4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "qemu/error-report.h"
29 #include "hw/pci/msi.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm_int.h"
33 #include "qemu/bswap.h"
34 #include "exec/memory.h"
35 #include "exec/ram_addr.h"
36 #include "exec/address-spaces.h"
37 #include "qemu/event_notifier.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
45 #include <sys/eventfd.h>
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #define DPRINTF(fmt, ...) \
61 #define KVM_MSI_HASHTAB_SIZE 256
65 AccelState parent_obj
;
71 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
72 bool coalesced_flush_in_progress
;
73 int broken_set_mem_region
;
75 int robust_singlestep
;
77 #ifdef KVM_CAP_SET_GUEST_DEBUG
78 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
82 /* The man page (and posix) say ioctl numbers are signed int, but
83 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
84 * unsigned, and treating them as signed here can break things */
85 unsigned irq_set_ioctl
;
86 unsigned int sigmask_len
;
88 #ifdef KVM_CAP_IRQ_ROUTING
89 struct kvm_irq_routing
*irq_routes
;
90 int nr_allocated_irq_routes
;
91 uint32_t *used_gsi_bitmap
;
92 unsigned int gsi_count
;
93 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
95 KVMMemoryListener memory_listener
;
99 bool kvm_kernel_irqchip
;
100 bool kvm_async_interrupts_allowed
;
101 bool kvm_halt_in_kernel_allowed
;
102 bool kvm_eventfds_allowed
;
103 bool kvm_irqfds_allowed
;
104 bool kvm_resamplefds_allowed
;
105 bool kvm_msi_via_irqfd_allowed
;
106 bool kvm_gsi_routing_allowed
;
107 bool kvm_gsi_direct_mapping
;
109 bool kvm_readonly_mem_allowed
;
110 bool kvm_vm_attributes_allowed
;
111 bool kvm_direct_msi_allowed
;
113 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
114 KVM_CAP_INFO(USER_MEMORY
),
115 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
119 static KVMSlot
*kvm_get_free_slot(KVMMemoryListener
*kml
)
121 KVMState
*s
= kvm_state
;
124 for (i
= 0; i
< s
->nr_slots
; i
++) {
125 if (kml
->slots
[i
].memory_size
== 0) {
126 return &kml
->slots
[i
];
133 bool kvm_has_free_slot(MachineState
*ms
)
135 KVMState
*s
= KVM_STATE(ms
->accelerator
);
137 return kvm_get_free_slot(&s
->memory_listener
);
140 static KVMSlot
*kvm_alloc_slot(KVMMemoryListener
*kml
)
142 KVMSlot
*slot
= kvm_get_free_slot(kml
);
148 fprintf(stderr
, "%s: no free slot available\n", __func__
);
152 static KVMSlot
*kvm_lookup_matching_slot(KVMMemoryListener
*kml
,
156 KVMState
*s
= kvm_state
;
159 for (i
= 0; i
< s
->nr_slots
; i
++) {
160 KVMSlot
*mem
= &kml
->slots
[i
];
162 if (start_addr
== mem
->start_addr
&&
163 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
172 * Find overlapping slot with lowest start address
174 static KVMSlot
*kvm_lookup_overlapping_slot(KVMMemoryListener
*kml
,
178 KVMState
*s
= kvm_state
;
179 KVMSlot
*found
= NULL
;
182 for (i
= 0; i
< s
->nr_slots
; i
++) {
183 KVMSlot
*mem
= &kml
->slots
[i
];
185 if (mem
->memory_size
== 0 ||
186 (found
&& found
->start_addr
< mem
->start_addr
)) {
190 if (end_addr
> mem
->start_addr
&&
191 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
199 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
202 KVMMemoryListener
*kml
= &s
->memory_listener
;
205 for (i
= 0; i
< s
->nr_slots
; i
++) {
206 KVMSlot
*mem
= &kml
->slots
[i
];
208 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
209 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
217 static int kvm_set_user_memory_region(KVMMemoryListener
*kml
, KVMSlot
*slot
)
219 KVMState
*s
= kvm_state
;
220 struct kvm_userspace_memory_region mem
;
222 mem
.slot
= slot
->slot
| (kml
->as_id
<< 16);
223 mem
.guest_phys_addr
= slot
->start_addr
;
224 mem
.userspace_addr
= (unsigned long)slot
->ram
;
225 mem
.flags
= slot
->flags
;
227 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
228 /* Set the slot size to 0 before setting the slot to the desired
229 * value. This is needed based on KVM commit 75d61fbc. */
231 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
233 mem
.memory_size
= slot
->memory_size
;
234 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
237 int kvm_init_vcpu(CPUState
*cpu
)
239 KVMState
*s
= kvm_state
;
243 DPRINTF("kvm_init_vcpu\n");
245 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
247 DPRINTF("kvm_create_vcpu failed\n");
253 cpu
->kvm_vcpu_dirty
= true;
255 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
258 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
262 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
264 if (cpu
->kvm_run
== MAP_FAILED
) {
266 DPRINTF("mmap'ing vcpu state failed\n");
270 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
271 s
->coalesced_mmio_ring
=
272 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
275 ret
= kvm_arch_init_vcpu(cpu
);
281 * dirty pages logging control
284 static int kvm_mem_flags(MemoryRegion
*mr
)
286 bool readonly
= mr
->readonly
|| memory_region_is_romd(mr
);
289 if (memory_region_get_dirty_log_mask(mr
) != 0) {
290 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
292 if (readonly
&& kvm_readonly_mem_allowed
) {
293 flags
|= KVM_MEM_READONLY
;
298 static int kvm_slot_update_flags(KVMMemoryListener
*kml
, KVMSlot
*mem
,
303 old_flags
= mem
->flags
;
304 mem
->flags
= kvm_mem_flags(mr
);
306 /* If nothing changed effectively, no need to issue ioctl */
307 if (mem
->flags
== old_flags
) {
311 return kvm_set_user_memory_region(kml
, mem
);
314 static int kvm_section_update_flags(KVMMemoryListener
*kml
,
315 MemoryRegionSection
*section
)
317 hwaddr phys_addr
