tests: cleanup ptimer-test
[qemu/ar7.git] / hw / block / fdc.c
blobb79873af279fbe131d025737b914169803787333
1 /*
2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
31 #include "hw/hw.h"
32 #include "hw/block/fdc.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "hw/isa/isa.h"
37 #include "hw/sysbus.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/blockdev.h"
40 #include "sysemu/sysemu.h"
41 #include "qemu/log.h"
43 /********************************************************/
44 /* debug Floppy devices */
46 #define DEBUG_FLOPPY 0
48 #define FLOPPY_DPRINTF(fmt, ...) \
49 do { \
50 if (DEBUG_FLOPPY) { \
51 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
52 } \
53 } while (0)
55 /********************************************************/
56 /* Floppy drive emulation */
58 typedef enum FDriveRate {
59 FDRIVE_RATE_500K = 0x00, /* 500 Kbps */
60 FDRIVE_RATE_300K = 0x01, /* 300 Kbps */
61 FDRIVE_RATE_250K = 0x02, /* 250 Kbps */
62 FDRIVE_RATE_1M = 0x03, /* 1 Mbps */
63 } FDriveRate;
65 typedef enum FDriveSize {
66 FDRIVE_SIZE_UNKNOWN,
67 FDRIVE_SIZE_350,
68 FDRIVE_SIZE_525,
69 } FDriveSize;
71 typedef struct FDFormat {
72 FloppyDriveType drive;
73 uint8_t last_sect;
74 uint8_t max_track;
75 uint8_t max_head;
76 FDriveRate rate;
77 } FDFormat;
79 /* In many cases, the total sector size of a format is enough to uniquely
80 * identify it. However, there are some total sector collisions between
81 * formats of different physical size, and these are noted below by
82 * highlighting the total sector size for entries with collisions. */
83 static const FDFormat fd_formats[] = {
84 /* First entry is default format */
85 /* 1.44 MB 3"1/2 floppy disks */
86 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
87 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
88 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
89 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
90 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
91 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
92 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
93 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
94 /* 2.88 MB 3"1/2 floppy disks */
95 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
96 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
97 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
98 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
99 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
100 /* 720 kB 3"1/2 floppy disks */
101 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
102 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
103 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
104 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
105 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
106 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
107 /* 1.2 MB 5"1/4 floppy disks */
108 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
109 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
110 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
111 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
112 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
113 /* 720 kB 5"1/4 floppy disks */
114 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
115 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
116 /* 360 kB 5"1/4 floppy disks */
117 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
118 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, },
119 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
120 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
121 /* 320 kB 5"1/4 floppy disks */
122 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, },
123 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, },
124 /* 360 kB must match 5"1/4 better than 3"1/2... */
125 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
126 /* end */
127 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
130 static FDriveSize drive_size(FloppyDriveType drive)
132 switch (drive) {
133 case FLOPPY_DRIVE_TYPE_120:
134 return FDRIVE_SIZE_525;
135 case FLOPPY_DRIVE_TYPE_144:
136 case FLOPPY_DRIVE_TYPE_288:
137 return FDRIVE_SIZE_350;
138 default:
139 return FDRIVE_SIZE_UNKNOWN;
143 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
144 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
146 /* Will always be a fixed parameter for us */
147 #define FD_SECTOR_LEN 512
148 #define FD_SECTOR_SC 2 /* Sector size code */
149 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
151 typedef struct FDCtrl FDCtrl;
153 /* Floppy disk drive emulation */
154 typedef enum FDiskFlags {
155 FDISK_DBL_SIDES = 0x01,
156 } FDiskFlags;
158 typedef struct FDrive {
159 FDCtrl *fdctrl;
160 BlockBackend *blk;
161 /* Drive status */
162 FloppyDriveType drive; /* CMOS drive type */
163 uint8_t perpendicular; /* 2.88 MB access mode */
164 /* Position */
165 uint8_t head;
166 uint8_t track;
167 uint8_t sect;
168 /* Media */
169 FloppyDriveType disk; /* Current disk type */
170 FDiskFlags flags;
171 uint8_t last_sect; /* Nb sector per track */
172 uint8_t max_track; /* Nb of tracks */
173 uint16_t bps; /* Bytes per sector */
174 uint8_t ro; /* Is read-only */
175 uint8_t media_changed; /* Is media changed */
176 uint8_t media_rate; /* Data rate of medium */
178 bool media_validated; /* Have we validated the media? */
179 } FDrive;
182 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
184 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
185 * currently goes through some pains to keep seeks within the bounds
186 * established by last_sect and max_track. Correcting this is difficult,
187 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
189 * For now: allow empty drives to have large bounds so we can seek around,
190 * with the understanding that when a diskette is inserted, the bounds will
191 * properly tighten to match the geometry of that inserted medium.
193 static void fd_empty_seek_hack(FDrive *drv)
195 drv->last_sect = 0xFF;
196 drv->max_track = 0xFF;
199 static void fd_init(FDrive *drv)
201 /* Drive */
202 drv->perpendicular = 0;
203 /* Disk */
204 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
205 drv->last_sect = 0;
206 drv->max_track = 0;
207 drv->ro = true;
208 drv->media_changed = 1;
211 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
213 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
214 uint8_t last_sect, uint8_t num_sides)
216 return (((track * num_sides) + head) * last_sect) + sect - 1;
219 /* Returns current position, in sectors, for given drive */
220 static int fd_sector(FDrive *drv)
222 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
223 NUM_SIDES(drv));
226 /* Returns current position, in bytes, for given drive */
227 static int fd_offset(FDrive *drv)
229 g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
230 return fd_sector(drv) << BDRV_SECTOR_BITS;
233 /* Seek to a new position:
234 * returns 0 if already on right track
235 * returns 1 if track changed
236 * returns 2 if track is invalid
237 * returns 3 if sector is invalid
238 * returns 4 if seek is disabled
240 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
241 int enable_seek)
243 uint32_t sector;
244 int ret;
246 if (track > drv->max_track ||
247 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
248 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
249 head, track, sect, 1,
250 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
251 drv->max_track, drv->last_sect);
252 return 2;
254 if (sect > drv->last_sect) {
255 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
256 head, track, sect, 1,
257 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
258 drv->max_track, drv->last_sect);
259 return 3;
261 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
262 ret = 0;
263 if (sector != fd_sector(drv)) {
264 #if 0
265 if (!enable_seek) {
266 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
267 " (max=%d %02x %02x)\n",
268 head, track, sect, 1, drv->max_track,
269 drv->last_sect);
270 return 4;
272 #endif
273 drv->head = head;
274 if (drv->track != track) {
275 if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
276 drv->media_changed = 0;
278 ret = 1;
280 drv->track = track;
281 drv->sect = sect;
284 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
285 ret = 2;
288 return ret;
291 /* Set drive back to track 0 */
292 static void fd_recalibrate(FDrive *drv)
294 FLOPPY_DPRINTF("recalibrate\n");
295 fd_seek(drv, 0, 0, 1, 1);
299 * Determine geometry based on inserted diskette.
300 * Will not operate on an empty drive.
302 * @return: 0 on success, -1 if the drive is empty.
304 static int pick_geometry(FDrive *drv)
306 BlockBackend *blk = drv->blk;
307 const FDFormat *parse;
308 uint64_t nb_sectors, size;
309 int i;
310 int match, size_match, type_match;
311 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
313 /* We can only pick a geometry if we have a diskette. */
314 if (!drv->blk || !blk_is_inserted(drv->blk) ||
315 drv->drive == FLOPPY_DRIVE_TYPE_NONE)
317 return -1;
320 /* We need to determine the likely geometry of the inserted medium.
321 * In order of preference, we look for:
322 * (1) The same drive type and number of sectors,
323 * (2) The same diskette size and number of sectors,
324 * (3) The same drive type.
326 * In all cases, matches that occur higher in the drive table will take
327 * precedence over matches that occur later in the table.
