4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
42 #include "sysemu/sev.h"
43 #include "qapi/visitor.h"
44 #include "qapi/qapi-types-common.h"
45 #include "qapi/qapi-visit-common.h"
46 #include "sysemu/reset.h"
48 #include "hw/boards.h"
50 /* This check must be after config-host.h is included */
52 #include <sys/eventfd.h>
55 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
56 * need to use the real host PAGE_SIZE, as that's what KVM will use.
58 #define PAGE_SIZE qemu_real_host_page_size
63 #define DPRINTF(fmt, ...) \
64 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
66 #define DPRINTF(fmt, ...) \
70 #define KVM_MSI_HASHTAB_SIZE 256
72 struct KVMParkedVcpu
{
73 unsigned long vcpu_id
;
75 QLIST_ENTRY(KVMParkedVcpu
) node
;
80 AccelState parent_obj
;
87 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
88 bool coalesced_flush_in_progress
;
90 int robust_singlestep
;
92 #ifdef KVM_CAP_SET_GUEST_DEBUG
93 QTAILQ_HEAD(, kvm_sw_breakpoint
) kvm_sw_breakpoints
;
95 int max_nested_state_len
;
99 bool kernel_irqchip_allowed
;
100 bool kernel_irqchip_required
;
101 OnOffAuto kernel_irqchip_split
;
103 uint64_t manual_dirty_log_protect
;
104 /* The man page (and posix) say ioctl numbers are signed int, but
105 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
106 * unsigned, and treating them as signed here can break things */
107 unsigned irq_set_ioctl
;
108 unsigned int sigmask_len
;
110 #ifdef KVM_CAP_IRQ_ROUTING
111 struct kvm_irq_routing
*irq_routes
;
112 int nr_allocated_irq_routes
;
113 unsigned long *used_gsi_bitmap
;
114 unsigned int gsi_count
;
115 QTAILQ_HEAD(, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
117 KVMMemoryListener memory_listener
;
118 QLIST_HEAD(, KVMParkedVcpu
) kvm_parked_vcpus
;
120 /* memory encryption */
121 void *memcrypt_handle
;
122 int (*memcrypt_encrypt_data
)(void *handle
, uint8_t *ptr
, uint64_t len
);
124 /* For "info mtree -f" to tell if an MR is registered in KVM */
127 KVMMemoryListener
*ml
;
133 bool kvm_kernel_irqchip
;
134 bool kvm_split_irqchip
;
135 bool kvm_async_interrupts_allowed
;
136 bool kvm_halt_in_kernel_allowed
;
137 bool kvm_eventfds_allowed
;
138 bool kvm_irqfds_allowed
;
139 bool kvm_resamplefds_allowed
;
140 bool kvm_msi_via_irqfd_allowed
;
141 bool kvm_gsi_routing_allowed
;
142 bool kvm_gsi_direct_mapping
;
144 bool kvm_readonly_mem_allowed
;
145 bool kvm_vm_attributes_allowed
;
146 bool kvm_direct_msi_allowed
;
147 bool kvm_ioeventfd_any_length_allowed
;
148 bool kvm_msi_use_devid
;
149 static bool kvm_immediate_exit
;
150 static hwaddr kvm_max_slot_size
= ~0;
152 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
153 KVM_CAP_INFO(USER_MEMORY
),
154 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
155 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS
),
159 static NotifierList kvm_irqchip_change_notifiers
=
160 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers
);
162 struct KVMResampleFd
{
164 EventNotifier
*resample_event
;
165 QLIST_ENTRY(KVMResampleFd
) node
;
167 typedef struct KVMResampleFd KVMResampleFd
;
170 * Only used with split irqchip where we need to do the resample fd
171 * kick for the kernel from userspace.
173 static QLIST_HEAD(, KVMResampleFd
) kvm_resample_fd_list
=
174 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list
);
176 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
177 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
179 static inline void kvm_resample_fd_remove(int gsi
)
183 QLIST_FOREACH(rfd
, &kvm_resample_fd_list
, node
) {
184 if (rfd
->gsi
== gsi
) {
185 QLIST_REMOVE(rfd
, node
);
192 static inline void kvm_resample_fd_insert(int gsi
, EventNotifier
*event
)
194 KVMResampleFd
*rfd
= g_new0(KVMResampleFd
, 1);
197 rfd
->resample_event
= event
;
199 QLIST_INSERT_HEAD(&kvm_resample_fd_list
, rfd
, node
);
202 void kvm_resample_fd_notify(int gsi
)
206 QLIST_FOREACH(rfd
, &kvm_resample_fd_list
, node
) {
207 if (rfd
->gsi
== gsi
) {
208 event_notifier_set(rfd
->resample_event
);
209 trace_kvm_resample_fd_notify(gsi
);
215 int kvm_get_max_memslots(void)
217 KVMState
*s
= KVM_STATE(current_accel());
222 bool kvm_memcrypt_enabled(void)
224 if (kvm_state
&& kvm_state
->memcrypt_handle
) {
231 int kvm_memcrypt_encrypt_data(uint8_t *ptr
, uint64_t len
)
233 if (kvm_state
->memcrypt_handle
&&
234 kvm_state
->memcrypt_encrypt_data
) {
235 return kvm_state
->memcrypt_encrypt_data(kvm_state
->memcrypt_handle
,
242 /* Called with KVMMemoryListener.slots_lock held */
243 static KVMSlot
*kvm_get_free_slot(KVMMemoryListener
*kml
)
245 KVMState
*s
= kvm_state
;
248 for (i
= 0; i
< s
->nr_slots
; i
++) {
249 if (kml
->slots
[i
].memory_size
== 0) {
250 return &kml
->slots
[i
];
257 bool kvm_has_free_slot(MachineState
*ms
)
259 KVMState
*s
= KVM_STATE(ms
->accelerator
);
261 KVMMemoryListener
*kml
= &s
->memory_listener
;
264 result
= !!kvm_get_free_slot(kml
);
265 kvm_slots_unlock(kml
);
270 /* Called with KVMMemoryListener.slots_lock held */
271 static KVMSlot
*kvm_alloc_slot(KVMMemoryListener
*kml
)
273 KVMSlot
*slot
= kvm_get_free_slot(kml
);
279 fprintf(stderr
, "%s: no free slot available\n", __func__
);
283 static KVMSlot
*kvm_lookup_matching_slot(KVMMemoryListener
*kml
,
287 KVMState
*s
= kvm_state
;
290 for (i
= 0; i
< s
->nr_slots
; i
++) {
291 KVMSlot
*mem
= &kml
->slots
[i
];
293 if (start_addr
== mem
->start_addr
&& size
== mem
->memory_size
) {
302 * Calculate and align the start address and the size of the section.
303 * Return the size. If the size is 0, the aligned section is empty.
