Allocate Write-Allocate,
11794 * Outer Write-Back Read-Allocate Write-Allocate.
11796 cacheattrs->attrs = 0xff;
11797 cacheattrs->shareability = 0;
11799 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
11802 return ret;
11803 } else {
11805 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
11807 mmu_idx = stage_1_mmu_idx(mmu_idx);
11811 /* The page table entries may downgrade secure to non-secure, but
11812 * cannot upgrade an non-secure translation regime's attributes
11813 * to secure.
11815 attrs->secure = regime_is_secure(env, mmu_idx);
11816 attrs->user = regime_is_user(env, mmu_idx);
11818 /* Fast Context Switch Extension. This doesn't exist at all in v8.
11819 * In v7 and earlier it affects all stage 1 translations.
11821 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
11822 && !arm_feature(env, ARM_FEATURE_V8)) {
11823 if (regime_el(env, mmu_idx) == 3) {
11824 address += env->cp15.fcseidr_s;
11825 } else {
11826 address += env->cp15.fcseidr_ns;
11830 if (arm_feature(env, ARM_FEATURE_PMSA)) {
11831 bool ret;
11832 *page_size = TARGET_PAGE_SIZE;
11834 if (arm_feature(env, ARM_FEATURE_V8)) {
11835 /* PMSAv8 */
11836 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
11837 phys_ptr, attrs, prot, page_size, fi);
11838 } else if (arm_feature(env, ARM_FEATURE_V7)) {
11839 /* PMSAv7 */
11840 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
11841 phys_ptr, prot, page_size, fi);
11842 } else {
11843 /* Pre-v7 MPU */
11844 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
11845 phys_ptr, prot, fi);
11847 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
11848 " mmu_idx %u -> %s (prot %c%c%c)\n",
11849 access_type == MMU_DATA_LOAD ? "reading" :
11850 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
11851 (uint32_t)address, mmu_idx,
11852 ret ? "Miss" : "Hit",
11853 *prot & PAGE_READ ? 'r' : '-',
11854 *prot & PAGE_WRITE ? 'w' : '-',
11855 *prot & PAGE_EXEC ? 'x' : '-');
11857 return ret;
11860 /* Definitely a real MMU, not an MPU */
11862 if (regime_translation_disabled(env, mmu_idx)) {
11863 /* MMU disabled. */
11864 *phys_ptr = address;
11865 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11866 *page_size = TARGET_PAGE_SIZE;
11867 return 0;
11870 if (regime_using_lpae_format(env, mmu_idx)) {
11871 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
11872 phys_ptr, attrs, prot, page_size,
11873 fi, cacheattrs);
11874 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
11875 return get_phys_addr_v6(env, address, access_type, mmu_idx,
11876 phys_ptr, attrs, prot, page_size, fi);
11877 } else {
11878 return get_phys_addr_v5(env, address, access_type, mmu_idx,
11879 phys_ptr, prot, page_size, fi);
11883 /* Walk the page table and (if the mapping exists) add the page
11884 * to the TLB. Return false on success, or true on failure. Populate
11885 * fsr with ARM DFSR/IFSR fault register format value on failure.
11887 bool arm_tlb_fill(CPUState *cs, vaddr address,
11888 MMUAccessType access_type, int mmu_idx,
11889 ARMMMUFaultInfo *fi)
11891 ARMCPU *cpu = ARM_CPU(cs);
11892 CPUARMState *env = &cpu->env;
11893 hwaddr phys_addr;
11894 target_ulong page_size;
11895 int prot;
11896 int ret;
11897 MemTxAttrs attrs = {};
11899 ret = get_phys_addr(env, address, access_type,
11900 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
11901 &attrs, &prot, &page_size, fi, NULL);
11902 if (!ret) {
11904 * Map a single [sub]page. Regions smaller than our declared
11905 * target page size are handled specially, so for those we
11906 * pass in the exact addresses.
11908 if (page_size >= TARGET_PAGE_SIZE) {
11909 phys_addr &= TARGET_PAGE_MASK;
11910 address &= TARGET_PAGE_MASK;
11912 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
11913 prot, mmu_idx, page_size);
11914 return 0;
11917 return ret;
11920 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
11921 MemTxAttrs *attrs)
11923 ARMCPU *cpu = ARM_CPU(cs);
11924 CPUARMState *env = &cpu->env;
11925 hwaddr phys_addr;
11926 target_ulong page_size;
11927 int prot;
11928 bool ret;
11929 ARMMMUFaultInfo fi = {};
11930 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
11932 *attrs = (MemTxAttrs) {};
11934 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
11935 attrs, &prot, &page_size, &fi, NULL);
11937 if (ret) {
11938 return -1;
11940 return phys_addr;
11943 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
11945 uint32_t mask;
11946 unsigned el = arm_current_el(env);
11948 /* First handle registers which unprivileged can read */
11950 switch (reg) {
11951 case 0 ... 7: /* xPSR sub-fields */
11952 mask = 0;
11953 if ((reg & 1) && el) {
11954 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
11956 if (!(reg & 4)) {
11957 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
11959 /* EPSR reads as zero */
11960 return xpsr_read(env) & mask;
11961 break;
11962 case 20: /* CONTROL */
11963 return env->v7m.control[env->v7m.secure];
11964 case 0x94: /* CONTROL_NS */
11965 /* We have to handle this here because unprivileged Secure code
11966 * can read the NS CONTROL register.
11968 if (!env->v7m.secure) {
11969 return 0;
11971 return env->v7m.control[M_REG_NS];
11974 if (el == 0) {
11975 return 0; /* unprivileged reads others as zero */
11978 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11979 switch (reg) {
11980 case 0x88: /* MSP_NS */
11981 if (!env->v7m.secure) {
11982 return 0;
11984 return env->v7m.other_ss_msp;
11985 case 0x89: /* PSP_NS */
11986 if (!env->v7m.secure) {
11987 return 0;
11989 return env->v7m.other_ss_psp;
11990 case 0x8a: /* MSPLIM_NS */
11991 if (!env->v7m.secure) {
11992 return 0;
11994 return env->v7m.msplim[M_REG_NS];
11995 case 0x8b: /* PSPLIM_NS */
11996 if (!env->v7m.secure) {
11997 return 0;
11999 return env->v7m.psplim[M_REG_NS];
12000 case 0x90: /* PRIMASK_NS */
12001 if (!env->v7m.secure) {
12002 return 0;
12004 return env->v7m.primask[M_REG_NS];
12005 case 0x91: /* BASEPRI_NS */
12006 if (!env->v7m.secure) {
12007 return 0;
12009 return env->v7m.basepri[M_REG_NS];
12010 case 0x93: /* FAULTMASK_NS */
12011 if (!env->v7m.secure) {
12012 return 0;
12014 return env->v7m.faultmask[M_REG_NS];
12015 case 0x98: /* SP_NS */
12017 /* This gives the non-secure SP selected based on whether we're
12018 * currently in handler mode or not, using the NS CONTROL.SPSEL.
12020 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12022 if (!env->v7m.secure) {
12023 return 0;
12025 if (!arm_v7m_is_handler_mode(env) && spsel) {
12026 return env->v7m.other_ss_psp;
12027 } else {
12028 return env->v7m.other_ss_msp;
12031 default:
12032 break;
12036 switch (reg) {
12037 case 8: /* MSP */
12038 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
12039 case 9: /* PSP */
12040 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
12041 case 10: /* MSPLIM */
12042 if (!arm_feature(env, ARM_FEATURE_V8)) {
12043 goto bad_reg;
12045 return env->v7m.msplim[env->v7m.secure];
12046 case 11: /* PSPLIM */
12047 if (!arm_feature(env, ARM_FEATURE_V8)) {
12048 goto bad_reg;
12050 return env->v7m.psplim[env->v7m.secure];
12051 case 16: /* PRIMASK */
12052 return env->v7m.primask[env->v7m.secure];
12053 case 17: /* BASEPRI */
12054 case 18: /* BASEPRI_MAX */
12055 return env->v7m.basepri[env->v7m.secure];
12056 case 19: /* FAULTMASK */
12057 return env->v7m.faultmask[env->v7m.secure];
12058 default:
12059 bad_reg:
12060 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
12061 " register %d\n", reg);
12062 return 0;
12066 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
12068 /* We're passed bits [11..0] of the instruction; extract
12069 * SYSm and the mask bits.
