target/arm: Make number of counters in PMCR follow the CPU
[qemu/ar7.git] / target / arm / cpu64.c
bloba752b6485687ace64b7c63998b6e543cbfdefe89
1 /*
2 * QEMU AArch64 CPU
4 * Copyright (c) 2013 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "hw/core/tcg-cpu-ops.h"
26 #endif /* CONFIG_TCG */
27 #include "qemu/module.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/loader.h"
30 #endif
31 #include "sysemu/kvm.h"
32 #include "sysemu/hvf.h"
33 #include "kvm_arm.h"
34 #include "hvf_arm.h"
35 #include "qapi/visitor.h"
36 #include "hw/qdev-properties.h"
37 #include "internals.h"
40 static void aarch64_a57_initfn(Object *obj)
42 ARMCPU *cpu = ARM_CPU(obj);
44 cpu->dtb_compatible = "arm,cortex-a57";
45 set_feature(&cpu->env, ARM_FEATURE_V8);
46 set_feature(&cpu->env, ARM_FEATURE_NEON);
47 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
48 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
49 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
50 set_feature(&cpu->env, ARM_FEATURE_EL2);
51 set_feature(&cpu->env, ARM_FEATURE_EL3);
52 set_feature(&cpu->env, ARM_FEATURE_PMU);
53 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
54 cpu->midr = 0x411fd070;
55 cpu->revidr = 0x00000000;
56 cpu->reset_fpsid = 0x41034070;
57 cpu->isar.mvfr0 = 0x10110222;
58 cpu->isar.mvfr1 = 0x12111111;
59 cpu->isar.mvfr2 = 0x00000043;
60 cpu->ctr = 0x8444c004;
61 cpu->reset_sctlr = 0x00c50838;
62 cpu->isar.id_pfr0 = 0x00000131;
63 cpu->isar.id_pfr1 = 0x00011011;
64 cpu->isar.id_dfr0 = 0x03010066;
65 cpu->id_afr0 = 0x00000000;
66 cpu->isar.id_mmfr0 = 0x10101105;
67 cpu->isar.id_mmfr1 = 0x40000000;
68 cpu->isar.id_mmfr2 = 0x01260000;
69 cpu->isar.id_mmfr3 = 0x02102211;
70 cpu->isar.id_isar0 = 0x02101110;
71 cpu->isar.id_isar1 = 0x13112111;
72 cpu->isar.id_isar2 = 0x21232042;
73 cpu->isar.id_isar3 = 0x01112131;
74 cpu->isar.id_isar4 = 0x00011142;
75 cpu->isar.id_isar5 = 0x00011121;
76 cpu->isar.id_isar6 = 0;
77 cpu->isar.id_aa64pfr0 = 0x00002222;
78 cpu->isar.id_aa64dfr0 = 0x10305106;
79 cpu->isar.id_aa64isar0 = 0x00011120;
80 cpu->isar.id_aa64mmfr0 = 0x00001124;
81 cpu->isar.dbgdidr = 0x3516d000;
82 cpu->isar.reset_pmcr_el0 = 0x41013000;
83 cpu->clidr = 0x0a200023;
84 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
85 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
86 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
87 cpu->dcz_blocksize = 4; /* 64 bytes */
88 cpu->gic_num_lrs = 4;
89 cpu->gic_vpribits = 5;
90 cpu->gic_vprebits = 5;
91 cpu->gic_pribits = 5;
92 define_cortex_a72_a57_a53_cp_reginfo(cpu);
95 static void aarch64_a53_initfn(Object *obj)
97 ARMCPU *cpu = ARM_CPU(obj);
99 cpu->dtb_compatible = "arm,cortex-a53";
100 set_feature(&cpu->env, ARM_FEATURE_V8);
101 set_feature(&cpu->env, ARM_FEATURE_NEON);
102 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
103 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
104 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
105 set_feature(&cpu->env, ARM_FEATURE_EL2);
106 set_feature(&cpu->env, ARM_FEATURE_EL3);
107 set_feature(&cpu->env, ARM_FEATURE_PMU);
108 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
109 cpu->midr = 0x410fd034;
110 cpu->revidr = 0x00000000;
111 cpu->reset_fpsid = 0x41034070;
112 cpu->isar.mvfr0 = 0x10110222;
113 cpu->isar.mvfr1 = 0x12111111;
114 cpu->isar.mvfr2 = 0x00000043;
115 cpu->ctr = 0x84448004; /* L1Ip = VIPT */
116 cpu->reset_sctlr = 0x00c50838;
117 cpu->isar.id_pfr0 = 0x00000131;
118 cpu->isar.id_pfr1 = 0x00011011;
119 cpu->isar.id_dfr0 = 0x03010066;
120 cpu->id_afr0 = 0x00000000;
121 cpu->isar.id_mmfr0 = 0x10101105;
122 cpu->isar.id_mmfr1 = 0x40000000;
123 cpu->isar.id_mmfr2 = 0x01260000;
124 cpu->isar.id_mmfr3 = 0x02102211;
125 cpu->isar.id_isar0 = 0x02101110;
126 cpu->isar.id_isar1 = 0x13112111;
127 cpu->isar.id_isar2 = 0x21232042;
128 cpu->isar.id_isar3 = 0x01112131;
129 cpu->isar.id_isar4 = 0x00011142;
130 cpu->isar.id_isar5 = 0x00011121;
131 cpu->isar.id_isar6 = 0;
132 cpu->isar.id_aa64pfr0 = 0x00002222;
133 cpu->isar.id_aa64dfr0 = 0x10305106;
134 cpu->isar.id_aa64isar0 = 0x00011120;
135 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
136 cpu->isar.dbgdidr = 0x3516d000;
137 cpu->isar.reset_pmcr_el0 = 0x41033000;
138 cpu->clidr = 0x0a200023;
139 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