305 static hwaddr
kvm_align_section(MemoryRegionSection
*section
,
308 hwaddr size
= int128_get64(section
->size
);
309 hwaddr delta
, aligned
;
311 /* kvm works in page size chunks, but the function may be called
312 with sub-page size and unaligned start address. Pad the start
313 address to next and truncate size to previous page boundary. */
314 aligned
= ROUND_UP(section
->offset_within_address_space
,
315 qemu_real_host_page_size
);
316 delta
= aligned
- section
->offset_within_address_space
;
322 return (size
- delta
) & qemu_real_host_page_mask
;
325 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
328 KVMMemoryListener
*kml
= &s
->memory_listener
;
332 for (i
= 0; i
< s
->nr_slots
; i
++) {
333 KVMSlot
*mem
= &kml
->slots
[i
];
335 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
336 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
341 kvm_slots_unlock(kml
);
346 static int kvm_set_user_memory_region(KVMMemoryListener
*kml
, KVMSlot
*slot
, bool new)
348 KVMState
*s
= kvm_state
;
349 struct kvm_userspace_memory_region mem
;
352 mem
.slot
= slot
->slot
| (kml
->as_id
<< 16);
353 mem
.guest_phys_addr
= slot
->start_addr
;
354 mem
.userspace_addr
= (unsigned long)slot
->ram
;
355 mem
.flags
= slot
->flags
;
357 if (slot
->memory_size
&& !new && (mem
.flags
^ slot
->old_flags
) & KVM_MEM_READONLY
) {
358 /* Set the slot size to 0 before setting the slot to the desired
359 * value. This is needed based on KVM commit 75d61fbc. */
361 ret
= kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
366 mem
.memory_size
= slot
->memory_size
;
367 ret
= kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
368 slot
->old_flags
= mem
.flags
;
370 trace_kvm_set_user_memory(mem
.slot
, mem
.flags
, mem
.guest_phys_addr
,
371 mem
.memory_size
, mem
.userspace_addr
, ret
);
373 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
374 " start=0x%" PRIx64
", size=0x%" PRIx64
": %s",
375 __func__
, mem
.slot
, slot
->start_addr
,
376 (uint64_t)mem
.memory_size
, strerror(errno
));
381 int kvm_destroy_vcpu(CPUState
*cpu
)
383 KVMState
*s
= kvm_state
;
385 struct KVMParkedVcpu
*vcpu
= NULL
;
388 DPRINTF("kvm_destroy_vcpu\n");
390 ret
= kvm_arch_destroy_vcpu(cpu
);
395 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
398 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
402 ret
= munmap(cpu
->kvm_run
, mmap_size
);
407 vcpu
= g_malloc0(sizeof(*vcpu
));
408 vcpu
->vcpu_id
= kvm_arch_vcpu_id(cpu
);
409 vcpu
->kvm_fd
= cpu
->kvm_fd
;
410 QLIST_INSERT_HEAD(&kvm_state
->kvm_parked_vcpus
, vcpu
, node
);
415 static int kvm_get_vcpu(KVMState
*s
, unsigned long vcpu_id
)
417 struct KVMParkedVcpu
*cpu
;
419 QLIST_FOREACH(cpu
, &s
->kvm_parked_vcpus
, node
) {
420 if (cpu
->vcpu_id
== vcpu_id
) {
423 QLIST_REMOVE(cpu
, node
);
424 kvm_fd
= cpu
->kvm_fd
;
430 return kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)vcpu_id
);
433 int kvm_init_vcpu(CPUState
*cpu
)
435 KVMState
*s
= kvm_state
;
439 DPRINTF("kvm_init_vcpu\n");
441 ret
= kvm_get_vcpu(s
, kvm_arch_vcpu_id(cpu
));
443 DPRINTF("kvm_create_vcpu failed\n");
449 cpu
->vcpu_dirty
= true;
451 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
454 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
458 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
460 if (cpu
->kvm_run
== MAP_FAILED
) {
462 DPRINTF("mmap'ing vcpu state failed\n");
466 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
467 s
->coalesced_mmio_ring
=
468 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
471 ret
= kvm_arch_init_vcpu(cpu
);
477 * dirty pages logging control
480 static int kvm_mem_flags(MemoryRegion
*mr
)
482 bool readonly
= mr
->readonly
|| memory_region_is_romd(mr
);
485 if (memory_region_get_dirty_log_mask(mr
) != 0) {
486 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
488 if (readonly
&& kvm_readonly_mem_allowed
) {
489 flags
|= KVM_MEM_READONLY
;
494 /* Called with KVMMemoryListener.slots_lock held */
495 static int kvm_slot_update_flags(KVMMemoryListener
*kml
, KVMSlot
*mem
,
498 mem
->flags
= kvm_mem_flags(mr
);
500 /* If nothing changed effectively, no need to issue ioctl */
501 if (mem
->flags
== mem
->old_flags
) {
505 return kvm_set_user_memory_region(kml
, mem
, false);
508 static int kvm_section_update_flags(KVMMemoryListener
*kml
,
509 MemoryRegionSection
*section
)
511 hwaddr start_addr
, size
, slot_size
;
515 size
= kvm_align_section(section
, &start_addr
);
522 while (size
&& !ret
) {
523 slot_size
= MIN(kvm_max_slot_size
, size
);
524 mem
= kvm_lookup_matching_slot(kml
, start_addr
, slot_size
);
526 /* We don't have a slot if we want to trap every access. */
530 ret
= kvm_slot_update_flags(kml
, mem
, section
->mr
);
531 start_addr
+= slot_size
;
536 kvm_slots_unlock(kml
);
540 static void kvm_log_start(MemoryListener
*listener
,
541 MemoryRegionSection
*section
,
544 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
551 r
= kvm_section_update_flags(kml
, section
);
557 static void kvm_log_stop(MemoryListener
*listener
,
558 MemoryRegionSection
*section
,
561 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
568 r
= kvm_section_update_flags(kml
, section
);
574 /* get kvm's dirty pages bitmap and update qemu's */
575 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
576 unsigned long *bitmap
)
578 ram_addr_t start
= section
->offset_within_region
+
579 memory_region_get_ram_addr(section
->mr
);
580 ram_addr_t pages
= int128_get64(section
->size
) / qemu_real_host_page_size
;
582 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
586 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
588 /* Allocate the dirty bitmap for a slot */
589 static void kvm_memslot_init_dirty_bitmap(KVMSlot
*mem
)
592 * XXX bad kernel interface alert
593 * For dirty bitmap, kernel allocates array of size aligned to
594 * bits-per-long. But for case when the kernel is 64bits and
595 * the userspace is 32bits, userspace can't align to the same
596 * bits-per-long, since sizeof(long) is different between kernel
597 * and user space. This way, userspace will provide buffer which
598 * may be 4 bytes less than the kernel will use, resulting in
599 * userspace memory corruption (which is not detectable by valgrind
600 * too, in most cases).
601 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
602 * a hope that sizeof(long) won't become >8 any time soon.
604 hwaddr bitmap_size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
605 /*HOST_LONG_BITS*/ 64) / 8;
606 mem
->dirty_bmap
= g_malloc0(bitmap_size
);
610 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
612 * This function will first try to fetch dirty bitmap from the kernel,
613 * and then updates qemu's dirty bitmap.
615 * NOTE: caller must be with kml->slots_lock held.
617 * @kml: the KVM memory listener object
618 * @section: the memory section to sync the dirty bitmap with
620 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener
*kml
,
621 MemoryRegionSection
*section
)
623 KVMState
*s
= kvm_state
;
624 struct kvm_dirty_log d
= {};
626 hwaddr start_addr
, size
;
627 hwaddr slot_size
, slot_offset
= 0;
630 size
= kvm_align_section(section
, &start_addr
);
632 MemoryRegionSection subsection
= *section
;
634 slot_size
= MIN(kvm_max_slot_size
, size
);
635 mem
= kvm_lookup_matching_slot(kml
, start_addr
, slot_size
);
637 /* We don't have a slot if we want to trap every access. */
641 if (!mem
->dirty_bmap
) {
642 /* Allocate on the first log_sync, once and for all */
643 kvm_memslot_init_dirty_bitmap(mem
);
646 d
.dirty_bitmap
= mem
->dirty_bmap
;
647 d
.slot
= mem
->slot
| (kml
->as_id
<< 16);
648 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
649 DPRINTF("ioctl failed %d\n", errno
);
654 subsection
.offset_within_region
+= slot_offset
;
655 subsection
.size
= int128_make64(slot_size
);
656 kvm_get_dirty_pages_log_range(&subsection
, d
.dirty_bitmap
);
658 slot_offset
+= slot_size
;
659 start_addr
+= slot_size
;
666 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
667 #define KVM_CLEAR_LOG_SHIFT 6
668 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
669 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
671 static int kvm_log_clear_one_slot(KVMSlot
*mem
, int as_id
, uint64_t start
,
674 KVMState
*s
= kvm_state
;
675 uint64_t end
, bmap_start
, start_delta
, bmap_npages
;
676 struct kvm_clear_dirty_log d
;
677 unsigned long *bmap_clear
= NULL
, psize
= qemu_real_host_page_size
;
681 * We need to extend either the start or the size or both to
682 * satisfy the KVM interface requirement. Firstly, do the start
683 * page alignment on 64 host pages
685 bmap_start
= start
& KVM_CLEAR_LOG_MASK
;
686 start_delta
= start
- bmap_start
;
690 * The kernel interface has restriction on the size too, that either:
692 * (1) the size is 64 host pages aligned (just like the start), or
693 * (2) the size fills up until the end of the KVM memslot.
695 bmap_npages
= DIV_ROUND_UP(size
+ start_delta
, KVM_CLEAR_LOG_ALIGN
)
696 << KVM_CLEAR_LOG_SHIFT
;
697 end
= mem
->memory_size
/ psize
;
698 if (bmap_npages
> end
- bmap_start
) {
699 bmap_npages
= end
- bmap_start
;
701 start_delta
/= psize
;
704 * Prepare the bitmap to clear dirty bits. Here we must guarantee
705 * that we won't clear any unknown dirty bits otherwise we might
706 * accidentally clear some set bits which are not yet synced from
707 * the kernel into QEMU's bitmap, then we'll lose track of the
708 * guest modifications upon those pages (which can directly lead
709 * to guest data loss or panic after migration).