12070 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
12071 * we choose to treat them as if the mask bits were valid.
12072 * NB that the pseudocode 'mask' variable is bits [11..10],
12073 * whereas ours is [11..8].
12075 uint32_t mask = extract32(maskreg, 8, 4);
12076 uint32_t reg = extract32(maskreg, 0, 8);
12078 if (arm_current_el(env) == 0 && reg > 7) {
12079 /* only xPSR sub-fields may be written by unprivileged */
12080 return;
12083 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12084 switch (reg) {
12085 case 0x88: /* MSP_NS */
12086 if (!env->v7m.secure) {
12087 return;
12089 env->v7m.other_ss_msp = val;
12090 return;
12091 case 0x89: /* PSP_NS */
12092 if (!env->v7m.secure) {
12093 return;
12095 env->v7m.other_ss_psp = val;
12096 return;
12097 case 0x8a: /* MSPLIM_NS */
12098 if (!env->v7m.secure) {
12099 return;
12101 env->v7m.msplim[M_REG_NS] = val & ~7;
12102 return;
12103 case 0x8b: /* PSPLIM_NS */
12104 if (!env->v7m.secure) {
12105 return;
12107 env->v7m.psplim[M_REG_NS] = val & ~7;
12108 return;
12109 case 0x90: /* PRIMASK_NS */
12110 if (!env->v7m.secure) {
12111 return;
12113 env->v7m.primask[M_REG_NS] = val & 1;
12114 return;
12115 case 0x91: /* BASEPRI_NS */
12116 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12117 return;
12119 env->v7m.basepri[M_REG_NS] = val & 0xff;
12120 return;
12121 case 0x93: /* FAULTMASK_NS */
12122 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12123 return;
12125 env->v7m.faultmask[M_REG_NS] = val & 1;
12126 return;
12127 case 0x94: /* CONTROL_NS */
12128 if (!env->v7m.secure) {
12129 return;
12131 write_v7m_control_spsel_for_secstate(env,
12132 val & R_V7M_CONTROL_SPSEL_MASK,
12133 M_REG_NS);
12134 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12135 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
12136 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
12138 return;
12139 case 0x98: /* SP_NS */
12141 /* This gives the non-secure SP selected based on whether we're
12142 * currently in handler mode or not, using the NS CONTROL.SPSEL.
12144 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12145 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
12146 uint32_t limit;
12148 if (!env->v7m.secure) {
12149 return;
12152 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
12154 if (val < limit) {
12155 CPUState *cs = CPU(arm_env_get_cpu(env));
12157 cpu_restore_state(cs, GETPC(), true);
12158 raise_exception(env, EXCP_STKOF, 0, 1);
12161 if (is_psp) {
12162 env->v7m.other_ss_psp = val;
12163 } else {
12164 env->v7m.other_ss_msp = val;
12166 return;
12168 default:
12169 break;
12173 switch (reg) {
12174 case 0 ... 7: /* xPSR sub-fields */
12175 /* only APSR is actually writable */
12176 if (!(reg & 4)) {
12177 uint32_t apsrmask = 0;
12179 if (mask & 8) {
12180 apsrmask |= XPSR_NZCV | XPSR_Q;
12182 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
12183 apsrmask |= XPSR_GE;
12185 xpsr_write(env, val, apsrmask);
12187 break;
12188 case 8: /* MSP */
12189 if (v7m_using_psp(env)) {
12190 env->v7m.other_sp = val;
12191 } else {
12192 env->regs[13] = val;
12194 break;
12195 case 9: /* PSP */
12196 if (v7m_using_psp(env)) {
12197 env->regs[13] = val;
12198 } else {
12199 env->v7m.other_sp = val;
12201 break;
12202 case 10: /* MSPLIM */
12203 if (!arm_feature(env, ARM_FEATURE_V8)) {
12204 goto bad_reg;
12206 env->v7m.msplim[env->v7m.secure] = val & ~7;
12207 break;
12208 case 11: /* PSPLIM */
12209 if (!arm_feature(env, ARM_FEATURE_V8)) {
12210 goto bad_reg;
12212 env->v7m.psplim[env->v7m.secure] = val & ~7;
12213 break;
12214 case 16: /* PRIMASK */
12215 env->v7m.primask[env->v7m.secure] = val & 1;
12216 break;
12217 case 17: /* BASEPRI */
12218 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12219 goto bad_reg;
12221 env->v7m.basepri[env->v7m.secure] = val & 0xff;
12222 break;
12223 case 18: /* BASEPRI_MAX */
12224 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12225 goto bad_reg;
12227 val &= 0xff;
12228 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
12229 || env->v7m.basepri[env->v7m.secure] == 0)) {
12230 env->v7m.basepri[env->v7m.secure] = val;
12232 break;
12233 case 19: /* FAULTMASK */
12234 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12235 goto bad_reg;
12237 env->v7m.faultmask[env->v7m.secure] = val & 1;
12238 break;
12239 case 20: /* CONTROL */
12240 /* Writing to the SPSEL bit only has an effect if we are in
12241 * thread mode; other bits can be updated by any privileged code.
12242 * write_v7m_control_spsel() deals with updating the SPSEL bit in
12243 * env->v7m.control, so we only need update the others.
12244 * For v7M, we must just ignore explicit writes to SPSEL in handler
12245 * mode; for v8M the write is permitted but will have no effect.
12247 if (arm_feature(env, ARM_FEATURE_V8) ||
12248 !arm_v7m_is_handler_mode(env)) {
12249 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
12251 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12252 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
12253 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
12255 break;
12256 default:
12257 bad_reg:
12258 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
12259 " register %d\n", reg);
12260 return;
12264 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
12266 /* Implement the TT instruction. op is bits [7:6] of the insn. */
12267 bool forceunpriv = op & 1;
12268 bool alt = op & 2;
12269 V8M_SAttributes sattrs = {};
12270 uint32_t tt_resp;
12271 bool r, rw, nsr, nsrw, mrvalid;
12272 int prot;
12273 ARMMMUFaultInfo fi = {};
12274 MemTxAttrs attrs = {};
12275 hwaddr phys_addr;
12276 ARMMMUIdx mmu_idx;
12277 uint32_t mregion;
12278 bool targetpriv;
12279 bool targetsec = env->v7m.secure;
12280 bool is_subpage;
12282 /* Work out what the security state and privilege level we're
12283 * interested in is...
12285 if (alt) {
12286 targetsec = !targetsec;
12289 if (forceunpriv) {
12290 targetpriv = false;
12291 } else {
12292 targetpriv = arm_v7m_is_handler_mode(env) ||
12293 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
12296 /* ...and then figure out which MMU index this is */
12297 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
12299 /* We know that the MPU and SAU don't care about the access type
12300 * for our purposes beyond that we don't want to claim to be
12301 * an insn fetch, so we arbitrarily call this a read.
12304 /* MPU region info only available for privileged or if
12305 * inspecting the other MPU state.
12307 if (arm_current_el(env) != 0 || alt) {
12308 /* We can ignore the return value as prot is always set */
12309 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
12310 &phys_addr, &attrs, &prot, &is_subpage,
12311 &fi, &mregion);
12312 if (mregion == -1) {
12313 mrvalid = false;
12314 mregion = 0;
12315 } else {
12316 mrvalid = true;
12318 r = prot & PAGE_READ;
12319 rw = prot & PAGE_WRITE;
12320 } else {
12321 r = false;
12322 rw = false;
12323 mrvalid = false;
12324 mregion = 0;
12327 if (env->v7m.secure) {
12328 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
12329 nsr = sattrs.ns && r;
12330 nsrw = sattrs.ns && rw;
12331 } else {
12332 sattrs.ns = true;
12333 nsr = false;
12334 nsrw = false;
12337 tt_resp = (sattrs.iregion << 24) |
12338 (sattrs.irvalid << 23) |
12339 ((!sattrs.ns) << 22) |
12340 (nsrw << 21) |
12341 (nsr << 20) |
12342 (rw << 19) |
12343 (r << 18) |
12344 (sattrs.srvalid << 17) |
12345 (mrvalid << 16) |
12346 (sattrs.sregion << 8) |
12347 mregion;
12349 return tt_resp;
12352 #endif
12354 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
12356 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
12357 * Note that we do not implement the (architecturally mandated)
12358 * alignment fault for attempts to use this on Device memory
12359 * (which matches the usual QEMU behaviour of not implementing either
12360 * alignment faults or any memory attribute handling).