329 blk_get_geometry(blk, &nb_sectors);
330 match = size_match = type_match = -1;
331 for (i = 0; ; i++) {
332 parse = &fd_formats[i];
333 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
334 break;
336 size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
337 if (nb_sectors == size) {
338 if (magic || parse->drive == drv->drive) {
339 /* (1) perfect match -- nb_sectors and drive type */
340 goto out;
341 } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
342 /* (2) size match -- nb_sectors and physical medium size */
343 match = (match == -1) ? i : match;
344 } else {
345 /* This is suspicious -- Did the user misconfigure? */
346 size_match = (size_match == -1) ? i : size_match;
348 } else if (type_match == -1) {
349 if ((parse->drive == drv->drive) ||
350 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
351 /* (3) type match -- nb_sectors mismatch, but matches the type
352 * specified explicitly by the user, or matches the fallback
353 * default type when using the drive autodetect mechanism */
354 type_match = i;
359 /* No exact match found */
360 if (match == -1) {
361 if (size_match != -1) {
362 parse = &fd_formats[size_match];
363 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
364 "but inserted medium appears to be a "
365 "%"PRId64" sector '%s' type\n",
366 FloppyDriveType_lookup[drv->drive],
367 nb_sectors,
368 FloppyDriveType_lookup[parse->drive]);
370 match = type_match;
373 /* No match of any kind found -- fd_format is misconfigured, abort. */
374 if (match == -1) {
375 error_setg(&error_abort, "No candidate geometries present in table "
376 " for floppy drive type '%s'",
377 FloppyDriveType_lookup[drv->drive]);
380 parse = &(fd_formats[match]);
382 out:
383 if (parse->max_head == 0) {
384 drv->flags &= ~FDISK_DBL_SIDES;
385 } else {
386 drv->flags |= FDISK_DBL_SIDES;
388 drv->max_track = parse->max_track;
389 drv->last_sect = parse->last_sect;
390 drv->disk = parse->drive;
391 drv->media_rate = parse->rate;
392 return 0;
395 static void pick_drive_type(FDrive *drv)
397 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
398 return;
401 if (pick_geometry(drv) == 0) {
402 drv->drive = drv->disk;
403 } else {
404 drv->drive = get_fallback_drive_type(drv);
407 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
410 /* Revalidate a disk drive after a disk change */
411 static void fd_revalidate(FDrive *drv)
413 int rc;
415 FLOPPY_DPRINTF("revalidate\n");
416 if (drv->blk != NULL) {
417 drv->ro = blk_is_read_only(drv->blk);
418 if (!blk_is_inserted(drv->blk)) {
419 FLOPPY_DPRINTF("No disk in drive\n");
420 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
421 fd_empty_seek_hack(drv);
422 } else if (!drv->media_validated) {
423 rc = pick_geometry(drv);
424 if (rc) {
425 FLOPPY_DPRINTF("Could not validate floppy drive media");
426 } else {
427 drv->media_validated = true;
428 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
429 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
430 drv->max_track, drv->last_sect,
431 drv->ro ? "ro" : "rw");
434 } else {
435 FLOPPY_DPRINTF("No drive connected\n");
436 drv->last_sect = 0;
437 drv->max_track = 0;
438 drv->flags &= ~FDISK_DBL_SIDES;
439 drv->drive = FLOPPY_DRIVE_TYPE_NONE;
440 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
444 /********************************************************/
445 /* Intel 82078 floppy disk controller emulation */
447 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
448 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
449 static int fdctrl_transfer_handler (void *opaque, int nchan,
450 int dma_pos, int dma_len);
451 static void fdctrl_raise_irq(FDCtrl *fdctrl);
452 static FDrive *get_cur_drv(FDCtrl *fdctrl);
454 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
455 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
456 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
457 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
458 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
459 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
460 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
461 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
462 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
463 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
464 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
465 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
467 enum {
468 FD_DIR_WRITE = 0,
469 FD_DIR_READ = 1,
470 FD_DIR_SCANE = 2,
471 FD_DIR_SCANL = 3,
472 FD_DIR_SCANH = 4,
473 FD_DIR_VERIFY = 5,
476 enum {
477 FD_STATE_MULTI = 0x01, /* multi track flag */
478 FD_STATE_FORMAT = 0x02, /* format flag */
481 enum {
482 FD_REG_SRA = 0x00,
483 FD_REG_SRB = 0x01,
484 FD_REG_DOR = 0x02,
485 FD_REG_TDR = 0x03,
486 FD_REG_MSR = 0x04,
487 FD_REG_DSR = 0x04,
488 FD_REG_FIFO = 0x05,
489 FD_REG_DIR = 0x07,
490 FD_REG_CCR = 0x07,
493 enum {
494 FD_CMD_READ_TRACK = 0x02,
495 FD_CMD_SPECIFY = 0x03,
496 FD_CMD_SENSE_DRIVE_STATUS = 0x04,
497 FD_CMD_WRITE = 0x05,
498 FD_CMD_READ = 0x06,
499 FD_CMD_RECALIBRATE = 0x07,
500 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
501 FD_CMD_WRITE_DELETED = 0x09,
502 FD_CMD_READ_ID = 0x0a,
503 FD_CMD_READ_DELETED = 0x0c,
504 FD_CMD_FORMAT_TRACK = 0x0d,
505 FD_CMD_DUMPREG = 0x0e,
506 FD_CMD_SEEK = 0x0f,
507 FD_CMD_VERSION = 0x10,
508 FD_CMD_SCAN_EQUAL = 0x11,
509 FD_CMD_PERPENDICULAR_MODE = 0x12,
510 FD_CMD_CONFIGURE = 0x13,
511 FD_CMD_LOCK = 0x14,
512 FD_CMD_VERIFY = 0x16,
513 FD_CMD_POWERDOWN_MODE = 0x17,
514 FD_CMD_PART_ID = 0x18,
515 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
516 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
517 FD_CMD_SAVE = 0x2e,
518 FD_CMD_OPTION = 0x33,
519 FD_CMD_RESTORE = 0x4e,
520 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
521 FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
522 FD_CMD_FORMAT_AND_WRITE = 0xcd,
523 FD_CMD_RELATIVE_SEEK_IN = 0xcf,
526 enum {
527 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
528 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
529 FD_CONFIG_POLL = 0x10, /* Poll enabled */
530 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
531 FD_CONFIG_EIS = 0x40, /* No implied seeks */
534 enum {
535 FD_SR0_DS0 = 0x01,
536 FD_SR0_DS1 = 0x02,
537 FD_SR0_HEAD = 0x04,
538 FD_SR0_EQPMT = 0x10,
539 FD_SR0_SEEK = 0x20,
540 FD_SR0_ABNTERM = 0x40,
541 FD_SR0_INVCMD = 0x80,
542 FD_SR0_RDYCHG = 0xc0,
545 enum {
546 FD_SR1_MA = 0x01, /* Missing address mark */
547 FD_SR1_NW = 0x02, /* Not writable */
548 FD_SR1_EC = 0x80, /* End of cylinder */
551 enum {
552 FD_SR2_SNS = 0x04, /* Scan not satisfied */
553 FD_SR2_SEH = 0x08, /* Scan equal hit */
556 enum {
557 FD_SRA_DIR = 0x01,
558 FD_SRA_nWP = 0x02,
559 FD_SRA_nINDX = 0x04,
560 FD_SRA_HDSEL = 0x08,
561 FD_SRA_nTRK0 = 0x10,
562 FD_SRA_STEP = 0x20,
563 FD_SRA_nDRV2 = 0x40,
564 FD_SRA_INTPEND = 0x80,
567 enum {
568 FD_SRB_MTR0 = 0x01,
569 FD_SRB_MTR1 = 0x02,
570 FD_SRB_WGATE = 0x04,
571 FD_SRB_RDATA = 0x08,
572 FD_SRB_WDATA = 0x10,
573 FD_SRB_DR0 = 0x20,
576 enum {
577 #if MAX_FD == 4
578 FD_DOR_SELMASK = 0x03,
579 #else
580 FD_DOR_SELMASK = 0x01,
581 #endif
582 FD_DOR_nRESET = 0x04,
583 FD_DOR_DMAEN = 0x08,
584 FD_DOR_MOTEN0 = 0x10,
585 FD_DOR_MOTEN1 = 0x20,
586 FD_DOR_MOTEN2 = 0x40,
587 FD_DOR_MOTEN3 = 0x80,
590 enum {
591 #if MAX_FD == 4
592 FD_TDR_BOOTSEL = 0x0c,
593 #else
594 FD_TDR_BOOTSEL = 0x04,
595 #endif
598 enum {
599 FD_DSR_DRATEMASK= 0x03,
600 FD_DSR_PWRDOWN = 0x40,
601 FD_DSR_SWRESET = 0x80,
604 enum {
605 FD_MSR_DRV0BUSY = 0x01,
606 FD_MSR_DRV1BUSY = 0x02,
607 FD_MSR_DRV2BUSY = 0x04,
608 FD_MSR_DRV3BUSY = 0x08,
609 FD_MSR_CMDBUSY = 0x10,
610 FD_MSR_NONDMA = 0x20,
611 FD_MSR_DIO = 0x40,
612 FD_MSR_RQM = 0x80,
615 enum {
616 FD_DIR_DSKCHG = 0x80,
620 * See chapter 5.0 "Controller phases" of the spec:
622 * Command phase:
623 * The host writes a command and its parameters into the FIFO. The command
624 * phase is completed when all parameters for the command have been supplied,
625 * and execution phase is entered.
627 * Execution phase:
628 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
629 * contains the payload now, otherwise it's unused. When all bytes of the
630 * required data have been transferred, the state is switched to either result
631 * phase (if the command produces status bytes) or directly back into the
632 * command phase for the next command.
634 * Result phase:
635 * The host reads out the FIFO, which contains one or more result bytes now.