= section
->offset_within_address_space
;
318 ram_addr_t size
= int128_get64(section
->size
);
319 KVMSlot
*mem
= kvm_lookup_matching_slot(kml
, phys_addr
, phys_addr
+ size
);
324 return kvm_slot_update_flags(kml
, mem
, section
->mr
);
328 static void kvm_log_start(MemoryListener
*listener
,
329 MemoryRegionSection
*section
,
332 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
339 r
= kvm_section_update_flags(kml
, section
);
345 static void kvm_log_stop(MemoryListener
*listener
,
346 MemoryRegionSection
*section
,
349 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
356 r
= kvm_section_update_flags(kml
, section
);
362 /* get kvm's dirty pages bitmap and update qemu's */
363 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
364 unsigned long *bitmap
)
366 ram_addr_t start
= section
->offset_within_region
+ section
->mr
->ram_addr
;
367 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
369 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
373 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
376 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
377 * This function updates qemu's dirty bitmap using
378 * memory_region_set_dirty(). This means all bits are set
381 * @start_add: start of logged region.
382 * @end_addr: end of logged region.
384 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener
*kml
,
385 MemoryRegionSection
*section
)
387 KVMState
*s
= kvm_state
;
388 unsigned long size
, allocated_size
= 0;
389 struct kvm_dirty_log d
= {};
392 hwaddr start_addr
= section
->offset_within_address_space
;
393 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
395 d
.dirty_bitmap
= NULL
;
396 while (start_addr
< end_addr
) {
397 mem
= kvm_lookup_overlapping_slot(kml
, start_addr
, end_addr
);
402 /* XXX bad kernel interface alert
403 * For dirty bitmap, kernel allocates array of size aligned to
404 * bits-per-long. But for case when the kernel is 64bits and
405 * the userspace is 32bits, userspace can't align to the same
406 * bits-per-long, since sizeof(long) is different between kernel
407 * and user space. This way, userspace will provide buffer which
408 * may be 4 bytes less than the kernel will use, resulting in
409 * userspace memory corruption (which is not detectable by valgrind
410 * too, in most cases).
411 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
412 * a hope that sizeof(long) wont become >8 any time soon.
414 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
415 /*HOST_LONG_BITS*/ 64) / 8;
416 if (!d
.dirty_bitmap
) {
417 d
.dirty_bitmap
= g_malloc(size
);
418 } else if (size
> allocated_size
) {
419 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
421 allocated_size
= size
;
422 memset(d
.dirty_bitmap
, 0, allocated_size
);
424 d
.slot
= mem
->slot
| (kml
->as_id
<< 16);
425 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
426 DPRINTF("ioctl failed %d\n", errno
);
431 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
432 start_addr
= mem
->start_addr
+ mem
->memory_size
;
434 g_free(d
.dirty_bitmap
);
439 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
440 MemoryRegionSection
*secion
,
441 hwaddr start
, hwaddr size
)
443 KVMState
*s
= kvm_state
;
445 if (s
->coalesced_mmio
) {
446 struct kvm_coalesced_mmio_zone zone
;
452 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
456 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
457 MemoryRegionSection
*secion
,
458 hwaddr start
, hwaddr size
)
460 KVMState
*s
= kvm_state
;
462 if (s
->coalesced_mmio
) {
463 struct kvm_coalesced_mmio_zone zone
;
469 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
473 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
477 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
485 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
489 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
491 /* VM wide version not implemented, use global one instead */
492 ret
= kvm_check_extension(s
, extension
);
498 static uint32_t adjust_ioeventfd_endianness(uint32_t val
, uint32_t size
)
500 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
501 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
502 * endianness, but the memory core hands them in target endianness.
503 * For example, PPC is always treated as big-endian even if running
504 * on KVM and on PPC64LE. Correct here.
518 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
519 bool assign
, uint32_t size
, bool datamatch
)
522 struct kvm_ioeventfd iofd
= {
523 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
530 if (!kvm_enabled()) {
535 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
538 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
541 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
550 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
551 bool assign
, uint32_t size
, bool datamatch
)
553 struct kvm_ioeventfd kick
= {
554 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
556 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
561 if (!kvm_enabled()) {
565 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
568 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
570 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
578 static int kvm_check_many_ioeventfds(void)
580 /* Userspace can use ioeventfd for io notification. This requires a host
581 * that supports eventfd(2) and an I/O thread; since eventfd does not
582 * support SIGIO it cannot interrupt the vcpu.
584 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
585 * can avoid creating too many ioeventfds.