12363 ARMCPU *cpu = arm_env_get_cpu(env);
12364 uint64_t blocklen = 4 << cpu->dcz_blocksize;
12365 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
12367 #ifndef CONFIG_USER_ONLY
12369 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
12370 * the block size so we might have to do more than one TLB lookup.
12371 * We know that in fact for any v8 CPU the page size is at least 4K
12372 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
12373 * 1K as an artefact of legacy v5 subpage support being present in the
12374 * same QEMU executable.
12376 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
12377 void *hostaddr[maxidx];
12378 int try, i;
12379 unsigned mmu_idx = cpu_mmu_index(env, false);
12380 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
12382 for (try = 0; try < 2; try++) {
12384 for (i = 0; i < maxidx; i++) {
12385 hostaddr[i] = tlb_vaddr_to_host(env,
12386 vaddr + TARGET_PAGE_SIZE * i,
12387 1, mmu_idx);
12388 if (!hostaddr[i]) {
12389 break;
12392 if (i == maxidx) {
12393 /* If it's all in the TLB it's fair game for just writing to;
12394 * we know we don't need to update dirty status, etc.
12396 for (i = 0; i < maxidx - 1; i++) {
12397 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
12399 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
12400 return;
12402 /* OK, try a store and see if we can populate the tlb. This
12403 * might cause an exception if the memory isn't writable,
12404 * in which case we will longjmp out of here. We must for
12405 * this purpose use the actual register value passed to us
12406 * so that we get the fault address right.
12408 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
12409 /* Now we can populate the other TLB entries, if any */
12410 for (i = 0; i < maxidx; i++) {
12411 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
12412 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
12413 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
12418 /* Slow path (probably attempt to do this to an I/O device or
12419 * similar, or clearing of a block of code we have translations
12420 * cached for). Just do a series of byte writes as the architecture
12421 * demands. It's not worth trying to use a cpu_physical_memory_map(),
12422 * memset(), unmap() sequence here because:
12423 * + we'd need to account for the blocksize being larger than a page
12424 * + the direct-RAM access case is almost always going to be dealt
12425 * with in the fastpath code above, so there's no speed benefit
12426 * + we would have to deal with the map returning NULL because the
12427 * bounce buffer was in use
12429 for (i = 0; i < blocklen; i++) {
12430 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
12433 #else
12434 memset(g2h(vaddr), 0, blocklen);
12435 #endif
12438 /* Note that signed overflow is undefined in C. The following routines are
12439 careful to use unsigned types where modulo arithmetic is required.
12440 Failure to do so _will_ break on newer gcc. */
12442 /* Signed saturating arithmetic. */
12444 /* Perform 16-bit signed saturating addition. */
12445 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12447 uint16_t res;
12449 res = a + b;
12450 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12451 if (a & 0x8000)
12452 res = 0x8000;
12453 else
12454 res = 0x7fff;
12456 return res;
12459 /* Perform 8-bit signed saturating addition. */
12460 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12462 uint8_t res;
12464 res = a + b;
12465 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12466 if (a & 0x80)
12467 res = 0x80;
12468 else
12469 res = 0x7f;
12471 return res;
12474 /* Perform 16-bit signed saturating subtraction. */
12475 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12477 uint16_t res;
12479 res = a - b;
12480 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12481 if (a & 0x8000)
12482 res = 0x8000;
12483 else
12484 res = 0x7fff;
12486 return res;
12489 /* Perform 8-bit signed saturating subtraction. */
12490 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12492 uint8_t res;
12494 res = a - b;
12495 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12496 if (a & 0x80)
12497 res = 0x80;
12498 else
12499 res = 0x7f;
12501 return res;
12504 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12505 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12506 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12507 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12508 #define PFX q
12510 #include "op_addsub.h"
12512 /* Unsigned saturating arithmetic. */
12513 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12515 uint16_t res;
12516 res = a + b;
12517 if (res < a)
12518 res = 0xffff;
12519 return res;
12522 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12524 if (a > b)
12525 return a - b;
12526 else
12527 return 0;
12530 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12532 uint8_t res;
12533 res = a + b;
12534 if (res < a)
12535 res = 0xff;
12536 return res;
12539 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12541 if (a > b)
12542 return a - b;
12543 else
12544 return 0;
12547 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12548 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12549 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12550 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12551 #define PFX uq
12553 #include "op_addsub.h"
12555 /* Signed modulo arithmetic. */
12556 #define SARITH16(a, b, n, op) do { \
12557 int32_t sum; \
12558 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12559 RESULT(sum, n, 16); \
12560 if (sum >= 0) \
12561 ge |= 3 << (n * 2); \
12562 } while(0)
12564 #define SARITH8(a, b, n, op) do { \
12565 int32_t sum; \
12566 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12567 RESULT(sum, n, 8); \
12568 if (sum >= 0) \
12569 ge |= 1 << n; \
12570 } while(0)
12573 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12574 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12575 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12576 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12577 #define PFX s
12578 #define ARITH_GE
12580 #include "op_addsub.h"
12582 /* Unsigned modulo arithmetic. */
12583 #define ADD16(a, b, n) do { \
12584 uint32_t sum; \
12585 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12586 RESULT(sum, n, 16); \
12587 if ((sum >> 16) == 1) \
12588 ge |= 3 << (n * 2); \
12589 } while(0)
12591 #define ADD8(a, b, n) do { \
12592 uint32_t sum; \
12593 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12594 RESULT(sum, n, 8); \
12595 if ((sum >> 8) == 1) \
12596 ge |= 1 << n; \
12597 } while(0)
12599 #define SUB16(a, b, n) do { \
12600 uint32_t sum; \
12601 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12602 RESULT(sum, n, 16); \
12603 if ((sum >> 16) == 0) \
12604 ge |= 3 << (n * 2); \
12605 } while(0)
12607 #define SUB8(a, b, n) do { \
12608 uint32_t sum; \
12609 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12610 RESULT(sum, n, 8); \
12611 if ((sum >> 8) == 0) \
12612 ge |= 1 << n; \
12613 } while(0)
12615 #define PFX u
12616 #define ARITH_GE
12618 #include "op_addsub.h"
12620 /* Halved signed arithmetic. */
12621 #define ADD16(a, b, n) \
12622 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12623 #define SUB16(a, b, n) \
12624 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12625 #define ADD8(a, b, n) \
12626 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12627 #define SUB8(a, b, n) \
12628 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12629 #define PFX sh
12631 #include "op_addsub.h"
12633 /* Halved unsigned arithmetic. */
12634 #define ADD16(a, b, n) \
12635 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12636 #define SUB16(a, b, n) \
12637 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12638 #define ADD8(a, b, n) \
12639 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12640 #define SUB8(a, b, n) \
12641 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12642 #define PFX uh
12644 #include "op_addsub.h"
12646 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12648 if (a > b)
12649 return a - b;
12650 else
12651 return b - a;
12654 /* Unsigned sum of absolute byte differences. */
12655 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12657 uint32_t sum;
12658 sum = do_usad(a, b);
12659 sum += do_usad(a >> 8, b >> 8);
12660 sum += do_usad(a >> 16, b >>16);
12661 sum += do_usad(a >> 24, b >> 24);
12662 return sum;
12665 /* For ARMv6 SEL instruction. */
12666 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12668 uint32_t mask;
12670 mask = 0;
12671 if (flags & 1)
12672 mask |= 0xff;
12673 if (flags & 2)
12674 mask |= 0xff00;
12675 if (flags & 4)
12676 mask |= 0xff0000;
12677 if (flags & 8)
12678 mask |= 0xff000000;
12679 return (a & mask) | (b & ~mask);
12682 /* VFP support. We follow the convention used for VFP instructions:
12683 Single precision routines have a "s" suffix, double precision a
12684 "d" suffix. */
12686 /* Convert host exception flags to vfp form. */
12687 static inline int vfp_exceptbits_from_host(int host_bits)
12689 int target_bits = 0;
12691 if (host_bits & float_flag_invalid)
12692 target_bits |= 1;
12693 if (host_bits & float_flag_divbyzero)
12694 target_bits |= 2;
12695 if (host_bits & float_flag_overflow)
12696 target_bits |= 4;
12697 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
12698 target_bits |= 8;
12699 if (host_bits & float_flag_inexact)
12700 target_bits |= 0x10;
12701 if (host_bits & float_flag_input_denormal)
12702 target_bits |= 0x80;
12703 return target_bits;
12706 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
12708 uint32_t i, fpscr;
12710 fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
12711 | (env->vfp.vec_len << 16)
12712 | (env->vfp.vec_stride << 20);
12714 i = get_float_exception_flags(&env->vfp.fp_status);
12715 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
12716 /* FZ16 does not generate an input denormal exception. */
12717 i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
12718 & ~float_flag_input_denormal);
12719 fpscr |= vfp_exceptbits_from_host(i);
12721 i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
12722 fpscr |= i ? FPCR_QC : 0;
12724 return fpscr;
12727 uint32_t vfp_get_fpscr(CPUARMState *env)
12729 return HELPER(vfp_get_fpscr)(env);
12732 /* Convert vfp exception flags to target form. */
12733 static inline int vfp_exceptbits_to_host(int target_bits)
12735 int host_bits = 0;
12737 if (target_bits & 1)
12738 host_bits |= float_flag_invalid;
12739 if (target_bits & 2)
12740 host_bits |= float_flag_divbyzero;
12741 if (target_bits & 4)
12742 host_bits |= float_flag_overflow;
12743 if (target_bits & 8)
12744 host_bits |= float_flag_underflow;
12745 if (target_bits & 0x10)
12746 host_bits |= float_flag_inexact;
12747 if (target_bits & 0x80)
12748 host_bits |= float_flag_input_denormal;
12749 return host_bits;
12752 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
12754 int i;
12755 uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
12757 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
12758 if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) {
12759 val &= ~FPCR_FZ16;
12763 * We don't implement trapped exception handling, so the
12764 * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
12766 * If we exclude the exception flags, IOC|DZC|OFC|UFC|IXC|IDC
12767 * (which are stored in fp_status), and the other RES0 bits
12768 * in between, then we clear all of the low 16 bits.