711 * Layout of the KVMSlot.dirty_bmap:
713 * |<-------- bmap_npages -----------..>|
716 * |----------------|-------------|------------------|------------|
719 * start bmap_start (start) end
720 * of memslot of memslot
722 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
725 assert(bmap_start
% BITS_PER_LONG
== 0);
726 /* We should never do log_clear before log_sync */
727 assert(mem
->dirty_bmap
);
729 /* Slow path - we need to manipulate a temp bitmap */
730 bmap_clear
= bitmap_new(bmap_npages
);
731 bitmap_copy_with_src_offset(bmap_clear
, mem
->dirty_bmap
,
732 bmap_start
, start_delta
+ size
/ psize
);
734 * We need to fill the holes at start because that was not
735 * specified by the caller and we extended the bitmap only for
738 bitmap_clear(bmap_clear
, 0, start_delta
);
739 d
.dirty_bitmap
= bmap_clear
;
741 /* Fast path - start address aligns well with BITS_PER_LONG */
742 d
.dirty_bitmap
= mem
->dirty_bmap
+ BIT_WORD(bmap_start
);
745 d
.first_page
= bmap_start
;
746 /* It should never overflow. If it happens, say something */
747 assert(bmap_npages
<= UINT32_MAX
);
748 d
.num_pages
= bmap_npages
;
749 d
.slot
= mem
->slot
| (as_id
<< 16);
751 if (kvm_vm_ioctl(s
, KVM_CLEAR_DIRTY_LOG
, &d
) == -1) {
753 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
754 "start=0x%"PRIx64
", size=0x%"PRIx32
", errno=%d",
755 __func__
, d
.slot
, (uint64_t)d
.first_page
,
756 (uint32_t)d
.num_pages
, ret
);
759 trace_kvm_clear_dirty_log(d
.slot
, d
.first_page
, d
.num_pages
);
763 * After we have updated the remote dirty bitmap, we update the
764 * cached bitmap as well for the memslot, then if another user
765 * clears the same region we know we shouldn't clear it again on
766 * the remote otherwise it's data loss as well.
768 bitmap_clear(mem
->dirty_bmap
, bmap_start
+ start_delta
,
770 /* This handles the NULL case well */
777 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
779 * NOTE: this will be a no-op if we haven't enabled manual dirty log
780 * protection in the host kernel because in that case this operation
781 * will be done within log_sync().
783 * @kml: the kvm memory listener
784 * @section: the memory range to clear dirty bitmap
786 static int kvm_physical_log_clear(KVMMemoryListener
*kml
,
787 MemoryRegionSection
*section
)
789 KVMState
*s
= kvm_state
;
790 uint64_t start
, size
, offset
, count
;
794 if (!s
->manual_dirty_log_protect
) {
795 /* No need to do explicit clear */
799 start
= section
->offset_within_address_space
;
800 size
= int128_get64(section
->size
);
803 /* Nothing more we can do... */
809 for (i
= 0; i
< s
->nr_slots
; i
++) {
810 mem
= &kml
->slots
[i
];
811 /* Discard slots that are empty or do not overlap the section */
812 if (!mem
->memory_size
||
813 mem
->start_addr
> start
+ size
- 1 ||
814 start
> mem
->start_addr
+ mem
->memory_size
- 1) {
818 if (start
>= mem
->start_addr
) {
819 /* The slot starts before section or is aligned to it. */
820 offset
= start
- mem
->start_addr
;
821 count
= MIN(mem
->memory_size
- offset
, size
);
823 /* The slot starts after section. */
825 count
= MIN(mem
->memory_size
, size
- (mem
->start_addr
- start
));
827 ret
= kvm_log_clear_one_slot(mem
, kml
->as_id
, offset
, count
);
833 kvm_slots_unlock(kml
);
838 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
839 MemoryRegionSection
*secion
,
840 hwaddr start
, hwaddr size
)
842 KVMState
*s
= kvm_state
;
844 if (s
->coalesced_mmio
) {
845 struct kvm_coalesced_mmio_zone zone
;
851 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
855 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
856 MemoryRegionSection
*secion
,
857 hwaddr start
, hwaddr size
)
859 KVMState
*s
= kvm_state
;
861 if (s
->coalesced_mmio
) {
862 struct kvm_coalesced_mmio_zone zone
;
868 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
872 static void kvm_coalesce_pio_add(MemoryListener
*listener
,
873 MemoryRegionSection
*section
,
874 hwaddr start
, hwaddr size
)
876 KVMState
*s
= kvm_state
;
878 if (s
->coalesced_pio
) {
879 struct kvm_coalesced_mmio_zone zone
;
885 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
889 static void kvm_coalesce_pio_del(MemoryListener
*listener
,
890 MemoryRegionSection
*section
,
891 hwaddr start
, hwaddr size
)
893 KVMState
*s
= kvm_state
;
895 if (s
->coalesced_pio
) {
896 struct kvm_coalesced_mmio_zone zone
;
902 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
906 static MemoryListener kvm_coalesced_pio_listener
= {
907 .coalesced_io_add
= kvm_coalesce_pio_add
,
908 .coalesced_io_del
= kvm_coalesce_pio_del
,
911 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
915 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
923 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
927 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
929 /* VM wide version not implemented, use global one instead */
930 ret
= kvm_check_extension(s
, extension
);
936 typedef struct HWPoisonPage
{
938 QLIST_ENTRY(HWPoisonPage
) list
;
941 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
942 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
944 static void kvm_unpoison_all(void *param
)
946 HWPoisonPage
*page
, *next_page
;
948 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
949 QLIST_REMOVE(page
, list
);
950 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
955 void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
959 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
960 if (page
->ram_addr
== ram_addr
) {
964 page
= g_new(HWPoisonPage
, 1);
965 page
->ram_addr
= ram_addr
;
966 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
969 static uint32_t adjust_ioeventfd_endianness(uint32_t val
, uint32_t size
)
971 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
972 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
973 * endianness, but the memory core hands them in target endianness.
974 * For example, PPC is always treated as big-endian even if running
975 * on KVM and on PPC64LE. Correct here.
989 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
990 bool assign
, uint32_t size
, bool datamatch
)
993 struct kvm_ioeventfd iofd
= {
994 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
1001 trace_kvm_set_ioeventfd_mmio(fd
, (uint64_t)addr
, val
, assign
, size
,
1003 if (!kvm_enabled()) {
1008 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1011 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1014 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
1023 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
1024 bool assign
, uint32_t size
, bool datamatch
)
1026 struct kvm_ioeventfd kick
= {
1027 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
1029 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
1034 trace_kvm_set_ioeventfd_pio(fd
, addr
, val
, assign
, size
, datamatch
);
1035 if (!kvm_enabled()) {
1039 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1042 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1044 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
1052 static int kvm_check_many_ioeventfds(void)
1054 /* Userspace can use ioeventfd for io notification. This requires a host
1055 * that supports eventfd(2) and an I/O thread; since eventfd does not
1056 * support SIGIO it cannot interrupt the vcpu.
1058 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1059 * can avoid creating too many ioeventfds.
1061 #if defined(CONFIG_EVENTFD)
1064 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
1065 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
1066 if (ioeventfds
[i
] < 0) {
1069 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
1071 close(ioeventfds
[i
]);
1076 /* Decide whether many devices are supported or not */
1077 ret
= i
== ARRAY_SIZE(ioeventfds
);
1080 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
1081 close(ioeventfds
[i
]);
1089 static const KVMCapabilityInfo
*
1090 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
1092 while (list
->name
) {
1093 if (!kvm_check_extension(s
, list
->value
)) {
1101 void kvm_set_max_memslot_size(hwaddr max_slot_size
)
1104 ROUND_UP(max_slot_size
, qemu_real_host_page_size
) == max_slot_size
1106 kvm_max_slot_size
= max_slot_size
;
1109 static void kvm_set_phys_mem(KVMMemoryListener
*kml
,
1110 MemoryRegionSection
*section
, bool add
)
1114 MemoryRegion
*mr
= section
->mr
;
1115 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
1116 hwaddr start_addr
, size
, slot_size
;
1119 if (!memory_region_is_ram(mr
)) {
1120 if (writeable
|| !kvm_readonly_mem_allowed
) {
1122 } else if (!mr
->romd_mode
) {
1123 /* If the memory device is not in romd_mode, then we actually want
1124 * to remove the kvm memory slot so all accesses will trap. */
1129 size
= kvm_align_section(section
, &start_addr
);
1134 /* use aligned delta to align the ram address */
1135 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+
1136 (start_addr
- section
->offset_within_address_space
);
1138 kvm_slots_lock(kml
);
1142 slot_size
= MIN(kvm_max_slot_size
, size
);
1143 mem
= kvm_lookup_matching_slot(kml
, start_addr
, slot_size
);
1147 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
1148 kvm_physical_sync_dirty_bitmap(kml
, section
);
1151 /* unregister the slot */
1152 g_free(mem
->dirty_bmap
);
1153 mem
->dirty_bmap
= NULL
;
1154 mem
->memory_size
= 0;
1156 err
= kvm_set_user_memory_region(kml
, mem
, false);
1158 fprintf(stderr
, "%s: error unregistering slot: %s\n",
1159 __func__
, strerror(-err
));
1162 start_addr
+= slot_size
;
1168 /* register the new slot */
1170 slot_size
= MIN(kvm_max_slot_size
, size
);
1171 mem
= kvm_alloc_slot(kml
);
1172 mem
->memory_size
= slot_size
;
1173 mem
->start_addr
= start_addr
;
1175 mem
->flags
= kvm_mem_flags(mr
);
1177 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
1179 * Reallocate the bmap; it means it doesn't disappear in
1180 * middle of a migrate.