587 #if defined(CONFIG_EVENTFD)
590 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
591 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
592 if (ioeventfds
[i
] < 0) {
595 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
597 close(ioeventfds
[i
]);
602 /* Decide whether many devices are supported or not */
603 ret
= i
== ARRAY_SIZE(ioeventfds
);
606 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
607 close(ioeventfds
[i
]);
615 static const KVMCapabilityInfo
*
616 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
619 if (!kvm_check_extension(s
, list
->value
)) {
627 static void kvm_set_phys_mem(KVMMemoryListener
*kml
,
628 MemoryRegionSection
*section
, bool add
)
630 KVMState
*s
= kvm_state
;
633 MemoryRegion
*mr
= section
->mr
;
634 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
635 hwaddr start_addr
= section
->offset_within_address_space
;
636 ram_addr_t size
= int128_get64(section
->size
);
640 /* kvm works in page size chunks, but the function may be called
641 with sub-page size and unaligned start address. Pad the start
642 address to next and truncate size to previous page boundary. */
643 delta
= qemu_real_host_page_size
- (start_addr
& ~qemu_real_host_page_mask
);
644 delta
&= ~qemu_real_host_page_mask
;
650 size
&= qemu_real_host_page_mask
;
651 if (!size
|| (start_addr
& ~qemu_real_host_page_mask
)) {
655 if (!memory_region_is_ram(mr
)) {
656 if (writeable
|| !kvm_readonly_mem_allowed
) {
658 } else if (!mr
->romd_mode
) {
659 /* If the memory device is not in romd_mode, then we actually want
660 * to remove the kvm memory slot so all accesses will trap. */
665 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
668 mem
= kvm_lookup_overlapping_slot(kml
, start_addr
, start_addr
+ size
);
673 if (add
&& start_addr
>= mem
->start_addr
&&
674 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
675 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
676 /* The new slot fits into the existing one and comes with
677 * identical parameters - update flags and done. */
678 kvm_slot_update_flags(kml
, mem
, mr
);
684 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
685 kvm_physical_sync_dirty_bitmap(kml
, section
);
688 /* unregister the overlapping slot */
689 mem
->memory_size
= 0;
690 err
= kvm_set_user_memory_region(kml
, mem
);
692 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
693 __func__
, strerror(-err
));
697 /* Workaround for older KVM versions: we can't join slots, even not by
698 * unregistering the previous ones and then registering the larger
699 * slot. We have to maintain the existing fragmentation. Sigh.
701 * This workaround assumes that the new slot starts at the same
702 * address as the first existing one. If not or if some overlapping
703 * slot comes around later, we will fail (not seen in practice so far)
704 * - and actually require a recent KVM version. */
705 if (s
->broken_set_mem_region
&&
706 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
707 mem
= kvm_alloc_slot(kml
);
708 mem
->memory_size
= old
.memory_size
;
709 mem
->start_addr
= old
.start_addr
;
711 mem
->flags
= kvm_mem_flags(mr
);
713 err
= kvm_set_user_memory_region(kml
, mem
);
715 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
720 start_addr
+= old
.memory_size
;
721 ram
+= old
.memory_size
;
722 size
-= old
.memory_size
;
726 /* register prefix slot */
727 if (old
.start_addr
< start_addr
) {
728 mem
= kvm_alloc_slot(kml
);
729 mem
->memory_size
= start_addr
- old
.start_addr
;
730 mem
->start_addr
= old
.start_addr
;
732 mem
->flags
= kvm_mem_flags(mr
);
734 err
= kvm_set_user_memory_region(kml
, mem
);
736 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
737 __func__
, strerror(-err
));
739 fprintf(stderr
, "%s: This is probably because your kernel's " \
740 "PAGE_SIZE is too big. Please try to use 4k " \
741 "PAGE_SIZE!\n", __func__
);
747 /* register suffix slot */
748 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
749 ram_addr_t size_delta
;
751 mem
= kvm_alloc_slot(kml
);
752 mem
->start_addr
= start_addr
+ size
;
753 size_delta
= mem
->start_addr
- old
.start_addr
;
754 mem
->memory_size
= old
.memory_size
- size_delta
;
755 mem
->ram
= old
.ram
+ size_delta
;
756 mem
->flags
= kvm_mem_flags(mr
);
758 err
= kvm_set_user_memory_region(kml
, mem
);
760 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
761 __func__
, strerror(-err
));
767 /* in case the KVM bug workaround already "consumed" the new slot */
774 mem
= kvm_alloc_slot(kml
);
775 mem
->memory_size
= size
;
776 mem
->start_addr
= start_addr
;
778 mem
->flags
= kvm_mem_flags(mr
);
780 err
= kvm_set_user_memory_region(kml
, mem
);
782 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
788 static void kvm_region_add(MemoryListener
*listener
,
789 MemoryRegionSection
*section
)
791 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
793 memory_region_ref(section
->mr
);
794 kvm_set_phys_mem(kml
, section
, true);
797 static void kvm_region_del(MemoryListener
*listener
,
798 MemoryRegionSection
*section
)
800 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
802 kvm_set_phys_mem(kml
, section
, false);
803 memory_region_unref(section
->mr
);
806 static void kvm_log_sync(MemoryListener
*listener
,
807 MemoryRegionSection
*section
)
809 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
812 r
= kvm_physical_sync_dirty_bitmap(kml
, section
);
818 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
819 MemoryRegionSection
*section
,
820 bool match_data
, uint64_t data
,
823 int fd
= event_notifier_get_fd(e
);
826 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
827 data
, true, int128_get64(section
->size
),
830 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
831 __func__