12770 env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
12771 env->vfp.vec_len = (val >> 16) & 7;
12772 env->vfp.vec_stride = (val >> 20) & 3;
12775 * The bit we set within fpscr_q is arbitrary; the register as a
12776 * whole being zero/non-zero is what counts.
12778 env->vfp.qc[0] = val & FPCR_QC;
12779 env->vfp.qc[1] = 0;
12780 env->vfp.qc[2] = 0;
12781 env->vfp.qc[3] = 0;
12783 changed ^= val;
12784 if (changed & (3 << 22)) {
12785 i = (val >> 22) & 3;
12786 switch (i) {
12787 case FPROUNDING_TIEEVEN:
12788 i = float_round_nearest_even;
12789 break;
12790 case FPROUNDING_POSINF:
12791 i = float_round_up;
12792 break;
12793 case FPROUNDING_NEGINF:
12794 i = float_round_down;
12795 break;
12796 case FPROUNDING_ZERO:
12797 i = float_round_to_zero;
12798 break;
12800 set_float_rounding_mode(i, &env->vfp.fp_status);
12801 set_float_rounding_mode(i, &env->vfp.fp_status_f16);
12803 if (changed & FPCR_FZ16) {
12804 bool ftz_enabled = val & FPCR_FZ16;
12805 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
12806 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
12808 if (changed & FPCR_FZ) {
12809 bool ftz_enabled = val & FPCR_FZ;
12810 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
12811 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
12813 if (changed & FPCR_DN) {
12814 bool dnan_enabled = val & FPCR_DN;
12815 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
12816 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
12819 /* The exception flags are ORed together when we read fpscr so we
12820 * only need to preserve the current state in one of our
12821 * float_status values.
12823 i = vfp_exceptbits_to_host(val);
12824 set_float_exception_flags(i, &env->vfp.fp_status);
12825 set_float_exception_flags(0, &env->vfp.fp_status_f16);
12826 set_float_exception_flags(0, &env->vfp.standard_fp_status);
12829 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
12831 HELPER(vfp_set_fpscr)(env, val);
12834 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
12836 #define VFP_BINOP(name) \
12837 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
12839 float_status *fpst = fpstp; \
12840 return float32_ ## name(a, b, fpst); \
12842 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
12844 float_status *fpst = fpstp; \
12845 return float64_ ## name(a, b, fpst); \
12847 VFP_BINOP(add)
12848 VFP_BINOP(sub)
12849 VFP_BINOP(mul)
12850 VFP_BINOP(div)
12851 VFP_BINOP(min)
12852 VFP_BINOP(max)
12853 VFP_BINOP(minnum)
12854 VFP_BINOP(maxnum)
12855 #undef VFP_BINOP
12857 float32 VFP_HELPER(neg, s)(float32 a)
12859 return float32_chs(a);
12862 float64 VFP_HELPER(neg, d)(float64 a)
12864 return float64_chs(a);
12867 float32 VFP_HELPER(abs, s)(float32 a)
12869 return float32_abs(a);
12872 float64 VFP_HELPER(abs, d)(float64 a)
12874 return float64_abs(a);
12877 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
12879 return float32_sqrt(a, &env->vfp.fp_status);
12882 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
12884 return float64_sqrt(a, &env->vfp.fp_status);
12887 static void softfloat_to_vfp_compare(CPUARMState *env, int cmp)
12889 uint32_t flags;
12890 switch (cmp) {
12891 case float_relation_equal:
12892 flags = 0x6;
12893 break;
12894 case float_relation_less:
12895 flags = 0x8;
12896 break;
12897 case float_relation_greater:
12898 flags = 0x2;
12899 break;
12900 case float_relation_unordered:
12901 flags = 0x3;
12902 break;
12903 default:
12904 g_assert_not_reached();
12906 env->vfp.xregs[ARM_VFP_FPSCR] =
12907 deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
12910 /* XXX: check quiet/signaling case */
12911 #define DO_VFP_cmp(p, type) \
12912 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
12914 softfloat_to_vfp_compare(env, \
12915 type ## _compare_quiet(a, b, &env->vfp.fp_status)); \
12917 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
12919 softfloat_to_vfp_compare(env, \
12920 type ## _compare(a, b, &env->vfp.fp_status)); \
12922 DO_VFP_cmp(s, float32)
12923 DO_VFP_cmp(d, float64)
12924 #undef DO_VFP_cmp
12926 /* Integer to float and float to integer conversions */
12928 #define CONV_ITOF(name, ftype, fsz, sign) \
12929 ftype HELPER(name)(uint32_t x, void *fpstp) \
12931 float_status *fpst = fpstp; \
12932 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
12935 #define CONV_FTOI(name, ftype, fsz, sign, round) \
12936 sign##int32_t HELPER(name)(ftype x, void *fpstp) \
12938 float_status *fpst = fpstp; \
12939 if (float##fsz##_is_any_nan(x)) { \
12940 float_raise(float_flag_invalid, fpst); \
12941 return 0; \
12943 return float##fsz##_to_##sign##int32##round(x, fpst); \
12946 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
12947 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
12948 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
12949 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
12951 FLOAT_CONVS(si, h, uint32_t, 16, )
12952 FLOAT_CONVS(si, s, float32, 32, )
12953 FLOAT_CONVS(si, d, float64, 64, )
12954 FLOAT_CONVS(ui, h, uint32_t, 16, u)
12955 FLOAT_CONVS(ui, s, float32, 32, u)
12956 FLOAT_CONVS(ui, d, float64, 64, u)
12958 #undef CONV_ITOF
12959 #undef CONV_FTOI
12960 #undef FLOAT_CONVS
12962 /* floating point conversion */
12963 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
12965 return float32_to_float64(x, &env->vfp.fp_status);
12968 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
12970 return float64_to_float32(x, &env->vfp.fp_status);
12973 /* VFP3 fixed point conversion. */
12974 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
12975 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
12976 void *fpstp) \
12977 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
12979 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \
12980 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
12981 void *fpst) \
12983 if (unlikely(float##fsz##_is_any_nan(x))) { \
12984 float_raise(float_flag_invalid, fpst); \
12985 return 0; \
12987 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
12990 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
12991 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
12992 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
12993 float_round_to_zero, _round_to_zero) \
12994 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
12995 get_float_rounding_mode(fpst), )
12997 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
12998 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
12999 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
13000 get_float_rounding_mode(fpst), )
13002 VFP_CONV_FIX(sh, d, 64, 64, int16)
13003 VFP_CONV_FIX(sl, d, 64, 64, int32)
13004 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
13005 VFP_CONV_FIX(uh, d, 64, 64, uint16)
13006 VFP_CONV_FIX(ul, d, 64, 64, uint32)
13007 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
13008 VFP_CONV_FIX(sh, s, 32, 32, int16)
13009 VFP_CONV_FIX(sl, s, 32, 32, int32)
13010 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
13011 VFP_CONV_FIX(uh, s, 32, 32, uint16)
13012 VFP_CONV_FIX(ul, s, 32, 32, uint32)
13013 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
13015 #undef VFP_CONV_FIX
13016 #undef VFP_CONV_FIX_FLOAT
