s390-bios: Skip bootmap signature entries
[qemu/ar7.git] / hw / intc / armv7m_nvic.c
blobfff6e694e6054481fa1306c5a4128d6220e6f949
1 /*
2 * ARM Nested Vectored Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
26 /* IRQ number counting:
28 * the num-irq property counts the number of external IRQ lines
30 * NVICState::num_irq counts the total number of exceptions
31 * (external IRQs, the 15 internal exceptions including reset,
32 * and one for the unused exception number 0).
34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
38 * Iterating through all exceptions should typically be done with
39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
41 * The external qemu_irq lines are the NVIC's external IRQ lines,
42 * so line 0 is exception 16.
44 * In the terminology of the architecture manual, "interrupts" are
45 * a subcategory of exception referring to the external interrupts
46 * (which are exception numbers NVIC_FIRST_IRQ and upward).
47 * For historical reasons QEMU tends to use "interrupt" and
48 * "exception" more or less interchangeably.
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
53 /* Effective running priority of the CPU when no exception is active
54 * (higher than the highest possible priority value)
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
60 static const uint8_t nvic_id[] = {
61 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
64 static int nvic_pending_prio(NVICState *s)
66 /* return the group priority of the current pending interrupt,
67 * or NVIC_NOEXC_PRIO if no interrupt is pending
69 return s->vectpending_prio;
72 /* Return the value of the ISCR RETTOBASE bit:
73 * 1 if there is exactly one active exception
74 * 0 if there is more than one active exception
75 * UNKNOWN if there are no active exceptions (we choose 1,
76 * which matches the choice Cortex-M3 is documented as making).
78 * NB: some versions of the documentation talk about this
79 * counting "active exceptions other than the one shown by IPSR";
80 * this is only different in the obscure corner case where guest
81 * code has manually deactivated an exception and is about
82 * to fail an exception-return integrity check. The definition
83 * above is the one from the v8M ARM ARM and is also in line
84 * with the behaviour documented for the Cortex-M3.
86 static bool nvic_rettobase(NVICState *s)
88 int irq, nhand = 0;
89 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
91 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92 if (s->vectors[irq].active ||
93 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94 s->sec_vectors[irq].active)) {
95 nhand++;
96 if (nhand == 2) {
97 return 0;
102 return 1;
105 /* Return the value of the ISCR ISRPENDING bit:
106 * 1 if an external interrupt is pending
107 * 0 if no external interrupt is pending
109 static bool nvic_isrpending(NVICState *s)
111 int irq;
113 /* We can shortcut if the highest priority pending interrupt
114 * happens to be external or if there is nothing pending.
116 if (s->vectpending > NVIC_FIRST_IRQ) {
117 return true;
119 if (s->vectpending == 0) {
120 return false;
123 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124 if (s->vectors[irq].pending) {
125 return true;
128 return false;
131 static bool exc_is_banked(int exc)
133 /* Return true if this is one of the limited set of exceptions which
134 * are banked (and thus have state in sec_vectors[])
136 return exc == ARMV7M_EXCP_HARD ||
137 exc == ARMV7M_EXCP_MEM ||
138 exc == ARMV7M_EXCP_USAGE ||
139 exc == ARMV7M_EXCP_SVC ||
140 exc == ARMV7M_EXCP_PENDSV ||
141 exc == ARMV7M_EXCP_SYSTICK;
144 /* Return a mask word which clears the subpriority bits from
145 * a priority value for an M-profile exception, leaving only
146 * the group priority.
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
150 return ~0U << (s->prigroup[secure] + 1);
153 static bool exc_targets_secure(NVICState *s, int exc)
155 /* Return true if this non-banked exception targets Secure state. */
156 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157 return false;
160 if (exc >= NVIC_FIRST_IRQ) {
161 return !s->itns[exc];
164 /* Function shouldn't be called for banked exceptions. */
165 assert(!exc_is_banked(exc));
167 switch (exc) {
168 case ARMV7M_EXCP_NMI:
169 case ARMV7M_EXCP_BUS:
170 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171 case ARMV7M_EXCP_SECURE:
172 return true;
173 case ARMV7M_EXCP_DEBUG:
174 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175 return false;
176 default:
177 /* reset, and reserved (unused) low exception numbers.
178 * We'll get called by code that loops through all the exception
179 * numbers, but it doesn't matter what we return here as these
180 * non-existent exceptions will never be pended or active.
182 return true;
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
188 /* Return the group priority for this exception, given its raw
189 * (group-and-subgroup) priority value and whether it is targeting
190 * secure state or not.
192 if (rawprio < 0) {
193 return rawprio;
195 rawprio &= nvic_gprio_mask(s, targets_secure);
196 /* AIRCR.PRIS causes us to squash all NS priorities into the
197 * lower half of the total range
199 if (!targets_secure &&
200 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
203 return rawprio;
206 /* Recompute vectpending and exception_prio for a CPU which implements
207 * the Security extension
209 static void nvic_recompute_state_secure(NVICState *s)
211 int i, bank;
212 int pend_prio = NVIC_NOEXC_PRIO;
213 int active_prio = NVIC_NOEXC_PRIO;
214 int pend_irq = 0;
215 bool pending_is_s_banked = false;
217 /* R_CQRV: precedence is by:
218 * - lowest group priority; if both the same then
219 * - lowest subpriority; if both the same then
220 * - lowest exception number; if both the same (ie banked) then
221 * - secure exception takes precedence
222 * Compare pseudocode RawExecutionPriority.
223 * Annoyingly, now we have two prigroup values (for S and NS)
224 * we can't do the loop comparison on raw priority values.
226 for (i = 1; i < s->num_irq; i++) {
227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228 VecInfo *vec;
229 int prio;
230 bool targets_secure;
232 if (bank == M_REG_S) {
233 if (!exc_is_banked(i)) {
234 continue;
236 vec = &s->sec_vectors[i];
237 targets_secure = true;
238 } else {
239 vec = &s->vectors[i];
240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
243 prio = exc_group_prio(s, vec->prio, targets_secure);
244 if (vec->enabled && vec->pending && prio < pend_prio) {
245 pend_prio = prio;
246 pend_irq = i;
247 pending_is_s_banked = (bank == M_REG_S);
249 if (vec->active && prio < active_prio) {
250 active_prio = prio;
255 s->vectpending_is_s_banked = pending_is_s_banked;
256 s->vectpending = pend_irq;
257 s->vectpending_prio = pend_prio;
258 s->exception_prio = active_prio;
260 trace_nvic_recompute_state_secure(s->vectpending,
261 s->vectpending_is_s_banked,
262 s->vectpending_prio,
263 s->exception_prio);
266 /* Recompute vectpending and exception_prio */
267 static void nvic_recompute_state(NVICState *s)
269 int i;
270 int pend_prio = NVIC_NOEXC_PRIO;
271 int active_prio = NVIC_NOEXC_PRIO;
272 int pend_irq = 0;
274 /* In theory we could write one function that handled both
275 * the "security extension present" and "not present"; however
276 * the security related changes significantly complicate the
277 * recomputation just by themselves and mixing both cases together
278 * would be even worse, so we retain a separate non-secure-only
279 * version for CPUs which don't implement the security extension.
281 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282 nvic_recompute_state_secure(s);
283 return;
286 for (i = 1; i < s->num_irq; i++) {
287 VecInfo *vec = &s->vectors[i];
289 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290 pend_prio = vec->prio;
291 pend_irq = i;
293 if (vec->active && vec->prio < active_prio) {
294 active_prio = vec->prio;
298 if (active_prio > 0) {
299 active_prio &= nvic_gprio_mask(s, false);
302 if (pend_prio > 0) {
303 pend_prio &= nvic_gprio_mask(s, false);
306 s->vectpending = pend_irq;
307 s->vectpending_prio = pend_prio;
308 s->exception_prio = active_prio;
310 trace_nvic_recompute_state(s->vectpending,
311 s->vectpending_prio,
312 s->exception_prio);
315 /* Return the current execution priority of the CPU
316 * (equivalent to the pseudocode ExecutionPriority function).
317 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
319 static inline int nvic_exec_prio(NVICState *s)
321 CPUARMState *env = &s->cpu->env;
322 int running = NVIC_NOEXC_PRIO;
324 if (env->v7m.basepri[M_REG_NS] > 0) {
325 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
328 if (env->v7m.basepri[M_REG_S] > 0) {
329 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330 if (running > basepri) {
331 running = basepri;
335 if (env->v7m.primask[M_REG_NS]) {
336 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337 if (running > NVIC_NS_PRIO_LIMIT) {
338 running = NVIC_NS_PRIO_LIMIT;
340 } else {
341 running = 0;
345 if (env->v7m.primask[M_REG_S]) {
346 running = 0;
349 if (env->v7m.faultmask[M_REG_NS]) {
350 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351 running = -1;
352 } else {
353 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354 if (running > NVIC_NS_PRIO_LIMIT) {
355 running = NVIC_NS_PRIO_LIMIT;
357 } else {
358 running = 0;
363 if (env->v7m.faultmask[M_REG_S]) {
364 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
367 /* consider priority of active handler */
368 return MIN(running, s->exception_prio);
371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
373 /* Return true if the requested execution priority is negative
374 * for the specified security state, ie that security state
375 * has an active NMI or HardFault or has set its FAULTMASK.