, strerror(-r
));
836 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
837 MemoryRegionSection
*section
,
838 bool match_data
, uint64_t data
,
841 int fd
= event_notifier_get_fd(e
);
844 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
845 data
, false, int128_get64(section
->size
),
852 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
853 MemoryRegionSection
*section
,
854 bool match_data
, uint64_t data
,
857 int fd
= event_notifier_get_fd(e
);
860 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
861 data
, true, int128_get64(section
->size
),
864 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
865 __func__
, strerror(-r
));
870 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
871 MemoryRegionSection
*section
,
872 bool match_data
, uint64_t data
,
876 int fd
= event_notifier_get_fd(e
);
879 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
880 data
, false, int128_get64(section
->size
),
887 void kvm_memory_listener_register(KVMState
*s
, KVMMemoryListener
*kml
,
888 AddressSpace
*as
, int as_id
)
892 kml
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
895 for (i
= 0; i
< s
->nr_slots
; i
++) {
896 kml
->slots
[i
].slot
= i
;
899 kml
->listener
.region_add
= kvm_region_add
;
900 kml
->listener
.region_del
= kvm_region_del
;
901 kml
->listener
.log_start
= kvm_log_start
;
902 kml
->listener
.log_stop
= kvm_log_stop
;
903 kml
->listener
.log_sync
= kvm_log_sync
;
904 kml
->listener
.priority
= 10;
906 memory_listener_register(&kml
->listener
, as
);
909 static MemoryListener kvm_io_listener
= {
910 .eventfd_add
= kvm_io_ioeventfd_add
,
911 .eventfd_del
= kvm_io_ioeventfd_del
,
915 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
917 cpu
->interrupt_request
|= mask
;
919 if (!qemu_cpu_is_self(cpu
)) {
924 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
926 struct kvm_irq_level event
;
929 assert(kvm_async_interrupts_enabled());
933 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
935 perror("kvm_set_irq");
939 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
942 #ifdef KVM_CAP_IRQ_ROUTING
943 typedef struct KVMMSIRoute
{
944 struct kvm_irq_routing_entry kroute
;
945 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
948 static void set_gsi(KVMState
*s
, unsigned int gsi
)
950 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
953 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
955 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
958 void kvm_init_irq_routing(KVMState
*s
)
962 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
964 unsigned int gsi_bits
, i
;
966 /* Round up so we can search ints using ffs */
967 gsi_bits
= ALIGN(gsi_count
, 32);
968 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
969 s
->gsi_count
= gsi_count
;
971 /* Mark any over-allocated bits as already in use */
972 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
977 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
978 s
->nr_allocated_irq_routes
= 0;
980 if (!kvm_direct_msi_allowed
) {
981 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
982 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
986 kvm_arch_init_irq_routing(s
);
989 void kvm_irqchip_commit_routes(KVMState
*s
)
993 s
->irq_routes
->flags
= 0;
994 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
998 static void kvm_add_routing_entry(KVMState
*s
,
999 struct kvm_irq_routing_entry
*entry
)
1001 struct kvm_irq_routing_entry
*new;
1004 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1005 n
= s
->nr_allocated_irq_routes
* 2;
1009 size
= sizeof(struct kvm_irq_routing
);
1010 size
+= n
* sizeof(*new);
1011 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1012 s
->nr_allocated_irq_routes
= n
;
1014 n
= s
->irq_routes
->nr
++;
1015 new = &s
->irq_routes
->entries
[n
];
1019 set_gsi(s
, entry
->gsi
);
1022 static int kvm_update_routing_entry(KVMState
*s
,
1023 struct kvm_irq_routing_entry
*new_entry
)
1025 struct kvm_irq_routing_entry
*entry
;
1028 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1029 entry
= &s
->irq_routes
->entries
[n
];
1030 if (entry
->gsi
!= new_entry
->gsi
) {
1034 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1038 *entry
= *new_entry
;
1040 kvm_irqchip_commit_routes(s
);
1048 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1050 struct kvm_irq_routing_entry e
= {};
1052 assert(pin
< s
->gsi_count
);
1055 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1057 e
.u
.irqchip
.irqchip
= irqchip
;
1058 e
.u
.irqchip
.pin
= pin
;
1059 kvm_add_routing_entry(s
, &e
);
1062 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1064 struct kvm_irq_routing_entry
*e
;
1067 if (kvm_gsi_direct_mapping()) {
1071 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1072 e
= &s
->irq_routes
->entries
[i
];
1073 if (e
->gsi
== virq
) {
1074 s
->irq_routes
->nr
--;
1075 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1081 static unsigned int kvm_hash_msi(uint32_t data
)
1083 /* This is optimized for IA32 MSI layout. However, no other arch shall
1084 * repeat the mistake of not providing a direct MSI injection API. */
1088 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1090 KVMMSIRoute
*route
, *next
;
1093 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1094 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1095 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1096 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1102 static int kvm_irqchip_get_virq(KVMState
*s
)
1104 uint32_t *word
= s
->used_gsi_bitmap
;
1105 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1109 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1110 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1111 * number can succeed even though a new route entry cannot be added.
