hw/sd: sd: Skip write protect groups check in sd_erase() for high capacity cards
[qemu/ar7.git] / hw / misc / mps2-fpgaio.c
blob6af0e8f837aa269311466139d4f9ad76fa40201c
1 /*
2 * ARM MPS2 AN505 FPGAIO emulation
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* This is a model of the "FPGA system control and I/O" block found
13 * in the AN505 FPGA image for the MPS2 devboard.
14 * It is documented in AN505:
15 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
18 #include "qemu/osdep.h"
19 #include "qemu/log.h"
20 #include "qemu/module.h"
21 #include "qapi/error.h"
22 #include "trace.h"
23 #include "hw/sysbus.h"
24 #include "migration/vmstate.h"
25 #include "hw/registerfields.h"
26 #include "hw/misc/mps2-fpgaio.h"
27 #include "hw/misc/led.h"
28 #include "hw/qdev-properties.h"
29 #include "qemu/timer.h"
31 REG32(LED0, 0)
32 REG32(BUTTON, 8)
33 REG32(CLK1HZ, 0x10)
34 REG32(CLK100HZ, 0x14)
35 REG32(COUNTER, 0x18)
36 REG32(PRESCALE, 0x1c)
37 REG32(PSCNTR, 0x20)
38 REG32(MISC, 0x4c)
40 static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
42 return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
45 static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
47 return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
50 static void resync_counter(MPS2FPGAIO *s)
53 * Update s->counter and s->pscntr to their true current values
54 * by calculating how many times PSCNTR has ticked since the
55 * last time we did a resync.
57 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
58 int64_t elapsed = now - s->pscntr_sync_ticks;
61 * Round elapsed down to a whole number of PSCNTR ticks, so we don't
62 * lose time if we do multiple resyncs in a single tick.
64 uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
67 * Work out what PSCNTR and COUNTER have moved to. We assume that
68 * PSCNTR reloads from PRESCALE one tick-period after it hits zero,
69 * and that COUNTER increments at the same moment.
71 if (ticks == 0) {
72 /* We haven't ticked since the last time we were asked */
73 return;
74 } else if (ticks < s->pscntr) {
75 /* We haven't yet reached zero, just reduce the PSCNTR */
76 s->pscntr -= ticks;
77 } else {
78 if (s->prescale == 0) {
80 * If the reload value is zero then the PSCNTR will stick
81 * at zero once it reaches it, and so we will increment
82 * COUNTER every tick after that.
84 s->counter += ticks - s->pscntr;
85 s->pscntr = 0;
86 } else {
88 * This is the complicated bit. This ASCII art diagram gives an
89 * example with PRESCALE==5 PSCNTR==7:
91 * ticks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
92 * PSCNTR 7 6 5 4 3 2 1 0 5 4 3 2 1 0 5
93 * cinc 1 2
94 * y 0 1 2 3 4 5 6 7 8 9 10 11 12
95 * x 0 1 2 3 4 5 0 1 2 3 4 5 0
97 * where x = y % (s->prescale + 1)
98 * and so PSCNTR = s->prescale - x
99 * and COUNTER is incremented by y / (s->prescale + 1)
101 * The case where PSCNTR < PRESCALE works out the same,
102 * though we must be careful to calculate y as 64-bit unsigned
103 * for all parts of the expression.
104 * y < 0 is not possible because that implies ticks < s->pscntr.
106 uint64_t y = ticks - s->pscntr + s->prescale;
107 s->pscntr = s->prescale - (y % (s->prescale + 1));
108 s->counter += y / (s->prescale + 1);
113 * Only advance the sync time to the timestamp of the last PSCNTR tick,
114 * not all the way to 'now', so we don't lose time if we do multiple
115 * resyncs in a single tick.
117 s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
118 s->prescale_clk);
121 static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
123 MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
124 uint64_t r;
125 int64_t now;
127 switch (offset) {
128 case A_LED0:
129 r = s->led0;
130 break;
131 case A_BUTTON:
132 /* User-pressable board buttons. We don't model that, so just return
133 * zeroes.
135 r = 0;
136 break;
137 case A_PRESCALE:
138 r = s->prescale;
139 break;
140 case A_MISC:
141 r = s->misc;
142 break;
143 case A_CLK1HZ:
144 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
145 r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
146 break;
147 case A_CLK100HZ:
148 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
149 r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
150 break;
151 case A_COUNTER:
152 resync_counter(s);
153 r = s->counter;
154 break;
155 case A_PSCNTR:
156 resync_counter(s);
157 r = s->pscntr;
158 break;
159 default:
160 qemu_log_mask(LOG_GUEST_ERROR,
161 "MPS2 FPGAIO read: bad offset %x\n", (int) offset);
162 r = 0;
163 break;
166 trace_mps2_fpgaio_read(offset, r, size);
167 return r;
170 static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
171 unsigned size)
173 MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
174 int64_t now;
176 trace_mps2_fpgaio_write(offset, value, size);
178 switch (offset) {
179 case A_LED0:
180 s->led0 = value & 0x3;
181 led_set_state(s->led[0], value & 0x01);
182 led_set_state(s->led[1], value & 0x02);
183 break;
184 case A_PRESCALE:
185 resync_counter(s);
186 s->prescale = value;
187 break;
188 case A_MISC:
189 /* These are control bits for some of the other devices on the
190 * board (SPI, CLCD, etc). We don't implement that yet, so just
191 * make the bits read as written.