140 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
141 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
142 cpu->dcz_blocksize = 4; /* 64 bytes */
143 cpu->gic_num_lrs = 4;
144 cpu->gic_vpribits = 5;
145 cpu->gic_vprebits = 5;
146 cpu->gic_pribits = 5;
147 define_cortex_a72_a57_a53_cp_reginfo(cpu);
150 static void aarch64_a72_initfn(Object *obj)
152 ARMCPU *cpu = ARM_CPU(obj);
154 cpu->dtb_compatible = "arm,cortex-a72";
155 set_feature(&cpu->env, ARM_FEATURE_V8);
156 set_feature(&cpu->env, ARM_FEATURE_NEON);
157 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
158 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
159 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
160 set_feature(&cpu->env, ARM_FEATURE_EL2);
161 set_feature(&cpu->env, ARM_FEATURE_EL3);
162 set_feature(&cpu->env, ARM_FEATURE_PMU);
163 cpu->midr = 0x410fd083;
164 cpu->revidr = 0x00000000;
165 cpu->reset_fpsid = 0x41034080;
166 cpu->isar.mvfr0 = 0x10110222;
167 cpu->isar.mvfr1 = 0x12111111;
168 cpu->isar.mvfr2 = 0x00000043;
169 cpu->ctr = 0x8444c004;
170 cpu->reset_sctlr = 0x00c50838;
171 cpu->isar.id_pfr0 = 0x00000131;
172 cpu->isar.id_pfr1 = 0x00011011;
173 cpu->isar.id_dfr0 = 0x03010066;
174 cpu->id_afr0 = 0x00000000;
175 cpu->isar.id_mmfr0 = 0x10201105;
176 cpu->isar.id_mmfr1 = 0x40000000;
177 cpu->isar.id_mmfr2 = 0x01260000;
178 cpu->isar.id_mmfr3 = 0x02102211;
179 cpu->isar.id_isar0 = 0x02101110;
180 cpu->isar.id_isar1 = 0x13112111;
181 cpu->isar.id_isar2 = 0x21232042;
182 cpu->isar.id_isar3 = 0x01112131;
183 cpu->isar.id_isar4 = 0x00011142;
184 cpu->isar.id_isar5 = 0x00011121;
185 cpu->isar.id_aa64pfr0 = 0x00002222;
186 cpu->isar.id_aa64dfr0 = 0x10305106;
187 cpu->isar.id_aa64isar0 = 0x00011120;
188 cpu->isar.id_aa64mmfr0 = 0x00001124;
189 cpu->isar.dbgdidr = 0x3516d000;
190 cpu->isar.reset_pmcr_el0 = 0x41023000;
191 cpu->clidr = 0x0a200023;
192 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
193 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
194 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
195 cpu->dcz_blocksize = 4; /* 64 bytes */
196 cpu->gic_num_lrs = 4;
197 cpu->gic_vpribits = 5;
198 cpu->gic_vprebits = 5;
199 cpu->gic_pribits = 5;
200 define_cortex_a72_a57_a53_cp_reginfo(cpu);
203 static void aarch64_a76_initfn(Object *obj)
205 ARMCPU *cpu = ARM_CPU(obj);
207 cpu->dtb_compatible = "arm,cortex-a76";
208 set_feature(&cpu->env, ARM_FEATURE_V8);
209 set_feature(&cpu->env, ARM_FEATURE_NEON);
210 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
211 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
212 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
213 set_feature(&cpu->env, ARM_FEATURE_EL2);
214 set_feature(&cpu->env, ARM_FEATURE_EL3);
215 set_feature(&cpu->env, ARM_FEATURE_PMU);
217 /* Ordered by B2.4 AArch64 registers by functional group */
218 cpu->clidr = 0x82000023;
219 cpu->ctr = 0x8444C004;
220 cpu->dcz_blocksize = 4;
221 cpu->isar.id_aa64dfr0 = 0x0000000010305408ull;
222 cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
223 cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
224 cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull;
225 cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
226 cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
227 cpu->isar.id_aa64pfr0 = 0x1100000010111112ull; /* GIC filled in later */
228 cpu->isar.id_aa64pfr1 = 0x0000000000000010ull;
229 cpu->id_afr0 = 0x00000000;
230 cpu->isar.id_dfr0 = 0x04010088;
231 cpu->isar.id_isar0 = 0x02101110;
232 cpu->isar.id_isar1 = 0x13112111;
233 cpu->isar.id_isar2 = 0x21232042;
234 cpu->isar.id_isar3 = 0x01112131;
235 cpu->isar.id_isar4 = 0x00010142;
236 cpu->isar.id_isar5 = 0x01011121;
237 cpu->isar.id_isar6 = 0x00000010;
238 cpu->isar.id_mmfr0 = 0x10201105;
239 cpu->isar.id_mmfr1 = 0x40000000;
240 cpu->isar.id_mmfr2 = 0x01260000;
241 cpu->isar.id_mmfr3 = 0x02122211;
242 cpu->isar.id_mmfr4 = 0x00021110;
243 cpu->isar.id_pfr0 = 0x10010131;
244 cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */
245 cpu->isar.id_pfr2 = 0x00000011;
246 cpu->midr = 0x414fd0b1; /* r4p1 */
247 cpu->revidr = 0;
249 /* From B2.18 CCSIDR_EL1 */
250 cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
251 cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