1112 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1114 if (!kvm_direct_msi_allowed
&& s
->irq_routes
->nr
== s
->gsi_count
) {
1115 kvm_flush_dynamic_msi_routes(s
);
1118 /* Return the lowest unused GSI in the bitmap */
1119 for (i
= 0; i
< max_words
; i
++) {
1120 zeroes
= ctz32(~word
[i
]);
1125 return zeroes
+ i
* 32;
1131 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1133 unsigned int hash
= kvm_hash_msi(msg
.data
);
1136 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1137 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1138 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1139 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1146 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1151 if (kvm_direct_msi_allowed
) {
1152 msi
.address_lo
= (uint32_t)msg
.address
;
1153 msi
.address_hi
= msg
.address
>> 32;
1154 msi
.data
= le32_to_cpu(msg
.data
);
1156 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1158 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1161 route
= kvm_lookup_msi_route(s
, msg
);
1165 virq
= kvm_irqchip_get_virq(s
);
1170 route
= g_malloc0(sizeof(KVMMSIRoute
));
1171 route
->kroute
.gsi
= virq
;
1172 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1173 route
->kroute
.flags
= 0;
1174 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1175 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1176 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1178 kvm_add_routing_entry(s
, &route
->kroute
);
1179 kvm_irqchip_commit_routes(s
);
1181 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1185 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1187 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1190 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
, PCIDevice
*dev
)
1192 struct kvm_irq_routing_entry kroute
= {};
1195 if (kvm_gsi_direct_mapping()) {
1196 return kvm_arch_msi_data_to_gsi(msg
.data
);
1199 if (!kvm_gsi_routing_enabled()) {
1203 virq
= kvm_irqchip_get_virq(s
);
1209 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1211 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1212 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1213 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1214 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1215 kvm_irqchip_release_virq(s
, virq
);
1219 kvm_add_routing_entry(s
, &kroute
);
1220 kvm_irqchip_commit_routes(s
);
1225 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
,
1228 struct kvm_irq_routing_entry kroute
= {};
1230 if (kvm_gsi_direct_mapping()) {
1234 if (!kvm_irqchip_in_kernel()) {
1239 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1241 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1242 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1243 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1244 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1248 return kvm_update_routing_entry(s
, &kroute
);
1251 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1254 struct kvm_irqfd irqfd
= {
1257 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1261 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1262 irqfd
.resamplefd
= rfd
;
1265 if (!kvm_irqfds_enabled()) {
1269 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1272 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1274 struct kvm_irq_routing_entry kroute
= {};
1277 if (!kvm_gsi_routing_enabled()) {
1281 virq
= kvm_irqchip_get_virq(s
);
1287 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1289 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1290 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1291 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1292 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1293 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1295 kvm_add_routing_entry(s
, &kroute
);
1300 #else /* !KVM_CAP_IRQ_ROUTING */
1302 void kvm_init_irq_routing(KVMState
*s
)
1306 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1310 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1315 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1320 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1325 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1330 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1334 #endif /* !KVM_CAP_IRQ_ROUTING */
1336 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1337 EventNotifier
*rn
, int virq
)
1339 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1340 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1343 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1346 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1350 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1351 EventNotifier
*rn
, qemu_irq irq
)
1354 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1359 return kvm_irqchip_add_irqfd_notifier_gsi(s
, n
, rn
, GPOINTER_TO_INT(gsi
));
1362 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1366 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1371 return kvm_irqchip_remove_irqfd_notifier_gsi(s
, n
, GPOINTER_TO_INT(gsi
));
1374 void kvm_irqchip_set_qemuirq_gsi(KVMState
*s
, qemu_irq irq
, int gsi
)
1376 g_hash_table_insert(s
->gsimap
, irq
, GINT_TO_POINTER(gsi
));
1379 static void kvm_irqchip_create(MachineState
*machine
, KVMState
*s
)
1383 if (kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1385 } else if (kvm_check_extension(s
, KVM_CAP_S390_IRQCHIP
)) {
1386 ret
= kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0);
1388 fprintf(stderr
, "Enable kernel irqchip failed: %s\n", strerror(-ret
));
1395 /* First probe and see if there's a arch-specific hook to create the
1396 * in-kernel irqchip for us */
1397 ret
= kvm_arch_irqchip_create(s
);
1399 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1402 fprintf(stderr
, "Create kernel irqchip failed: %s\n", strerror(-ret
));
1406 kvm_kernel_irqchip
= true;
1407 /* If we have an in-kernel IRQ chip then we must have asynchronous
1408 * interrupt delivery (though the reverse is not necessarily true)
1410 kvm_async_interrupts_allowed
= true;
1411 kvm_halt_in_kernel_allowed
= true;
1413 kvm_init_irq_routing(s
);
1415 s
->gsimap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
1418 /* Find number of supported CPUs using the recommended
1419 * procedure from the kernel API documentation to cope with
1420 * older kernels that may be missing capabilities.
1422 static int kvm_recommended_vcpus(KVMState
*s
)
1424 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1425 return (ret
) ? ret
: 4;
1428 static int kvm_max_vcpus(KVMState
*s
)
1430 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1431 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1434 static int kvm_init(MachineState
*ms
)
1436 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1437 static const char upgrade_note
[] =
1438 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1439 "(see http://sourceforge.net/projects/kvm).\n";
1444 { "SMP", smp_cpus
},
1445 { "hotpluggable", max_cpus
},
1448 int soft_vcpus_limit
, hard_vcpus_limit
;
1450 const KVMCapabilityInfo
*missing_cap
;
1453 const char *kvm_type
;
1455 s
= KVM_STATE(ms
->accelerator
);
1458 * On systems where the kernel can support different base page
1459 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1460 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1461 * page size for the system though.