1182 kvm_memslot_init_dirty_bitmap(mem
);
1184 err
= kvm_set_user_memory_region(kml
, mem
, true);
1186 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
1190 start_addr
+= slot_size
;
1196 kvm_slots_unlock(kml
);
1199 static void kvm_region_add(MemoryListener
*listener
,
1200 MemoryRegionSection
*section
)
1202 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1204 memory_region_ref(section
->mr
);
1205 kvm_set_phys_mem(kml
, section
, true);
1208 static void kvm_region_del(MemoryListener
*listener
,
1209 MemoryRegionSection
*section
)
1211 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1213 kvm_set_phys_mem(kml
, section
, false);
1214 memory_region_unref(section
->mr
);
1217 static void kvm_log_sync(MemoryListener
*listener
,
1218 MemoryRegionSection
*section
)
1220 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1223 kvm_slots_lock(kml
);
1224 r
= kvm_physical_sync_dirty_bitmap(kml
, section
);
1225 kvm_slots_unlock(kml
);
1231 static void kvm_log_clear(MemoryListener
*listener
,
1232 MemoryRegionSection
*section
)
1234 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1237 r
= kvm_physical_log_clear(kml
, section
);
1239 error_report_once("%s: kvm log clear failed: mr=%s "
1240 "offset=%"HWADDR_PRIx
" size=%"PRIx64
, __func__
,
1241 section
->mr
->name
, section
->offset_within_region
,
1242 int128_get64(section
->size
));
1247 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
1248 MemoryRegionSection
*section
,
1249 bool match_data
, uint64_t data
,
1252 int fd
= event_notifier_get_fd(e
);
1255 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
1256 data
, true, int128_get64(section
->size
),
1259 fprintf(stderr
, "%s: error adding ioeventfd: %s (%d)\n",
1260 __func__
, strerror(-r
), -r
);
1265 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
1266 MemoryRegionSection
*section
,
1267 bool match_data
, uint64_t data
,
1270 int fd
= event_notifier_get_fd(e
);
1273 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
1274 data
, false, int128_get64(section
->size
),
1277 fprintf(stderr
, "%s: error deleting ioeventfd: %s (%d)\n",
1278 __func__
, strerror(-r
), -r
);
1283 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
1284 MemoryRegionSection
*section
,
1285 bool match_data
, uint64_t data
,
1288 int fd
= event_notifier_get_fd(e
);
1291 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
1292 data
, true, int128_get64(section
->size
),
1295 fprintf(stderr
, "%s: error adding ioeventfd: %s (%d)\n",
1296 __func__
, strerror(-r
), -r
);
1301 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
1302 MemoryRegionSection
*section
,
1303 bool match_data
, uint64_t data
,
1307 int fd
= event_notifier_get_fd(e
);
1310 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
1311 data
, false, int128_get64(section
->size
),
1314 fprintf(stderr
, "%s: error deleting ioeventfd: %s (%d)\n",
1315 __func__
, strerror(-r
), -r
);
1320 void kvm_memory_listener_register(KVMState
*s
, KVMMemoryListener
*kml
,
1321 AddressSpace
*as
, int as_id
)
1325 qemu_mutex_init(&kml
->slots_lock
);
1326 kml
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
1329 for (i
= 0; i
< s
->nr_slots
; i
++) {
1330 kml
->slots
[i
].slot
= i
;
1333 kml
->listener
.region_add
= kvm_region_add
;
1334 kml
->listener
.region_del
= kvm_region_del
;
1335 kml
->listener
.log_start
= kvm_log_start
;
1336 kml
->listener
.log_stop
= kvm_log_stop
;
1337 kml
->listener
.log_sync
= kvm_log_sync
;
1338 kml
->listener
.log_clear
= kvm_log_clear
;
1339 kml
->listener
.priority
= 10;
1341 memory_listener_register(&kml
->listener
, as
);
1343 for (i
= 0; i
< s
->nr_as
; ++i
) {
1352 static MemoryListener kvm_io_listener
= {
1353 .eventfd_add
= kvm_io_ioeventfd_add
,
1354 .eventfd_del
= kvm_io_ioeventfd_del
,
1358 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
1360 struct kvm_irq_level event
;
1363 assert(kvm_async_interrupts_enabled());
1365 event
.level
= level
;
1367 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
1369 perror("kvm_set_irq");
1373 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
1376 #ifdef KVM_CAP_IRQ_ROUTING
1377 typedef struct KVMMSIRoute
{
1378 struct kvm_irq_routing_entry kroute
;
1379 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
1382 static void set_gsi(KVMState
*s
, unsigned int gsi
)
1384 set_bit(gsi
, s
->used_gsi_bitmap
);
1387 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
1389 clear_bit(gsi
, s
->used_gsi_bitmap
);
1392 void kvm_init_irq_routing(KVMState
*s
)
1396 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
1397 if (gsi_count
> 0) {
1398 /* Round up so we can search ints using ffs */
1399 s
->used_gsi_bitmap
= bitmap_new(gsi_count
);
1400 s
->gsi_count
= gsi_count
;
1403 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
1404 s
->nr_allocated_irq_routes
= 0;
1406 if (!kvm_direct_msi_allowed
) {
1407 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
1408 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
1412 kvm_arch_init_irq_routing(s
);
1415 void kvm_irqchip_commit_routes(KVMState
*s
)
1419 if (kvm_gsi_direct_mapping()) {
1423 if (!kvm_gsi_routing_enabled()) {
1427 s
->irq_routes
->flags
= 0;
1428 trace_kvm_irqchip_commit_routes();
1429 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
1433 static void kvm_add_routing_entry(KVMState
*s
,
1434 struct kvm_irq_routing_entry
*entry
)
1436 struct kvm_irq_routing_entry
*new;
1439 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1440 n
= s
->nr_allocated_irq_routes
* 2;
1444 size
= sizeof(struct kvm_irq_routing
);
1445 size
+= n
* sizeof(*new);
1446 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1447 s
->nr_allocated_irq_routes
= n
;
1449 n
= s
->irq_routes
->nr
++;
1450 new = &s
->irq_routes
->entries
[n
];
1454 set_gsi(s
, entry
->gsi
);
1457 static int kvm_update_routing_entry(KVMState
*s
,
1458 struct kvm_irq_routing_entry
*new_entry
)
1460 struct kvm_irq_routing_entry
*entry
;
1463 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1464 entry
= &s
->irq_routes
->entries
[n
];
1465 if (entry
->gsi
!= new_entry
->gsi
) {
1469 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1473 *entry
= *new_entry
;
1481 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1483 struct kvm_irq_routing_entry e
= {};
1485 assert(pin
< s
->gsi_count
);
1488 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1490 e
.u
.irqchip
.irqchip
= irqchip
;
1491 e
.u
.irqchip
.pin
= pin
;
1492 kvm_add_routing_entry(s
, &e
);
1495 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1497 struct kvm_irq_routing_entry
*e
;
1500 if (kvm_gsi_direct_mapping()) {
1504 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1505 e
= &s
->irq_routes
->entries
[i
];
1506 if (e
->gsi
== virq
) {
1507 s
->irq_routes
->nr
--;
1508 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1512 kvm_arch_release_virq_post(virq
);
1513 trace_kvm_irqchip_release_virq(virq
);
1516 void kvm_irqchip_add_change_notifier(Notifier
*n
)
1518 notifier_list_add(&kvm_irqchip_change_notifiers
, n
);
1521 void kvm_irqchip_remove_change_notifier(Notifier
*n
)
1526 void kvm_irqchip_change_notify(void)
1528 notifier_list_notify(&kvm_irqchip_change_notifiers
, NULL
);
1531 static unsigned int kvm_hash_msi(uint32_t data
)
1533 /* This is optimized for IA32 MSI layout. However, no other arch shall
1534 * repeat the mistake of not providing a direct MSI injection API. */
1538 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1540 KVMMSIRoute
*route
, *next
;
1543 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1544 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1545 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1546 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1552 static int kvm_irqchip_get_virq(KVMState
*s
)
1557 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1558 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1559 * number can succeed even though a new route entry cannot be added.