252 cpu->ccsidr[2] = 0x707fe03a; /* 512KB L2 cache */
254 /* From B2.93 SCTLR_EL3 */
255 cpu->reset_sctlr = 0x30c50838;
257 /* From B4.23 ICH_VTR_EL2 */
258 cpu->gic_num_lrs = 4;
259 cpu->gic_vpribits = 5;
260 cpu->gic_vprebits = 5;
261 cpu->gic_pribits = 5;
263 /* From B5.1 AdvSIMD AArch64 register summary */
264 cpu->isar.mvfr0 = 0x10110222;
265 cpu->isar.mvfr1 = 0x13211111;
266 cpu->isar.mvfr2 = 0x00000043;
268 /* From D5.1 AArch64 PMU register summary */
269 cpu->isar.reset_pmcr_el0 = 0x410b3000;
272 static void aarch64_neoverse_n1_initfn(Object *obj)
274 ARMCPU *cpu = ARM_CPU(obj);
276 cpu->dtb_compatible = "arm,neoverse-n1";
277 set_feature(&cpu->env, ARM_FEATURE_V8);
278 set_feature(&cpu->env, ARM_FEATURE_NEON);
279 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
280 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
281 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
282 set_feature(&cpu->env, ARM_FEATURE_EL2);
283 set_feature(&cpu->env, ARM_FEATURE_EL3);
284 set_feature(&cpu->env, ARM_FEATURE_PMU);
286 /* Ordered by B2.4 AArch64 registers by functional group */
287 cpu->clidr = 0x82000023;
288 cpu->ctr = 0x8444c004;
289 cpu->dcz_blocksize = 4;
290 cpu->isar.id_aa64dfr0 = 0x0000000110305408ull;
291 cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
292 cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
293 cpu->isar.id_aa64mmfr0 = 0x0000000000101125ull;
294 cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
295 cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
296 cpu->isar.id_aa64pfr0 = 0x1100000010111112ull; /* GIC filled in later */
297 cpu->isar.id_aa64pfr1 = 0x0000000000000020ull;
298 cpu->id_afr0 = 0x00000000;
299 cpu->isar.id_dfr0 = 0x04010088;
300 cpu->isar.id_isar0 = 0x02101110;
301 cpu->isar.id_isar1 = 0x13112111;
302 cpu->isar.id_isar2 = 0x21232042;
303 cpu->isar.id_isar3 = 0x01112131;
304 cpu->isar.id_isar4 = 0x00010142;
305 cpu->isar.id_isar5 = 0x01011121;
306 cpu->isar.id_isar6 = 0x00000010;
307 cpu->isar.id_mmfr0 = 0x10201105;
308 cpu->isar.id_mmfr1 = 0x40000000;
309 cpu->isar.id_mmfr2 = 0x01260000;
310 cpu->isar.id_mmfr3 = 0x02122211;
311 cpu->isar.id_mmfr4 = 0x00021110;
312 cpu->isar.id_pfr0 = 0x10010131;
313 cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */
314 cpu->isar.id_pfr2 = 0x00000011;
315 cpu->midr = 0x414fd0c1; /* r4p1 */
316 cpu->revidr = 0;
318 /* From B2.23 CCSIDR_EL1 */
319 cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
320 cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
321 cpu->ccsidr[2] = 0x70ffe03a; /* 1MB L2 cache */
323 /* From B2.98 SCTLR_EL3 */
324 cpu->reset_sctlr = 0x30c50838;
326 /* From B4.23 ICH_VTR_EL2 */
327 cpu->gic_num_lrs = 4;
328 cpu->gic_vpribits = 5;
329 cpu->gic_vprebits = 5;
330 cpu->gic_pribits = 5;
332 /* From B5.1 AdvSIMD AArch64 register summary */
333 cpu->isar.mvfr0 = 0x10110222;
334 cpu->isar.mvfr1 = 0x13211111;
335 cpu->isar.mvfr2 = 0x00000043;
337 /* From D5.1 AArch64 PMU register summary */
338 cpu->isar.reset_pmcr_el0 = 0x410c3000;
341 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
344 * If any vector lengths are explicitly enabled with sve<N> properties,
345 * then all other lengths are implicitly disabled. If sve-max-vq is
346 * specified then it is the same as explicitly enabling all lengths
347 * up to and including the specified maximum, which means all larger
348 * lengths will be implicitly disabled. If no sve<N> properties
349 * are enabled and sve-max-vq is not specified, then all lengths not
350 * explicitly disabled will be enabled. Additionally, all power-of-two
351 * vector lengths less than the maximum enabled length will be
352 * automatically enabled and all vector lengths larger than the largest
353 * disabled power-of-two vector length will be automatically disabled.
354 * Errors are generated if the user provided input that interferes with
355 * any of the above. Finally, if SVE is not disabled, then at least one
356 * vector length must be enabled.
358 DECLARE_BITMAP(tmp, ARM_MAX_VQ);
359 uint32_t vq, max_vq = 0;
362 * CPU models specify a set of supported vector lengths which are
363 * enabled by default. Attempting to enable any vector length not set
364 * in the supported bitmap results in an error. When KVM is enabled we
365 * fetch the supported bitmap from the host.