637 enum {
638 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
639 FD_PHASE_RECONSTRUCT = 0,
641 FD_PHASE_COMMAND = 1,
642 FD_PHASE_EXECUTION = 2,
643 FD_PHASE_RESULT = 3,
646 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
647 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
649 struct FDCtrl {
650 MemoryRegion iomem;
651 qemu_irq irq;
652 /* Controller state */
653 QEMUTimer *result_timer;
654 int dma_chann;
655 uint8_t phase;
656 IsaDma *dma;
657 /* Controller's identification */
658 uint8_t version;
659 /* HW */
660 uint8_t sra;
661 uint8_t srb;
662 uint8_t dor;
663 uint8_t dor_vmstate; /* only used as temp during vmstate */
664 uint8_t tdr;
665 uint8_t dsr;
666 uint8_t msr;
667 uint8_t cur_drv;
668 uint8_t status0;
669 uint8_t status1;
670 uint8_t status2;
671 /* Command FIFO */
672 uint8_t *fifo;
673 int32_t fifo_size;
674 uint32_t data_pos;
675 uint32_t data_len;
676 uint8_t data_state;
677 uint8_t data_dir;
678 uint8_t eot; /* last wanted sector */
679 /* States kept only to be returned back */
680 /* precompensation */
681 uint8_t precomp_trk;
682 uint8_t config;
683 uint8_t lock;
684 /* Power down config (also with status regB access mode */
685 uint8_t pwrd;
686 /* Floppy drives */
687 uint8_t num_floppies;
688 FDrive drives[MAX_FD];
689 int reset_sensei;
690 uint32_t check_media_rate;
691 FloppyDriveType fallback; /* type=auto failure fallback */
692 /* Timers state */
693 uint8_t timer0;
694 uint8_t timer1;
695 PortioList portio_list;
698 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
700 return drv->fdctrl->fallback;
703 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
704 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
706 typedef struct FDCtrlSysBus {
707 /*< private >*/
708 SysBusDevice parent_obj;
709 /*< public >*/
711 struct FDCtrl state;
712 } FDCtrlSysBus;
714 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
716 typedef struct FDCtrlISABus {
717 ISADevice parent_obj;
719 uint32_t iobase;
720 uint32_t irq;
721 uint32_t dma;
722 struct FDCtrl state;
723 int32_t bootindexA;
724 int32_t bootindexB;
725 } FDCtrlISABus;
727 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
729 FDCtrl *fdctrl = opaque;
730 uint32_t retval;
732 reg &= 7;
733 switch (reg) {
734 case FD_REG_SRA:
735 retval = fdctrl_read_statusA(fdctrl);
736 break;
737 case FD_REG_SRB:
738 retval = fdctrl_read_statusB(fdctrl);
739 break;
740 case FD_REG_DOR:
741 retval = fdctrl_read_dor(fdctrl);
742 break;
743 case FD_REG_TDR:
744 retval = fdctrl_read_tape(fdctrl);
745 break;
746 case FD_REG_MSR:
747 retval = fdctrl_read_main_status(fdctrl);
748 break;
749 case FD_REG_FIFO:
750 retval = fdctrl_read_data(fdctrl);
751 break;
752 case FD_REG_DIR:
753 retval = fdctrl_read_dir(fdctrl);
754 break;
755 default:
756 retval = (uint32_t)(-1);
757 break;
759 FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
761 return retval;
764 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
766 FDCtrl *fdctrl = opaque;
768 FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
770 reg &= 7;
771 switch (reg) {
772 case FD_REG_DOR:
773 fdctrl_write_dor(fdctrl, value);
774 break;
775 case FD_REG_TDR:
776 fdctrl_write_tape(fdctrl, value);
777 break;
778 case FD_REG_DSR:
779 fdctrl_write_rate(fdctrl, value);
780 break;
781 case FD_REG_FIFO:
782 fdctrl_write_data(fdctrl, value);
783 break;
784 case FD_REG_CCR:
785 fdctrl_write_ccr(fdctrl, value);
786 break;
787 default:
788 break;
792 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
793 unsigned ize)
795 return fdctrl_read(opaque, (uint32_t)reg);
798 static void fdctrl_write_mem (void *opaque, hwaddr reg,
799 uint64_t value, unsigned size)
801 fdctrl_write(opaque, (uint32_t)reg, value);
804 static const MemoryRegionOps fdctrl_mem_ops = {
805 .read = fdctrl_read_mem,
806 .write = fdctrl_write_mem,
807 .endianness = DEVICE_NATIVE_ENDIAN,
810 static const MemoryRegionOps fdctrl_mem_strict_ops = {
811 .read = fdctrl_read_mem,
812 .write = fdctrl_write_mem,
813 .endianness = DEVICE_NATIVE_ENDIAN,
814 .valid = {
815 .min_access_size = 1,
816 .max_access_size = 1,
820 static bool fdrive_media_changed_needed(void *opaque)
822 FDrive *drive = opaque;
824 return (drive->blk != NULL && drive->media_changed != 1);
827 static const VMStateDescription vmstate_fdrive_media_changed = {
828 .name = "fdrive/media_changed",
829 .version_id = 1,
830 .minimum_version_id = 1,
831 .needed = fdrive_media_changed_needed,
832 .fields = (VMStateField[]) {
833 VMSTATE_UINT8(media_changed, FDrive),
834 VMSTATE_END_OF_LIST()
838 static bool fdrive_media_rate_needed(void *opaque)
840 FDrive *drive = opaque;
842 return drive->fdctrl->check_media_rate;
845 static const VMStateDescription vmstate_fdrive_media_rate = {
846 .name = "fdrive/media_rate",
847 .version_id = 1,
848 .minimum_version_id = 1,
849 .needed = fdrive_media_rate_needed,
850 .fields = (VMStateField[]) {
851 VMSTATE_UINT8(media_rate, FDrive),
852 VMSTATE_END_OF_LIST()
856 static bool fdrive_perpendicular_needed(void *opaque)
858 FDrive *drive = opaque;
860 return drive->perpendicular != 0;
863 static const VMStateDescription vmstate_fdrive_perpendicular = {
864 .name = "fdrive/perpendicular",
865 .version_id = 1,
866 .minimum_version_id = 1,
867 .needed = fdrive_perpendicular_needed,
868 .fields = (VMStateField[]) {
869 VMSTATE_UINT8(perpendicular, FDrive),
870 VMSTATE_END_OF_LIST()
874 static int fdrive_post_load(void *opaque, int version_id)
876 fd_revalidate(opaque);
877 return 0;
880 static const VMStateDescription vmstate_fdrive = {
881 .name = "fdrive",
882 .version_id = 1,
883 .minimum_version_id = 1,
884 .post_load = fdrive_post_load,
885 .fields = (VMStateField[]) {
886 VMSTATE_UINT8(head, FDrive),
887 VMSTATE_UINT8(track, FDrive),
888 VMSTATE_UINT8(sect, FDrive),
889 VMSTATE_END_OF_LIST()
891 .subsections = (const VMStateDescription*[]) {
892 &vmstate_fdrive_media_changed,
893 &vmstate_fdrive_media_rate,
894 &vmstate_fdrive_perpendicular,
895 NULL
900 * Reconstructs the phase from register values according to the logic that was
901 * implemented in qemu 2.3. This is the default value that is used if the phase
902 * subsection is not present on migration.
904 * Don't change this function to reflect newer qemu versions, it is part of
905 * the migration ABI.
907 static int reconstruct_phase(FDCtrl *fdctrl)
909 if (fdctrl->msr & FD_MSR_NONDMA) {
910 return FD_PHASE_EXECUTION;
911 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
912 /* qemu 2.3 disabled RQM only during DMA transfers */
913 return FD_PHASE_EXECUTION;
914 } else if (fdctrl->msr & FD_MSR_DIO) {
915 return FD_PHASE_RESULT;
916 } else {
917 return FD_PHASE_COMMAND;
921 static void fdc_pre_save(void *opaque)
923 FDCtrl *s = opaque;
925 s->dor_vmstate = s->dor | GET_CUR_DRV(s);
928 static int fdc_pre_load(void *opaque)
930 FDCtrl *s = opaque;
931 s->phase = FD_PHASE_RECONSTRUCT;
932 return 0;
935 static int fdc_post_load(void *opaque, int version_id)
937 FDCtrl *s = opaque;
939 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
940 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
942 if (s->phase == FD_PHASE_RECONSTRUCT) {
943 s->phase = reconstruct_phase(s);
946 return 0;
949 static bool fdc_reset_sensei_needed(void *opaque)
951 FDCtrl *s = opaque;
953 return s->reset_sensei != 0;
956 static const VMStateDescription vmstate_fdc_reset_sensei = {
957 .name = "fdc/reset_sensei",
958 .version_id = 1,
959 .minimum_version_id = 1,
960 .needed = fdc_reset_sensei_needed,
961 .fields = (VMStateField[]) {
962 VMSTATE_INT32(reset_sensei, FDCtrl),
963 VMSTATE_END_OF_LIST()
967 static bool fdc_result_timer_needed(void *opaque)
969 FDCtrl *s = opaque;
971 return timer_pending(s->result_timer);
974 static const VMStateDescription vmstate_fdc_result_timer = {
975 .name = "fdc/result_timer",
976 .version_id = 1,
977 .minimum_version_id = 1,
978 .needed = fdc_result_timer_needed,
979 .fields = (VMStateField[]) {
980 VMSTATE_TIMER_PTR(result_timer, FDCtrl),
981 VMSTATE_END_OF_LIST()
985 static bool fdc_phase_needed(void *opaque)
987 FDCtrl *fdctrl = opaque;
989 return reconstruct_phase(fdctrl) != fdctrl->phase;
992 static const VMStateDescription vmstate_fdc_phase = {
993 .name = "fdc/phase",
994 .version_id = 1,
995 .minimum_version_id = 1,
996 .needed = fdc_phase_needed,
997 .fields = (VMStateField[]) {
998 VMSTATE_UINT8(phase, FDCtrl),
999 VMSTATE_END_OF_LIST()
1003 static const VMStateDescription vmstate_fdc = {
1004 .name = "fdc",
1005 .version_id = 2,
1006 .minimum_version_id = 2,
1007 .pre_save = fdc_pre_save,
1008 .pre_load = fdc_pre_load,
1009 .post_load = fdc_post_load,
1010 .fields = (VMStateField[]) {