13017 #undef VFP_CONV_FLOAT_FIX_ROUND
13018 #undef VFP_CONV_FIX_A64
13020 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
13022 return int32_to_float16_scalbn(x, -shift, fpst);
13025 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
13027 return uint32_to_float16_scalbn(x, -shift, fpst);
13030 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
13032 return int64_to_float16_scalbn(x, -shift, fpst);
13035 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
13037 return uint64_to_float16_scalbn(x, -shift, fpst);
13040 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
13042 if (unlikely(float16_is_any_nan(x))) {
13043 float_raise(float_flag_invalid, fpst);
13044 return 0;
13046 return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
13047 shift, fpst);
13050 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
13052 if (unlikely(float16_is_any_nan(x))) {
13053 float_raise(float_flag_invalid, fpst);
13054 return 0;
13056 return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
13057 shift, fpst);
13060 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
13062 if (unlikely(float16_is_any_nan(x))) {
13063 float_raise(float_flag_invalid, fpst);
13064 return 0;
13066 return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
13067 shift, fpst);
13070 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
13072 if (unlikely(float16_is_any_nan(x))) {
13073 float_raise(float_flag_invalid, fpst);
13074 return 0;
13076 return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
13077 shift, fpst);
13080 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
13082 if (unlikely(float16_is_any_nan(x))) {
13083 float_raise(float_flag_invalid, fpst);
13084 return 0;
13086 return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
13087 shift, fpst);
13090 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
13092 if (unlikely(float16_is_any_nan(x))) {
13093 float_raise(float_flag_invalid, fpst);
13094 return 0;
13096 return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
13097 shift, fpst);
13100 /* Set the current fp rounding mode and return the old one.
13101 * The argument is a softfloat float_round_ value.
13103 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
13105 float_status *fp_status = fpstp;
13107 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
13108 set_float_rounding_mode(rmode, fp_status);
13110 return prev_rmode;
13113 /* Set the current fp rounding mode in the standard fp status and return
13114 * the old one. This is for NEON instructions that need to change the
13115 * rounding mode but wish to use the standard FPSCR values for everything
13116 * else. Always set the rounding mode back to the correct value after
13117 * modifying it.
13118 * The argument is a softfloat float_round_ value.
13120 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
13122 float_status *fp_status = &env->vfp.standard_fp_status;
13124 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
13125 set_float_rounding_mode(rmode, fp_status);
13127 return prev_rmode;
13130 /* Half precision conversions. */
13131 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
13133 /* Squash FZ16 to 0 for the duration of conversion. In this case,
13134 * it would affect flushing input denormals.
13136 float_status *fpst = fpstp;
13137 flag save = get_flush_inputs_to_zero(fpst);
13138 set_flush_inputs_to_zero(false, fpst);
13139 float32 r = float16_to_float32(a, !ahp_mode, fpst);
13140 set_flush_inputs_to_zero(save, fpst);
13141 return r;
13144 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
13146 /* Squash FZ16 to 0 for the duration of conversion. In this case,
13147 * it would affect flushing output denormals.
13149 float_status *fpst = fpstp;
13150 flag save = get_flush_to_zero(fpst);
13151 set_flush_to_zero(false, fpst);
13152 float16 r = float32_to_float16(a, !ahp_mode, fpst);
13153 set_flush_to_zero(save, fpst);
13154 return r;
13157 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
13159 /* Squash FZ16 to 0 for the duration of conversion. In this case,
13160 * it would affect flushing input denormals.
13162 float_status *fpst = fpstp;
13163 flag save = get_flush_inputs_to_zero(fpst);
13164 set_flush_inputs_to_zero(false, fpst);
13165 float64 r = float16_to_float64(a, !ahp_mode, fpst);
13166 set_flush_inputs_to_zero(save, fpst);
13167 return r;
13170 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
13172 /* Squash FZ16 to 0 for the duration of conversion. In this case,
13173 * it would affect flushing output denormals.
13175 float_status *fpst = fpstp;
13176 flag save = get_flush_to_zero(fpst);
13177 set_flush_to_zero(false, fpst);
13178 float16 r = float64_to_float16(a, !ahp_mode, fpst);
13179 set_flush_to_zero(save, fpst);
13180 return r;
13183 #define float32_two make_float32(0x40000000)
13184 #define float32_three make_float32(0x40400000)
13185 #define float32_one_point_five make_float32(0x3fc00000)
13187 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
13189 float_status *s = &env->vfp.standard_fp_status;
13190 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
13191 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
13192 if (!(float32_is_zero(a) || float32_is_zero(b))) {
13193 float_raise(float_flag_input_denormal, s);
13195 return float32_two;
13197 return float32_sub(float32_two, float32_mul(a, b, s), s);
13200 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
13202 float_status *s = &env->vfp.standard_fp_status;
13203 float32 product;
13204 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
13205 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
13206 if (!(float32_is_zero(a) || float32_is_zero(b))) {
13207 float_raise(float_flag_input_denormal, s);
13209 return float32_one_point_five;
13211 product = float32_mul(a, b, s);
13212 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
13215 /* NEON helpers. */
13217 /* Constants 256 and 512 are used in some helpers; we avoid relying on
13218 * int->float conversions at run-time. */
13219 #define float64_256 make_float64(0x4070000000000000LL)
13220 #define float64_512 make_float64(0x4080000000000000LL)
13221 #define float16_maxnorm make_float16(0x7bff)
13222 #define float32_maxnorm make_float32(0x7f7fffff)
13223 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
13225 /* Reciprocal functions
13227 * The algorithm that must be used to calculate the estimate
13228 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
13231 /* See RecipEstimate()
13233 * input is a 9 bit fixed point number
13234 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
13235 * result range 256 .. 511 for a number from 1.0 to 511/256.
13238 static int recip_estimate(int input)
13240 int a, b, r;
13241 assert(256 <= input && input < 512);
13242 a = (input * 2) + 1;
13243 b = (1 << 19) / a;
13244 r = (b + 1) >> 1;
13245 assert(256 <= r && r < 512);
13246 return r;
13250 * Common wrapper to call recip_estimate
13252 * The parameters are exponent and 64 bit fraction (without implicit
13253 * bit) where the binary point is nominally at bit 52. Returns a
13254 * float64 which can then be rounded to the appropriate size by the
13255 * callee.