376 * Note that this is not the same as whether the execution
377 * priority is actually negative (for instance AIRCR.PRIS may
378 * mean we don't allow FAULTMASK_NS to actually make the execution
379 * priority negative). Compare pseudocode IsReqExcPriNeg().
381 NVICState *s = opaque;
383 if (s->cpu->env.v7m.faultmask[secure]) {
384 return true;
387 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388 s->vectors[ARMV7M_EXCP_HARD].active) {
389 return true;
392 if (s->vectors[ARMV7M_EXCP_NMI].active &&
393 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394 return true;
397 return false;
400 bool armv7m_nvic_can_take_pending_exception(void *opaque)
402 NVICState *s = opaque;
404 return nvic_exec_prio(s) > nvic_pending_prio(s);
407 int armv7m_nvic_raw_execution_priority(void *opaque)
409 NVICState *s = opaque;
411 return s->exception_prio;
414 /* caller must call nvic_irq_update() after this.
415 * secure indicates the bank to use for banked exceptions (we assert if
416 * we are passed secure=true for a non-banked exception).
418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
420 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421 assert(irq < s->num_irq);
423 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
425 if (secure) {
426 assert(exc_is_banked(irq));
427 s->sec_vectors[irq].prio = prio;
428 } else {
429 s->vectors[irq].prio = prio;
432 trace_nvic_set_prio(irq, secure, prio);
435 /* Return the current raw priority register value.
436 * secure indicates the bank to use for banked exceptions (we assert if
437 * we are passed secure=true for a non-banked exception).
439 static int get_prio(NVICState *s, unsigned irq, bool secure)
441 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
442 assert(irq < s->num_irq);
444 if (secure) {
445 assert(exc_is_banked(irq));
446 return s->sec_vectors[irq].prio;
447 } else {
448 return s->vectors[irq].prio;
452 /* Recompute state and assert irq line accordingly.
453 * Must be called after changes to:
454 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
455 * prigroup
457 static void nvic_irq_update(NVICState *s)
459 int lvl;
460 int pend_prio;
462 nvic_recompute_state(s);
463 pend_prio = nvic_pending_prio(s);
465 /* Raise NVIC output if this IRQ would be taken, except that we
466 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
467 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
468 * to those CPU registers don't cause us to recalculate the NVIC
469 * pending info.
471 lvl = (pend_prio < s->exception_prio);
472 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
473 qemu_set_irq(s->excpout, lvl);
477 * armv7m_nvic_clear_pending: mark the specified exception as not pending
478 * @opaque: the NVIC
479 * @irq: the exception number to mark as not pending
480 * @secure: false for non-banked exceptions or for the nonsecure
481 * version of a banked exception, true for the secure version of a banked
482 * exception.
484 * Marks the specified exception as not pending. Note that we will assert()
485 * if @secure is true and @irq does not specify one of the fixed set
486 * of architecturally banked exceptions.
488 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
490 NVICState *s = (NVICState *)opaque;
491 VecInfo *vec;
493 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
495 if (secure) {
496 assert(exc_is_banked(irq));
497 vec = &s->sec_vectors[irq];
498 } else {
499 vec = &s->vectors[irq];
501 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
502 if (vec->pending) {
503 vec->pending = 0;
504 nvic_irq_update(s);
508 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
509 bool derived)
511 /* Pend an exception, including possibly escalating it to HardFault.
513 * This function handles both "normal" pending of interrupts and
514 * exceptions, and also derived exceptions (ones which occur as
515 * a result of trying to take some other exception).
517 * If derived == true, the caller guarantees that we are part way through
518 * trying to take an exception (but have not yet called
519 * armv7m_nvic_acknowledge_irq() to make it active), and so:
520 * - s->vectpending is the "original exception" we were trying to take
521 * - irq is the "derived exception"
522 * - nvic_exec_prio(s) gives the priority before exception entry
523 * Here we handle the prioritization logic which the pseudocode puts
524 * in the DerivedLateArrival() function.
527 NVICState *s = (NVICState *)opaque;
528 bool banked = exc_is_banked(irq);
529 VecInfo *vec;
530 bool targets_secure;
532 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
533 assert(!secure || banked);
535 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
537 targets_secure = banked ? secure : exc_targets_secure(s, irq);
539 trace_nvic_set_pending(irq, secure, targets_secure,
540 derived, vec->enabled, vec->prio);
542 if (derived) {
543 /* Derived exceptions are always synchronous. */
544 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
546 if (irq == ARMV7M_EXCP_DEBUG &&
547 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
548 /* DebugMonitorFault, but its priority is lower than the
549 * preempted exception priority: just ignore it.
551 return;
554 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
555 /* If this is a terminal exception (one which means we cannot
556 * take the original exception, like a failure to read its
557 * vector table entry), then we must take the derived exception.
558 * If the derived exception can't take priority over the
559 * original exception, then we go into Lockup.
561 * For QEMU, we rely on the fact that a derived exception is
562 * terminal if and only if it's reported to us as HardFault,
563 * which saves having to have an extra argument is_terminal
564 * that we'd only use in one place.
566 cpu_abort(&s->cpu->parent_obj,
567 "Lockup: can't take terminal derived exception "
568 "(original exception priority %d)\n",
569 s->vectpending_prio);
571 /* We now continue with the same code as for a normal pending
572 * exception, which will cause us to pend the derived exception.
573 * We'll then take either the original or the derived exception
574 * based on which is higher priority by the usual mechanism
575 * for selecting the highest priority pending interrupt.
579 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
580 /* If a synchronous exception is pending then it may be
581 * escalated to HardFault if:
582 * * it is equal or lower priority to current execution
583 * * it is disabled
584 * (ie we need to take it immediately but we can't do so).
585 * Asynchronous exceptions (and interrupts) simply remain pending.
587 * For QEMU, we don't have any imprecise (asynchronous) faults,
588 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
589 * synchronous.
590 * Debug exceptions are awkward because only Debug exceptions
591 * resulting from the BKPT instruction should be escalated,
592 * but we don't currently implement any Debug exceptions other
593 * than those that result from BKPT, so we treat all debug exceptions
594 * as needing escalation.
596 * This all means we can identify whether to escalate based only on
597 * the exception number and don't (yet) need the caller to explicitly
598 * tell us whether this exception is synchronous or not.
600 int running = nvic_exec_prio(s);
601 bool escalate = false;
603 if (exc_group_prio(s, vec->prio, secure) >= running) {
604 trace_nvic_escalate_prio(irq, vec->prio, running);
605 escalate = true;
606 } else if (!vec->enabled) {
607 trace_nvic_escalate_disabled(irq);
608 escalate = true;
611 if (escalate) {
613 /* We need to escalate this exception to a synchronous HardFault.
614 * If BFHFNMINS is set then we escalate to the banked HF for
615 * the target security state of the original exception; otherwise
616 * we take a Secure HardFault.
618 irq = ARMV7M_EXCP_HARD;
619 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
620 (targets_secure ||
621 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
622 vec = &s->sec_vectors[irq];
623 } else {
624 vec = &s->vectors[irq];
626 if (running <= vec->prio) {
627 /* We want to escalate to HardFault but we can't take the
628 * synchronous HardFault at this point either. This is a
629 * Lockup condition due to a guest bug. We don't model
630 * Lockup, so report via cpu_abort() instead.
632 cpu_abort(&s->cpu->parent_obj,
633 "Lockup: can't escalate %d to HardFault "
634 "(current priority %d)\n", irq, running);
637 /* HF may be banked but there is only one shared HFSR */
638 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
642 if (!vec->pending) {
643 vec->pending = 1;
644 nvic_irq_update(s);
648 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
650 do_armv7m_nvic_set_pending(opaque, irq, secure, false);
653 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
655 do_armv7m_nvic_set_pending(opaque, irq, secure, true);
658 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
661 * Pend an exception during lazy FP stacking. This differs
662 * from the usual exception pending because the logic for
663 * whether we should escalate depends on the saved context
664 * in the FPCCR register, not on the current state of the CPU/NVIC.
666 NVICState *s = (NVICState *)opaque;
667 bool banked = exc_is_banked(irq);
668 VecInfo *vec;
669 bool targets_secure;
670 bool escalate = false;
672 * We will only look at bits in fpccr if this is a banked exception
673 * (in which case 'secure' tells us whether it is the S or NS version).