1011 /* Controller State */
1012 VMSTATE_UINT8(sra, FDCtrl),
1013 VMSTATE_UINT8(srb, FDCtrl),
1014 VMSTATE_UINT8(dor_vmstate, FDCtrl),
1015 VMSTATE_UINT8(tdr, FDCtrl),
1016 VMSTATE_UINT8(dsr, FDCtrl),
1017 VMSTATE_UINT8(msr, FDCtrl),
1018 VMSTATE_UINT8(status0, FDCtrl),
1019 VMSTATE_UINT8(status1, FDCtrl),
1020 VMSTATE_UINT8(status2, FDCtrl),
1021 /* Command FIFO */
1022 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1023 uint8_t),
1024 VMSTATE_UINT32(data_pos, FDCtrl),
1025 VMSTATE_UINT32(data_len, FDCtrl),
1026 VMSTATE_UINT8(data_state, FDCtrl),
1027 VMSTATE_UINT8(data_dir, FDCtrl),
1028 VMSTATE_UINT8(eot, FDCtrl),
1029 /* States kept only to be returned back */
1030 VMSTATE_UINT8(timer0, FDCtrl),
1031 VMSTATE_UINT8(timer1, FDCtrl),
1032 VMSTATE_UINT8(precomp_trk, FDCtrl),
1033 VMSTATE_UINT8(config, FDCtrl),
1034 VMSTATE_UINT8(lock, FDCtrl),
1035 VMSTATE_UINT8(pwrd, FDCtrl),
1036 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl),
1037 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1038 vmstate_fdrive, FDrive),
1039 VMSTATE_END_OF_LIST()
1041 .subsections = (const VMStateDescription*[]) {
1042 &vmstate_fdc_reset_sensei,
1043 &vmstate_fdc_result_timer,
1044 &vmstate_fdc_phase,
1045 NULL
1049 static void fdctrl_external_reset_sysbus(DeviceState *d)
1051 FDCtrlSysBus *sys = SYSBUS_FDC(d);
1052 FDCtrl *s = &sys->state;
1054 fdctrl_reset(s, 0);
1057 static void fdctrl_external_reset_isa(DeviceState *d)
1059 FDCtrlISABus *isa = ISA_FDC(d);
1060 FDCtrl *s = &isa->state;
1062 fdctrl_reset(s, 0);
1065 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1067 //FDCtrl *s = opaque;
1069 if (level) {
1070 // XXX
1071 FLOPPY_DPRINTF("TC pulsed\n");
1075 /* Change IRQ state */
1076 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1078 fdctrl->status0 = 0;
1079 if (!(fdctrl->sra & FD_SRA_INTPEND))
1080 return;
1081 FLOPPY_DPRINTF("Reset interrupt\n");
1082 qemu_set_irq(fdctrl->irq, 0);
1083 fdctrl->sra &= ~FD_SRA_INTPEND;
1086 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1088 if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1089 qemu_set_irq(fdctrl->irq, 1);
1090 fdctrl->sra |= FD_SRA_INTPEND;
1093 fdctrl->reset_sensei = 0;
1094 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1097 /* Reset controller */
1098 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1100 int i;
1102 FLOPPY_DPRINTF("reset controller\n");
1103 fdctrl_reset_irq(fdctrl);
1104 /* Initialise controller */
1105 fdctrl->sra = 0;
1106 fdctrl->srb = 0xc0;
1107 if (!fdctrl->drives[1].blk) {
1108 fdctrl->sra |= FD_SRA_nDRV2;
1110 fdctrl->cur_drv = 0;
1111 fdctrl->dor = FD_DOR_nRESET;
1112 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1113 fdctrl->msr = FD_MSR_RQM;
1114 fdctrl->reset_sensei = 0;
1115 timer_del(fdctrl->result_timer);
1116 /* FIFO state */
1117 fdctrl->data_pos = 0;
1118 fdctrl->data_len = 0;
1119 fdctrl->data_state = 0;
1120 fdctrl->data_dir = FD_DIR_WRITE;
1121 for (i = 0; i < MAX_FD; i++)
1122 fd_recalibrate(&fdctrl->drives[i]);
1123 fdctrl_to_command_phase(fdctrl);
1124 if (do_irq) {
1125 fdctrl->status0 |= FD_SR0_RDYCHG;
1126 fdctrl_raise_irq(fdctrl);
1127 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1131 static inline FDrive *drv0(FDCtrl *fdctrl)
1133 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1136 static inline FDrive *drv1(FDCtrl *fdctrl)
1138 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1139 return &fdctrl->drives[1];
1140 else
1141 return &fdctrl->drives[0];
1144 #if MAX_FD == 4
1145 static inline FDrive *drv2(FDCtrl *fdctrl)
1147 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1148 return &fdctrl->drives[2];
1149 else
1150 return &fdctrl->drives[1];
1153 static inline FDrive *drv3(FDCtrl *fdctrl)
1155 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1156 return &fdctrl->drives[3];
1157 else
1158 return &fdctrl->drives[2];
1160 #endif
1162 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1164 switch (fdctrl->cur_drv) {
1165 case 0: return drv0(fdctrl);
1166 case 1: return drv1(fdctrl);
1167 #if MAX_FD == 4
1168 case 2: return drv2(fdctrl);
1169 case 3: return drv3(fdctrl);
1170 #endif
1171 default: return NULL;
1175 /* Status A register : 0x00 (read-only) */
1176 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1178 uint32_t retval = fdctrl->sra;
1180 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1182 return retval;
1185 /* Status B register : 0x01 (read-only) */
1186 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1188 uint32_t retval = fdctrl->srb;
1190 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1192 return retval;
1195 /* Digital output register : 0x02 */
1196 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1198 uint32_t retval = fdctrl->dor;
1200 /* Selected drive */
1201 retval |= fdctrl->cur_drv;
1202 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1204 return retval;
1207 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1209 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1211 /* Motors */
1212 if (value & FD_DOR_MOTEN0)
1213 fdctrl->srb |= FD_SRB_MTR0;
1214 else
1215 fdctrl->srb &= ~FD_SRB_MTR0;
1216 if (value & FD_DOR_MOTEN1)
1217 fdctrl->srb |= FD_SRB_MTR1;
1218 else
1219 fdctrl->srb &= ~FD_SRB_MTR1;
1221 /* Drive */
1222 if (value & 1)
1223 fdctrl->srb |= FD_SRB_DR0;
1224 else
1225 fdctrl->srb &= ~FD_SRB_DR0;
1227 /* Reset */
1228 if (!(value & FD_DOR_nRESET)) {
1229 if (fdctrl->dor & FD_DOR_nRESET) {
1230 FLOPPY_DPRINTF("controller enter RESET state\n");
1232 } else {
1233 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1234 FLOPPY_DPRINTF("controller out of RESET state\n");
1235 fdctrl_reset(fdctrl, 1);
1236 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1239 /* Selected drive */
1240 fdctrl->cur_drv = value & FD_DOR_SELMASK;
1242 fdctrl->dor = value;
1245 /* Tape drive register : 0x03 */
1246 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1248 uint32_t retval = fdctrl->tdr;
1250 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1252 return retval;
1255 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1257 /* Reset mode */
1258 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1259 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1260 return;
1262 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1263 /* Disk boot selection indicator */
1264 fdctrl->tdr = value & FD_TDR_BOOTSEL;
1265 /* Tape indicators: never allow */
1268 /* Main status register : 0x04 (read) */
1269 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1271 uint32_t retval = fdctrl->msr;
1273 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1274 fdctrl->dor |= FD_DOR_nRESET;
1276 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1278 return retval;
1281 /* Data select rate register : 0x04 (write) */
1282 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1284 /* Reset mode */
1285 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1286 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1287 return;
1289 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1290 /* Reset: autoclear */
1291 if (value & FD_DSR_SWRESET) {
1292 fdctrl->dor &= ~FD_DOR_nRESET;
1293 fdctrl_reset(fdctrl, 1);
1294 fdctrl->dor |= FD_DOR_nRESET;
1296 if (value & FD_DSR_PWRDOWN) {
1297 fdctrl_reset(fdctrl, 1);
1299 fdctrl->dsr = value;
1302 /* Configuration control register: 0x07 (write) */
1303 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1305 /* Reset mode */
1306 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1307 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1308 return;
1310 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1312 /* Only the rate selection bits used in AT mode, and we
1313 * store those in the DSR.
1315 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1316 (value & FD_DSR_DRATEMASK);
1319 static int fdctrl_media_changed(FDrive *drv)
1321 return drv->media_changed;
1324 /* Digital input register : 0x07 (read-only) */
1325 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1327 uint32_t retval = 0;
1329 if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1330 retval |= FD_DIR_DSKCHG;
1332 if (retval != 0) {
1333 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1336 return retval;
1339 /* Clear the FIFO and update the state for receiving the next command */
1340 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1342 fdctrl->phase = FD_PHASE_COMMAND;
1343 fdctrl->data_dir = FD_DIR_WRITE;
1344 fdctrl->data_pos = 0;
1345 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1346 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1347 fdctrl->msr |= FD_MSR_RQM;
1350 /* Update the state to allow the guest to read out the command status.
