kvm/i386: Use a per-VM check for SMM capability
[qemu/ar7.git] / target / i386 / kvm / kvm.c
blob0b5755e42b871123acfbe8e78fc70fea13d5ba2f
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include <sys/ioctl.h>
19 #include <sys/utsname.h>
21 #include <linux/kvm.h>
22 #include "standard-headers/asm-x86/kvm_para.h"
24 #include "cpu.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/hw_accel.h"
27 #include "sysemu/kvm_int.h"
28 #include "sysemu/runstate.h"
29 #include "kvm_i386.h"
30 #include "sev_i386.h"
31 #include "hyperv.h"
32 #include "hyperv-proto.h"
34 #include "exec/gdbstub.h"
35 #include "qemu/host-utils.h"
36 #include "qemu/main-loop.h"
37 #include "qemu/config-file.h"
38 #include "qemu/error-report.h"
39 #include "hw/i386/x86.h"
40 #include "hw/i386/apic.h"
41 #include "hw/i386/apic_internal.h"
42 #include "hw/i386/apic-msidef.h"
43 #include "hw/i386/intel_iommu.h"
44 #include "hw/i386/x86-iommu.h"
45 #include "hw/i386/e820_memory_layout.h"
46 #include "sysemu/sev.h"
48 #include "hw/pci/pci.h"
49 #include "hw/pci/msi.h"
50 #include "hw/pci/msix.h"
51 #include "migration/blocker.h"
52 #include "exec/memattrs.h"
53 #include "trace.h"
55 //#define DEBUG_KVM
57 #ifdef DEBUG_KVM
58 #define DPRINTF(fmt, ...) \
59 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
60 #else
61 #define DPRINTF(fmt, ...) \
62 do { } while (0)
63 #endif
65 /* From arch/x86/kvm/lapic.h */
66 #define KVM_APIC_BUS_CYCLE_NS 1
67 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
69 #define MSR_KVM_WALL_CLOCK 0x11
70 #define MSR_KVM_SYSTEM_TIME 0x12
72 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
73 * 255 kvm_msr_entry structs */
74 #define MSR_BUF_SIZE 4096
76 static void kvm_init_msrs(X86CPU *cpu);
78 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
79 KVM_CAP_INFO(SET_TSS_ADDR),
80 KVM_CAP_INFO(EXT_CPUID),
81 KVM_CAP_INFO(MP_STATE),
82 KVM_CAP_LAST_INFO
85 static bool has_msr_star;
86 static bool has_msr_hsave_pa;
87 static bool has_msr_tsc_aux;
88 static bool has_msr_tsc_adjust;
89 static bool has_msr_tsc_deadline;
90 static bool has_msr_feature_control;
91 static bool has_msr_misc_enable;
92 static bool has_msr_smbase;
93 static bool has_msr_bndcfgs;
94 static int lm_capable_kernel;
95 static bool has_msr_hv_hypercall;
96 static bool has_msr_hv_crash;
97 static bool has_msr_hv_reset;
98 static bool has_msr_hv_vpindex;
99 static bool hv_vpindex_settable;
100 static bool has_msr_hv_runtime;
101 static bool has_msr_hv_synic;
102 static bool has_msr_hv_stimer;
103 static bool has_msr_hv_frequencies;
104 static bool has_msr_hv_reenlightenment;
105 static bool has_msr_xss;
106 static bool has_msr_umwait;
107 static bool has_msr_spec_ctrl;
108 static bool has_msr_tsx_ctrl;
109 static bool has_msr_virt_ssbd;
110 static bool has_msr_smi_count;
111 static bool has_msr_arch_capabs;
112 static bool has_msr_core_capabs;
113 static bool has_msr_vmx_vmfunc;
114 static bool has_msr_ucode_rev;
115 static bool has_msr_vmx_procbased_ctls2;
116 static bool has_msr_perf_capabs;
117 static bool has_msr_pkrs;
119 static uint32_t has_architectural_pmu_version;
120 static uint32_t num_architectural_pmu_gp_counters;
121 static uint32_t num_architectural_pmu_fixed_counters;
123 static int has_xsave;
124 static int has_xcrs;
125 static int has_pit_state2;
126 static int has_exception_payload;
128 static bool has_msr_mcg_ext_ctl;
130 static struct kvm_cpuid2 *cpuid_cache;
131 static struct kvm_msr_list *kvm_feature_msrs;
133 int kvm_has_pit_state2(void)
135 return has_pit_state2;
138 bool kvm_has_smm(void)
140 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
143 bool kvm_has_adjust_clock_stable(void)
145 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
147 return (ret == KVM_CLOCK_TSC_STABLE);
150 bool kvm_has_adjust_clock(void)
152 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
155 bool kvm_has_exception_payload(void)
157 return has_exception_payload;
160 static bool kvm_x2apic_api_set_flags(uint64_t flags)