1560 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1562 if (!kvm_direct_msi_allowed
&& s
->irq_routes
->nr
== s
->gsi_count
) {
1563 kvm_flush_dynamic_msi_routes(s
);
1566 /* Return the lowest unused GSI in the bitmap */
1567 next_virq
= find_first_zero_bit(s
->used_gsi_bitmap
, s
->gsi_count
);
1568 if (next_virq
>= s
->gsi_count
) {
1575 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1577 unsigned int hash
= kvm_hash_msi(msg
.data
);
1580 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1581 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1582 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1583 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1590 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1595 if (kvm_direct_msi_allowed
) {
1596 msi
.address_lo
= (uint32_t)msg
.address
;
1597 msi
.address_hi
= msg
.address
>> 32;
1598 msi
.data
= le32_to_cpu(msg
.data
);
1600 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1602 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1605 route
= kvm_lookup_msi_route(s
, msg
);
1609 virq
= kvm_irqchip_get_virq(s
);
1614 route
= g_malloc0(sizeof(KVMMSIRoute
));
1615 route
->kroute
.gsi
= virq
;
1616 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1617 route
->kroute
.flags
= 0;
1618 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1619 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1620 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1622 kvm_add_routing_entry(s
, &route
->kroute
);
1623 kvm_irqchip_commit_routes(s
);
1625 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1629 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1631 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1634 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
1636 struct kvm_irq_routing_entry kroute
= {};
1638 MSIMessage msg
= {0, 0};
1640 if (pci_available
&& dev
) {
1641 msg
= pci_get_msi_message(dev
, vector
);
1644 if (kvm_gsi_direct_mapping()) {
1645 return kvm_arch_msi_data_to_gsi(msg
.data
);
1648 if (!kvm_gsi_routing_enabled()) {
1652 virq
= kvm_irqchip_get_virq(s
);
1658 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1660 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1661 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1662 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1663 if (pci_available
&& kvm_msi_devid_required()) {
1664 kroute
.flags
= KVM_MSI_VALID_DEVID
;
1665 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
1667 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1668 kvm_irqchip_release_virq(s
, virq
);
1672 trace_kvm_irqchip_add_msi_route(dev
? dev
->name
: (char *)"N/A",
1675 kvm_add_routing_entry(s
, &kroute
);
1676 kvm_arch_add_msi_route_post(&kroute
, vector
, dev
);
1677 kvm_irqchip_commit_routes(s
);
1682 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
,
1685 struct kvm_irq_routing_entry kroute
= {};
1687 if (kvm_gsi_direct_mapping()) {
1691 if (!kvm_irqchip_in_kernel()) {
1696 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1698 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1699 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1700 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1701 if (pci_available
&& kvm_msi_devid_required()) {
1702 kroute
.flags
= KVM_MSI_VALID_DEVID
;
1703 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
1705 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1709 trace_kvm_irqchip_update_msi_route(virq
);
1711 return kvm_update_routing_entry(s
, &kroute
);
1714 static int kvm_irqchip_assign_irqfd(KVMState
*s
, EventNotifier
*event
,
1715 EventNotifier
*resample
, int virq
,
1718 int fd
= event_notifier_get_fd(event
);
1719 int rfd
= resample
? event_notifier_get_fd(resample
) : -1;
1721 struct kvm_irqfd irqfd
= {
1724 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1729 if (kvm_irqchip_is_split()) {
1731 * When the slow irqchip (e.g. IOAPIC) is in the
1732 * userspace, KVM kernel resamplefd will not work because
1733 * the EOI of the interrupt will be delivered to userspace
1734 * instead, so the KVM kernel resamplefd kick will be
1735 * skipped. The userspace here mimics what the kernel
1736 * provides with resamplefd, remember the resamplefd and
1737 * kick it when we receive EOI of this IRQ.
1739 * This is hackery because IOAPIC is mostly bypassed
1740 * (except EOI broadcasts) when irqfd is used. However
1741 * this can bring much performance back for split irqchip
1742 * with INTx IRQs (for VFIO, this gives 93% perf of the
1743 * full fast path, which is 46% perf boost comparing to
1744 * the INTx slow path).
1746 kvm_resample_fd_insert(virq
, resample
);
1748 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1749 irqfd
.resamplefd
= rfd
;
1751 } else if (!assign
) {
1752 if (kvm_irqchip_is_split()) {
1753 kvm_resample_fd_remove(virq
);
1757 if (!kvm_irqfds_enabled()) {
1761 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1764 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1766 struct kvm_irq_routing_entry kroute
= {};
1769 if (!kvm_gsi_routing_enabled()) {
1773 virq
= kvm_irqchip_get_virq(s
);
1779 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1781 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1782 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1783 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1784 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1785 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1787 kvm_add_routing_entry(s
, &kroute
);
1792 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1794 struct kvm_irq_routing_entry kroute
= {};
1797 if (!kvm_gsi_routing_enabled()) {
1800 if (!kvm_check_extension(s
, KVM_CAP_HYPERV_SYNIC
)) {
1803 virq
= kvm_irqchip_get_virq(s
);
1809 kroute
.type
= KVM_IRQ_ROUTING_HV_SINT
;
1811 kroute
.u
.hv_sint
.vcpu
= vcpu
;
1812 kroute
.u
.hv_sint
.sint
= sint
;
1814 kvm_add_routing_entry(s
, &kroute
);
1815 kvm_irqchip_commit_routes(s
);
1820 #else /* !KVM_CAP_IRQ_ROUTING */
1822 void kvm_init_irq_routing(KVMState
*s
)
1826 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1830 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1835 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
1840 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1845 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1850 static int kvm_irqchip_assign_irqfd(KVMState
*s
, EventNotifier
*event
,
1851 EventNotifier
*resample
, int virq
,
1857 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1861 #endif /* !KVM_CAP_IRQ_ROUTING */
1863 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1864 EventNotifier
*rn
, int virq
)
1866 return kvm_irqchip_assign_irqfd(s
, n
, rn
, virq
, true);
1869 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1872 return kvm_irqchip_assign_irqfd(s
, n
, NULL
, virq
, false);
1875 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1876 EventNotifier
*rn
, qemu_irq irq
)
1879 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1884 return kvm_irqchip_add_irqfd_notifier_gsi(s
, n
, rn
, GPOINTER_TO_INT(gsi
));
1887 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1891 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1896 return kvm_irqchip_remove_irqfd_notifier_gsi(s
, n
, GPOINTER_TO_INT(gsi
));
1899 void kvm_irqchip_set_qemuirq_gsi(KVMState
*s
, qemu_irq irq
, int gsi
)
1901 g_hash_table_insert(s
->gsimap
, irq
, GINT_TO_POINTER(gsi
));
1904 static void kvm_irqchip_create(KVMState
*s
)
1908 assert(s
->kernel_irqchip_split
!= ON_OFF_AUTO_AUTO
);
1909 if (kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1911 } else if (kvm_check_extension(s
, KVM_CAP_S390_IRQCHIP
)) {
1912 ret
= kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0);
1914 fprintf(stderr
, "Enable kernel irqchip failed: %s\n", strerror(-ret
));
1921 /* First probe and see if there's a arch-specific hook to create the
1922 * in-kernel irqchip for us */
1923 ret
= kvm_arch_irqchip_create(s
);
1925 if (s
->kernel_irqchip_split
== ON_OFF_AUTO_ON
) {
1926 perror("Split IRQ chip mode not supported.");
1929 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1933 fprintf(stderr
, "Create kernel irqchip failed: %s\n", strerror(-ret
));
1937 kvm_kernel_irqchip
= true;
1938 /* If we have an in-kernel IRQ chip then we must have asynchronous
1939 * interrupt delivery (though the reverse is not necessarily true)
1941 kvm_async_interrupts_allowed
= true;
1942 kvm_halt_in_kernel_allowed
= true;
1944 kvm_init_irq_routing(s
);
1946 s
->gsimap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
1949 /* Find number of supported CPUs using the recommended
1950 * procedure from the kernel API documentation to cope with
1951 * older kernels that may be missing capabilities.
1953 static int kvm_recommended_vcpus(KVMState
*s
)
1955 int ret
= kvm_vm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1956 return (ret
) ? ret
: 4;
1959 static int kvm_max_vcpus(KVMState
*s
)
1961 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1962 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1965 static int kvm_max_vcpu_id(KVMState
*s
)
1967 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPU_ID
);
1968 return (ret
) ? ret
: kvm_max_vcpus(s
);
1971 bool kvm_vcpu_id_is_valid(int vcpu_id
)
1973 KVMState
*s
= KVM_STATE(current_accel());
1974 return vcpu_id
>= 0 && vcpu_id
< kvm_max_vcpu_id(s
);
1977 static int kvm_init(MachineState
*ms
)
1979 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1980 static const char upgrade_note
[] =
1981 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1982 "(see http://sourceforge.net/projects/kvm).\n";
1987 { "SMP", ms
->smp
.cpus
},
1988 { "hotpluggable", ms
->smp
.max_cpus
},
1991 int soft_vcpus_limit
, hard_vcpus_limit
;
1993 const KVMCapabilityInfo
*missing_cap
;
1996 const char *kvm_type
;
1997 uint64_t dirty_log_manual_caps
;
1999 s
= KVM_STATE(ms
->accelerator
);
2002 * On systems where the kernel can support different base page
2003 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2004 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2005 * page size for the system though.