1351 * @fifo_len is the number of result bytes to be read out. */
1352 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1354 fdctrl->phase = FD_PHASE_RESULT;
1355 fdctrl->data_dir = FD_DIR_READ;
1356 fdctrl->data_len = fifo_len;
1357 fdctrl->data_pos = 0;
1358 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1361 /* Set an error: unimplemented/unknown command */
1362 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1364 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1365 fdctrl->fifo[0]);
1366 fdctrl->fifo[0] = FD_SR0_INVCMD;
1367 fdctrl_to_result_phase(fdctrl, 1);
1370 /* Seek to next sector
1371 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1372 * otherwise returns 1
1374 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1376 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1377 cur_drv->head, cur_drv->track, cur_drv->sect,
1378 fd_sector(cur_drv));
1379 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1380 error in fact */
1381 uint8_t new_head = cur_drv->head;
1382 uint8_t new_track = cur_drv->track;
1383 uint8_t new_sect = cur_drv->sect;
1385 int ret = 1;
1387 if (new_sect >= cur_drv->last_sect ||
1388 new_sect == fdctrl->eot) {
1389 new_sect = 1;
1390 if (FD_MULTI_TRACK(fdctrl->data_state)) {
1391 if (new_head == 0 &&
1392 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1393 new_head = 1;
1394 } else {
1395 new_head = 0;
1396 new_track++;
1397 fdctrl->status0 |= FD_SR0_SEEK;
1398 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1399 ret = 0;
1402 } else {
1403 fdctrl->status0 |= FD_SR0_SEEK;
1404 new_track++;
1405 ret = 0;
1407 if (ret == 1) {
1408 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1409 new_head, new_track, new_sect, fd_sector(cur_drv));
1411 } else {
1412 new_sect++;
1414 fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1415 return ret;
1418 /* Callback for transfer end (stop or abort) */
1419 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1420 uint8_t status1, uint8_t status2)
1422 FDrive *cur_drv;
1423 cur_drv = get_cur_drv(fdctrl);
1425 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1426 fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1427 if (cur_drv->head) {
1428 fdctrl->status0 |= FD_SR0_HEAD;
1430 fdctrl->status0 |= status0;
1432 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1433 status0, status1, status2, fdctrl->status0);
1434 fdctrl->fifo[0] = fdctrl->status0;
1435 fdctrl->fifo[1] = status1;
1436 fdctrl->fifo[2] = status2;
1437 fdctrl->fifo[3] = cur_drv->track;
1438 fdctrl->fifo[4] = cur_drv->head;
1439 fdctrl->fifo[5] = cur_drv->sect;
1440 fdctrl->fifo[6] = FD_SECTOR_SC;
1441 fdctrl->data_dir = FD_DIR_READ;
1442 if (!(fdctrl->msr & FD_MSR_NONDMA)) {
1443 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1444 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1446 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1447 fdctrl->msr &= ~FD_MSR_NONDMA;
1449 fdctrl_to_result_phase(fdctrl, 7);
1450 fdctrl_raise_irq(fdctrl);
1453 /* Prepare a data transfer (either DMA or FIFO) */
1454 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1456 FDrive *cur_drv;
1457 uint8_t kh, kt, ks;
1459 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1460 cur_drv = get_cur_drv(fdctrl);
1461 kt = fdctrl->fifo[2];
1462 kh = fdctrl->fifo[3];
1463 ks = fdctrl->fifo[4];
1464 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1465 GET_CUR_DRV(fdctrl), kh, kt, ks,
1466 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1467 NUM_SIDES(cur_drv)));
1468 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1469 case 2:
1470 /* sect too big */
1471 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1472 fdctrl->fifo[3] = kt;
1473 fdctrl->fifo[4] = kh;
1474 fdctrl->fifo[5] = ks;
1475 return;
1476 case 3:
1477 /* track too big */
1478 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1479 fdctrl->fifo[3] = kt;
1480 fdctrl->fifo[4] = kh;
1481 fdctrl->fifo[5] = ks;
1482 return;
1483 case 4:
1484 /* No seek enabled */
1485 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1486 fdctrl->fifo[3] = kt;
1487 fdctrl->fifo[4] = kh;
1488 fdctrl->fifo[5] = ks;
1489 return;
1490 case 1:
1491 fdctrl->status0 |= FD_SR0_SEEK;
1492 break;
1493 default:
1494 break;
1497 /* Check the data rate. If the programmed data rate does not match
1498 * the currently inserted medium, the operation has to fail. */
1499 if (fdctrl->check_media_rate &&
1500 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1501 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1502 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1503 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1504 fdctrl->fifo[3] = kt;
1505 fdctrl->fifo[4] = kh;
1506 fdctrl->fifo[5] = ks;
1507 return;
1510 /* Set the FIFO state */
1511 fdctrl->data_dir = direction;
1512 fdctrl->data_pos = 0;
1513 assert(fdctrl->msr & FD_MSR_CMDBUSY);
1514 if (fdctrl->fifo[0] & 0x80)
1515 fdctrl->data_state |= FD_STATE_MULTI;
1516 else
1517 fdctrl->data_state &= ~FD_STATE_MULTI;
1518 if (fdctrl->fifo[5] == 0) {
1519 fdctrl->data_len = fdctrl->fifo[8];
1520 } else {
1521 int tmp;
1522 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1523 tmp = (fdctrl->fifo[6] - ks + 1);
1524 if (fdctrl->fifo[0] & 0x80)
1525 tmp += fdctrl->fifo[6];
1526 fdctrl->data_len *= tmp;
1528 fdctrl->eot = fdctrl->fifo[6];
1529 if (fdctrl->dor & FD_DOR_DMAEN) {
1530 IsaDmaTransferMode dma_mode;
1531 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1532 bool dma_mode_ok;
1533 /* DMA transfer are enabled. Check if DMA channel is well programmed */
1534 dma_mode = k->get_transfer_mode(fdctrl->dma, fdctrl->dma_chann);
1535 FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1536 dma_mode, direction,
1537 (128 << fdctrl->fifo[5]) *
1538 (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1539 switch (direction) {
1540 case FD_DIR_SCANE:
1541 case FD_DIR_SCANL:
1542 case FD_DIR_SCANH:
1543 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_VERIFY);
1544 break;
1545 case FD_DIR_WRITE:
1546 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_WRITE);
1547 break;
1548 case FD_DIR_READ:
1549 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_READ);
1550 break;
1551 case FD_DIR_VERIFY:
1552 dma_mode_ok = true;
1553 break;
1554 default:
1555 dma_mode_ok = false;
1556 break;
1558 if (dma_mode_ok) {
1559 /* No access is allowed until DMA transfer has completed */
1560 fdctrl->msr &= ~FD_MSR_RQM;
1561 if (direction != FD_DIR_VERIFY) {
1562 /* Now, we just have to wait for the DMA controller to
1563 * recall us...
1565 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1566 k->schedule(fdctrl->dma);
1567 } else {
1568 /* Start transfer */
1569 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1570 fdctrl->data_len);
1572 return;
1573 } else {
1574 FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1575 direction);
1578 FLOPPY_DPRINTF("start non-DMA transfer\n");
1579 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1580 if (direction != FD_DIR_WRITE)
1581 fdctrl->msr |= FD_MSR_DIO;
1582 /* IO based transfer: calculate len */
1583 fdctrl_raise_irq(fdctrl);
1586 /* Prepare a transfer of deleted data */
1587 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1589 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1591 /* We don't handle deleted data,
1592 * so we don't return *ANYTHING*
1594 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1597 /* handlers for DMA transfers */
1598 static int fdctrl_transfer_handler (void *opaque, int nchan,
1599 int dma_pos, int dma_len)
1601 FDCtrl *fdctrl;
1602 FDrive *cur_drv;
1603 int len, start_pos, rel_pos;
1604 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1605 IsaDmaClass *k;
1607 fdctrl = opaque;
1608 if (fdctrl->msr & FD_MSR_RQM) {
1609 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1610 return 0;
1612 k = ISADMA_GET_CLASS(fdctrl->dma);
1613 cur_drv = get_cur_drv(fdctrl);
1614 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1615 fdctrl->data_dir == FD_DIR_SCANH)
1616 status2 = FD_SR2_SNS;
1617 if (dma_len > fdctrl->data_len)
1618 dma_len = fdctrl->data_len;
1619 if (cur_drv->blk == NULL) {
1620 if (fdctrl->data_dir == FD_DIR_WRITE)
1621 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1622 else
1623 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1624 len = 0;
1625 goto transfer_error;
1627 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1628 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1629 len = dma_len - fdctrl->data_pos;
1630 if (len + rel_pos > FD_SECTOR_LEN)
1631 len = FD_SECTOR_LEN - rel_pos;
1632 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1633 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1634 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1635 cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1636 fd_sector(cur_drv) * FD_SECTOR_LEN);
1637 if (fdctrl->data_dir != FD_DIR_WRITE ||
1638 len < FD_SECTOR_LEN || rel_pos != 0) {
1639 /* READ & SCAN commands and realign to a sector for WRITE */
1640 if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1641 fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1642 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1643 fd_sector(cur_drv));
1644 /* Sure, image size is too small... */
1645 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1648 switch (fdctrl->data_dir) {
1649 case FD_DIR_READ:
1650 /* READ commands */
1651 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1652 fdctrl->data_pos, len);
1653 break;
1654 case FD_DIR_WRITE:
1655 /* WRITE commands */
1656 if (cur_drv->ro) {
1657 /* Handle readonly medium early, no need to do DMA, touch the
1658 * LED or attempt any writes. A real floppy doesn't attempt
1659 * to write to readonly media either. */
1660 fdctrl_stop_transfer(fdctrl,
1661 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1662 0x00);
1663 goto transfer_error;
1666 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1667 fdctrl->data_pos, len);
1668 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1669 fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1670 FLOPPY_DPRINTF("error writing sector %d\n",
1671 fd_sector(cur_drv));
1672 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1673 goto transfer_error;
1675 break;
1676 case FD_DIR_VERIFY:
1677 /* VERIFY commands */
1678 break;
1679 default:
1680 /* SCAN commands */
1682 uint8_t tmpbuf[FD_SECTOR_LEN];
1683 int ret;
1684 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1685 len);
1686 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1687 if (ret == 0) {
1688 status2 = FD_SR2_SEH;
1689 goto end_transfer;