1463 assert(TARGET_PAGE_SIZE
<= getpagesize());
1468 #ifdef KVM_CAP_SET_GUEST_DEBUG
1469 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1472 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1474 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1479 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1480 if (ret
< KVM_API_VERSION
) {
1484 fprintf(stderr
, "kvm version too old\n");
1488 if (ret
> KVM_API_VERSION
) {
1490 fprintf(stderr
, "kvm version not supported\n");
1494 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1496 /* If unspecified, use the default value */
1501 /* check the vcpu limits */
1502 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1503 hard_vcpus_limit
= kvm_max_vcpus(s
);
1506 if (nc
->num
> soft_vcpus_limit
) {
1508 "Warning: Number of %s cpus requested (%d) exceeds "
1509 "the recommended cpus supported by KVM (%d)\n",
1510 nc
->name
, nc
->num
, soft_vcpus_limit
);
1512 if (nc
->num
> hard_vcpus_limit
) {
1513 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1514 "the maximum cpus supported by KVM (%d)\n",
1515 nc
->name
, nc
->num
, hard_vcpus_limit
);
1522 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1524 type
= mc
->kvm_type(kvm_type
);
1525 } else if (kvm_type
) {
1527 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1532 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1533 } while (ret
== -EINTR
);
1536 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1540 if (ret
== -EINVAL
) {
1542 "Host kernel setup problem detected. Please verify:\n");
1543 fprintf(stderr
, "- for kernels supporting the switch_amode or"
1544 " user_mode parameters, whether\n");
1546 " user space is running in primary address space\n");
1548 "- for kernels supporting the vm.allocate_pgste sysctl, "
1549 "whether it is enabled\n");
1556 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1559 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1563 fprintf(stderr
, "kvm does not support %s\n%s",
1564 missing_cap
->name
, upgrade_note
);
1568 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1570 s
->broken_set_mem_region
= 1;
1571 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1573 s
->broken_set_mem_region
= 0;
1576 #ifdef KVM_CAP_VCPU_EVENTS
1577 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1580 s
->robust_singlestep
=
1581 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1583 #ifdef KVM_CAP_DEBUGREGS
1584 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1587 #ifdef KVM_CAP_IRQ_ROUTING
1588 kvm_direct_msi_allowed
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1591 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1593 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1594 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1595 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1598 #ifdef KVM_CAP_READONLY_MEM
1599 kvm_readonly_mem_allowed
=
1600 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1603 kvm_eventfds_allowed
=
1604 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1606 kvm_irqfds_allowed
=
1607 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
1609 kvm_resamplefds_allowed
=
1610 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
1612 kvm_vm_attributes_allowed
=
1613 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
1615 ret
= kvm_arch_init(ms
, s
);
1620 if (machine_kernel_irqchip_allowed(ms
)) {
1621 kvm_irqchip_create(ms
, s
);
1626 s
->memory_listener
.listener
.eventfd_add
= kvm_mem_ioeventfd_add
;
1627 s
->memory_listener
.listener
.eventfd_del
= kvm_mem_ioeventfd_del
;
1628 s
->memory_listener
.listener
.coalesced_mmio_add
= kvm_coalesce_mmio_region
;
1629 s
->memory_listener
.listener
.coalesced_mmio_del
= kvm_uncoalesce_mmio_region
;
1631 kvm_memory_listener_register(s
, &s
->memory_listener
,
1632 &address_space_memory
, 0);
1633 memory_listener_register(&kvm_io_listener
,
1636 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1638 cpu_interrupt_handler
= kvm_handle_interrupt
;
1650 g_free(s
->memory_listener
.slots
);
1655 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
1657 s
->sigmask_len
= sigmask_len
;
1660 static void kvm_handle_io(uint16_t port
, MemTxAttrs attrs
, void *data
, int direction
,
1661 int size
, uint32_t count
)
1664 uint8_t *ptr
= data
;
1666 for (i
= 0; i
< count
; i
++) {
1667 address_space_rw(&address_space_io
, port
, attrs
,
1669 direction
== KVM_EXIT_IO_OUT
);
1674 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1676 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1677 run
->internal
.suberror
);
1679 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1682 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1683 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1684 i
, (uint64_t)run
->internal
.data
[i
]);
1687 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1688 fprintf(stderr
, "emulation failure\n");
1689 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1690 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1691 return EXCP_INTERRUPT
;
1694 /* FIXME: Should trigger a qmp message to let management know
1695 * something went wrong.