13258 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
13260 uint32_t scaled, estimate;
13261 uint64_t result_frac;
13262 int result_exp;
13264 /* Handle sub-normals */
13265 if (*exp == 0) {
13266 if (extract64(frac, 51, 1) == 0) {
13267 *exp = -1;
13268 frac <<= 2;
13269 } else {
13270 frac <<= 1;
13274 /* scaled = UInt('1':fraction<51:44>) */
13275 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
13276 estimate = recip_estimate(scaled);
13278 result_exp = exp_off - *exp;
13279 result_frac = deposit64(0, 44, 8, estimate);
13280 if (result_exp == 0) {
13281 result_frac = deposit64(result_frac >> 1, 51, 1, 1);
13282 } else if (result_exp == -1) {
13283 result_frac = deposit64(result_frac >> 2, 50, 2, 1);
13284 result_exp = 0;
13287 *exp = result_exp;
13289 return result_frac;
13292 static bool round_to_inf(float_status *fpst, bool sign_bit)
13294 switch (fpst->float_rounding_mode) {
13295 case float_round_nearest_even: /* Round to Nearest */
13296 return true;
13297 case float_round_up: /* Round to +Inf */
13298 return !sign_bit;
13299 case float_round_down: /* Round to -Inf */
13300 return sign_bit;
13301 case float_round_to_zero: /* Round to Zero */
13302 return false;
13305 g_assert_not_reached();
13308 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
13310 float_status *fpst = fpstp;
13311 float16 f16 = float16_squash_input_denormal(input, fpst);
13312 uint32_t f16_val = float16_val(f16);
13313 uint32_t f16_sign = float16_is_neg(f16);
13314 int f16_exp = extract32(f16_val, 10, 5);
13315 uint32_t f16_frac = extract32(f16_val, 0, 10);
13316 uint64_t f64_frac;
13318 if (float16_is_any_nan(f16)) {
13319 float16 nan = f16;
13320 if (float16_is_signaling_nan(f16, fpst)) {
13321 float_raise(float_flag_invalid, fpst);
13322 nan = float16_silence_nan(f16, fpst);
13324 if (fpst->default_nan_mode) {
13325 nan = float16_default_nan(fpst);
13327 return nan;
13328 } else if (float16_is_infinity(f16)) {
13329 return float16_set_sign(float16_zero, float16_is_neg(f16));
13330 } else if (float16_is_zero(f16)) {
13331 float_raise(float_flag_divbyzero, fpst);
13332 return float16_set_sign(float16_infinity, float16_is_neg(f16));
13333 } else if (float16_abs(f16) < (1 << 8)) {
13334 /* Abs(value) < 2.0^-16 */
13335 float_raise(float_flag_overflow | float_flag_inexact, fpst);
13336 if (round_to_inf(fpst, f16_sign)) {
13337 return float16_set_sign(float16_infinity, f16_sign);
13338 } else {
13339 return float16_set_sign(float16_maxnorm, f16_sign);
13341 } else if (f16_exp >= 29 && fpst->flush_to_zero) {
13342 float_raise(float_flag_underflow, fpst);
13343 return float16_set_sign(float16_zero, float16_is_neg(f16));
13346 f64_frac = call_recip_estimate(&f16_exp, 29,
13347 ((uint64_t) f16_frac) << (52 - 10));
13349 /* result = sign : result_exp<4:0> : fraction<51:42> */
13350 f16_val = deposit32(0, 15, 1, f16_sign);
13351 f16_val = deposit32(f16_val, 10, 5, f16_exp);
13352 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
13353 return make_float16(f16_val);
13356 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
13358 float_status *fpst = fpstp;
13359 float32 f32 = float32_squash_input_denormal(input, fpst);
13360 uint32_t f32_val = float32_val(f32);
13361 bool f32_sign = float32_is_neg(f32);
13362 int f32_exp = extract32(f32_val, 23, 8);
13363 uint32_t f32_frac = extract32(f32_val, 0, 23);
13364 uint64_t f64_frac;
13366 if (float32_is_any_nan(f32)) {
13367 float32 nan = f32;
13368 if (float32_is_signaling_nan(f32, fpst)) {
13369 float_raise(float_flag_invalid, fpst);
13370 nan = float32_silence_nan(f32, fpst);
13372 if (fpst->default_nan_mode) {
13373 nan = float32_default_nan(fpst);
13375 return nan;
13376 } else if (float32_is_infinity(f32)) {
13377 return float32_set_sign(float32_zero, float32_is_neg(f32));
13378 } else if (float32_is_zero(f32)) {
13379 float_raise(float_flag_divbyzero, fpst);
13380 return float32_set_sign(float32_infinity, float32_is_neg(f32));
13381 } else if (float32_abs(f32) < (1ULL << 21)) {
13382 /* Abs(value) < 2.0^-128 */
13383 float_raise(float_flag_overflow | float_flag_inexact, fpst);
13384 if (round_to_inf(fpst, f32_sign)) {
13385 return float32_set_sign(float32_infinity, f32_sign);
13386 } else {
13387 return float32_set_sign(float32_maxnorm, f32_sign);
13389 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
13390 float_raise(float_flag_underflow, fpst);
13391 return float32_set_sign(float32_zero, float32_is_neg(f32));
13394 f64_frac = call_recip_estimate(&f32_exp, 253,
13395 ((uint64_t) f32_frac) << (52 - 23));
13397 /* result = sign : result_exp<7:0> : fraction<51:29> */
13398 f32_val = deposit32(0, 31, 1, f32_sign);
13399 f32_val = deposit32(f32_val, 23, 8, f32_exp);
13400 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
13401 return make_float32(f32_val);
13404 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
13406 float_status *fpst = fpstp;
13407 float64 f64 = float64_squash_input_denormal(input, fpst);
13408 uint64_t f64_val = float64_val(f64);
13409 bool f64_sign = float64_is_neg(f64);
13410 int f64_exp = extract64(f64_val, 52, 11);
13411 uint64_t f64_frac = extract64(f64_val, 0, 52);
13413 /* Deal with any special cases */
13414 if (float64_is_any_nan(f64)) {
13415 float64 nan = f64;
13416 if (float64_is_signaling_nan(f64, fpst)) {
13417 float_raise(float_flag_invalid, fpst);
13418 nan = float64_silence_nan(f64, fpst);
13420 if (fpst->default_nan_mode) {
13421 nan = float64_default_nan(fpst);
13423 return nan;
13424 } else if (float64_is_infinity(f64)) {
13425 return float64_set_sign(float64_zero, float64_is_neg(f64));
13426 } else if (float64_is_zero(f64)) {
13427 float_raise(float_flag_divbyzero, fpst);
13428 return float64_set_sign(float64_infinity, float64_is_neg(f64));
13429 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
13430 /* Abs(value) < 2.0^-1024 */
13431 float_raise(float_flag_overflow | float_flag_inexact, fpst);
13432 if (round_to_inf(fpst, f64_sign)) {
13433 return float64_set_sign(float64_infinity, f64_sign);
13434 } else {
13435 return float64_set_sign(float64_maxnorm, f64_sign);
13437 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
13438 float_raise(float_flag_underflow, fpst);
13439 return float64_set_sign(float64_zero, float64_is_neg(f64));
13442 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
13444 /* result = sign : result_exp<10:0> : fraction<51:0>; */
13445 f64_val = deposit64(0, 63, 1, f64_sign);
13446 f64_val = deposit64(f64_val, 52, 11, f64_exp);
13447 f64_val = deposit64(f64_val, 0, 52, f64_frac);
13448 return make_float64(f64_val);
13451 /* The algorithm that must be used to calculate the estimate
13452 * is specified by the ARM ARM.