1691 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1692 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1693 status2 = 0x00;
1694 goto end_transfer;
1697 break;
1699 fdctrl->data_pos += len;
1700 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1701 if (rel_pos == 0) {
1702 /* Seek to next sector */
1703 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1704 break;
1707 end_transfer:
1708 len = fdctrl->data_pos - start_pos;
1709 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1710 fdctrl->data_pos, len, fdctrl->data_len);
1711 if (fdctrl->data_dir == FD_DIR_SCANE ||
1712 fdctrl->data_dir == FD_DIR_SCANL ||
1713 fdctrl->data_dir == FD_DIR_SCANH)
1714 status2 = FD_SR2_SEH;
1715 fdctrl->data_len -= len;
1716 fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1717 transfer_error:
1719 return len;
1722 /* Data register : 0x05 */
1723 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1725 FDrive *cur_drv;
1726 uint32_t retval = 0;
1727 uint32_t pos;
1729 cur_drv = get_cur_drv(fdctrl);
1730 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1731 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1732 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1733 return 0;
1736 /* If data_len spans multiple sectors, the current position in the FIFO
1737 * wraps around while fdctrl->data_pos is the real position in the whole
1738 * request. */
1739 pos = fdctrl->data_pos;
1740 pos %= FD_SECTOR_LEN;
1742 switch (fdctrl->phase) {
1743 case FD_PHASE_EXECUTION:
1744 assert(fdctrl->msr & FD_MSR_NONDMA);
1745 if (pos == 0) {
1746 if (fdctrl->data_pos != 0)
1747 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1748 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1749 fd_sector(cur_drv));
1750 return 0;
1752 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1753 BDRV_SECTOR_SIZE)
1754 < 0) {
1755 FLOPPY_DPRINTF("error getting sector %d\n",
1756 fd_sector(cur_drv));
1757 /* Sure, image size is too small... */
1758 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1762 if (++fdctrl->data_pos == fdctrl->data_len) {
1763 fdctrl->msr &= ~FD_MSR_RQM;
1764 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1766 break;
1768 case FD_PHASE_RESULT:
1769 assert(!(fdctrl->msr & FD_MSR_NONDMA));
1770 if (++fdctrl->data_pos == fdctrl->data_len) {
1771 fdctrl->msr &= ~FD_MSR_RQM;
1772 fdctrl_to_command_phase(fdctrl);
1773 fdctrl_reset_irq(fdctrl);
1775 break;
1777 case FD_PHASE_COMMAND:
1778 default:
1779 abort();
1782 retval = fdctrl->fifo[pos];
1783 FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1785 return retval;
1788 static void fdctrl_format_sector(FDCtrl *fdctrl)
1790 FDrive *cur_drv;
1791 uint8_t kh, kt, ks;
1793 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1794 cur_drv = get_cur_drv(fdctrl);
1795 kt = fdctrl->fifo[6];
1796 kh = fdctrl->fifo[7];
1797 ks = fdctrl->fifo[8];
1798 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1799 GET_CUR_DRV(fdctrl), kh, kt, ks,
1800 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1801 NUM_SIDES(cur_drv)));
1802 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1803 case 2:
1804 /* sect too big */
1805 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1806 fdctrl->fifo[3] = kt;
1807 fdctrl->fifo[4] = kh;
1808 fdctrl->fifo[5] = ks;
1809 return;
1810 case 3:
1811 /* track too big */
1812 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1813 fdctrl->fifo[3] = kt;
1814 fdctrl->fifo[4] = kh;
1815 fdctrl->fifo[5] = ks;
1816 return;
1817 case 4:
1818 /* No seek enabled */
1819 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1820 fdctrl->fifo[3] = kt;
1821 fdctrl->fifo[4] = kh;
1822 fdctrl->fifo[5] = ks;
1823 return;
1824 case 1:
1825 fdctrl->status0 |= FD_SR0_SEEK;
1826 break;
1827 default:
1828 break;
1830 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1831 if (cur_drv->blk == NULL ||
1832 blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1833 BDRV_SECTOR_SIZE, 0) < 0) {
1834 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1835 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1836 } else {
1837 if (cur_drv->sect == cur_drv->last_sect) {
1838 fdctrl->data_state &= ~FD_STATE_FORMAT;
1839 /* Last sector done */
1840 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1841 } else {
1842 /* More to do */
1843 fdctrl->data_pos = 0;
1844 fdctrl->data_len = 4;
1849 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
1851 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
1852 fdctrl->fifo[0] = fdctrl->lock << 4;
1853 fdctrl_to_result_phase(fdctrl, 1);
1856 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
1858 FDrive *cur_drv = get_cur_drv(fdctrl);
1860 /* Drives position */
1861 fdctrl->fifo[0] = drv0(fdctrl)->track;
1862 fdctrl->fifo[1] = drv1(fdctrl)->track;
1863 #if MAX_FD == 4
1864 fdctrl->fifo[2] = drv2(fdctrl)->track;
1865 fdctrl->fifo[3] = drv3(fdctrl)->track;
1866 #else
1867 fdctrl->fifo[2] = 0;
1868 fdctrl->fifo[3] = 0;
1869 #endif
1870 /* timers */
1871 fdctrl->fifo[4] = fdctrl->timer0;
1872 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
1873 fdctrl->fifo[6] = cur_drv->last_sect;
1874 fdctrl->fifo[7] = (fdctrl->lock << 7) |
1875 (cur_drv->perpendicular << 2);
1876 fdctrl->fifo[8] = fdctrl->config;
1877 fdctrl->fifo[9] = fdctrl->precomp_trk;
1878 fdctrl_to_result_phase(fdctrl, 10);
1881 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
1883 /* Controller's version */
1884 fdctrl->fifo[0] = fdctrl->version;
1885 fdctrl_to_result_phase(fdctrl, 1);
1888 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
1890 fdctrl->fifo[0] = 0x41; /* Stepping 1 */
1891 fdctrl_to_result_phase(fdctrl, 1);
1894 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
1896 FDrive *cur_drv = get_cur_drv(fdctrl);
1898 /* Drives position */
1899 drv0(fdctrl)->track = fdctrl->fifo[3];
1900 drv1(fdctrl)->track = fdctrl->fifo[4];
1901 #if MAX_FD == 4
1902 drv2(fdctrl)->track = fdctrl->fifo[5];
1903 drv3(fdctrl)->track = fdctrl->fifo[6];
1904 #endif
1905 /* timers */
1906 fdctrl->timer0 = fdctrl->fifo[7];
1907 fdctrl->timer1 = fdctrl->fifo[8];
1908 cur_drv->last_sect = fdctrl->fifo[9];
1909 fdctrl->lock = fdctrl->fifo[10] >> 7;
1910 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
1911 fdctrl->config = fdctrl->fifo[11];
1912 fdctrl->precomp_trk = fdctrl->fifo[12];
1913 fdctrl->pwrd = fdctrl->fifo[13];
1914 fdctrl_to_command_phase(fdctrl);
1917 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
1919 FDrive *cur_drv = get_cur_drv(fdctrl);
1921 fdctrl->fifo[0] = 0;
1922 fdctrl->fifo[1] = 0;
1923 /* Drives position */
1924 fdctrl->fifo[2] = drv0(fdctrl)->track;
1925 fdctrl->fifo[3] = drv1(fdctrl)->track;
1926 #if MAX_FD == 4
1927 fdctrl->fifo[4] = drv2(fdctrl)->track;
1928 fdctrl->fifo[5] = drv3(fdctrl)->track;
1929 #else
1930 fdctrl->fifo[4] = 0;
1931 fdctrl->fifo[5] = 0;
1932 #endif
1933 /* timers */
1934 fdctrl->fifo[6] = fdctrl->timer0;
1935 fdctrl->fifo[7] = fdctrl->timer1;
1936 fdctrl->fifo[8] = cur_drv->last_sect;
1937 fdctrl->fifo[9] = (fdctrl->lock << 7) |
1938 (cur_drv->perpendicular << 2);
1939 fdctrl->fifo[10] = fdctrl->config;
1940 fdctrl->fifo[11] = fdctrl->precomp_trk;
1941 fdctrl->fifo[12] = fdctrl->pwrd;
1942 fdctrl->fifo[13] = 0;
1943 fdctrl->fifo[14] = 0;
1944 fdctrl_to_result_phase(fdctrl, 15);
1947 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
1949 FDrive *cur_drv = get_cur_drv(fdctrl);
1951 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1952 timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1953 (NANOSECONDS_PER_SECOND / 50));
1956 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
1958 FDrive *cur_drv;
1960 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1961 cur_drv = get_cur_drv(fdctrl);
1962 fdctrl->data_state |= FD_STATE_FORMAT;
1963 if (fdctrl->fifo[0] & 0x80)
1964 fdctrl->data_state |= FD_STATE_MULTI;
1965 else
1966 fdctrl->data_state &= ~FD_STATE_MULTI;
1967 cur_drv->bps =
1968 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
1969 #if 0
1970 cur_drv->last_sect =
1971 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
1972 fdctrl->fifo[3] / 2;
1973 #else
1974 cur_drv->last_sect = fdctrl->fifo[3];
1975 #endif
1976 /* TODO: implement format using DMA expected by the Bochs BIOS
1977 * and Linux fdformat (read 3 bytes per sector via DMA and fill
1978 * the sector with the specified fill byte
1980 fdctrl->data_state &= ~FD_STATE_FORMAT;
1981 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1984 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
1986 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
1987 fdctrl->timer1 = fdctrl->fifo[2] >> 1;
1988 if (fdctrl->fifo[2] & 1)
1989 fdctrl->dor &= ~FD_DOR_DMAEN;
1990 else
1991 fdctrl->dor |= FD_DOR_DMAEN;
1992 /* No result back */
1993 fdctrl_to_command_phase(fdctrl);
1996 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
1998 FDrive *cur_drv;
2000 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2001 cur_drv = get_cur_drv(fdctrl);
2002 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2003 /* 1 Byte status back */
2004 fdctrl->fifo[0] = (cur_drv->ro << 6) |
2005 (cur_drv->track == 0 ? 0x10 : 0x00) |
2006 (cur_drv->head << 2) |
2007 GET_CUR_DRV(fdctrl) |
2008 0x28;
2009 fdctrl_to_result_phase(fdctrl, 1);
2012 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2014 FDrive *cur_drv;
2016 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2017 cur_drv = get_cur_drv(fdctrl);
2018 fd_recalibrate(cur_drv);
2019 fdctrl_to_command_phase(fdctrl);
2020 /* Raise Interrupt */
2021 fdctrl->status0 |= FD_SR0_SEEK;
2022 fdctrl_raise_irq(fdctrl);
2025 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2027 FDrive *cur_drv = get_cur_drv(fdctrl);
2029 if (fdctrl->reset_sensei > 0) {
2030 fdctrl->fifo[0] =
2031 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2032 fdctrl->reset_sensei--;
2033 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2034 fdctrl->fifo[0] = FD_SR0_INVCMD;
2035 fdctrl_to_result_phase(fdctrl, 1);
2036 return;
2037 } else {
2038 fdctrl->fifo[0] =
2039 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2040 | GET_CUR_DRV(fdctrl);
2043 fdctrl->fifo[1] = cur_drv->track;
2044 fdctrl_to_result_phase(fdctrl, 2);
2045 fdctrl_reset_irq(fdctrl);
2046 fdctrl->status0 = FD_SR0_RDYCHG;
2049 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2051 FDrive *cur_drv;
2053 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2054 cur_drv = get_cur_drv(fdctrl);
2055 fdctrl_to_command_phase(fdctrl);
2056 /* The seek command just sends step pulses to the drive and doesn't care if
2057 * there is a medium inserted of if it's banging the head against the drive.