1700 void kvm_flush_coalesced_mmio_buffer(void)
1702 KVMState
*s
= kvm_state
;
1704 if (s
->coalesced_flush_in_progress
) {
1708 s
->coalesced_flush_in_progress
= true;
1710 if (s
->coalesced_mmio_ring
) {
1711 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1712 while (ring
->first
!= ring
->last
) {
1713 struct kvm_coalesced_mmio
*ent
;
1715 ent
= &ring
->coalesced_mmio
[ring
->first
];
1717 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1719 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1723 s
->coalesced_flush_in_progress
= false;
1726 static void do_kvm_cpu_synchronize_state(void *arg
)
1728 CPUState
*cpu
= arg
;
1730 if (!cpu
->kvm_vcpu_dirty
) {
1731 kvm_arch_get_registers(cpu
);
1732 cpu
->kvm_vcpu_dirty
= true;
1736 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1738 if (!cpu
->kvm_vcpu_dirty
) {
1739 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1743 static void do_kvm_cpu_synchronize_post_reset(void *arg
)
1745 CPUState
*cpu
= arg
;
1747 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1748 cpu
->kvm_vcpu_dirty
= false;
1751 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1753 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, cpu
);
1756 static void do_kvm_cpu_synchronize_post_init(void *arg
)
1758 CPUState
*cpu
= arg
;
1760 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1761 cpu
->kvm_vcpu_dirty
= false;
1764 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1766 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, cpu
);
1769 void kvm_cpu_clean_state(CPUState
*cpu
)
1771 cpu
->kvm_vcpu_dirty
= false;
1774 int kvm_cpu_exec(CPUState
*cpu
)
1776 struct kvm_run
*run
= cpu
->kvm_run
;
1779 DPRINTF("kvm_cpu_exec()\n");
1781 if (kvm_arch_process_async_events(cpu
)) {
1782 cpu
->exit_request
= 0;
1786 qemu_mutex_unlock_iothread();
1791 if (cpu
->kvm_vcpu_dirty
) {
1792 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1793 cpu
->kvm_vcpu_dirty
= false;
1796 kvm_arch_pre_run(cpu
, run
);
1797 if (cpu
->exit_request
) {
1798 DPRINTF("interrupt exit requested\n");
1800 * KVM requires us to reenter the kernel after IO exits to complete
1801 * instruction emulation. This self-signal will ensure that we
1804 qemu_cpu_kick_self();
1807 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1809 attrs
= kvm_arch_post_run(cpu
, run
);
1812 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1813 DPRINTF("io window exit\n");
1814 ret
= EXCP_INTERRUPT
;
1817 fprintf(stderr
, "error: kvm run failed %s\n",
1818 strerror(-run_ret
));
1820 if (run_ret
== -EBUSY
) {
1822 "This is probably because your SMT is enabled.\n"
1823 "VCPU can only run on primary threads with all "
1824 "secondary threads offline.\n");
1831 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1832 switch (run
->exit_reason
) {
1834 DPRINTF("handle_io\n");
1835 /* Called outside BQL */
1836 kvm_handle_io(run
->io
.port
, attrs
,
1837 (uint8_t *)run
+ run
->io
.data_offset
,
1844 DPRINTF("handle_mmio\n");
1845 /* Called outside BQL */
1846 address_space_rw(&address_space_memory
,
1847 run
->mmio
.phys_addr
, attrs
,
1850 run
->mmio
.is_write
);
1853 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1854 DPRINTF("irq_window_open\n");
1855 ret
= EXCP_INTERRUPT
;
1857 case KVM_EXIT_SHUTDOWN
:
1858 DPRINTF("shutdown\n");
1859 qemu_system_reset_request();
1860 ret
= EXCP_INTERRUPT
;
1862 case KVM_EXIT_UNKNOWN
:
1863 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1864 (uint64_t)run
->hw
.hardware_exit_reason
);
1867 case KVM_EXIT_INTERNAL_ERROR
:
1868 ret
= kvm_handle_internal_error(cpu
, run
);
1870 case KVM_EXIT_SYSTEM_EVENT
:
1871 switch (run
->system_event
.type
) {
1872 case KVM_SYSTEM_EVENT_SHUTDOWN
:
1873 qemu_system_shutdown_request();
1874 ret
= EXCP_INTERRUPT
;
1876 case KVM_SYSTEM_EVENT_RESET
:
1877 qemu_system_reset_request();
1878 ret
= EXCP_INTERRUPT
;
1880 case KVM_SYSTEM_EVENT_CRASH
:
1881 qemu_mutex_lock_iothread();
1882 qemu_system_guest_panicked();
1883 qemu_mutex_unlock_iothread();
1887 DPRINTF("kvm_arch_handle_exit\n");
1888 ret
= kvm_arch_handle_exit(cpu
, run
);
1893 DPRINTF("kvm_arch_handle_exit\n");
1894 ret
= kvm_arch_handle_exit(cpu
, run
);
1899 qemu_mutex_lock_iothread();
1902 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1903 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1906 cpu
->exit_request
= 0;
1910 int kvm_ioctl(KVMState
*s
, int type
, ...)
1917 arg
= va_arg(ap
, void *);
1920 trace_kvm_ioctl(type
, arg
);
1921 ret
= ioctl(s
->fd
, type
, arg
);
1928 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1935 arg
= va_arg(ap
, void *);
1938 trace_kvm_vm_ioctl(type
, arg
);
1939 ret
= ioctl(s
->vmfd
, type
, arg
);
1946 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1953 arg
= va_arg(ap
, void *);
1956 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1957 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1964 int kvm_device_ioctl(int fd
, int type
, ...)