674 * All the bits for the non-banked exceptions are in fpccr_s.
676 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
677 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
679 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
680 assert(!secure || banked);
682 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
684 targets_secure = banked ? secure : exc_targets_secure(s, irq);
686 switch (irq) {
687 case ARMV7M_EXCP_DEBUG:
688 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
689 /* Ignore DebugMonitor exception */
690 return;
692 break;
693 case ARMV7M_EXCP_MEM:
694 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
695 break;
696 case ARMV7M_EXCP_USAGE:
697 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
698 break;
699 case ARMV7M_EXCP_BUS:
700 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
701 break;
702 case ARMV7M_EXCP_SECURE:
703 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
704 break;
705 default:
706 g_assert_not_reached();
709 if (escalate) {
711 * Escalate to HardFault: faults that initially targeted Secure
712 * continue to do so, even if HF normally targets NonSecure.
714 irq = ARMV7M_EXCP_HARD;
715 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
716 (targets_secure ||
717 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
718 vec = &s->sec_vectors[irq];
719 } else {
720 vec = &s->vectors[irq];
724 if (!vec->enabled ||
725 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
726 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
728 * We want to escalate to HardFault but the context the
729 * FP state belongs to prevents the exception pre-empting.
731 cpu_abort(&s->cpu->parent_obj,
732 "Lockup: can't escalate to HardFault during "
733 "lazy FP register stacking\n");
737 if (escalate) {
738 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
740 if (!vec->pending) {
741 vec->pending = 1;
743 * We do not call nvic_irq_update(), because we know our caller
744 * is going to handle causing us to take the exception by
745 * raising EXCP_LAZYFP, so raising the IRQ line would be
746 * pointless extra work. We just need to recompute the
747 * priorities so that armv7m_nvic_can_take_pending_exception()
748 * returns the right answer.
750 nvic_recompute_state(s);
754 /* Make pending IRQ active. */
755 void armv7m_nvic_acknowledge_irq(void *opaque)
757 NVICState *s = (NVICState *)opaque;
758 CPUARMState *env = &s->cpu->env;
759 const int pending = s->vectpending;
760 const int running = nvic_exec_prio(s);
761 VecInfo *vec;
763 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
765 if (s->vectpending_is_s_banked) {
766 vec = &s->sec_vectors[pending];
767 } else {
768 vec = &s->vectors[pending];
771 assert(vec->enabled);
772 assert(vec->pending);
774 assert(s->vectpending_prio < running);
776 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
778 vec->active = 1;
779 vec->pending = 0;
781 write_v7m_exception(env, s->vectpending);
783 nvic_irq_update(s);
786 void armv7m_nvic_get_pending_irq_info(void *opaque,
787 int *pirq, bool *ptargets_secure)
789 NVICState *s = (NVICState *)opaque;
790 const int pending = s->vectpending;
791 bool targets_secure;
793 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
795 if (s->vectpending_is_s_banked) {
796 targets_secure = true;
797 } else {
798 targets_secure = !exc_is_banked(pending) &&
799 exc_targets_secure(s, pending);
802 trace_nvic_get_pending_irq_info(pending, targets_secure);
804 *ptargets_secure = targets_secure;
805 *pirq = pending;
808 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
810 NVICState *s = (NVICState *)opaque;
811 VecInfo *vec;
812 int ret;
814 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
816 if (secure && exc_is_banked(irq)) {
817 vec = &s->sec_vectors[irq];
818 } else {
819 vec = &s->vectors[irq];
822 trace_nvic_complete_irq(irq, secure);
824 if (!vec->active) {
825 /* Tell the caller this was an illegal exception return */
826 return -1;
829 ret = nvic_rettobase(s);
831 vec->active = 0;
832 if (vec->level) {
833 /* Re-pend the exception if it's still held high; only
834 * happens for extenal IRQs
836 assert(irq >= NVIC_FIRST_IRQ);
837 vec->pending = 1;
840 nvic_irq_update(s);
842 return ret;
845 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
848 * Return whether an exception is "ready", i.e. it is enabled and is
849 * configured at a priority which would allow it to interrupt the
850 * current execution priority.
852 * irq and secure have the same semantics as for armv7m_nvic_set_pending():
853 * for non-banked exceptions secure is always false; for banked exceptions
854 * it indicates which of the exceptions is required.
856 NVICState *s = (NVICState *)opaque;
857 bool banked = exc_is_banked(irq);
858 VecInfo *vec;
859 int running = nvic_exec_prio(s);
861 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
862 assert(!secure || banked);
865 * HardFault is an odd special case: we always check against -1,
866 * even if we're secure and HardFault has priority -3; we never
867 * need to check for enabled state.
869 if (irq == ARMV7M_EXCP_HARD) {
870 return running > -1;
873 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
875 return vec->enabled &&
876 exc_group_prio(s, vec->prio, secure) < running;
879 /* callback when external interrupt line is changed */
880 static void set_irq_level(void *opaque, int n, int level)
882 NVICState *s = opaque;
883 VecInfo *vec;
885 n += NVIC_FIRST_IRQ;
887 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
889 trace_nvic_set_irq_level(n, level);
891 /* The pending status of an external interrupt is
892 * latched on rising edge and exception handler return.
894 * Pulsing the IRQ will always run the handler
895 * once, and the handler will re-run until the
896 * level is low when the handler completes.
898 vec = &s->vectors[n];
899 if (level != vec->level) {
900 vec->level = level;
901 if (level) {
902 armv7m_nvic_set_pending(s, n, false);
907 /* callback when external NMI line is changed */
908 static void nvic_nmi_trigger(void *opaque, int n, int level)
910 NVICState *s = opaque;
912 trace_nvic_set_nmi_level(level);
915 * The architecture doesn't specify whether NMI should share
916 * the normal-interrupt behaviour of being resampled on
917 * exception handler return. We choose not to, so just
918 * set NMI pending here and don't track the current level.
920 if (level) {
921 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
925 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
927 ARMCPU *cpu = s->cpu;
928 uint32_t val;
930 switch (offset) {
931 case 4: /* Interrupt Control Type. */
932 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
933 goto bad_offset;
935 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
936 case 0xc: /* CPPWR */
937 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
938 goto bad_offset;
940 /* We make the IMPDEF choice that nothing can ever go into a
941 * non-retentive power state, which allows us to RAZ/WI this.
943 return 0;
944 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
946 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
947 int i;
949 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
950 goto bad_offset;
952 if (!attrs.secure) {
953 return 0;
955 val = 0;
956 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
957 if (s->itns[startvec + i]) {
958 val |= (1 << i);
961 return val;
963 case 0xd00: /* CPUID Base. */
964 return cpu->midr;
965 case 0xd04: /* Interrupt Control State (ICSR) */
966 /* VECTACTIVE */
967 val = cpu->env.v7m.exception;
968 /* VECTPENDING */
969 val |= (s->vectpending & 0xff) << 12;
970 /* ISRPENDING - set if any external IRQ is pending */
971 if (nvic_isrpending(s)) {
972 val |= (1 << 22);
974 /* RETTOBASE - set if only one handler is active */
975 if (nvic_rettobase(s)) {
976 val |= (1 << 11);
978 if (attrs.secure) {
979 /* PENDSTSET */
980 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
981 val |= (1 << 26);
983 /* PENDSVSET */
984 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
985 val |= (1 << 28);
987 } else {
988 /* PENDSTSET */
989 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
990 val |= (1 << 26);
992 /* PENDSVSET */
993 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
994 val |= (1 << 28);
997 /* NMIPENDSET */
998 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
999 && s->vectors[ARMV7M_EXCP_NMI].pending) {
1000 val |= (1 << 31);
1002 /* ISRPREEMPT: RES0 when halting debug not implemented */
1003 /* STTNS: RES0 for the Main Extension */
1004 return val;
1005 case 0xd08: /* Vector Table Offset. */
1006 return cpu->env.v7m.vecbase[attrs.secure];
1007 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1008 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1009 if (attrs.secure) {
1010 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1011 val |= cpu->env.v7m.aircr;
1012 } else {
1013 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1014 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1015 * security isn't supported then BFHFNMINS is RAO (and
1016 * the bit in env.v7m.aircr is always set).
1018 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1021 return val;
1022 case 0xd10: /* System Control. */
1023 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1024 goto bad_offset;
1026 return cpu->env.v7m.scr[attrs.secure];
1027 case 0xd14: /* Configuration Control. */
1028 /* The BFHFNMIGN bit is the only non-banked bit; we
1029 * keep it in the non-secure copy of the register.