13455 static int do_recip_sqrt_estimate(int a)
13457 int b, estimate;
13459 assert(128 <= a && a < 512);
13460 if (a < 256) {
13461 a = a * 2 + 1;
13462 } else {
13463 a = (a >> 1) << 1;
13464 a = (a + 1) * 2;
13466 b = 512;
13467 while (a * (b + 1) * (b + 1) < (1 << 28)) {
13468 b += 1;
13470 estimate = (b + 1) / 2;
13471 assert(256 <= estimate && estimate < 512);
13473 return estimate;
13477 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
13479 int estimate;
13480 uint32_t scaled;
13482 if (*exp == 0) {
13483 while (extract64(frac, 51, 1) == 0) {
13484 frac = frac << 1;
13485 *exp -= 1;
13487 frac = extract64(frac, 0, 51) << 1;
13490 if (*exp & 1) {
13491 /* scaled = UInt('01':fraction<51:45>) */
13492 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
13493 } else {
13494 /* scaled = UInt('1':fraction<51:44>) */
13495 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
13497 estimate = do_recip_sqrt_estimate(scaled);
13499 *exp = (exp_off - *exp) / 2;
13500 return extract64(estimate, 0, 8) << 44;
13503 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
13505 float_status *s = fpstp;
13506 float16 f16 = float16_squash_input_denormal(input, s);
13507 uint16_t val = float16_val(f16);
13508 bool f16_sign = float16_is_neg(f16);
13509 int f16_exp = extract32(val, 10, 5);
13510 uint16_t f16_frac = extract32(val, 0, 10);
13511 uint64_t f64_frac;
13513 if (float16_is_any_nan(f16)) {
13514 float16 nan = f16;
13515 if (float16_is_signaling_nan(f16, s)) {
13516 float_raise(float_flag_invalid, s);
13517 nan = float16_silence_nan(f16, s);
13519 if (s->default_nan_mode) {
13520 nan = float16_default_nan(s);
13522 return nan;
13523 } else if (float16_is_zero(f16)) {
13524 float_raise(float_flag_divbyzero, s);
13525 return float16_set_sign(float16_infinity, f16_sign);
13526 } else if (f16_sign) {
13527 float_raise(float_flag_invalid, s);
13528 return float16_default_nan(s);
13529 } else if (float16_is_infinity(f16)) {
13530 return float16_zero;
13533 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
13534 * preserving the parity of the exponent. */
13536 f64_frac = ((uint64_t) f16_frac) << (52 - 10);
13538 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
13540 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
13541 val = deposit32(0, 15, 1, f16_sign);
13542 val = deposit32(val, 10, 5, f16_exp);
13543 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
13544 return make_float16(val);
13547 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
13549 float_status *s = fpstp;
13550 float32 f32 = float32_squash_input_denormal(input, s);
13551 uint32_t val = float32_val(f32);
13552 uint32_t f32_sign = float32_is_neg(f32);
13553 int f32_exp = extract32(val, 23, 8);
13554 uint32_t f32_frac = extract32(val, 0, 23);
13555 uint64_t f64_frac;
13557 if (float32_is_any_nan(f32)) {
13558 float32 nan = f32;
13559 if (float32_is_signaling_nan(f32, s)) {
13560 float_raise(float_flag_invalid, s);
13561 nan = float32_silence_nan(f32, s);
13563 if (s->default_nan_mode) {
13564 nan = float32_default_nan(s);
13566 return nan;
13567 } else if (float32_is_zero(f32)) {
13568 float_raise(float_flag_divbyzero, s);
13569 return float32_set_sign(float32_infinity, float32_is_neg(f32));
13570 } else if (float32_is_neg(f32)) {
13571 float_raise(float_flag_invalid, s);
13572 return float32_default_nan(s);
13573 } else if (float32_is_infinity(f32)) {
13574 return float32_zero;
13577 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
13578 * preserving the parity of the exponent. */
13580 f64_frac = ((uint64_t) f32_frac) << 29;
13582 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
13584 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
13585 val = deposit32(0, 31, 1, f32_sign);
13586 val = deposit32(val, 23, 8, f32_exp);
13587 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
13588 return make_float32(val);
13591 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
13593 float_status *s = fpstp;
13594 float64 f64 = float64_squash_input_denormal(input, s);
13595 uint64_t val = float64_val(f64);
13596 bool f64_sign = float64_is_neg(f64);
13597 int f64_exp = extract64(val, 52, 11);
13598 uint64_t f64_frac = extract64(val, 0, 52);
13600 if (float64_is_any_nan(f64)) {
13601 float64 nan = f64;
13602 if (float64_is_signaling_nan(f64, s)) {
13603 float_raise(float_flag_invalid, s);
13604 nan = float64_silence_nan(f64, s);
13606 if (s->default_nan_mode) {
13607 nan = float64_default_nan(s);
13609 return nan;
13610 } else if (float64_is_zero(f64)) {
13611 float_raise(float_flag_divbyzero, s);
13612 return float64_set_sign(float64_infinity, float64_is_neg(f64));
13613 } else if (float64_is_neg(f64)) {
13614 float_raise(float_flag_invalid, s);
13615 return float64_default_nan(s);
13616 } else if (float64_is_infinity(f64)) {
13617 return float64_zero;
13620 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
13622 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
13623 val = deposit64(0, 61, 1, f64_sign);
13624 val = deposit64(val, 52, 11, f64_exp);
13625 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
13626 return make_float64(val);
13629 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
13631 /* float_status *s = fpstp; */
13632 int input, estimate;
13634 if ((a & 0x80000000) == 0) {
13635 return 0xffffffff;
13638 input = extract32(a, 23, 9);
13639 estimate = recip_estimate(input);
13641 return deposit32(0, (32 - 9), 9, estimate);
13644 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
13646 int estimate;
13648 if ((a & 0xc0000000) == 0) {
13649 return 0xffffffff;
13652 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
13654 return deposit32(0, 23, 9, estimate);
13657 /* VFPv4 fused multiply-accumulate */
13658 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
13660 float_status *fpst = fpstp;
13661 return float32_muladd(a, b, c, 0, fpst);
13664 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
13666 float_status *fpst = fpstp;
13667 return float64_muladd(a, b, c, 0, fpst);
13670 /* ARMv8 round to integral */
13671 float32 HELPER(rints_exact)(float32 x, void *fp_status)
13673 return float32_round_to_int(x, fp_status);
13676 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
13678 return float64_round_to_int(x, fp_status);
13681 float32 HELPER(rints)(float32 x, void *fp_status)
13683 int old_flags = get_float_exception_flags(fp_status), new_flags;
13684 float32 ret;
13686 ret = float32_round_to_int(x, fp_status);
13688 /* Suppress any inexact exceptions the conversion produced */
13689 if (!(old_flags & float_flag_inexact)) {
13690 new_flags = get_float_exception_flags(fp_status);
13691 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
13694 return ret;
13697 float64 HELPER(rintd)(float64 x, void *fp_status)
13699 int old_flags = get_float_exception_flags(fp_status), new_flags;
13700 float64 ret;
13702 ret = float64_round_to_int(x, fp_status);
13704 new_flags = get_float_exception_flags(fp_status);
13706 /* Suppress any inexact exceptions the conversion produced */
13707 if (!(old_flags & float_flag_inexact)) {
13708 new_flags = get_float_exception_flags(fp_status);
13709 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
13712 return ret;
13715 /* Convert ARM rounding mode to softfloat */
13716 int arm_rmode_to_sf(int rmode)
13718 switch (rmode) {
13719 case FPROUNDING_TIEAWAY:
13720 rmode = float_round_ties_away;
13721 break;
13722 case FPROUNDING_ODD:
13723 /* FIXME: add support for TIEAWAY and ODD */
13724 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
13725 rmode);
13726 /* fall through for now */
13727 case FPROUNDING_TIEEVEN:
13728 default:
13729 rmode = float_round_nearest_even;
13730 break;
13731 case FPROUNDING_POSINF:
13732 rmode = float_round_up;
13733 break;
13734 case FPROUNDING_NEGINF:
13735 rmode = float_round_down;
13736 break;
13737 case FPROUNDING_ZERO:
13738 rmode = float_round_to_zero;
13739 break;
13741 return rmode;
13744 /* CRC helpers.
13745 * The upper bytes of val (above the number specified by 'bytes') must have
13746 * been zeroed out by the caller.
13748 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13750 uint8_t buf[4];
13752 stl_le_p(buf, val);
13754 /* zlib crc32 converts the accumulator and output to one's complement. */
13755 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13758 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13760 uint8_t buf[4];
13762 stl_le_p(buf, val);
13764 /* Linux crc32c converts the output to one's complement. */
13765 return crc32c(acc, buf, bytes) ^ 0xffffffff;
13768 /* Return the exception level to which FP-disabled exceptions should
13769 * be taken, or 0 if FP is enabled.