1971 arg
= va_arg(ap
, void *);
1974 trace_kvm_device_ioctl(fd
, type
, arg
);
1975 ret
= ioctl(fd
, type
, arg
);
1982 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
1985 struct kvm_device_attr attribute
= {
1990 if (!kvm_vm_attributes_allowed
) {
1994 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
1995 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
1999 int kvm_device_check_attr(int dev_fd
, uint32_t group
, uint64_t attr
)
2001 struct kvm_device_attr attribute
= {
2007 return kvm_device_ioctl(dev_fd
, KVM_HAS_DEVICE_ATTR
, &attribute
) ? 0 : 1;
2010 void kvm_device_access(int fd
, int group
, uint64_t attr
,
2011 void *val
, bool write
)
2013 struct kvm_device_attr kvmattr
;
2017 kvmattr
.group
= group
;
2018 kvmattr
.attr
= attr
;
2019 kvmattr
.addr
= (uintptr_t)val
;
2021 err
= kvm_device_ioctl(fd
,
2022 write
? KVM_SET_DEVICE_ATTR
: KVM_GET_DEVICE_ATTR
,
2025 error_report("KVM_%s_DEVICE_ATTR failed: %s\n"
2026 "Group %d attr 0x%016" PRIx64
, write
? "SET" : "GET",
2027 strerror(-err
), group
, attr
);
2032 int kvm_has_sync_mmu(void)
2034 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
2037 int kvm_has_vcpu_events(void)
2039 return kvm_state
->vcpu_events
;
2042 int kvm_has_robust_singlestep(void)
2044 return kvm_state
->robust_singlestep
;
2047 int kvm_has_debugregs(void)
2049 return kvm_state
->debugregs
;
2052 int kvm_has_many_ioeventfds(void)
2054 if (!kvm_enabled()) {
2057 return kvm_state
->many_ioeventfds
;
2060 int kvm_has_gsi_routing(void)
2062 #ifdef KVM_CAP_IRQ_ROUTING
2063 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
2069 int kvm_has_intx_set_mask(void)
2071 return kvm_state
->intx_set_mask
;
2074 void kvm_setup_guest_memory(void *start
, size_t size
)
2076 if (!kvm_has_sync_mmu()) {
2077 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
2080 perror("qemu_madvise");
2082 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2088 #ifdef KVM_CAP_SET_GUEST_DEBUG
2089 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
2092 struct kvm_sw_breakpoint
*bp
;
2094 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
2102 int kvm_sw_breakpoints_active(CPUState
*cpu
)
2104 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
2107 struct kvm_set_guest_debug_data
{
2108 struct kvm_guest_debug dbg
;
2113 static void kvm_invoke_set_guest_debug(void *data
)
2115 struct kvm_set_guest_debug_data
*dbg_data
= data
;
2117 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
2121 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2123 struct kvm_set_guest_debug_data data
;
2125 data
.dbg
.control
= reinject_trap
;
2127 if (cpu
->singlestep_enabled
) {
2128 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2130 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2133 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
2137 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2138 target_ulong len
, int type
)
2140 struct kvm_sw_breakpoint
*bp
;
2143 if (type
== GDB_BREAKPOINT_SW
) {
2144 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2150 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2153 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2159 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2161 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2168 err
= kvm_update_guest_debug(cpu
, 0);
2176 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2177 target_ulong len
, int type
)
2179 struct kvm_sw_breakpoint
*bp
;
2182 if (type
== GDB_BREAKPOINT_SW
) {
2183 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2188 if (bp
->use_count
> 1) {
2193 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2198 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2201 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2208 err
= kvm_update_guest_debug(cpu
, 0);
2216 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2218 struct kvm_sw_breakpoint
*bp
, *next
;
2219 KVMState
*s
= cpu
->kvm_state
;
2222 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2223 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2224 /* Try harder to find a CPU that currently sees the breakpoint. */
2225 CPU_FOREACH(tmpcpu
) {
2226 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2231 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2234 kvm_arch_remove_all_hw_breakpoints();
2237 kvm_update_guest_debug(cpu
, 0);
2241 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2243 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2248 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2249 target_ulong len
, int type
)
2254 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2255 target_ulong len
, int type
)
2260 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2263 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2265 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2267 KVMState
*s
= kvm_state
;
2268 struct kvm_signal_mask
*sigmask
;
2272 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2275 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2277 sigmask
->len
= s
->sigmask_len
;
2278 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2279 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2284 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2286 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2289 int kvm_on_sigbus(int code
, void *addr
)
2291 return kvm_arch_on_sigbus(code
, addr
);
2294 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2297 struct kvm_create_device create_dev
;
2299 create_dev
.type
= type
;
2301 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2303 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2307 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2312 return test
? 0 : create_dev
.fd
;
2315 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2317 struct kvm_one_reg reg
;
2321 reg
.addr
= (uintptr_t) source
;
2322 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2324 trace_kvm_failed_reg_set(id
, strerror(r
));
2329 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2331 struct kvm_one_reg reg
;
2335 reg
.addr
= (uintptr_t) target
;
2336 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2338 trace_kvm_failed_reg_get(id
, strerror(r
));
2343 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
2345 AccelClass
*ac
= ACCEL_CLASS(oc
);
2347 ac
->init_machine
= kvm_init
;
2348 ac
->allowed
= &kvm_allowed
;
2351 static const TypeInfo kvm_accel_type
= {
2352 .name
= TYPE_KVM_ACCEL
,
2353 .parent
= TYPE_ACCEL
,
2354 .class_init
= kvm_accel_class_init
,
2355 .instance_size
= sizeof(KVMState
),
2358 static void kvm_type_init(void)
2360 type_register_static(&kvm_accel_type
);
2363 type_init(kvm_type_init
);