1031 val = cpu->env.v7m.ccr[attrs.secure];
1032 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1033 return val;
1034 case 0xd24: /* System Handler Control and State (SHCSR) */
1035 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1036 goto bad_offset;
1038 val = 0;
1039 if (attrs.secure) {
1040 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1041 val |= (1 << 0);
1043 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1044 val |= (1 << 2);
1046 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1047 val |= (1 << 3);
1049 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1050 val |= (1 << 7);
1052 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1053 val |= (1 << 10);
1055 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1056 val |= (1 << 11);
1058 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1059 val |= (1 << 12);
1061 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1062 val |= (1 << 13);
1064 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1065 val |= (1 << 15);
1067 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1068 val |= (1 << 16);
1070 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1071 val |= (1 << 18);
1073 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1074 val |= (1 << 21);
1076 /* SecureFault is not banked but is always RAZ/WI to NS */
1077 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1078 val |= (1 << 4);
1080 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1081 val |= (1 << 19);
1083 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1084 val |= (1 << 20);
1086 } else {
1087 if (s->vectors[ARMV7M_EXCP_MEM].active) {
1088 val |= (1 << 0);
1090 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1091 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1092 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1093 val |= (1 << 2);
1095 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1096 val |= (1 << 21);
1099 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1100 val |= (1 << 3);
1102 if (s->vectors[ARMV7M_EXCP_SVC].active) {
1103 val |= (1 << 7);
1105 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1106 val |= (1 << 10);
1108 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1109 val |= (1 << 11);
1111 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1112 val |= (1 << 12);
1114 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1115 val |= (1 << 13);
1117 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1118 val |= (1 << 15);
1120 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1121 val |= (1 << 16);
1123 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1124 val |= (1 << 18);
1127 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1128 if (s->vectors[ARMV7M_EXCP_BUS].active) {
1129 val |= (1 << 1);
1131 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1132 val |= (1 << 14);
1134 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1135 val |= (1 << 17);
1137 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1138 s->vectors[ARMV7M_EXCP_NMI].active) {
1139 /* NMIACT is not present in v7M */
1140 val |= (1 << 5);
1144 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1145 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1146 val |= (1 << 8);
1148 return val;
1149 case 0xd2c: /* Hard Fault Status. */
1150 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1151 goto bad_offset;
1153 return cpu->env.v7m.hfsr;
1154 case 0xd30: /* Debug Fault Status. */
1155 return cpu->env.v7m.dfsr;
1156 case 0xd34: /* MMFAR MemManage Fault Address */
1157 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1158 goto bad_offset;
1160 return cpu->env.v7m.mmfar[attrs.secure];
1161 case 0xd38: /* Bus Fault Address. */
1162 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1163 goto bad_offset;
1165 return cpu->env.v7m.bfar;
1166 case 0xd3c: /* Aux Fault Status. */
1167 /* TODO: Implement fault status registers. */
1168 qemu_log_mask(LOG_UNIMP,
1169 "Aux Fault status registers unimplemented\n");
1170 return 0;
1171 case 0xd40: /* PFR0. */
1172 return cpu->id_pfr0;
1173 case 0xd44: /* PFR1. */
1174 return cpu->id_pfr1;
1175 case 0xd48: /* DFR0. */
1176 return cpu->id_dfr0;
1177 case 0xd4c: /* AFR0. */
1178 return cpu->id_afr0;
1179 case 0xd50: /* MMFR0. */
1180 return cpu->id_mmfr0;
1181 case 0xd54: /* MMFR1. */
1182 return cpu->id_mmfr1;
1183 case 0xd58: /* MMFR2. */
1184 return cpu->id_mmfr2;
1185 case 0xd5c: /* MMFR3. */
1186 return cpu->id_mmfr3;
1187 case 0xd60: /* ISAR0. */
1188 return cpu->isar.id_isar0;
1189 case 0xd64: /* ISAR1. */
1190 return cpu->isar.id_isar1;
1191 case 0xd68: /* ISAR2. */
1192 return cpu->isar.id_isar2;
1193 case 0xd6c: /* ISAR3. */
1194 return cpu->isar.id_isar3;
1195 case 0xd70: /* ISAR4. */
1196 return cpu->isar.id_isar4;
1197 case 0xd74: /* ISAR5. */
1198 return cpu->isar.id_isar5;
1199 case 0xd78: /* CLIDR */
1200 return cpu->clidr;
1201 case 0xd7c: /* CTR */
1202 return cpu->ctr;
1203 case 0xd80: /* CSSIDR */
1205 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1206 return cpu->ccsidr[idx];
1208 case 0xd84: /* CSSELR */
1209 return cpu->env.v7m.csselr[attrs.secure];
1210 case 0xd88: /* CPACR */
1211 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1212 return 0;
1214 return cpu->env.v7m.cpacr[attrs.secure];
1215 case 0xd8c: /* NSACR */
1216 if (!attrs.secure || !arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1217 return 0;
1219 return cpu->env.v7m.nsacr;
1220 /* TODO: Implement debug registers. */
1221 case 0xd90: /* MPU_TYPE */
1222 /* Unified MPU; if the MPU is not present this value is zero */
1223 return cpu->pmsav7_dregion << 8;
1224 break;
1225 case 0xd94: /* MPU_CTRL */
1226 return cpu->env.v7m.mpu_ctrl[attrs.secure];
1227 case 0xd98: /* MPU_RNR */
1228 return cpu->env.pmsav7.rnr[attrs.secure];
1229 case 0xd9c: /* MPU_RBAR */
1230 case 0xda4: /* MPU_RBAR_A1 */
1231 case 0xdac: /* MPU_RBAR_A2 */
1232 case 0xdb4: /* MPU_RBAR_A3 */
1234 int region = cpu->env.pmsav7.rnr[attrs.secure];
1236 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1237 /* PMSAv8M handling of the aliases is different from v7M:
1238 * aliases A1, A2, A3 override the low two bits of the region
1239 * number in MPU_RNR, and there is no 'region' field in the
1240 * RBAR register.
1242 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1243 if (aliasno) {
1244 region = deposit32(region, 0, 2, aliasno);
1246 if (region >= cpu->pmsav7_dregion) {
1247 return 0;
1249 return cpu->env.pmsav8.rbar[attrs.secure][region];
1252 if (region >= cpu->pmsav7_dregion) {
1253 return 0;
1255 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1257 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1258 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1259 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1260 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1262 int region = cpu->env.pmsav7.rnr[attrs.secure];
1264 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1265 /* PMSAv8M handling of the aliases is different from v7M:
1266 * aliases A1, A2, A3 override the low two bits of the region
1267 * number in MPU_RNR.
1269 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1270 if (aliasno) {
1271 region = deposit32(region, 0, 2, aliasno);
1273 if (region >= cpu->pmsav7_dregion) {
1274 return 0;
1276 return cpu->env.pmsav8.rlar[attrs.secure][region];
1279 if (region >= cpu->pmsav7_dregion) {
1280 return 0;
1282 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1283 (cpu->env.pmsav7.drsr[region] & 0xffff);
1285 case 0xdc0: /* MPU_MAIR0 */
1286 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1287 goto bad_offset;
1289 return cpu->env.pmsav8.mair0[attrs.secure];
1290 case 0xdc4: /* MPU_MAIR1 */
1291 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1292 goto bad_offset;
1294 return cpu->env.pmsav8.mair1[attrs.secure];
1295 case 0xdd0: /* SAU_CTRL */
1296 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1297 goto bad_offset;
1299 if (!attrs.secure) {
1300 return 0;
1302 return cpu->env.sau.ctrl;
1303 case 0xdd4: /* SAU_TYPE */
1304 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1305 goto bad_offset;
1307 if (!attrs.secure) {
1308 return 0;
1310 return cpu->sau_sregion;
1311 case 0xdd8: /* SAU_RNR */
1312 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1313 goto bad_offset;
1315 if (!attrs.secure) {
1316 return 0;
1318 return cpu->env.sau.rnr;
1319 case 0xddc: /* SAU_RBAR */
1321 int region = cpu->env.sau.rnr;
1323 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1324 goto bad_offset;
1326 if (!attrs.secure) {
1327 return 0;
1329 if (region >= cpu->sau_sregion) {
1330 return 0;
1332 return cpu->env.sau.rbar[region];
1334 case 0xde0: /* SAU_RLAR */
1336 int region = cpu->env.sau.rnr;
1338 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1339 goto bad_offset;
1341 if (!attrs.secure) {
1342 return 0;
1344 if (region >= cpu->sau_sregion) {
1345 return 0;
1347 return cpu->env.sau.rlar[region];
1349 case 0xde4: /* SFSR */
1350 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1351 goto bad_offset;
1353 if (!attrs.secure) {
1354 return 0;
1356 return cpu->env.v7m.sfsr;
1357 case 0xde8: /* SFAR */
1358 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1359 goto bad_offset;
1361 if (!attrs.secure) {
1362 return 0;
1364 return cpu->env.v7m.sfar;
1365 case 0xf34: /* FPCCR */
1366 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1367 return 0;
1369 if (attrs.secure) {
1370 return cpu->env.v7m.fpccr[M_REG_S];
1371 } else {
1373 * NS can read LSPEN, CLRONRET and MONRDY. It can read
1374 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1375 * other non-banked bits RAZ.