2007 assert(TARGET_PAGE_SIZE
<= qemu_real_host_page_size
);
2011 #ifdef KVM_CAP_SET_GUEST_DEBUG
2012 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
2014 QLIST_INIT(&s
->kvm_parked_vcpus
);
2016 s
->fd
= qemu_open_old("/dev/kvm", O_RDWR
);
2018 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
2023 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
2024 if (ret
< KVM_API_VERSION
) {
2028 fprintf(stderr
, "kvm version too old\n");
2032 if (ret
> KVM_API_VERSION
) {
2034 fprintf(stderr
, "kvm version not supported\n");
2038 kvm_immediate_exit
= kvm_check_extension(s
, KVM_CAP_IMMEDIATE_EXIT
);
2039 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
2041 /* If unspecified, use the default value */
2046 s
->nr_as
= kvm_check_extension(s
, KVM_CAP_MULTI_ADDRESS_SPACE
);
2047 if (s
->nr_as
<= 1) {
2050 s
->as
= g_new0(struct KVMAs
, s
->nr_as
);
2052 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
2054 type
= mc
->kvm_type(ms
, kvm_type
);
2055 } else if (kvm_type
) {
2057 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
2062 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
2063 } while (ret
== -EINTR
);
2066 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
2070 if (ret
== -EINVAL
) {
2072 "Host kernel setup problem detected. Please verify:\n");
2073 fprintf(stderr
, "- for kernels supporting the switch_amode or"
2074 " user_mode parameters, whether\n");
2076 " user space is running in primary address space\n");
2078 "- for kernels supporting the vm.allocate_pgste sysctl, "
2079 "whether it is enabled\n");
2087 /* check the vcpu limits */
2088 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
2089 hard_vcpus_limit
= kvm_max_vcpus(s
);
2092 if (nc
->num
> soft_vcpus_limit
) {
2093 warn_report("Number of %s cpus requested (%d) exceeds "
2094 "the recommended cpus supported by KVM (%d)",
2095 nc
->name
, nc
->num
, soft_vcpus_limit
);
2097 if (nc
->num
> hard_vcpus_limit
) {
2098 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
2099 "the maximum cpus supported by KVM (%d)\n",
2100 nc
->name
, nc
->num
, hard_vcpus_limit
);
2107 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
2110 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
2114 fprintf(stderr
, "kvm does not support %s\n%s",
2115 missing_cap
->name
, upgrade_note
);
2119 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
2120 s
->coalesced_pio
= s
->coalesced_mmio
&&
2121 kvm_check_extension(s
, KVM_CAP_COALESCED_PIO
);
2123 dirty_log_manual_caps
=
2124 kvm_check_extension(s
, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
);
2125 dirty_log_manual_caps
&= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
|
2126 KVM_DIRTY_LOG_INITIALLY_SET
);
2127 s
->manual_dirty_log_protect
= dirty_log_manual_caps
;
2128 if (dirty_log_manual_caps
) {
2129 ret
= kvm_vm_enable_cap(s
, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
, 0,
2130 dirty_log_manual_caps
);
2132 warn_report("Trying to enable capability %"PRIu64
" of "
2133 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2134 "Falling back to the legacy mode. ",
2135 dirty_log_manual_caps
);
2136 s
->manual_dirty_log_protect
= 0;
2140 #ifdef KVM_CAP_VCPU_EVENTS
2141 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
2144 s
->robust_singlestep
=
2145 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
2147 #ifdef KVM_CAP_DEBUGREGS
2148 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
2151 s
->max_nested_state_len
= kvm_check_extension(s
, KVM_CAP_NESTED_STATE
);
2153 #ifdef KVM_CAP_IRQ_ROUTING
2154 kvm_direct_msi_allowed
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
2157 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
2159 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
2160 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
2161 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
2164 kvm_readonly_mem_allowed
=
2165 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
2167 kvm_eventfds_allowed
=
2168 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
2170 kvm_irqfds_allowed
=
2171 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
2173 kvm_resamplefds_allowed
=
2174 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
2176 kvm_vm_attributes_allowed
=
2177 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
2179 kvm_ioeventfd_any_length_allowed
=
2180 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD_ANY_LENGTH
) > 0);
2185 * if memory encryption object is specified then initialize the memory
2186 * encryption context.
2188 if (ms
->memory_encryption
) {
2189 kvm_state
->memcrypt_handle
= sev_guest_init(ms
->memory_encryption
);
2190 if (!kvm_state
->memcrypt_handle
) {
2195 kvm_state
->memcrypt_encrypt_data
= sev_encrypt_data
;
2198 ret
= kvm_arch_init(ms
, s
);
2203 if (s
->kernel_irqchip_split
== ON_OFF_AUTO_AUTO
) {
2204 s
->kernel_irqchip_split
= mc
->default_kernel_irqchip_split
? ON_OFF_AUTO_ON
: ON_OFF_AUTO_OFF
;
2207 qemu_register_reset(kvm_unpoison_all
, NULL
);
2209 if (s
->kernel_irqchip_allowed
) {
2210 kvm_irqchip_create(s
);
2213 if (kvm_eventfds_allowed
) {
2214 s
->memory_listener
.listener
.eventfd_add
= kvm_mem_ioeventfd_add
;
2215 s
->memory_listener
.listener
.eventfd_del
= kvm_mem_ioeventfd_del
;
2217 s
->memory_listener
.listener
.coalesced_io_add
= kvm_coalesce_mmio_region
;
2218 s
->memory_listener
.listener
.coalesced_io_del
= kvm_uncoalesce_mmio_region
;
2220 kvm_memory_listener_register(s
, &s
->memory_listener
,
2221 &address_space_memory
, 0);
2222 memory_listener_register(&kvm_io_listener
,
2224 memory_listener_register(&kvm_coalesced_pio_listener
,
2227 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
2229 s
->sync_mmu
= !!kvm_vm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
2231 ret
= ram_block_discard_disable(true);
2245 g_free(s
->memory_listener
.slots
);
2250 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
2252 s
->sigmask_len
= sigmask_len
;
2255 static void kvm_handle_io(uint16_t port
, MemTxAttrs attrs
, void *data
, int direction
,
2256 int size
, uint32_t count
)
2259 uint8_t *ptr
= data
;
2261 for (i
= 0; i
< count
; i
++) {
2262 address_space_rw(&address_space_io
, port
, attrs
,
2264 direction
== KVM_EXIT_IO_OUT
);
2269 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
2271 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
2272 run
->internal
.suberror
);
2274 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
2277 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
2278 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
2279 i
, (uint64_t)run
->internal
.data
[i
]);
2282 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
2283 fprintf(stderr
, "emulation failure\n");
2284 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
2285 cpu_dump_state(cpu
, stderr
, CPU_DUMP_CODE
);
2286 return EXCP_INTERRUPT
;
2289 /* FIXME: Should trigger a qmp message to let management know
2290 * something went wrong.
2295 void kvm_flush_coalesced_mmio_buffer(void)
2297 KVMState
*s
= kvm_state
;
2299 if (s
->coalesced_flush_in_progress
) {
2303 s
->coalesced_flush_in_progress
= true;
2305 if (s
->coalesced_mmio_ring
) {
2306 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
2307 while (ring
->first
!= ring
->last
) {
2308 struct kvm_coalesced_mmio
*ent
;
2310 ent
= &ring
->coalesced_mmio
[ring
->first
];
2312 if (ent
->pio
== 1) {
2313 address_space_write(&address_space_io
, ent
->phys_addr
,
2314 MEMTXATTRS_UNSPECIFIED
, ent
->data
,
2317 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
2320 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
2324 s
->coalesced_flush_in_progress
= false;
2327 static void do_kvm_cpu_synchronize_state(CPUState
*cpu
, run_on_cpu_data arg
)
2329 if (!cpu
->vcpu_dirty
) {
2330 kvm_arch_get_registers(cpu
);
2331 cpu
->vcpu_dirty
= true;
2335 void kvm_cpu_synchronize_state(CPUState
*cpu
)
2337 if (!cpu
->vcpu_dirty
) {
2338 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, RUN_ON_CPU_NULL
);
2342 static void do_kvm_cpu_synchronize_post_reset(CPUState
*cpu
, run_on_cpu_data arg
)
2344 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
2345 cpu
->vcpu_dirty
= false;
2348 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
2350 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, RUN_ON_CPU_NULL
);
2353 static void do_kvm_cpu_synchronize_post_init(CPUState
*cpu
, run_on_cpu_data arg
)
2355 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
2356 cpu
->vcpu_dirty
= false;
2359 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
2361 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, RUN_ON_CPU_NULL
);
2364 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState
*cpu
, run_on_cpu_data arg
)
2366 cpu
->vcpu_dirty
= true;
2369 void kvm_cpu_synchronize_pre_loadvm(CPUState
*cpu
)
2371 run_on_cpu(cpu
, do_kvm_cpu_synchronize_pre_loadvm
, RUN_ON_CPU_NULL
);
2374 #ifdef KVM_HAVE_MCE_INJECTION
2375 static __thread
void *pending_sigbus_addr
;
2376 static __thread
int pending_sigbus_code
;
2377 static __thread
bool have_sigbus_pending
;
2380 static void kvm_cpu_kick(CPUState
*cpu
)
2382 qatomic_set(&cpu
->kvm_run
->immediate_exit
, 1);
2385 static void kvm_cpu_kick_self(void)
2387 if (kvm_immediate_exit
) {
2388 kvm_cpu_kick(current_cpu
);
2390 qemu_cpu_kick_self();
2394 static void kvm_eat_signals(CPUState
*cpu
)
2396 struct timespec ts
= { 0, 0 };
2402 if (kvm_immediate_exit
) {
2403 qatomic_set(&cpu
->kvm_run
->immediate_exit
, 0);
2404 /* Write kvm_run->immediate_exit before the cpu->exit_request
2405 * write in kvm_cpu_exec.