193 qemu_log_mask(LOG_UNIMP,
194 "MPS2 FPGAIO: MISC control bits unimplemented\n");
195 s->misc = value;
196 break;
197 case A_CLK1HZ:
198 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
199 s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
200 break;
201 case A_CLK100HZ:
202 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
203 s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
204 break;
205 case A_COUNTER:
206 resync_counter(s);
207 s->counter = value;
208 break;
209 case A_PSCNTR:
210 resync_counter(s);
211 s->pscntr = value;
212 break;
213 default:
214 qemu_log_mask(LOG_GUEST_ERROR,
215 "MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
216 break;
220 static const MemoryRegionOps mps2_fpgaio_ops = {
221 .read = mps2_fpgaio_read,
222 .write = mps2_fpgaio_write,
223 .endianness = DEVICE_LITTLE_ENDIAN,
226 static void mps2_fpgaio_reset(DeviceState *dev)
228 MPS2FPGAIO *s = MPS2_FPGAIO(dev);
229 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
231 trace_mps2_fpgaio_reset();
232 s->led0 = 0;
233 s->prescale = 0;
234 s->misc = 0;
235 s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
236 s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
237 s->counter = 0;
238 s->pscntr = 0;
239 s->pscntr_sync_ticks = now;
241 for (size_t i = 0; i < ARRAY_SIZE(s->led); i++) {
242 device_cold_reset(DEVICE(s->led[i]));
246 static void mps2_fpgaio_init(Object *obj)
248 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
249 MPS2FPGAIO *s = MPS2_FPGAIO(obj);
251 memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
252 "mps2-fpgaio", 0x1000);
253 sysbus_init_mmio(sbd, &s->iomem);
256 static void mps2_fpgaio_realize(DeviceState *dev, Error **errp)
258 MPS2FPGAIO *s = MPS2_FPGAIO(dev);
260 s->led[0] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
261 LED_COLOR_GREEN, "USERLED0");
262 s->led[1] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
263 LED_COLOR_GREEN, "USERLED1");
266 static bool mps2_fpgaio_counters_needed(void *opaque)
268 /* Currently vmstate.c insists all subsections have a 'needed' function */
269 return true;
272 static const VMStateDescription mps2_fpgaio_counters_vmstate = {
273 .name = "mps2-fpgaio/counters",
274 .version_id = 2,
275 .minimum_version_id = 2,
276 .needed = mps2_fpgaio_counters_needed,
277 .fields = (VMStateField[]) {
278 VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
279 VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
280 VMSTATE_UINT32(counter, MPS2FPGAIO),
281 VMSTATE_UINT32(pscntr, MPS2FPGAIO),
282 VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
283 VMSTATE_END_OF_LIST()
287 static const VMStateDescription mps2_fpgaio_vmstate = {
288 .name = "mps2-fpgaio",
289 .version_id = 1,
290 .minimum_version_id = 1,
291 .fields = (VMStateField[]) {
292 VMSTATE_UINT32(led0, MPS2FPGAIO),
293 VMSTATE_UINT32(prescale, MPS2FPGAIO),
294 VMSTATE_UINT32(misc, MPS2FPGAIO),
295 VMSTATE_END_OF_LIST()
297 .subsections = (const VMStateDescription*[]) {
298 &mps2_fpgaio_counters_vmstate,
299 NULL
303 static Property mps2_fpgaio_properties[] = {
304 /* Frequency of the prescale counter */
305 DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
306 DEFINE_PROP_END_OF_LIST(),
309 static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
311 DeviceClass *dc = DEVICE_CLASS(klass);
313 dc->vmsd = &mps2_fpgaio_vmstate;
314 dc->realize = mps2_fpgaio_realize;
315 dc->reset = mps2_fpgaio_reset;
316 device_class_set_props(dc, mps2_fpgaio_properties);
319 static const TypeInfo mps2_fpgaio_info = {
320 .name = TYPE_MPS2_FPGAIO,
321 .parent = TYPE_SYS_BUS_DEVICE,
322 .instance_size = sizeof(MPS2FPGAIO),
323 .instance_init = mps2_fpgaio_init,
324 .class_init = mps2_fpgaio_class_init,
327 static void mps2_fpgaio_register_types(void)
329 type_register_static(&mps2_fpgaio_info);
332 type_init(mps2_fpgaio_register_types);