367 if (kvm_enabled() && kvm_arm_sve_supported()) {
368 kvm_arm_sve_get_vls(CPU(cpu), cpu->sve_vq_supported);
369 } else if (kvm_enabled()) {
370 assert(!cpu_isar_feature(aa64_sve, cpu));
374 * Process explicit sve<N> properties.
375 * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
376 * Check first for any sve<N> enabled.
378 if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
379 max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
381 if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
382 error_setg(errp, "cannot enable sve%d", max_vq * 128);
383 error_append_hint(errp, "sve%d is larger than the maximum vector "
384 "length, sve-max-vq=%d (%d bits)\n",
385 max_vq * 128, cpu->sve_max_vq,
386 cpu->sve_max_vq * 128);
387 return;
390 if (kvm_enabled()) {
392 * For KVM we have to automatically enable all supported unitialized
393 * lengths, even when the smaller lengths are not all powers-of-two.
395 bitmap_andnot(tmp, cpu->sve_vq_supported, cpu->sve_vq_init, max_vq);
396 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
397 } else {
398 /* Propagate enabled bits down through required powers-of-two. */
399 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
400 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
401 set_bit(vq - 1, cpu->sve_vq_map);
405 } else if (cpu->sve_max_vq == 0) {
407 * No explicit bits enabled, and no implicit bits from sve-max-vq.
409 if (!cpu_isar_feature(aa64_sve, cpu)) {
410 /* SVE is disabled and so are all vector lengths. Good. */
411 return;
414 if (kvm_enabled()) {
415 /* Disabling a supported length disables all larger lengths. */
416 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
417 if (test_bit(vq - 1, cpu->sve_vq_init) &&
418 test_bit(vq - 1, cpu->sve_vq_supported)) {
419 break;
422 } else {
423 /* Disabling a power-of-two disables all larger lengths. */
424 for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) {
425 if (test_bit(vq - 1, cpu->sve_vq_init)) {
426 break;
431 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
432 bitmap_andnot(cpu->sve_vq_map, cpu->sve_vq_supported,
433 cpu->sve_vq_init, max_vq);
434 if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
435 error_setg(errp, "cannot disable sve%d", vq * 128);
436 error_append_hint(errp, "Disabling sve%d results in all "
437 "vector lengths being disabled.\n",
438 vq * 128);
439 error_append_hint(errp, "With SVE enabled, at least one "
440 "vector length must be enabled.\n");
441 return;
444 max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
448 * Process the sve-max-vq property.
449 * Note that we know from the above that no bit above
450 * sve-max-vq is currently set.
452 if (cpu->sve_max_vq != 0) {
453 max_vq = cpu->sve_max_vq;
455 if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
456 test_bit(max_vq - 1, cpu->sve_vq_init)) {
457 error_setg(errp, "cannot disable sve%d", max_vq * 128);
458 error_append_hint(errp, "The maximum vector length must be "
459 "enabled, sve-max-vq=%d (%d bits)\n",
460 max_vq, max_vq * 128);
461 return;
464 /* Set all bits not explicitly set within sve-max-vq. */
465 bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
466 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
470 * We should know what max-vq is now. Also, as we're done
471 * manipulating sve-vq-map, we ensure any bits above max-vq
472 * are clear, just in case anybody looks.
474 assert(max_vq != 0);
475 bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
477 /* Ensure the set of lengths matches what is supported. */
478 bitmap_xor(tmp, cpu->sve_vq_map, cpu->sve_vq_supported, max_vq);
479 if (!bitmap_empty(tmp, max_vq)) {
480 vq = find_last_bit(tmp, max_vq) + 1;
481 if (test_bit(vq - 1, cpu->sve_vq_map)) {
482 if (cpu->sve_max_vq) {
483 error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq);
484 error_append_hint(errp, "This CPU does not support "
485 "the vector length %d-bits.\n", vq * 128);
486 error_append_hint(errp, "It may not be possible to use "
487 "sve-max-vq with this CPU. Try "
488 "using only sve<N> properties.\n");
489 } else {
490 error_setg(errp, "cannot enable sve%d", vq * 128);
491 error_append_hint(errp, "This CPU does not support "
492 "the vector length %d-bits.\n", vq * 128);
494 return;
495 } else {
496 if (kvm_enabled()) {
497 error_setg(errp, "cannot disable sve%d", vq * 128);
498 error_append_hint(errp, "The KVM host requires all "
499 "supported vector lengths smaller "
500 "than %d bits to also be enabled.\n",
501 max_vq * 128);
502 return;
503 } else {
504 /* Ensure all required powers-of-two are enabled. */
505 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
506 if (!test_bit(vq - 1, cpu->sve_vq_map)) {
507 error_setg(errp, "cannot disable sve%d", vq * 128);
508 error_append_hint(errp, "sve%d is required as it "
509 "is a power-of-two length smaller "
510 "than the maximum, sve%d\n",
511 vq * 128, max_vq * 128);
512 return;
520 * Now that we validated all our vector lengths, the only question
521 * left to answer is if we even want SVE at all.