2411 sigemptyset(&waitset
);
2412 sigaddset(&waitset
, SIG_IPI
);
2415 r
= sigtimedwait(&waitset
, &siginfo
, &ts
);
2416 if (r
== -1 && !(errno
== EAGAIN
|| errno
== EINTR
)) {
2417 perror("sigtimedwait");
2421 r
= sigpending(&chkset
);
2423 perror("sigpending");
2426 } while (sigismember(&chkset
, SIG_IPI
));
2429 int kvm_cpu_exec(CPUState
*cpu
)
2431 struct kvm_run
*run
= cpu
->kvm_run
;
2434 DPRINTF("kvm_cpu_exec()\n");
2436 if (kvm_arch_process_async_events(cpu
)) {
2437 qatomic_set(&cpu
->exit_request
, 0);
2441 qemu_mutex_unlock_iothread();
2442 cpu_exec_start(cpu
);
2447 if (cpu
->vcpu_dirty
) {
2448 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
2449 cpu
->vcpu_dirty
= false;
2452 kvm_arch_pre_run(cpu
, run
);
2453 if (qatomic_read(&cpu
->exit_request
)) {
2454 DPRINTF("interrupt exit requested\n");
2456 * KVM requires us to reenter the kernel after IO exits to complete
2457 * instruction emulation. This self-signal will ensure that we
2460 kvm_cpu_kick_self();
2463 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2464 * Matching barrier in kvm_eat_signals.
2468 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
2470 attrs
= kvm_arch_post_run(cpu
, run
);
2472 #ifdef KVM_HAVE_MCE_INJECTION
2473 if (unlikely(have_sigbus_pending
)) {
2474 qemu_mutex_lock_iothread();
2475 kvm_arch_on_sigbus_vcpu(cpu
, pending_sigbus_code
,
2476 pending_sigbus_addr
);
2477 have_sigbus_pending
= false;
2478 qemu_mutex_unlock_iothread();
2483 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
2484 DPRINTF("io window exit\n");
2485 kvm_eat_signals(cpu
);
2486 ret
= EXCP_INTERRUPT
;
2489 fprintf(stderr
, "error: kvm run failed %s\n",
2490 strerror(-run_ret
));
2492 if (run_ret
== -EBUSY
) {
2494 "This is probably because your SMT is enabled.\n"
2495 "VCPU can only run on primary threads with all "
2496 "secondary threads offline.\n");
2503 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
2504 switch (run
->exit_reason
) {
2506 DPRINTF("handle_io\n");
2507 /* Called outside BQL */
2508 kvm_handle_io(run
->io
.port
, attrs
,
2509 (uint8_t *)run
+ run
->io
.data_offset
,
2516 DPRINTF("handle_mmio\n");
2517 /* Called outside BQL */
2518 address_space_rw(&address_space_memory
,
2519 run
->mmio
.phys_addr
, attrs
,
2522 run
->mmio
.is_write
);
2525 case KVM_EXIT_IRQ_WINDOW_OPEN
:
2526 DPRINTF("irq_window_open\n");
2527 ret
= EXCP_INTERRUPT
;
2529 case KVM_EXIT_SHUTDOWN
:
2530 DPRINTF("shutdown\n");
2531 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
2532 ret
= EXCP_INTERRUPT
;
2534 case KVM_EXIT_UNKNOWN
:
2535 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
2536 (uint64_t)run
->hw
.hardware_exit_reason
);
2539 case KVM_EXIT_INTERNAL_ERROR
:
2540 ret
= kvm_handle_internal_error(cpu
, run
);
2542 case KVM_EXIT_SYSTEM_EVENT
:
2543 switch (run
->system_event
.type
) {
2544 case KVM_SYSTEM_EVENT_SHUTDOWN
:
2545 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN
);
2546 ret
= EXCP_INTERRUPT
;
2548 case KVM_SYSTEM_EVENT_RESET
:
2549 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
2550 ret
= EXCP_INTERRUPT
;
2552 case KVM_SYSTEM_EVENT_CRASH
:
2553 kvm_cpu_synchronize_state(cpu
);
2554 qemu_mutex_lock_iothread();
2555 qemu_system_guest_panicked(cpu_get_crash_info(cpu
));
2556 qemu_mutex_unlock_iothread();
2560 DPRINTF("kvm_arch_handle_exit\n");
2561 ret
= kvm_arch_handle_exit(cpu
, run
);
2566 DPRINTF("kvm_arch_handle_exit\n");
2567 ret
= kvm_arch_handle_exit(cpu
, run
);
2573 qemu_mutex_lock_iothread();
2576 cpu_dump_state(cpu
, stderr
, CPU_DUMP_CODE
);
2577 vm_stop(RUN_STATE_INTERNAL_ERROR
);
2580 qatomic_set(&cpu
->exit_request
, 0);
2584 int kvm_ioctl(KVMState
*s
, int type
, ...)
2591 arg
= va_arg(ap
, void *);
2594 trace_kvm_ioctl(type
, arg
);
2595 ret
= ioctl(s
->fd
, type
, arg
);
2602 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
2609 arg
= va_arg(ap
, void *);
2612 trace_kvm_vm_ioctl(type
, arg
);
2613 ret
= ioctl(s
->vmfd
, type
, arg
);
2620 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
2627 arg
= va_arg(ap
, void *);
2630 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
2631 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
2638 int kvm_device_ioctl(int fd
, int type
, ...)
2645 arg
= va_arg(ap
, void *);
2648 trace_kvm_device_ioctl(fd
, type
, arg
);
2649 ret
= ioctl(fd
, type
, arg
);
2656 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
2659 struct kvm_device_attr attribute
= {
2664 if (!kvm_vm_attributes_allowed
) {
2668 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
2669 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2673 int kvm_device_check_attr(int dev_fd
, uint32_t group
, uint64_t attr
)
2675 struct kvm_device_attr attribute
= {
2681 return kvm_device_ioctl(dev_fd
, KVM_HAS_DEVICE_ATTR
, &attribute
) ? 0 : 1;
2684 int kvm_device_access(int fd
, int group
, uint64_t attr
,
2685 void *val
, bool write
, Error
**errp
)
2687 struct kvm_device_attr kvmattr
;
2691 kvmattr
.group
= group
;
2692 kvmattr
.attr
= attr
;
2693 kvmattr
.addr
= (uintptr_t)val
;
2695 err
= kvm_device_ioctl(fd
,
2696 write
? KVM_SET_DEVICE_ATTR
: KVM_GET_DEVICE_ATTR
,
2699 error_setg_errno(errp
, -err
,
2700 "KVM_%s_DEVICE_ATTR failed: Group %d "
2701 "attr 0x%016" PRIx64
,
2702 write
? "SET" : "GET", group
, attr
);
2707 bool kvm_has_sync_mmu(void)
2709 return kvm_state
->sync_mmu
;
2712 int kvm_has_vcpu_events(void)
2714 return kvm_state
->vcpu_events
;
2717 int kvm_has_robust_singlestep(void)
2719 return kvm_state
->robust_singlestep
;
2722 int kvm_has_debugregs(void)
2724 return kvm_state
->debugregs
;
2727 int kvm_max_nested_state_length(void)
2729 return kvm_state
->max_nested_state_len
;
2732 int kvm_has_many_ioeventfds(void)
2734 if (!kvm_enabled()) {
2737 return kvm_state
->many_ioeventfds
;
2740 int kvm_has_gsi_routing(void)
2742 #ifdef KVM_CAP_IRQ_ROUTING
2743 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
2749 int kvm_has_intx_set_mask(void)
2751 return kvm_state
->intx_set_mask
;
2754 bool kvm_arm_supports_user_irq(void)
2756 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_USER_IRQ
);
2759 #ifdef KVM_CAP_SET_GUEST_DEBUG
2760 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
2763 struct kvm_sw_breakpoint
*bp
;
2765 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
2773 int kvm_sw_breakpoints_active(CPUState
*cpu
)
2775 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
2778 struct kvm_set_guest_debug_data
{
2779 struct kvm_guest_debug dbg
;
2783 static void kvm_invoke_set_guest_debug(CPUState
*cpu
, run_on_cpu_data data
)
2785 struct kvm_set_guest_debug_data
*dbg_data
=
2786 (struct kvm_set_guest_debug_data
*) data
.host_ptr
;
2788 dbg_data
->err
= kvm_vcpu_ioctl(cpu
, KVM_SET_GUEST_DEBUG
,
2792 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2794 struct kvm_set_guest_debug_data data
;
2796 data
.dbg
.control
= reinject_trap
;
2798 if (cpu
->singlestep_enabled
) {
2799 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2801 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2803 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
,
2804 RUN_ON_CPU_HOST_PTR(&data
));
2808 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2809 target_ulong len
, int type
)
2811 struct kvm_sw_breakpoint
*bp
;
2814 if (type
== GDB_BREAKPOINT_SW
) {
2815 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2821 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2824 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2830 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2832 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2839 err