1376 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1378 uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1379 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1380 R_V7M_FPCCR_CLRONRET_MASK |
1381 R_V7M_FPCCR_MONRDY_MASK;
1383 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1384 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1387 value &= mask;
1389 value |= cpu->env.v7m.fpccr[M_REG_NS];
1390 return value;
1392 case 0xf38: /* FPCAR */
1393 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1394 return 0;
1396 return cpu->env.v7m.fpcar[attrs.secure];
1397 case 0xf3c: /* FPDSCR */
1398 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1399 return 0;
1401 return cpu->env.v7m.fpdscr[attrs.secure];
1402 case 0xf40: /* MVFR0 */
1403 return cpu->isar.mvfr0;
1404 case 0xf44: /* MVFR1 */
1405 return cpu->isar.mvfr1;
1406 case 0xf48: /* MVFR2 */
1407 return cpu->isar.mvfr2;
1408 default:
1409 bad_offset:
1410 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1411 return 0;
1415 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1416 MemTxAttrs attrs)
1418 ARMCPU *cpu = s->cpu;
1420 switch (offset) {
1421 case 0xc: /* CPPWR */
1422 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1423 goto bad_offset;
1425 /* Make the IMPDEF choice to RAZ/WI this. */
1426 break;
1427 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1429 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1430 int i;
1432 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1433 goto bad_offset;
1435 if (!attrs.secure) {
1436 break;
1438 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1439 s->itns[startvec + i] = (value >> i) & 1;
1441 nvic_irq_update(s);
1442 break;
1444 case 0xd04: /* Interrupt Control State (ICSR) */
1445 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1446 if (value & (1 << 31)) {
1447 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1448 } else if (value & (1 << 30) &&
1449 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1450 /* PENDNMICLR didn't exist in v7M */
1451 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1454 if (value & (1 << 28)) {
1455 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1456 } else if (value & (1 << 27)) {
1457 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1459 if (value & (1 << 26)) {
1460 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1461 } else if (value & (1 << 25)) {
1462 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1464 break;
1465 case 0xd08: /* Vector Table Offset. */
1466 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1467 break;
1468 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1469 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1470 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1471 if (attrs.secure ||
1472 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1473 qemu_irq_pulse(s->sysresetreq);
1476 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1477 qemu_log_mask(LOG_GUEST_ERROR,
1478 "Setting VECTCLRACTIVE when not in DEBUG mode "
1479 "is UNPREDICTABLE\n");
1481 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1482 /* NB: this bit is RES0 in v8M */
1483 qemu_log_mask(LOG_GUEST_ERROR,
1484 "Setting VECTRESET when not in DEBUG mode "
1485 "is UNPREDICTABLE\n");
1487 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1488 s->prigroup[attrs.secure] =
1489 extract32(value,
1490 R_V7M_AIRCR_PRIGROUP_SHIFT,
1491 R_V7M_AIRCR_PRIGROUP_LENGTH);
1493 if (attrs.secure) {
1494 /* These bits are only writable by secure */
1495 cpu->env.v7m.aircr = value &
1496 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1497 R_V7M_AIRCR_BFHFNMINS_MASK |
1498 R_V7M_AIRCR_PRIS_MASK);
1499 /* BFHFNMINS changes the priority of Secure HardFault, and
1500 * allows a pending Non-secure HardFault to preempt (which
1501 * we implement by marking it enabled).
1503 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1504 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1505 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1506 } else {
1507 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1508 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1511 nvic_irq_update(s);
1513 break;
1514 case 0xd10: /* System Control. */
1515 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1516 goto bad_offset;
1518 /* We don't implement deep-sleep so these bits are RAZ/WI.
1519 * The other bits in the register are banked.
1520 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1521 * is architecturally permitted.
1523 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1524 cpu->env.v7m.scr[attrs.secure] = value;
1525 break;
1526 case 0xd14: /* Configuration Control. */
1527 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1528 goto bad_offset;
1531 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1532 value &= (R_V7M_CCR_STKALIGN_MASK |
1533 R_V7M_CCR_BFHFNMIGN_MASK |
1534 R_V7M_CCR_DIV_0_TRP_MASK |
1535 R_V7M_CCR_UNALIGN_TRP_MASK |
1536 R_V7M_CCR_USERSETMPEND_MASK |
1537 R_V7M_CCR_NONBASETHRDENA_MASK);
1539 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1540 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1541 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1542 | R_V7M_CCR_STKALIGN_MASK;
1544 if (attrs.secure) {
1545 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1546 cpu->env.v7m.ccr[M_REG_NS] =
1547 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1548 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1549 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1552 cpu->env.v7m.ccr[attrs.secure] = value;
1553 break;
1554 case 0xd24: /* System Handler Control and State (SHCSR) */
1555 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1556 goto bad_offset;
1558 if (attrs.secure) {
1559 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1560 /* Secure HardFault active bit cannot be written */
1561 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1562 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1563 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1564 (value & (1 << 10)) != 0;
1565 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1566 (value & (1 << 11)) != 0;
1567 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1568 (value & (1 << 12)) != 0;
1569 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1570 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1571 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1572 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1573 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1574 (value & (1 << 18)) != 0;
1575 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1576 /* SecureFault not banked, but RAZ/WI to NS */
1577 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1578 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1579 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1580 } else {
1581 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1582 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1583 /* HARDFAULTPENDED is not present in v7M */
1584 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1586 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1587 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1588 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1589 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1590 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1591 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1592 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1593 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1594 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1596 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1597 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1598 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1599 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1601 /* NMIACT can only be written if the write is of a zero, with
1602 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1604 if (!attrs.secure && cpu->env.v7m.secure &&
1605 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1606 (value & (1 << 5)) == 0) {
1607 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1609 /* HARDFAULTACT can only be written if the write is of a zero
1610 * to the non-secure HardFault state by the CPU in secure state.
1611 * The only case where we can be targeting the non-secure HF state
1612 * when in secure state is if this is a write via the NS alias
1613 * and BFHFNMINS is 1.
1615 if (!attrs.secure && cpu->env.v7m.secure &&
1616 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1617 (value & (1 << 2)) == 0) {
1618 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1621 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1622 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1623 nvic_irq_update(s);
1624 break;
1625 case 0xd2c: /* Hard Fault Status. */
1626 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1627 goto bad_offset;
1629 cpu->env.v7m.hfsr &= ~value; /* W1C */
1630 break;
1631 case 0xd30: /* Debug Fault Status. */
1632 cpu->env.v7m.dfsr &= ~value; /* W1C */
1633 break;
1634 case 0xd34: /* Mem Manage Address. */
1635 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1636 goto bad_offset;
1638 cpu->env.v7m.mmfar[attrs.secure] = value;
1639 return;
1640 case 0xd38: /* Bus Fault Address. */
1641 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1642 goto bad_offset;
1644 cpu->env.v7m.bfar = value;
1645 return;
1646 case 0xd3c: /* Aux Fault Status. */
1647 qemu_log_mask(LOG_UNIMP,
1648 "NVIC: Aux fault status registers unimplemented\n");
1649 break;
1650 case 0xd84: /* CSSELR */
1651 if (!arm_v7m_csselr_razwi(cpu)) {
1652 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1654 break;
1655 case 0xd88: /* CPACR */
1656 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1657 /* We implement only the Floating Point extension's CP10/CP11 */
1658 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1660 break;
1661 case 0xd8c: /* NSACR */
1662 if (attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1663 /* We implement only the Floating Point extension's CP10/CP11 */
1664 cpu->env.v7m.nsacr = value & (3 << 10);
1666 break;
1667 case 0xd90: /* MPU_TYPE */
1668 return; /* RO */
1669 case 0xd94: /* MPU_CTRL */
1670 if ((value &
1671 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1672 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1673 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1674 "UNPREDICTABLE\n");
1676 cpu->env.v7m.mpu_ctrl[attrs.secure]
1677 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1678 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1679 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1680 tlb_flush(CPU(cpu));
1681 break;
1682 case 0xd98: /* MPU_RNR */
1683 if (value >= cpu->pmsav7_dregion) {
1684 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1685 PRIu32 "/%" PRIu32 "\n",
1686 value, cpu->pmsav7_dregion);
1687 } else {
1688 cpu->env.pmsav7.rnr[attrs.secure] = value;
1690 break;
1691 case 0xd9c: /* MPU_RBAR */
1692 case 0xda4: /* MPU_RBAR_A1 */
1693 case 0xdac: /* MPU_RBAR_A2 */
1694 case 0xdb4: /* MPU_RBAR_A3 */
1696 int region;
1698 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1699 /* PMSAv8M handling of the aliases is different from v7M:
1700 * aliases A1, A2, A3 override the low two bits of the region
1701 * number in MPU_RNR, and there is no 'region' field in the
1702 * RBAR register.