13771 int fp_exception_el(CPUARMState *env, int cur_el)
13773 #ifndef CONFIG_USER_ONLY
13774 int fpen;
13776 /* CPACR and the CPTR registers don't exist before v6, so FP is
13777 * always accessible
13779 if (!arm_feature(env, ARM_FEATURE_V6)) {
13780 return 0;
13783 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13784 * 0, 2 : trap EL0 and EL1/PL1 accesses
13785 * 1 : trap only EL0 accesses
13786 * 3 : trap no accesses
13788 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13789 switch (fpen) {
13790 case 0:
13791 case 2:
13792 if (cur_el == 0 || cur_el == 1) {
13793 /* Trap to PL1, which might be EL1 or EL3 */
13794 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13795 return 3;
13797 return 1;
13799 if (cur_el == 3 && !is_a64(env)) {
13800 /* Secure PL1 running at EL3 */
13801 return 3;
13803 break;
13804 case 1:
13805 if (cur_el == 0) {
13806 return 1;
13808 break;
13809 case 3:
13810 break;
13813 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13814 * check because zero bits in the registers mean "don't trap".
13817 /* CPTR_EL2 : present in v7VE or v8 */
13818 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13819 && !arm_is_secure_below_el3(env)) {
13820 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13821 return 2;
13824 /* CPTR_EL3 : present in v8 */
13825 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13826 /* Trap all FP ops to EL3 */
13827 return 3;
13829 #endif
13830 return 0;
13833 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
13834 bool secstate, bool priv)
13836 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
13838 if (priv) {
13839 mmu_idx |= ARM_MMU_IDX_M_PRIV;
13842 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
13843 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
13846 if (secstate) {
13847 mmu_idx |= ARM_MMU_IDX_M_S;
13850 return mmu_idx;
13853 /* Return the MMU index for a v7M CPU in the specified security state */
13854 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13856 bool priv = arm_current_el(env) != 0;
13858 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
13861 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13863 int el;
13865 if (arm_feature(env, ARM_FEATURE_M)) {
13866 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13869 el = arm_current_el(env);
13870 if (el < 2 && arm_is_secure_below_el3(env)) {
13871 return ARMMMUIdx_S1SE0 + el;
13872 } else {
13873 return ARMMMUIdx_S12NSE0 + el;
13877 int cpu_mmu_index(CPUARMState *env, bool ifetch)
13879 return arm_to_core_mmu_idx(arm_mmu_idx(env));
13882 #ifndef CONFIG_USER_ONLY
13883 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13885 return stage_1_mmu_idx(arm_mmu_idx(env));
13887 #endif
13889 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13890 target_ulong *cs_base, uint32_t *pflags)
13892 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
13893 int current_el = arm_current_el(env);
13894 int fp_el = fp_exception_el(env, current_el);
13895 uint32_t flags = 0;
13897 if (is_a64(env)) {
13898 ARMCPU *cpu = arm_env_get_cpu(env);
13899 uint64_t sctlr;
13901 *pc = env->pc;
13902 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
13904 /* Get control bits for tagged addresses. */
13906 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13907 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
13908 int tbii, tbid;
13910 /* FIXME: ARMv8.1-VHE S2 translation regime. */
13911 if (regime_el(env, stage1) < 2) {
13912 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
13913 tbid = (p1.tbi << 1) | p0.tbi;
13914 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
13915 } else {
13916 tbid = p0.tbi;
13917 tbii = tbid & !p0.tbid;
13920 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
13921 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
13924 if (cpu_isar_feature(aa64_sve, cpu)) {
13925 int sve_el = sve_exception_el(env, current_el);
13926 uint32_t zcr_len;
13928 /* If SVE is disabled, but FP is enabled,
13929 * then the effective len is 0.
13931 if (sve_el != 0 && fp_el == 0) {
13932 zcr_len = 0;
13933 } else {
13934 zcr_len = sve_zcr_len_for_el(env, current_el);
13936 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
13937 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
13940 if (current_el == 0) {
13941 /* FIXME: ARMv8.1-VHE S2 translation regime. */
13942 sctlr = env->cp15.sctlr_el[1];
13943 } else {
13944 sctlr = env->cp15.sctlr_el[current_el];
13946 if (cpu_isar_feature(aa64_pauth, cpu)) {
13948 * In order to save space in flags, we record only whether
13949 * pauth is "inactive", meaning all insns are implemented as
13950 * a nop, or "active" when some action must be performed.
13951 * The decision of which action to take is left to a helper.
13953 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13954 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
13958 if (cpu_isar_feature(aa64_bti, cpu)) {
13959 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
13960 if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13961 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
13963 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13965 } else {
13966 *pc = env->regs[15];
13967 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
13968 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
13969 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
13970 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
13971 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
13972 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
13973 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
13974 || arm_el_is_aa64(env, 1)) {
13975 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13977 flags = FIELD_DP32(flags, TBFLAG_A32, XSCALE_CPAR, env->cp15.c15_cpar);
13980 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13982 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13983 * states defined in the ARM ARM for software singlestep:
13984 * SS_ACTIVE PSTATE.SS State
13985 * 0 x Inactive (the TB flag for SS is always 0)
13986 * 1 0 Active-pending
13987 * 1 1 Active-not-pending
13989 if (arm_singlestep_active(env)) {
13990 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
13991 if (is_a64(env)) {
13992 if (env->pstate & PSTATE_SS) {
13993 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13995 } else {
13996 if (env->uncached_cpsr & PSTATE_SS) {
13997 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
14001 if (arm_cpu_data_is_big_endian(env)) {
14002 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
14004 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
14006 if (arm_v7m_is_handler_mode(env)) {
14007 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
14010 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
14011 * suppressing them because the requested execution priority is less than 0.
14013 if (arm_feature(env, ARM_FEATURE_V8) &&
14014 arm_feature(env, ARM_FEATURE_M) &&
14015 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
14016 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
14017 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
14020 *pflags = flags;
14021 *cs_base = 0;
14024 #ifdef TARGET_AARCH64
14026 * The manual says that when SVE is enabled and VQ is widened the
14027 * implementation is allowed to zero the previously inaccessible
14028 * portion of the registers. The corollary to that is that when
14029 * SVE is enabled and VQ is narrowed we are also allowed to zero
14030 * the now inaccessible portion of the registers.
14032 * The intent of this is that no predicate bit beyond VQ is ever set.
14033 * Which means that some operations on predicate registers themselves
14034 * may operate on full uint64_t or even unrolled across the maximum
14035 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
14036 * may well be cheaper than conditionals to restrict the operation
14037 * to the relevant portion of a uint16_t[16].
14039 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
14041 int i, j;
14042 uint64_t pmask;
14044 assert(vq >= 1 && vq <= ARM_MAX_VQ);
14045 assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
14047 /* Zap the high bits of the zregs. */
14048 for (i = 0; i < 32; i++) {
14049 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
14052 /* Zap the high bits of the pregs and ffr. */
14053 pmask = 0;
14054 if (vq & 3) {
14055 pmask = ~(-1ULL << (16 * (vq & 3)));
14057 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
14058 for (i = 0; i < 17; ++i) {
14059 env->vfp.pregs[i].p[j] &= pmask;
14061 pmask = 0;
14066 * Notice a change in SVE vector size when changing EL.
14068 void aarch64_sve_change_el(CPUARMState *env, int old_el,
14069 int new_el, bool el0_a64)
14071 ARMCPU *cpu = arm_env_get_cpu(env);
14072 int old_len, new_len;
14073 bool old_a64, new_a64;
14075 /* Nothing to do if no SVE. */
14076 if (!cpu_isar_feature(aa64_sve, cpu)) {
14077 return;
14080 /* Nothing to do if FP is disabled in either EL. */
14081 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
14082 return;
14086 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
14087 * at ELx, or not available because the EL is in AArch32 state, then
14088 * for all purposes other than a direct read, the ZCR_ELx.LEN field
14089 * has an effective value of 0".
14091 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
14092 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
14093 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
14094 * we already have the correct register contents when encountering the
14095 * vq0->vq0 transition between EL0->EL1.
14097 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
14098 old_len = (old_a64 && !sve_exception_el(env, old_el)
14099 ? sve_zcr_len_for_el(env, old_el) : 0);
14100 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
14101 new_len = (new_a64 && !sve_exception_el(env, new_el)
14102 ? sve_zcr_len_for_el(env, new_el) : 0);
14104 /* When changing vector length, clear inaccessible state. */
14105 if (new_len < old_len) {
14106 aarch64_sve_narrow_vq(env, new_len + 1);
14109 #endif