2059 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2060 /* Raise Interrupt */
2061 fdctrl->status0 |= FD_SR0_SEEK;
2062 fdctrl_raise_irq(fdctrl);
2065 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2067 FDrive *cur_drv = get_cur_drv(fdctrl);
2069 if (fdctrl->fifo[1] & 0x80)
2070 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2071 /* No result back */
2072 fdctrl_to_command_phase(fdctrl);
2075 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2077 fdctrl->config = fdctrl->fifo[2];
2078 fdctrl->precomp_trk = fdctrl->fifo[3];
2079 /* No result back */
2080 fdctrl_to_command_phase(fdctrl);
2083 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2085 fdctrl->pwrd = fdctrl->fifo[1];
2086 fdctrl->fifo[0] = fdctrl->fifo[1];
2087 fdctrl_to_result_phase(fdctrl, 1);
2090 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2092 /* No result back */
2093 fdctrl_to_command_phase(fdctrl);
2096 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2098 FDrive *cur_drv = get_cur_drv(fdctrl);
2099 uint32_t pos;
2101 pos = fdctrl->data_pos - 1;
2102 pos %= FD_SECTOR_LEN;
2103 if (fdctrl->fifo[pos] & 0x80) {
2104 /* Command parameters done */
2105 if (fdctrl->fifo[pos] & 0x40) {
2106 fdctrl->fifo[0] = fdctrl->fifo[1];
2107 fdctrl->fifo[2] = 0;
2108 fdctrl->fifo[3] = 0;
2109 fdctrl_to_result_phase(fdctrl, 4);
2110 } else {
2111 fdctrl_to_command_phase(fdctrl);
2113 } else if (fdctrl->data_len > 7) {
2114 /* ERROR */
2115 fdctrl->fifo[0] = 0x80 |
2116 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2117 fdctrl_to_result_phase(fdctrl, 1);
2121 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2123 FDrive *cur_drv;
2125 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2126 cur_drv = get_cur_drv(fdctrl);
2127 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2128 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2129 cur_drv->sect, 1);
2130 } else {
2131 fd_seek(cur_drv, cur_drv->head,
2132 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2134 fdctrl_to_command_phase(fdctrl);
2135 /* Raise Interrupt */
2136 fdctrl->status0 |= FD_SR0_SEEK;
2137 fdctrl_raise_irq(fdctrl);
2140 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2142 FDrive *cur_drv;
2144 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2145 cur_drv = get_cur_drv(fdctrl);
2146 if (fdctrl->fifo[2] > cur_drv->track) {
2147 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2148 } else {
2149 fd_seek(cur_drv, cur_drv->head,
2150 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2152 fdctrl_to_command_phase(fdctrl);
2153 /* Raise Interrupt */
2154 fdctrl->status0 |= FD_SR0_SEEK;
2155 fdctrl_raise_irq(fdctrl);
2159 * Handlers for the execution phase of each command
2161 typedef struct FDCtrlCommand {
2162 uint8_t value;
2163 uint8_t mask;
2164 const char* name;
2165 int parameters;
2166 void (*handler)(FDCtrl *fdctrl, int direction);
2167 int direction;
2168 } FDCtrlCommand;
2170 static const FDCtrlCommand handlers[] = {
2171 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2172 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2173 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2174 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2175 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2176 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2177 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2178 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2179 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2180 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2181 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2182 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2183 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2184 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2185 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2186 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2187 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2188 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2189 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2190 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2191 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2192 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2193 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2194 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2195 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2196 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2197 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2198 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2199 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2200 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2201 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2202 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2204 /* Associate command to an index in the 'handlers' array */
2205 static uint8_t command_to_handler[256];
2207 static const FDCtrlCommand *get_command(uint8_t cmd)
2209 int idx;
2211 idx = command_to_handler[cmd];
2212 FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2213 return &handlers[idx];
2216 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2218 FDrive *cur_drv;
2219 const FDCtrlCommand *cmd;
2220 uint32_t pos;
2222 /* Reset mode */
2223 if (!(fdctrl->dor & FD_DOR_nRESET)) {
2224 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2225 return;
2227 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2228 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2229 return;
2231 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2233 FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2235 /* If data_len spans multiple sectors, the current position in the FIFO
2236 * wraps around while fdctrl->data_pos is the real position in the whole
2237 * request. */
2238 pos = fdctrl->data_pos++;
2239 pos %= FD_SECTOR_LEN;
2240 fdctrl->fifo[pos] = value;
2242 if (fdctrl->data_pos == fdctrl->data_len) {
2243 fdctrl->msr &= ~FD_MSR_RQM;
2246 switch (fdctrl->phase) {
2247 case FD_PHASE_EXECUTION:
2248 /* For DMA requests, RQM should be cleared during execution phase, so
2249 * we would have errored out above. */
2250 assert(fdctrl->msr & FD_MSR_NONDMA);
2252 /* FIFO data write */
2253 if (pos == FD_SECTOR_LEN - 1 ||
2254 fdctrl->data_pos == fdctrl->data_len) {
2255 cur_drv = get_cur_drv(fdctrl);
2256 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2257 BDRV_SECTOR_SIZE, 0) < 0) {
2258 FLOPPY_DPRINTF("error writing sector %d\n",
2259 fd_sector(cur_drv));
2260 break;
2262 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2263 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2264 fd_sector(cur_drv));
2265 break;
2269 /* Switch to result phase when done with the transfer */
2270 if (fdctrl->data_pos == fdctrl->data_len) {
2271 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2273 break;
2275 case FD_PHASE_COMMAND:
2276 assert(!(fdctrl->msr & FD_MSR_NONDMA));
2277 assert(fdctrl->data_pos < FD_SECTOR_LEN);
2279 if (pos == 0) {
2280 /* The first byte specifies the command. Now we start reading
2281 * as many parameters as this command requires. */
2282 cmd = get_command(value);
2283 fdctrl->data_len = cmd->parameters + 1;
2284 if (cmd->parameters) {
2285 fdctrl->msr |= FD_MSR_RQM;
2287 fdctrl->msr |= FD_MSR_CMDBUSY;
2290 if (fdctrl->data_pos == fdctrl->data_len) {
2291 /* We have all parameters now, execute the command */
2292 fdctrl->phase = FD_PHASE_EXECUTION;
2294 if (fdctrl->data_state & FD_STATE_FORMAT) {
2295 fdctrl_format_sector(fdctrl);
2296 break;
2299 cmd = get_command(fdctrl->fifo[0]);
2300 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2301 cmd->handler(fdctrl, cmd->direction);
2303 break;
2305 case FD_PHASE_RESULT:
2306 default:
2307 abort();
2311 static void fdctrl_result_timer(void *opaque)
2313 FDCtrl *fdctrl = opaque;
2314 FDrive *cur_drv = get_cur_drv(fdctrl);
2316 /* Pretend we are spinning.
2317 * This is needed for Coherent, which uses READ ID to check for
2318 * sector interleaving.