523 if (!cpu_isar_feature(aa64_sve, cpu)) {
524 error_setg(errp, "cannot enable sve%d", max_vq * 128);
525 error_append_hint(errp, "SVE must be enabled to enable vector "
526 "lengths.\n");
527 error_append_hint(errp, "Add sve=on to the CPU property list.\n");
528 return;
531 /* From now on sve_max_vq is the actual maximum supported length. */
532 cpu->sve_max_vq = max_vq;
535 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
536 void *opaque, Error **errp)
538 ARMCPU *cpu = ARM_CPU(obj);
539 uint32_t value;
541 /* All vector lengths are disabled when SVE is off. */
542 if (!cpu_isar_feature(aa64_sve, cpu)) {
543 value = 0;
544 } else {
545 value = cpu->sve_max_vq;
547 visit_type_uint32(v, name, &value, errp);
550 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
551 void *opaque, Error **errp)
553 ARMCPU *cpu = ARM_CPU(obj);
554 uint32_t max_vq;
556 if (!visit_type_uint32(v, name, &max_vq, errp)) {
557 return;
560 if (kvm_enabled() && !kvm_arm_sve_supported()) {
561 error_setg(errp, "cannot set sve-max-vq");
562 error_append_hint(errp, "SVE not supported by KVM on this host\n");
563 return;
566 if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
567 error_setg(errp, "unsupported SVE vector length");
568 error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
569 ARM_MAX_VQ);
570 return;
573 cpu->sve_max_vq = max_vq;
577 * Note that cpu_arm_get/set_sve_vq cannot use the simpler
578 * object_property_add_bool interface because they make use
579 * of the contents of "name" to determine which bit on which
580 * to operate.
582 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
583 void *opaque, Error **errp)
585 ARMCPU *cpu = ARM_CPU(obj);
586 uint32_t vq = atoi(&name[3]) / 128;
587 bool value;
589 /* All vector lengths are disabled when SVE is off. */
590 if (!cpu_isar_feature(aa64_sve, cpu)) {
591 value = false;
592 } else {
593 value = test_bit(vq - 1, cpu->sve_vq_map);
595 visit_type_bool(v, name, &value, errp);
598 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
599 void *opaque, Error **errp)
601 ARMCPU *cpu = ARM_CPU(obj);
602 uint32_t vq = atoi(&name[3]) / 128;
603 bool value;
605 if (!visit_type_bool(v, name, &value, errp)) {
606 return;
609 if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
610 error_setg(errp, "cannot enable %s", name);
611 error_append_hint(errp, "SVE not supported by KVM on this host\n");
612 return;
615 if (value) {
616 set_bit(vq - 1, cpu->sve_vq_map);
617 } else {
618 clear_bit(vq - 1, cpu->sve_vq_map);
620 set_bit(vq - 1, cpu->sve_vq_init);
623 static bool cpu_arm_get_sve(Object *obj, Error **errp)
625 ARMCPU *cpu = ARM_CPU(obj);
626 return cpu_isar_feature(aa64_sve, cpu);
629 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
631 ARMCPU *cpu = ARM_CPU(obj);
632 uint64_t t;
634 if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
635 error_setg(errp, "'sve' feature not supported by KVM on this host");
636 return;
639 t = cpu->isar.id_aa64pfr0;
640 t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
641 cpu->isar.id_aa64pfr0 = t;
644 #ifdef CONFIG_USER_ONLY
645 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
646 static void cpu_arm_set_sve_default_vec_len(Object *obj, Visitor *v,
647 const char *name, void *opaque,
648 Error **errp)
650 ARMCPU *cpu = ARM_CPU(obj);
651 int32_t default_len, default_vq, remainder;
653 if (!visit_type_int32(v, name, &default_len, errp)) {
654 return;
657 /* Undocumented, but the kernel allows -1 to indicate "maximum". */
658 if (default_len == -1) {
659 cpu->sve_default_vq = ARM_MAX_VQ;
660 return;
663 default_vq = default_len / 16;
664 remainder = default_len % 16;
667 * Note that the 512 max comes from include/uapi/asm/sve_context.h
668 * and is the maximum architectural width of ZCR_ELx.LEN.
670 if (remainder || default_vq < 1 || default_vq > 512) {
671 error_setg(errp, "cannot set sve-default-vector-length");
672 if (remainder) {
673 error_append_hint(errp, "Vector length not a multiple of 16\n");
674 } else if (default_vq < 1) {
675 error_append_hint(errp, "Vector length smaller than 16\n");
676 } else {
677 error_append_hint(errp, "Vector length larger than %d\n",
678 512 * 16);
680 return;
683 cpu->sve_default_vq = default_vq;
686 static void cpu_arm_get_sve_default_vec_len(Object *obj, Visitor *v,
687 const char *name, void *opaque,
688 Error **errp)
690 ARMCPU *cpu = ARM_CPU(obj);
691 int32_t value = cpu->sve_default_vq * 16;
693 visit_type_int32(v, name, &value, errp);
695 #endif
697 void aarch64_add_sve_properties(Object *obj)
699 uint32_t vq;
701 object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
703 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
704 char name[8];
705 sprintf(name, "sve%d", vq * 128);
706 object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
707 cpu_arm_set_sve_vq, NULL, NULL);
710 #ifdef CONFIG_USER_ONLY
711 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
712 object_property_add(obj, "sve-default-vector-length", "int32",
713 cpu_arm_get_sve_default_vec_len,
714 cpu_arm_set_sve_default_vec_len, NULL, NULL);
715 #endif
718 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
720 int arch_val = 0, impdef_val = 0;
721 uint64_t t;
723 /* Exit early if PAuth is enabled, and fall through to disable it */
724 if ((kvm_enabled() || hvf_enabled()) && cpu->prop_pauth) {
725 if (!cpu_isar_feature(aa64_pauth, cpu)) {
726 error_setg(errp, "'pauth' feature not supported by %s on this host",
727 kvm_enabled() ? "KVM" : "hvf");
730 return;
733 /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
734 if (cpu->prop_pauth) {
735 if (cpu->prop_pauth_impdef) {
736 impdef_val = 1;
737 } else {
738 arch_val = 1;
740 } else if (cpu->prop_pauth_impdef) {
741 error_setg(errp, "cannot enable pauth-impdef without pauth");
742 error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
745 t = cpu->isar.id_aa64isar1;
746 t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
747 t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
748 t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
749 t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
750 cpu->isar.id_aa64isar1 = t;
753 static Property arm_cpu_pauth_property =
754 DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
755 static Property arm_cpu_pauth_impdef_property =
756 DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
758 void aarch64_add_pauth_properties(Object *obj)
760 ARMCPU *cpu = ARM_CPU(obj);
762 /* Default to PAUTH on, with the architected algorithm on TCG. */
763 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
764 if (kvm_enabled() || hvf_enabled()) {
766 * Mirror PAuth support from the probed sysregs back into the
767 * property for KVM or hvf. Is it just a bit backward? Yes it is!