= kvm_update_guest_debug(cpu
, 0);
2847 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2848 target_ulong len
, int type
)
2850 struct kvm_sw_breakpoint
*bp
;
2853 if (type
== GDB_BREAKPOINT_SW
) {
2854 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2859 if (bp
->use_count
> 1) {
2864 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2869 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2872 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2879 err
= kvm_update_guest_debug(cpu
, 0);
2887 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2889 struct kvm_sw_breakpoint
*bp
, *next
;
2890 KVMState
*s
= cpu
->kvm_state
;
2893 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2894 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2895 /* Try harder to find a CPU that currently sees the breakpoint. */
2896 CPU_FOREACH(tmpcpu
) {
2897 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2902 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2905 kvm_arch_remove_all_hw_breakpoints();
2908 kvm_update_guest_debug(cpu
, 0);
2912 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2914 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2919 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2920 target_ulong len
, int type
)
2925 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2926 target_ulong len
, int type
)
2931 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2934 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2936 static int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2938 KVMState
*s
= kvm_state
;
2939 struct kvm_signal_mask
*sigmask
;
2942 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2944 sigmask
->len
= s
->sigmask_len
;
2945 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2946 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2952 static void kvm_ipi_signal(int sig
)
2955 assert(kvm_immediate_exit
);
2956 kvm_cpu_kick(current_cpu
);
2960 void kvm_init_cpu_signals(CPUState
*cpu
)
2964 struct sigaction sigact
;
2966 memset(&sigact
, 0, sizeof(sigact
));
2967 sigact
.sa_handler
= kvm_ipi_signal
;
2968 sigaction(SIG_IPI
, &sigact
, NULL
);
2970 pthread_sigmask(SIG_BLOCK
, NULL
, &set
);
2971 #if defined KVM_HAVE_MCE_INJECTION
2972 sigdelset(&set
, SIGBUS
);
2973 pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
2975 sigdelset(&set
, SIG_IPI
);
2976 if (kvm_immediate_exit
) {
2977 r
= pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
2979 r
= kvm_set_signal_mask(cpu
, &set
);
2982 fprintf(stderr
, "kvm_set_signal_mask: %s\n", strerror(-r
));
2987 /* Called asynchronously in VCPU thread. */
2988 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2990 #ifdef KVM_HAVE_MCE_INJECTION
2991 if (have_sigbus_pending
) {
2994 have_sigbus_pending
= true;
2995 pending_sigbus_addr
= addr
;
2996 pending_sigbus_code
= code
;
2997 qatomic_set(&cpu
->exit_request
, 1);
3004 /* Called synchronously (via signalfd) in main thread. */
3005 int kvm_on_sigbus(int code
, void *addr
)
3007 #ifdef KVM_HAVE_MCE_INJECTION
3008 /* Action required MCE kills the process if SIGBUS is blocked. Because
3009 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3010 * we can only get action optional here.
3012 assert(code
!= BUS_MCEERR_AR
);
3013 kvm_arch_on_sigbus_vcpu(first_cpu
, code
, addr
);
3020 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
3023 struct kvm_create_device create_dev
;
3025 create_dev
.type
= type
;
3027 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
3029 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
3033 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
3038 return test
? 0 : create_dev
.fd
;
3041 bool kvm_device_supported(int vmfd
, uint64_t type
)
3043 struct kvm_create_device create_dev
= {
3046 .flags
= KVM_CREATE_DEVICE_TEST
,
3049 if (ioctl(vmfd
, KVM_CHECK_EXTENSION
, KVM_CAP_DEVICE_CTRL
) <= 0) {
3053 return (ioctl(vmfd
, KVM_CREATE_DEVICE
, &create_dev
) >= 0);
3056 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
3058 struct kvm_one_reg reg
;
3062 reg
.addr
= (uintptr_t) source
;
3063 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
3065 trace_kvm_failed_reg_set(id
, strerror(-r
));
3070 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
3072 struct kvm_one_reg reg
;
3076 reg
.addr
= (uintptr_t) target
;
3077 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
3079 trace_kvm_failed_reg_get(id
, strerror(-r
));
3084 static bool kvm_accel_has_memory(MachineState
*ms
, AddressSpace
*as
,
3085 hwaddr start_addr
, hwaddr size
)
3087 KVMState
*kvm
= KVM_STATE(ms
->accelerator
);
3090 for (i
= 0; i
< kvm
->nr_as
; ++i
) {
3091 if (kvm
->as
[i
].as
== as
&& kvm
->as
[i
].ml
) {
3092 size
= MIN(kvm_max_slot_size
, size
);
3093 return NULL
!= kvm_lookup_matching_slot(kvm
->as
[i
].ml
,
3101 static void kvm_get_kvm_shadow_mem(Object
*obj
, Visitor
*v
,
3102 const char *name
, void *opaque
,
3105 KVMState
*s
= KVM_STATE(obj
);
3106 int64_t value
= s
->kvm_shadow_mem
;
3108 visit_type_int(v
, name
, &value
, errp
);
3111 static void kvm_set_kvm_shadow_mem(Object
*obj
, Visitor
*v
,
3112 const char *name
, void *opaque
,
3115 KVMState
*s
= KVM_STATE(obj
);
3118 if (!visit_type_int(v
, name
, &value
, errp
)) {
3122 s
->kvm_shadow_mem
= value
;
3125 static void kvm_set_kernel_irqchip(Object
*obj
, Visitor
*v
,
3126 const char *name
, void *opaque
,
3129 KVMState
*s
= KVM_STATE(obj
);
3132 if (!visit_type_OnOffSplit(v
, name
, &mode
, errp
)) {
3136 case ON_OFF_SPLIT_ON
:
3137 s
->kernel_irqchip_allowed
= true;
3138 s
->kernel_irqchip_required
= true;
3139 s
->kernel_irqchip_split
= ON_OFF_AUTO_OFF
;
3141 case ON_OFF_SPLIT_OFF
:
3142 s
->kernel_irqchip_allowed
= false;
3143 s
->kernel_irqchip_required
= false;
3144 s
->kernel_irqchip_split
= ON_OFF_AUTO_OFF
;
3146 case ON_OFF_SPLIT_SPLIT
:
3147 s
->kernel_irqchip_allowed
= true;
3148 s
->kernel_irqchip_required
= true;
3149 s
->kernel_irqchip_split
= ON_OFF_AUTO_ON
;
3152 /* The value was checked in visit_type_OnOffSplit() above. If
3153 * we get here, then something is wrong in QEMU.
3159 bool kvm_kernel_irqchip_allowed(void)
3161 return kvm_state
->kernel_irqchip_allowed
;
3164 bool kvm_kernel_irqchip_required(void)
3166 return kvm_state
->kernel_irqchip_required
;
3169 bool kvm_kernel_irqchip_split(void)
3171 return kvm_state
->kernel_irqchip_split
== ON_OFF_AUTO_ON
;
3174 static void kvm_accel_instance_init(Object
*obj
)
3176 KVMState
*s
= KVM_STATE(obj
);
3178 s
->kvm_shadow_mem
= -1;
3179 s
->kernel_irqchip_allowed
= true;
3180 s
->kernel_irqchip_split
= ON_OFF_AUTO_AUTO
;
3183 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
3185 AccelClass
*ac
= ACCEL_CLASS(oc
);
3187 ac
->init_machine
= kvm_init
;
3188 ac
->has_memory
= kvm_accel_has_memory
;
3189 ac
->allowed
= &kvm_allowed
;
3191 object_class_property_add(oc
, "kernel-irqchip", "on|off|split",
3192 NULL
, kvm_set_kernel_irqchip
,
3194 object_class_property_set_description(oc
, "kernel-irqchip",
3195 "Configure KVM in-kernel irqchip");
3197 object_class_property_add(oc
, "kvm-shadow-mem", "int",
3198 kvm_get_kvm_shadow_mem
, kvm_set_kvm_shadow_mem
,
3200 object_class_property_set_description(oc
, "kvm-shadow-mem",
3201 "KVM shadow MMU size");
3204 static const TypeInfo kvm_accel_type
= {
3205 .name
= TYPE_KVM_ACCEL
,
3206 .parent
= TYPE_ACCEL
,
3207 .instance_init
= kvm_accel_instance_init
,
3208 .class_init
= kvm_accel_class_init
,
3209 .instance_size
= sizeof(KVMState
),
3212 static void kvm_type_init(void)
3214 type_register_static(&kvm_accel_type
);
3217 type_init(kvm_type_init
);