1704 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1706 region = cpu->env.pmsav7.rnr[attrs.secure];
1707 if (aliasno) {
1708 region = deposit32(region, 0, 2, aliasno);
1710 if (region >= cpu->pmsav7_dregion) {
1711 return;
1713 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1714 tlb_flush(CPU(cpu));
1715 return;
1718 if (value & (1 << 4)) {
1719 /* VALID bit means use the region number specified in this
1720 * value and also update MPU_RNR.REGION with that value.
1722 region = extract32(value, 0, 4);
1723 if (region >= cpu->pmsav7_dregion) {
1724 qemu_log_mask(LOG_GUEST_ERROR,
1725 "MPU region out of range %u/%" PRIu32 "\n",
1726 region, cpu->pmsav7_dregion);
1727 return;
1729 cpu->env.pmsav7.rnr[attrs.secure] = region;
1730 } else {
1731 region = cpu->env.pmsav7.rnr[attrs.secure];
1734 if (region >= cpu->pmsav7_dregion) {
1735 return;
1738 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1739 tlb_flush(CPU(cpu));
1740 break;
1742 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1743 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1744 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1745 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1747 int region = cpu->env.pmsav7.rnr[attrs.secure];
1749 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1750 /* PMSAv8M handling of the aliases is different from v7M:
1751 * aliases A1, A2, A3 override the low two bits of the region
1752 * number in MPU_RNR.
1754 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1756 region = cpu->env.pmsav7.rnr[attrs.secure];
1757 if (aliasno) {
1758 region = deposit32(region, 0, 2, aliasno);
1760 if (region >= cpu->pmsav7_dregion) {
1761 return;
1763 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1764 tlb_flush(CPU(cpu));
1765 return;
1768 if (region >= cpu->pmsav7_dregion) {
1769 return;
1772 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1773 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1774 tlb_flush(CPU(cpu));
1775 break;
1777 case 0xdc0: /* MPU_MAIR0 */
1778 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1779 goto bad_offset;
1781 if (cpu->pmsav7_dregion) {
1782 /* Register is RES0 if no MPU regions are implemented */
1783 cpu->env.pmsav8.mair0[attrs.secure] = value;
1785 /* We don't need to do anything else because memory attributes
1786 * only affect cacheability, and we don't implement caching.
1788 break;
1789 case 0xdc4: /* MPU_MAIR1 */
1790 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1791 goto bad_offset;
1793 if (cpu->pmsav7_dregion) {
1794 /* Register is RES0 if no MPU regions are implemented */
1795 cpu->env.pmsav8.mair1[attrs.secure] = value;
1797 /* We don't need to do anything else because memory attributes
1798 * only affect cacheability, and we don't implement caching.
1800 break;
1801 case 0xdd0: /* SAU_CTRL */
1802 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1803 goto bad_offset;
1805 if (!attrs.secure) {
1806 return;
1808 cpu->env.sau.ctrl = value & 3;
1809 break;
1810 case 0xdd4: /* SAU_TYPE */
1811 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1812 goto bad_offset;
1814 break;
1815 case 0xdd8: /* SAU_RNR */
1816 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1817 goto bad_offset;
1819 if (!attrs.secure) {
1820 return;
1822 if (value >= cpu->sau_sregion) {
1823 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1824 PRIu32 "/%" PRIu32 "\n",
1825 value, cpu->sau_sregion);
1826 } else {
1827 cpu->env.sau.rnr = value;
1829 break;
1830 case 0xddc: /* SAU_RBAR */
1832 int region = cpu->env.sau.rnr;
1834 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1835 goto bad_offset;
1837 if (!attrs.secure) {
1838 return;
1840 if (region >= cpu->sau_sregion) {
1841 return;
1843 cpu->env.sau.rbar[region] = value & ~0x1f;
1844 tlb_flush(CPU(cpu));
1845 break;
1847 case 0xde0: /* SAU_RLAR */
1849 int region = cpu->env.sau.rnr;
1851 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1852 goto bad_offset;
1854 if (!attrs.secure) {
1855 return;
1857 if (region >= cpu->sau_sregion) {
1858 return;
1860 cpu->env.sau.rlar[region] = value & ~0x1c;
1861 tlb_flush(CPU(cpu));
1862 break;
1864 case 0xde4: /* SFSR */
1865 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1866 goto bad_offset;
1868 if (!attrs.secure) {
1869 return;
1871 cpu->env.v7m.sfsr &= ~value; /* W1C */
1872 break;
1873 case 0xde8: /* SFAR */
1874 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1875 goto bad_offset;
1877 if (!attrs.secure) {
1878 return;
1880 cpu->env.v7m.sfsr = value;
1881 break;
1882 case 0xf00: /* Software Triggered Interrupt Register */
1884 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1886 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1887 goto bad_offset;
1890 if (excnum < s->num_irq) {
1891 armv7m_nvic_set_pending(s, excnum, false);
1893 break;
1895 case 0xf34: /* FPCCR */
1896 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1897 /* Not all bits here are banked. */
1898 uint32_t fpccr_s;
1900 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1901 /* Don't allow setting of bits not present in v7M */
1902 value &= (R_V7M_FPCCR_LSPACT_MASK |
1903 R_V7M_FPCCR_USER_MASK |
1904 R_V7M_FPCCR_THREAD_MASK |
1905 R_V7M_FPCCR_HFRDY_MASK |
1906 R_V7M_FPCCR_MMRDY_MASK |
1907 R_V7M_FPCCR_BFRDY_MASK |
1908 R_V7M_FPCCR_MONRDY_MASK |
1909 R_V7M_FPCCR_LSPEN_MASK |
1910 R_V7M_FPCCR_ASPEN_MASK);
1912 value &= ~R_V7M_FPCCR_RES0_MASK;
1914 if (!attrs.secure) {
1915 /* Some non-banked bits are configurably writable by NS */
1916 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
1917 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
1918 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
1919 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
1921 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
1922 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
1923 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
1925 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1926 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
1927 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
1928 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
1929 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
1931 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
1933 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
1934 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
1938 * All other non-banked bits are RAZ/WI from NS; write
1939 * just the banked bits to fpccr[M_REG_NS].
1941 value &= R_V7M_FPCCR_BANKED_MASK;
1942 cpu->env.v7m.fpccr[M_REG_NS] = value;
1943 } else {
1944 fpccr_s = value;
1946 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
1948 break;
1949 case 0xf38: /* FPCAR */
1950 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1951 value &= ~7;
1952 cpu->env.v7m.fpcar[attrs.secure] = value;
1954 break;
1955 case 0xf3c: /* FPDSCR */
1956 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1957 value &= 0x07c00000;
1958 cpu->env.v7m.fpdscr[attrs.secure] = value;
1960 break;
1961 case 0xf50: /* ICIALLU */
1962 case 0xf58: /* ICIMVAU */
1963 case 0xf5c: /* DCIMVAC */
1964 case 0xf60: /* DCISW */
1965 case 0xf64: /* DCCMVAU */
1966 case 0xf68: /* DCCMVAC */
1967 case 0xf6c: /* DCCSW */
1968 case 0xf70: /* DCCIMVAC */
1969 case 0xf74: /* DCCISW */
1970 case 0xf78: /* BPIALL */
1971 /* Cache and branch predictor maintenance: for QEMU these always NOP */
1972 break;
1973 default:
1974 bad_offset:
1975 qemu_log_mask(LOG_GUEST_ERROR,
1976 "NVIC: Bad write offset 0x%x\n", offset);
1980 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1982 /* Return true if unprivileged access to this register is permitted. */
1983 switch (offset) {
1984 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1985 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1986 * controls access even though the CPU is in Secure state (I_QDKX).
1988 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
1989 default:
1990 /* All other user accesses cause a BusFault unconditionally */
1991 return false;
1995 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1997 /* Behaviour for the SHPR register field for this exception:
1998 * return M_REG_NS to use the nonsecure vector (including for
1999 * non-banked exceptions), M_REG_S for the secure version of
2000 * a banked exception, and -1 if this field should RAZ/WI.