2320 if (cur_drv->last_sect != 0) {
2321 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2323 /* READ_ID can't automatically succeed! */
2324 if (fdctrl->check_media_rate &&
2325 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2326 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2327 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2328 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2329 } else {
2330 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2334 static void fdctrl_change_cb(void *opaque, bool load)
2336 FDrive *drive = opaque;
2338 drive->media_changed = 1;
2339 drive->media_validated = false;
2340 fd_revalidate(drive);
2343 static const BlockDevOps fdctrl_block_ops = {
2344 .change_media_cb = fdctrl_change_cb,
2347 /* Init functions */
2348 static void fdctrl_connect_drives(FDCtrl *fdctrl, Error **errp)
2350 unsigned int i;
2351 FDrive *drive;
2353 for (i = 0; i < MAX_FD; i++) {
2354 drive = &fdctrl->drives[i];
2355 drive->fdctrl = fdctrl;
2357 if (drive->blk) {
2358 if (blk_get_on_error(drive->blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC) {
2359 error_setg(errp, "fdc doesn't support drive option werror");
2360 return;
2362 if (blk_get_on_error(drive->blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
2363 error_setg(errp, "fdc doesn't support drive option rerror");
2364 return;
2368 fd_init(drive);
2369 if (drive->blk) {
2370 blk_set_dev_ops(drive->blk, &fdctrl_block_ops, drive);
2371 pick_drive_type(drive);
2373 fd_revalidate(drive);
2377 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2379 DeviceState *dev;
2380 ISADevice *isadev;
2382 isadev = isa_try_create(bus, TYPE_ISA_FDC);
2383 if (!isadev) {
2384 return NULL;
2386 dev = DEVICE(isadev);
2388 if (fds[0]) {
2389 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2390 &error_fatal);
2392 if (fds[1]) {
2393 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2394 &error_fatal);
2396 qdev_init_nofail(dev);
2398 return isadev;
2401 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2402 hwaddr mmio_base, DriveInfo **fds)
2404 FDCtrl *fdctrl;
2405 DeviceState *dev;
2406 SysBusDevice *sbd;
2407 FDCtrlSysBus *sys;
2409 dev = qdev_create(NULL, "sysbus-fdc");
2410 sys = SYSBUS_FDC(dev);
2411 fdctrl = &sys->state;
2412 fdctrl->dma_chann = dma_chann; /* FIXME */
2413 if (fds[0]) {
2414 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2415 &error_fatal);
2417 if (fds[1]) {
2418 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2419 &error_fatal);
2421 qdev_init_nofail(dev);
2422 sbd = SYS_BUS_DEVICE(dev);
2423 sysbus_connect_irq(sbd, 0, irq);
2424 sysbus_mmio_map(sbd, 0, mmio_base);
2427 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2428 DriveInfo **fds, qemu_irq *fdc_tc)
2430 DeviceState *dev;
2431 FDCtrlSysBus *sys;
2433 dev = qdev_create(NULL, "SUNW,fdtwo");
2434 if (fds[0]) {
2435 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2436 &error_fatal);
2438 qdev_init_nofail(dev);
2439 sys = SYSBUS_FDC(dev);
2440 sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2441 sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2442 *fdc_tc = qdev_get_gpio_in(dev, 0);
2445 static void fdctrl_realize_common(FDCtrl *fdctrl, Error **errp)
2447 int i, j;
2448 static int command_tables_inited = 0;
2450 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2451 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2454 /* Fill 'command_to_handler' lookup table */
2455 if (!command_tables_inited) {
2456 command_tables_inited = 1;
2457 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2458 for (j = 0; j < sizeof(command_to_handler); j++) {
2459 if ((j & handlers[i].mask) == handlers[i].value) {
2460 command_to_handler[j] = i;
2466 FLOPPY_DPRINTF("init controller\n");
2467 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2468 fdctrl->fifo_size = 512;
2469 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2470 fdctrl_result_timer, fdctrl);
2472 fdctrl->version = 0x90; /* Intel 82078 controller */
2473 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2474 fdctrl->num_floppies = MAX_FD;
2476 if (fdctrl->dma_chann != -1) {
2477 IsaDmaClass *k;
2478 assert(fdctrl->dma);
2479 k = ISADMA_GET_CLASS(fdctrl->dma);
2480 k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2481 &fdctrl_transfer_handler, fdctrl);
2483 fdctrl_connect_drives(fdctrl, errp);
2486 static const MemoryRegionPortio fdc_portio_list[] = {
2487 { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2488 { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2489 PORTIO_END_OF_LIST(),
2492 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2494 ISADevice *isadev = ISA_DEVICE(dev);
2495 FDCtrlISABus *isa = ISA_FDC(dev);
2496 FDCtrl *fdctrl = &isa->state;
2497 Error *err = NULL;
2499 isa_register_portio_list(isadev, &fdctrl->portio_list,
2500 isa->iobase, fdc_portio_list, fdctrl,
2501 "fdc");
2503 isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2504 fdctrl->dma_chann = isa->dma;
2505 if (fdctrl->dma_chann != -1) {
2506 fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2507 assert(fdctrl->dma);
2510 qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2511 fdctrl_realize_common(fdctrl, &err);
2512 if (err != NULL) {
2513 error_propagate(errp, err);
2514 return;
2518 static void sysbus_fdc_initfn(Object *obj)
2520 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2521 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2522 FDCtrl *fdctrl = &sys->state;
2524 fdctrl->dma_chann = -1;
2526 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2527 "fdc", 0x08);
2528 sysbus_init_mmio(sbd, &fdctrl->iomem);
2531 static void sun4m_fdc_initfn(Object *obj)
2533 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2534 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2535 FDCtrl *fdctrl = &sys->state;
2537 fdctrl->dma_chann = -1;
2539 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2540 fdctrl, "fdctrl", 0x08);
2541 sysbus_init_mmio(sbd, &fdctrl->iomem);
2544 static void sysbus_fdc_common_initfn(Object *obj)
2546 DeviceState *dev = DEVICE(obj);
2547 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2548 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2549 FDCtrl *fdctrl = &sys->state;
2551 qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2553 sysbus_init_irq(sbd, &fdctrl->irq);
2554 qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2557 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2559 FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2560 FDCtrl *fdctrl = &sys->state;
2562 fdctrl_realize_common(fdctrl, errp);
2565 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2567 FDCtrlISABus *isa = ISA_FDC(fdc);
2569 return isa->state.drives[i].drive;
2572 void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2573 uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2575 const FDFormat *fdf;
2577 *maxc = *maxh = *maxs = 0;
2578 for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2579 if (fdf->drive != type) {
2580 continue;
2582 if (*maxc < fdf->max_track) {
2583 *maxc = fdf->max_track;
2585 if (*maxh < fdf->max_head) {
2586 *maxh = fdf->max_head;
2588 if (*maxs < fdf->last_sect) {
2589 *maxs = fdf->last_sect;
2592 (*maxc)--;
2595 static const VMStateDescription vmstate_isa_fdc ={
2596 .name = "fdc",
2597 .version_id = 2,
2598 .minimum_version_id = 2,
2599 .fields = (VMStateField[]) {
2600 VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2601 VMSTATE_END_OF_LIST()
2605 static Property isa_fdc_properties[] = {
2606 DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2607 DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2608 DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2609 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.drives[0].blk),
2610 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.drives[1].blk),
2611 DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2612 0, true),
2613 DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlISABus, state.drives[0].drive,
2614 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2615 FloppyDriveType),
2616 DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlISABus, state.drives[1].drive,
2617 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2618 FloppyDriveType),
2619 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2620 FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2621 FloppyDriveType),
2622 DEFINE_PROP_END_OF_LIST(),
2625 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2627 DeviceClass *dc = DEVICE_CLASS(klass);
2629 dc->realize = isabus_fdc_realize;
2630 dc->fw_name = "fdc";
2631 dc->reset = fdctrl_external_reset_isa;
2632 dc->vmsd = &vmstate_isa_fdc;
2633 dc->props = isa_fdc_properties;
2634 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2637 static void isabus_fdc_instance_init(Object *obj)
2639 FDCtrlISABus *isa = ISA_FDC(obj);
2641 device_add_bootindex_property(obj, &isa->bootindexA,
2642 "bootindexA", "/floppy@0",
2643 DEVICE(obj), NULL);
2644 device_add_bootindex_property(obj, &isa->bootindexB,
2645 "bootindexB", "/floppy@1",
2646 DEVICE(obj), NULL);
2649 static const TypeInfo isa_fdc_info = {
2650 .name = TYPE_ISA_FDC,
2651 .parent = TYPE_ISA_DEVICE,
2652 .instance_size = sizeof(FDCtrlISABus),
2653 .class_init = isabus_fdc_class_init,
2654 .instance_init = isabus_fdc_instance_init,
2657 static const VMStateDescription vmstate_sysbus_fdc ={
2658 .name = "fdc",
2659 .version_id = 2,
2660 .minimum_version_id = 2,
2661 .fields = (VMStateField[]) {
2662 VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2663 VMSTATE_END_OF_LIST()
2667 static Property sysbus_fdc_properties[] = {
2668 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.drives[0].blk),
2669 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.drives[1].blk),
2670 DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlSysBus, state.drives[0].drive,
2671 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2672 FloppyDriveType),
2673 DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlSysBus, state.drives[1].drive,
2674 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2675 FloppyDriveType),
2676 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2677 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2678 FloppyDriveType),
2679 DEFINE_PROP_END_OF_LIST(),
2682 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2684 DeviceClass *dc = DEVICE_CLASS(klass);
2686 dc->props = sysbus_fdc_properties;
2687 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2690 static const TypeInfo sysbus_fdc_info = {
2691 .name = "sysbus-fdc",
2692 .parent = TYPE_SYSBUS_FDC,
2693 .instance_init = sysbus_fdc_initfn,
2694 .class_init = sysbus_fdc_class_init,
2697 static Property sun4m_fdc_properties[] = {
2698 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.drives[0].blk),
2699 DEFINE_PROP_DEFAULT("fdtype", FDCtrlSysBus, state.drives[0].drive,
2700 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2701 FloppyDriveType),
2702 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2703 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2704 FloppyDriveType),
2705 DEFINE_PROP_END_OF_LIST(),
2708 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2710 DeviceClass *dc = DEVICE_CLASS(klass);
2712 dc->props = sun4m_fdc_properties;
2713 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2716 static const TypeInfo sun4m_fdc_info = {
2717 .name = "SUNW,fdtwo",
2718 .parent = TYPE_SYSBUS_FDC,
2719 .instance_init = sun4m_fdc_initfn,
2720 .class_init = sun4m_fdc_class_init,
2723 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2725 DeviceClass *dc = DEVICE_CLASS(klass);
2727 dc->realize = sysbus_fdc_common_realize;
2728 dc->reset = fdctrl_external_reset_sysbus;
2729 dc->vmsd = &vmstate_sysbus_fdc;
2732 static const TypeInfo sysbus_fdc_type_info = {
2733 .name = TYPE_SYSBUS_FDC,
2734 .parent = TYPE_SYS_BUS_DEVICE,
2735 .instance_size = sizeof(FDCtrlSysBus),
2736 .instance_init = sysbus_fdc_common_initfn,
2737 .abstract = true,
2738 .class_init = sysbus_fdc_common_class_init,
2741 static void fdc_register_types(void)
2743 type_register_static(&isa_fdc_info);
2744 type_register_static(&sysbus_fdc_type_info);
2745 type_register_static(&sysbus_fdc_info);
2746 type_register_static(&sun4m_fdc_info);
2749 type_init(fdc_register_types)