768 * Note that prop_pauth is true whether the host CPU supports the
769 * architected QARMA5 algorithm or the IMPDEF one. We don't
770 * provide the separate pauth-impdef property for KVM or hvf,
771 * only for TCG.
773 cpu->prop_pauth = cpu_isar_feature(aa64_pauth, cpu);
774 } else {
775 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
779 static Property arm_cpu_lpa2_property =
780 DEFINE_PROP_BOOL("lpa2", ARMCPU, prop_lpa2, true);
782 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp)
784 uint64_t t;
787 * We only install the property for tcg -cpu max; this is the
788 * only situation in which the cpu field can be true.
790 if (!cpu->prop_lpa2) {
791 return;
794 t = cpu->isar.id_aa64mmfr0;
795 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 2); /* 16k pages w/ LPA2 */
796 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4, 1); /* 4k pages w/ LPA2 */
797 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 3); /* 16k stage2 w/ LPA2 */
798 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 3); /* 4k stage2 w/ LPA2 */
799 cpu->isar.id_aa64mmfr0 = t;
802 static void aarch64_host_initfn(Object *obj)
804 #if defined(CONFIG_KVM)
805 ARMCPU *cpu = ARM_CPU(obj);
806 kvm_arm_set_cpu_features_from_host(cpu);
807 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
808 aarch64_add_sve_properties(obj);
809 aarch64_add_pauth_properties(obj);
811 #elif defined(CONFIG_HVF)
812 ARMCPU *cpu = ARM_CPU(obj);
813 hvf_arm_set_cpu_features_from_host(cpu);
814 aarch64_add_pauth_properties(obj);
815 #else
816 g_assert_not_reached();
817 #endif
820 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
821 * otherwise, a CPU with as many features enabled as our emulation supports.
822 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
823 * this only needs to handle 64 bits.
825 static void aarch64_max_initfn(Object *obj)
827 ARMCPU *cpu = ARM_CPU(obj);
828 uint64_t t;
829 uint32_t u;
831 if (kvm_enabled() || hvf_enabled()) {
832 /* With KVM or HVF, '-cpu max' is identical to '-cpu host' */
833 aarch64_host_initfn(obj);
834 return;
837 /* '-cpu max' for TCG: we currently do this as "A57 with extra things" */
839 aarch64_a57_initfn(obj);
842 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
843 * one and try to apply errata workarounds or use impdef features we
844 * don't provide.
845 * An IMPLEMENTER field of 0 means "reserved for software use";
846 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
847 * to see which features are present";
848 * the VARIANT, PARTNUM and REVISION fields are all implementation
849 * defined and we choose to define PARTNUM just in case guest
850 * code needs to distinguish this QEMU CPU from other software
851 * implementations, though this shouldn't be needed.
853 t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
854 t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
855 t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
856 t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
857 t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
858 cpu->midr = t;
861 * We're going to set FEAT_S2FWB, which mandates that CLIDR_EL1.{LoUU,LoUIS}
862 * are zero.
864 u = cpu->clidr;
865 u = FIELD_DP32(u, CLIDR_EL1, LOUIS, 0);
866 u = FIELD_DP32(u, CLIDR_EL1, LOUU, 0);
867 cpu->clidr = u;
869 t = cpu->isar.id_aa64isar0;
870 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* FEAT_PMULL */
871 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1); /* FEAT_SHA1 */
872 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* FEAT_SHA512 */
873 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
874 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2); /* FEAT_LSE */
875 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1); /* FEAT_RDM */
876 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1); /* FEAT_SHA3 */
877 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1); /* FEAT_SM3 */
878 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1); /* FEAT_SM4 */
879 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1); /* FEAT_DotProd */
880 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1); /* FEAT_FHM */
881 t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* FEAT_FlagM2 */
882 t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2); /* FEAT_TLBIRANGE */
883 t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1); /* FEAT_RNG */
884 cpu->isar.id_aa64isar0 = t;
886 t = cpu->isar.id_aa64isar1;
887 t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2); /* FEAT_DPB2 */
888 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1); /* FEAT_JSCVT */
889 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1); /* FEAT_FCMA */
890 t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* FEAT_LRCPC2 */
891 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1); /* FEAT_FRINTTS */
892 t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1); /* FEAT_SB */
893 t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1); /* FEAT_SPECRES */
894 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1); /* FEAT_BF16 */
895 t = FIELD_DP64(t, ID_AA64ISAR1, DGH, 1); /* FEAT_DGH */
896 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1); /* FEAT_I8MM */
897 cpu->isar.id_aa64isar1 = t;
899 t = cpu->isar.id_aa64pfr0;
900 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1); /* FEAT_FP16 */
901 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1); /* FEAT_FP16 */
902 t = FIELD_DP64(t, ID_AA64PFR0, RAS, 1); /* FEAT_RAS */
903 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
904 t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1); /* FEAT_SEL2 */
905 t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1); /* FEAT_DIT */
906 t = FIELD_DP64(t, ID_AA64PFR0, CSV2, 2); /* FEAT_CSV2_2 */
907 t = FIELD_DP64(t, ID_AA64PFR0, CSV3, 1); /* FEAT_CSV3 */
908 cpu->isar.id_aa64pfr0 = t;
910 t = cpu->isar.id_aa64pfr1;
911 t = FIELD_DP64(t, ID_AA64PFR1, BT, 1); /* FEAT_BTI */
912 t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2); /* FEAT_SSBS2 */
914 * Begin with full support for MTE. This will be downgraded to MTE=0
915 * during realize if the board provides no tag memory, much like
916 * we do for EL2 with the virtualization=on property.