2002 switch (exc) {
2003 case ARMV7M_EXCP_MEM:
2004 case ARMV7M_EXCP_USAGE:
2005 case ARMV7M_EXCP_SVC:
2006 case ARMV7M_EXCP_PENDSV:
2007 case ARMV7M_EXCP_SYSTICK:
2008 /* Banked exceptions */
2009 return attrs.secure;
2010 case ARMV7M_EXCP_BUS:
2011 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2012 if (!attrs.secure &&
2013 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2014 return -1;
2016 return M_REG_NS;
2017 case ARMV7M_EXCP_SECURE:
2018 /* Not banked, RAZ/WI from nonsecure */
2019 if (!attrs.secure) {
2020 return -1;
2022 return M_REG_NS;
2023 case ARMV7M_EXCP_DEBUG:
2024 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2025 return M_REG_NS;
2026 case 8 ... 10:
2027 case 13:
2028 /* RES0 */
2029 return -1;
2030 default:
2031 /* Not reachable due to decode of SHPR register addresses */
2032 g_assert_not_reached();
2036 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2037 uint64_t *data, unsigned size,
2038 MemTxAttrs attrs)
2040 NVICState *s = (NVICState *)opaque;
2041 uint32_t offset = addr;
2042 unsigned i, startvec, end;
2043 uint32_t val;
2045 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2046 /* Generate BusFault for unprivileged accesses */
2047 return MEMTX_ERROR;
2050 switch (offset) {
2051 /* reads of set and clear both return the status */
2052 case 0x100 ... 0x13f: /* NVIC Set enable */
2053 offset += 0x80;
2054 /* fall through */
2055 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2056 val = 0;
2057 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2059 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2060 if (s->vectors[startvec + i].enabled &&
2061 (attrs.secure || s->itns[startvec + i])) {
2062 val |= (1 << i);
2065 break;
2066 case 0x200 ... 0x23f: /* NVIC Set pend */
2067 offset += 0x80;
2068 /* fall through */
2069 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2070 val = 0;
2071 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2072 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2073 if (s->vectors[startvec + i].pending &&
2074 (attrs.secure || s->itns[startvec + i])) {
2075 val |= (1 << i);
2078 break;
2079 case 0x300 ... 0x33f: /* NVIC Active */
2080 val = 0;
2082 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2083 break;
2086 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2088 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2089 if (s->vectors[startvec + i].active &&
2090 (attrs.secure || s->itns[startvec + i])) {
2091 val |= (1 << i);
2094 break;
2095 case 0x400 ... 0x5ef: /* NVIC Priority */
2096 val = 0;
2097 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2099 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2100 if (attrs.secure || s->itns[startvec + i]) {
2101 val |= s->vectors[startvec + i].prio << (8 * i);
2104 break;
2105 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2106 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2107 val = 0;
2108 break;
2110 /* fall through */
2111 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2112 val = 0;
2113 for (i = 0; i < size; i++) {
2114 unsigned hdlidx = (offset - 0xd14) + i;
2115 int sbank = shpr_bank(s, hdlidx, attrs);
2117 if (sbank < 0) {
2118 continue;
2120 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2122 break;
2123 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2124 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2125 val = 0;
2126 break;
2128 /* The BFSR bits [15:8] are shared between security states
2129 * and we store them in the NS copy
2131 val = s->cpu->env.v7m.cfsr[attrs.secure];
2132 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2133 val = extract32(val, (offset - 0xd28) * 8, size * 8);
2134 break;
2135 case 0xfe0 ... 0xfff: /* ID. */
2136 if (offset & 3) {
2137 val = 0;
2138 } else {
2139 val = nvic_id[(offset - 0xfe0) >> 2];
2141 break;
2142 default:
2143 if (size == 4) {
2144 val = nvic_readl(s, offset, attrs);
2145 } else {
2146 qemu_log_mask(LOG_GUEST_ERROR,
2147 "NVIC: Bad read of size %d at offset 0x%x\n",
2148 size, offset);
2149 val = 0;
2153 trace_nvic_sysreg_read(addr, val, size);
2154 *data = val;
2155 return MEMTX_OK;
2158 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2159 uint64_t value, unsigned size,
2160 MemTxAttrs attrs)
2162 NVICState *s = (NVICState *)opaque;
2163 uint32_t offset = addr;
2164 unsigned i, startvec, end;
2165 unsigned setval = 0;
2167 trace_nvic_sysreg_write(addr, value, size);
2169 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2170 /* Generate BusFault for unprivileged accesses */
2171 return MEMTX_ERROR;
2174 switch (offset) {
2175 case 0x100 ... 0x13f: /* NVIC Set enable */
2176 offset += 0x80;
2177 setval = 1;
2178 /* fall through */
2179 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2180 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2182 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2183 if (value & (1 << i) &&
2184 (attrs.secure || s->itns[startvec + i])) {
2185 s->vectors[startvec + i].enabled = setval;
2188 nvic_irq_update(s);
2189 return MEMTX_OK;
2190 case 0x200 ... 0x23f: /* NVIC Set pend */
2191 /* the special logic in armv7m_nvic_set_pending()
2192 * is not needed since IRQs are never escalated
2194 offset += 0x80;
2195 setval = 1;
2196 /* fall through */
2197 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2198 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2200 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2201 if (value & (1 << i) &&
2202 (attrs.secure || s->itns[startvec + i])) {
2203 s->vectors[startvec + i].pending = setval;
2206 nvic_irq_update(s);
2207 return MEMTX_OK;
2208 case 0x300 ... 0x33f: /* NVIC Active */
2209 return MEMTX_OK; /* R/O */
2210 case 0x400 ... 0x5ef: /* NVIC Priority */
2211 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2213 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2214 if (attrs.secure || s->itns[startvec + i]) {
2215 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2218 nvic_irq_update(s);
2219 return MEMTX_OK;
2220 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2221 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2222 return MEMTX_OK;
2224 /* fall through */
2225 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2226 for (i = 0; i < size; i++) {
2227 unsigned hdlidx = (offset - 0xd14) + i;
2228 int newprio = extract32(value, i * 8, 8);
2229 int sbank = shpr_bank(s, hdlidx, attrs);
2231 if (sbank < 0) {
2232 continue;
2234 set_prio(s, hdlidx, sbank, newprio);
2236 nvic_irq_update(s);
2237 return MEMTX_OK;
2238 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2239 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2240 return MEMTX_OK;
2242 /* All bits are W1C, so construct 32 bit value with 0s in
2243 * the parts not written by the access size
2245 value <<= ((offset - 0xd28) * 8);
2247 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2248 if (attrs.secure) {
2249 /* The BFSR bits [15:8] are shared between security states
2250 * and we store them in the NS copy.
2252 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2254 return MEMTX_OK;
2256 if (size == 4) {
2257 nvic_writel(s, offset, value, attrs);
2258 return MEMTX_OK;
2260 qemu_log_mask(LOG_GUEST_ERROR,
2261 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2262 /* This is UNPREDICTABLE; treat as RAZ/WI */
2263 return MEMTX_OK;
2266 static const MemoryRegionOps nvic_sysreg_ops = {
2267 .read_with_attrs = nvic_sysreg_read,
2268 .write_with_attrs = nvic_sysreg_write,
2269 .endianness = DEVICE_NATIVE_ENDIAN,
2272 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2273 uint64_t value, unsigned size,
2274 MemTxAttrs attrs)
2276 MemoryRegion *mr = opaque;
2278 if (attrs.secure) {
2279 /* S accesses to the alias act like NS accesses to the real region */
2280 attrs.secure = 0;
2281 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2282 } else {
2283 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2284 if (attrs.user) {
2285 return MEMTX_ERROR;
2287 return MEMTX_OK;
2291 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2292 uint64_t *data, unsigned size,
2293 MemTxAttrs attrs)
2295 MemoryRegion *mr = opaque;
2297 if (attrs.secure) {
2298 /* S accesses to the alias act like NS accesses to the real region */
2299 attrs.secure = 0;
2300 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2301 } else {
2302 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2303 if (attrs.user) {
2304 return MEMTX_ERROR;
2306 *data = 0;
2307 return MEMTX_OK;
2311 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2312 .read_with_attrs = nvic_sysreg_ns_read,
2313 .write_with_attrs = nvic_sysreg_ns_write,
2314 .endianness = DEVICE_NATIVE_ENDIAN,
2317 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2318 uint64_t value, unsigned size,
2319 MemTxAttrs attrs)
2321 NVICState *s = opaque;
2322 MemoryRegion *mr;
2324 /* Direct the access to the correct systick */
2325 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2326 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2329 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2330 uint64_t *data, unsigned size,
2331 MemTxAttrs attrs)
2333 NVICState *s = opaque;
2334 MemoryRegion *mr;
2336 /* Direct the access to the correct systick */
2337 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2338 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2341 static const MemoryRegionOps nvic_systick_ops = {
2342 .read_with_attrs = nvic_systick_read,
2343 .write_with_attrs = nvic_systick_write,
2344 .endianness = DEVICE_NATIVE_ENDIAN,
2347 static int nvic_post_load(void *opaque, int version_id)
2349 NVICState *s = opaque;
2350 unsigned i;
2351 int resetprio;
2353 /* Check for out of range priority settings */
2354 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2356 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2357 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2358 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2359 return 1;
2361 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2362 if (s->vectors[i].prio & ~0xff) {
2363 return 1;
2367 nvic_recompute_state(s);
2369 return 0;
2372 static const VMStateDescription vmstate_VecInfo = {
2373 .name = "armv7m_nvic_info",
2374 .version_id = 1,
2375 .minimum_version_id = 1,
2376 .fields = (VMStateField[]) {
2377 VMSTATE_INT16(prio, VecInfo),
2378 VMSTATE_UINT8(enabled, VecInfo),
2379 VMSTATE_UINT8(pending, VecInfo),
2380 VMSTATE_UINT8(active, VecInfo),
2381 VMSTATE_UINT8(level, VecInfo),
2382 VMSTATE_END_OF_LIST()
2386 static bool nvic_security_needed(void *opaque)
2388 NVICState *s = opaque;
2390 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2393 static int nvic_security_post_load(void *opaque, int version_id)
2395 NVICState *s = opaque;
2396 int i;
2398 /* Check for out of range priority settings */
2399 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2400 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2401 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2402 * if the CPU state has been migrated yet; a mismatch won't
2403 * cause the emulation to blow up, though.
2405 return 1;
2407 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2408 if (s->sec_vectors[i].prio & ~0xff) {
2409 return 1;
2412 return 0;
2415 static const VMStateDescription vmstate_nvic_security = {
2416 .name = "armv7m_nvic/m-security",
2417 .version_id = 1,
2418 .minimum_version_id = 1,
2419 .needed = nvic_security_needed,
2420 .post_load = &nvic_security_post_load,
2421 .fields = (VMStateField[]) {
2422 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2423 vmstate_VecInfo, VecInfo),
2424 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2425 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2426 VMSTATE_END_OF_LIST()
2430 static const VMStateDescription vmstate_nvic = {
2431 .name = "armv7m_nvic",
2432 .version_id = 4,
2433 .minimum_version_id = 4,
2434 .post_load = &nvic_post_load,
2435 .fields = (VMStateField[]) {
2436 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2437 vmstate_VecInfo, VecInfo),
2438 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2439 VMSTATE_END_OF_LIST()
2441 .subsections = (const VMStateDescription*[]) {
2442 &vmstate_nvic_security,
2443 NULL
2447 static Property props_nvic[] = {
2448 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2449 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2450 DEFINE_PROP_END_OF_LIST()
2453 static void armv7m_nvic_reset(DeviceState *dev)
2455 int resetprio;
2456 NVICState *s = NVIC(dev);
2458 memset(s->vectors, 0, sizeof(s->vectors));
2459 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2460 s->prigroup[M_REG_NS] = 0;
2461 s->prigroup[M_REG_S] = 0;
2463 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2464 /* MEM, BUS, and USAGE are enabled through
2465 * the System Handler Control register
2467 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2468 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
2469 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2470 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2472 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2473 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2474 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2475 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2477 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2478 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2479 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2480 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2481 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2483 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2484 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2485 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2486 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2487 } else {
2488 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2491 /* Strictly speaking the reset handler should be enabled.
2492 * However, we don't simulate soft resets through the NVIC,
2493 * and the reset vector should never be pended.
2494 * So we leave it disabled to catch logic errors.
2497 s->exception_prio = NVIC_NOEXC_PRIO;
2498 s->vectpending = 0;
2499 s->vectpending_is_s_banked = false;
2500 s->vectpending_prio = NVIC_NOEXC_PRIO;
2502 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2503 memset(s->itns, 0, sizeof(s->itns));
2504 } else {
2505 /* This state is constant and not guest accessible in a non-security
2506 * NVIC; we set the bits to true to avoid having to do a feature
2507 * bit check in the NVIC enable/pend/etc register accessors.
2509 int i;
2511 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2512 s->itns[i] = true;
2517 static void nvic_systick_trigger(void *opaque, int n, int level)
2519 NVICState *s = opaque;
2521 if (level) {
2522 /* SysTick just asked us to pend its exception.
2523 * (This is different from an external interrupt line's
2524 * behaviour.)
2525 * n == 0 : NonSecure systick
2526 * n == 1 : Secure systick
2528 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2532 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2534 NVICState *s = NVIC(dev);
2535 Error *err = NULL;
2536 int regionlen;
2538 /* The armv7m container object will have set our CPU pointer */
2539 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2540 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2541 return;
2544 if (s->num_irq > NVIC_MAX_IRQ) {
2545 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2546 return;
2549 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2551 /* include space for internal exception vectors */
2552 s->num_irq += NVIC_FIRST_IRQ;
2554 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2556 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2557 "realized", &err);
2558 if (err != NULL) {
2559 error_propagate(errp, err);
2560 return;
2562 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2563 qdev_get_gpio_in_named(dev, "systick-trigger",
2564 M_REG_NS));
2566 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2567 /* We couldn't init the secure systick device in instance_init
2568 * as we didn't know then if the CPU had the security extensions;
2569 * so we have to do it here.
2571 object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2572 TYPE_SYSTICK);
2573 qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2575 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2576 "realized", &err);
2577 if (err != NULL) {
2578 error_propagate(errp, err);
2579 return;
2581 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2582 qdev_get_gpio_in_named(dev, "systick-trigger",
2583 M_REG_S));
2586 /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2587 * and looks like this:
2588 * 0x004 - ICTR
2589 * 0x010 - 0xff - systick
2590 * 0x100..0x7ec - NVIC
2591 * 0x7f0..0xcff - Reserved
2592 * 0xd00..0xd3c - SCS registers
2593 * 0xd40..0xeff - Reserved or Not implemented
2594 * 0xf00 - STIR
2596 * Some registers within this space are banked between security states.
2597 * In v8M there is a second range 0xe002e000..0xe002efff which is the
2598 * NonSecure alias SCS; secure accesses to this behave like NS accesses
2599 * to the main SCS range, and non-secure accesses (including when
2600 * the security extension is not implemented) are RAZ/WI.
2601 * Note that both the main SCS range and the alias range are defined
2602 * to be exempt from memory attribution (R_BLJT) and so the memory
2603 * transaction attribute always matches the current CPU security
2604 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2605 * wrappers we change attrs.secure to indicate the NS access; so
2606 * generally code determining which banked register to use should
2607 * use attrs.secure; code determining actual behaviour of the system
2608 * should use env->v7m.secure.
2610 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2611 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2612 /* The system register region goes at the bottom of the priority
2613 * stack as it covers the whole page.
2615 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2616 "nvic_sysregs", 0x1000);
2617 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2619 memory_region_init_io(&s->systickmem, OBJECT(s),
2620 &nvic_systick_ops, s,
2621 "nvic_systick", 0xe0);
2623 memory_region_add_subregion_overlap(&s->container, 0x10,
2624 &s->systickmem, 1);
2626 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2627 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2628 &nvic_sysreg_ns_ops, &s->sysregmem,
2629 "nvic_sysregs_ns", 0x1000);
2630 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2631 memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2632 &nvic_sysreg_ns_ops, &s->systickmem,
2633 "nvic_systick_ns", 0xe0);
2634 memory_region_add_subregion_overlap(&s->container, 0x20010,
2635 &s->systick_ns_mem, 1);
2638 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2641 static void armv7m_nvic_instance_init(Object *obj)
2643 /* We have a different default value for the num-irq property
2644 * than our superclass. This function runs after qdev init
2645 * has set the defaults from the Property array and before
2646 * any user-specified property setting, so just modify the
2647 * value in the GICState struct.
2649 DeviceState *dev = DEVICE(obj);
2650 NVICState *nvic = NVIC(obj);
2651 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2653 sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2654 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2655 /* We can't initialize the secure systick here, as we don't know
2656 * yet if we need it.
2659 sysbus_init_irq(sbd, &nvic->excpout);
2660 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2661 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2662 M_REG_NUM_BANKS);
2663 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2666 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2668 DeviceClass *dc = DEVICE_CLASS(klass);
2670 dc->vmsd = &vmstate_nvic;
2671 dc->props = props_nvic;
2672 dc->reset = armv7m_nvic_reset;
2673 dc->realize = armv7m_nvic_realize;
2676 static const TypeInfo armv7m_nvic_info = {
2677 .name = TYPE_NVIC,
2678 .parent = TYPE_SYS_BUS_DEVICE,
2679 .instance_init = armv7m_nvic_instance_init,
2680 .instance_size = sizeof(NVICState),
2681 .class_init = armv7m_nvic_class_init,
2682 .class_size = sizeof(SysBusDeviceClass),
2685 static void armv7m_nvic_register_types(void)
2687 type_register_static(&armv7m_nvic_info);
2690 type_init(armv7m_nvic_register_types)