918 t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3); /* FEAT_MTE3 */
919 t = FIELD_DP64(t, ID_AA64PFR1, CSV2_FRAC, 0); /* FEAT_CSV2_2 */
920 cpu->isar.id_aa64pfr1 = t;
922 t = cpu->isar.id_aa64mmfr0;
923 t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 6); /* FEAT_LPA: 52 bits */
924 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 1); /* 16k pages supported */
925 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 2); /* 16k stage2 supported */
926 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN64_2, 2); /* 64k stage2 supported */
927 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 2); /* 4k stage2 supported */
928 cpu->isar.id_aa64mmfr0 = t;
930 t = cpu->isar.id_aa64mmfr1;
931 t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* FEAT_VMID16 */
932 t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1); /* FEAT_VHE */
933 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* FEAT_HPDS */
934 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1); /* FEAT_LOR */
935 t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* FEAT_PAN2 */
936 t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* FEAT_XNX */
937 cpu->isar.id_aa64mmfr1 = t;
939 t = cpu->isar.id_aa64mmfr2;
940 t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* FEAT_TTCNP */
941 t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1); /* FEAT_UAO */
942 t = FIELD_DP64(t, ID_AA64MMFR2, IESB, 1); /* FEAT_IESB */
943 t = FIELD_DP64(t, ID_AA64MMFR2, VARANGE, 1); /* FEAT_LVA */
944 t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* FEAT_TTST */
945 t = FIELD_DP64(t, ID_AA64MMFR2, IDS, 1); /* FEAT_IDST */
946 t = FIELD_DP64(t, ID_AA64MMFR2, FWB, 1); /* FEAT_S2FWB */
947 t = FIELD_DP64(t, ID_AA64MMFR2, TTL, 1); /* FEAT_TTL */
948 t = FIELD_DP64(t, ID_AA64MMFR2, BBM, 2); /* FEAT_BBM at level 2 */
949 cpu->isar.id_aa64mmfr2 = t;
951 t = cpu->isar.id_aa64zfr0;
952 t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
953 t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2); /* FEAT_SVE_PMULL128 */
954 t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1); /* FEAT_SVE_BitPerm */
955 t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1); /* FEAT_BF16 */
956 t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1); /* FEAT_SVE_SHA3 */
957 t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1); /* FEAT_SVE_SM4 */
958 t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1); /* FEAT_I8MM */
959 t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1); /* FEAT_F32MM */
960 t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1); /* FEAT_F64MM */
961 cpu->isar.id_aa64zfr0 = t;
963 t = cpu->isar.id_aa64dfr0;
964 t = FIELD_DP64(t, ID_AA64DFR0, DEBUGVER, 9); /* FEAT_Debugv8p4 */
965 t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* FEAT_PMUv3p4 */
966 cpu->isar.id_aa64dfr0 = t;
968 /* Replicate the same data to the 32-bit id registers. */
969 aa32_max_features(cpu);
971 #ifdef CONFIG_USER_ONLY
973 * For usermode -cpu max we can use a larger and more efficient DCZ
974 * blocksize since we don't have to follow what the hardware does.
976 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
977 cpu->dcz_blocksize = 7; /* 512 bytes */
978 #endif
980 bitmap_fill(cpu->sve_vq_supported, ARM_MAX_VQ);
982 aarch64_add_pauth_properties(obj);
983 aarch64_add_sve_properties(obj);
984 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
985 cpu_max_set_sve_max_vq, NULL, NULL);
986 qdev_property_add_static(DEVICE(obj), &arm_cpu_lpa2_property);
989 static void aarch64_a64fx_initfn(Object *obj)
991 ARMCPU *cpu = ARM_CPU(obj);
993 cpu->dtb_compatible = "arm,a64fx";
994 set_feature(&cpu->env, ARM_FEATURE_V8);
995 set_feature(&cpu->env, ARM_FEATURE_NEON);
996 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
997 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
998 set_feature(&cpu->env, ARM_FEATURE_EL2);
999 set_feature(&cpu->env, ARM_FEATURE_EL3);
1000 set_feature(&cpu->env, ARM_FEATURE_PMU);
1001 cpu->midr = 0x461f0010;
1002 cpu->revidr = 0x00000000;
1003 cpu->ctr = 0x86668006;
1004 cpu->reset_sctlr = 0x30000180;
1005 cpu->isar.id_aa64pfr0 = 0x0000000101111111; /* No RAS Extensions */
1006 cpu->isar.id_aa64pfr1 = 0x0000000000000000;
1007 cpu->isar.id_aa64dfr0 = 0x0000000010305408;
1008 cpu->isar.id_aa64dfr1 = 0x0000000000000000;
1009 cpu->id_aa64afr0 = 0x0000000000000000;
1010 cpu->id_aa64afr1 = 0x0000000000000000;
1011 cpu->isar.id_aa64mmfr0 = 0x0000000000001122;
1012 cpu->isar.id_aa64mmfr1 = 0x0000000011212100;
1013 cpu->isar.id_aa64mmfr2 = 0x0000000000001011;
1014 cpu->isar.id_aa64isar0 = 0x0000000010211120;
1015 cpu->isar.id_aa64isar1 = 0x0000000000010001;
1016 cpu->isar.id_aa64zfr0 = 0x0000000000000000;
1017 cpu->clidr = 0x0000000080000023;
1018 cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */
1019 cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */
1020 cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */
1021 cpu->dcz_blocksize = 6; /* 256 bytes */
1022 cpu->gic_num_lrs = 4;
1023 cpu->gic_vpribits = 5;
1024 cpu->gic_vprebits = 5;
1025 cpu->gic_pribits = 5;
1027 /* Suppport of A64FX's vector length are 128,256 and 512bit only */
1028 aarch64_add_sve_properties(obj);
1029 bitmap_zero(cpu->sve_vq_supported, ARM_MAX_VQ);
1030 set_bit(0, cpu->sve_vq_supported); /* 128bit */
1031 set_bit(1, cpu->sve_vq_supported); /* 256bit */
1032 set_bit(3, cpu->sve_vq_supported); /* 512bit */
1034 cpu->isar.reset_pmcr_el0 = 0x46014040;
1036 /* TODO: Add A64FX specific HPC extension registers */
1039 static const ARMCPUInfo aarch64_cpus[] = {
1040 { .name = "cortex-a57", .initfn = aarch64_a57_initfn },
1041 { .name = "cortex-a53", .initfn = aarch64_a53_initfn },
1042 { .name = "cortex-a72", .initfn = aarch64_a72_initfn },
1043 { .name = "cortex-a76", .initfn = aarch64_a76_initfn },
1044 { .name = "a64fx", .initfn = aarch64_a64fx_initfn },
1045 { .name = "neoverse-n1", .initfn = aarch64_neoverse_n1_initfn },
1046 { .name = "max", .initfn = aarch64_max_initfn },
1047 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
1048 { .name = "host", .initfn = aarch64_host_initfn },
1049 #endif
1052 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
1054 ARMCPU *cpu = ARM_CPU(obj);
1056 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
1059 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
1061 ARMCPU *cpu = ARM_CPU(obj);
1063 /* At this time, this property is only allowed if KVM is enabled. This
1064 * restriction allows us to avoid fixing up functionality that assumes a
1065 * uniform execution state like do_interrupt.
1067 if (value == false) {
1068 if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
1069 error_setg(errp, "'aarch64' feature cannot be disabled "
1070 "unless KVM is enabled and 32-bit EL1 "
1071 "is supported");
1072 return;
1074 unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
1075 } else {
1076 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1080 static void aarch64_cpu_finalizefn(Object *obj)
1084 static gchar *aarch64_gdb_arch_name(CPUState *cs)
1086 return g_strdup("aarch64");
1089 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
1091 CPUClass *cc = CPU_CLASS(oc);
1093 cc->gdb_read_register = aarch64_cpu_gdb_read_register;
1094 cc->gdb_write_register = aarch64_cpu_gdb_write_register;
1095 cc->gdb_num_core_regs = 34;
1096 cc->gdb_core_xml_file = "aarch64-core.xml";
1097 cc->gdb_arch_name = aarch64_gdb_arch_name;
1099 object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
1100 aarch64_cpu_set_aarch64);
1101 object_class_property_set_description(oc, "aarch64",
1102 "Set on/off to enable/disable aarch64 "
1103 "execution state ");
1106 static void aarch64_cpu_instance_init(Object *obj)
1108 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
1110 acc->info->initfn(obj);
1111 arm_cpu_post_init(obj);
1114 static void cpu_register_class_init(ObjectClass *oc, void *data)
1116 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1118 acc->info = data;
1121 void aarch64_cpu_register(const ARMCPUInfo *info)
1123 TypeInfo type_info = {
1124 .parent = TYPE_AARCH64_CPU,
1125 .instance_size = sizeof(ARMCPU),
1126 .instance_init = aarch64_cpu_instance_init,
1127 .class_size = sizeof(ARMCPUClass),
1128 .class_init = info->class_init ?: cpu_register_class_init,
1129 .class_data = (void *)info,
1132 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1133 type_register(&type_info);
1134 g_free((void *)type_info.name);
1137 static const TypeInfo aarch64_cpu_type_info = {
1138 .name = TYPE_AARCH64_CPU,
1139 .parent = TYPE_ARM_CPU,
1140 .instance_size = sizeof(ARMCPU),
1141 .instance_finalize = aarch64_cpu_finalizefn,
1142 .abstract = true,
1143 .class_size = sizeof(AArch64CPUClass),
1144 .class_init = aarch64_cpu_class_init,
1147 static void aarch64_cpu_register_types(void)
1149 size_t i;
1151 type_register_static(&aarch64_cpu_type_info);
1153 for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
1154 aarch64_cpu_register(&aarch64_cpus[i]);
1158 type_init(aarch64_cpu_register_types)