162 KVMState *s = KVM_STATE(current_accel());
164 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
167 #define MEMORIZE(fn, _result) \
168 ({ \
169 static bool _memorized; \
171 if (_memorized) { \
172 return _result; \
174 _memorized = true; \
175 _result = fn; \
178 static bool has_x2apic_api;
180 bool kvm_has_x2apic_api(void)
182 return has_x2apic_api;
185 bool kvm_enable_x2apic(void)
187 return MEMORIZE(
188 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
189 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
190 has_x2apic_api);
193 bool kvm_hv_vpindex_settable(void)
195 return hv_vpindex_settable;
198 static int kvm_get_tsc(CPUState *cs)
200 X86CPU *cpu = X86_CPU(cs);
201 CPUX86State *env = &cpu->env;
202 struct {
203 struct kvm_msrs info;
204 struct kvm_msr_entry entries[1];
205 } msr_data = {};
206 int ret;
208 if (env->tsc_valid) {
209 return 0;
212 memset(&msr_data, 0, sizeof(msr_data));
213 msr_data.info.nmsrs = 1;
214 msr_data.entries[0].index = MSR_IA32_TSC;
215 env->tsc_valid = !runstate_is_running();
217 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
218 if (ret < 0) {
219 return ret;
222 assert(ret == 1);
223 env->tsc = msr_data.entries[0].data;
224 return 0;
227 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
229 kvm_get_tsc(cpu);
232 void kvm_synchronize_all_tsc(void)
234 CPUState *cpu;
236 if (kvm_enabled()) {
237 CPU_FOREACH(cpu) {
238 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
243 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
245 struct kvm_cpuid2 *cpuid;
246 int r, size;
248 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
249 cpuid = g_malloc0(size);
250 cpuid->nent = max;
251 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
252 if (r == 0 && cpuid->nent >= max) {
253 r = -E2BIG;
255 if (r < 0) {
256 if (r == -E2BIG) {
257 g_free(cpuid);
258 return NULL;
259 } else {
260 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
261 strerror(-r));
262 exit(1);
265 return cpuid;
268 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
269 * for all entries.
271 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
273 struct kvm_cpuid2 *cpuid;
274 int max = 1;
276 if (cpuid_cache != NULL) {
277 return cpuid_cache;
279 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
280 max *= 2;
282 cpuid_cache = cpuid;
283 return cpuid;
286 static bool host_tsx_broken(void)
288 int family, model, stepping;\
289 char vendor[CPUID_VENDOR_SZ + 1];
291 host_vendor_fms(vendor, &family, &model, &stepping);
293 /* Check if we are running on a Haswell host known to have broken TSX */
294 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
295 (family == 6) &&
296 ((model == 63 && stepping < 4) ||
297 model == 60 || model == 69 || model == 70);
300 /* Returns the value for a specific register on the cpuid entry
302 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
304 uint32_t ret = 0;
305 switch (reg) {
306 case R_EAX:
307 ret = entry->eax;
308 break;
309 case R_EBX:
310 ret = entry->ebx;
311 break;
312 case R_ECX:
313 ret = entry->ecx;
314 break;
315 case R_EDX:
316 ret = entry->edx;
317 break;
319 return ret;
322 /* Find matching entry for function/index on kvm_cpuid2 struct
324 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
325 uint32_t function,
326 uint32_t index)
328 int i;
329 for (i = 0; i < cpuid->nent; ++i) {
330 if (cpuid->entries[i].function == function &&
331 cpuid->entries[i].index == index) {
332 return &cpuid->entries[i];
335 /* not found: */
336 return NULL;
339 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
340 uint32_t index, int reg)
342 struct kvm_cpuid2 *cpuid;
343 uint32_t ret = 0;
344 uint32_t cpuid_1_edx;
346 cpuid = get_supported_cpuid(s);
348 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
349 if (entry) {
350 ret = cpuid_entry_get_reg(entry, reg);
353 /* Fixups for the data returned by KVM, below */
355 if (function == 1 && reg == R_EDX) {
356 /* KVM before 2.6.30 misreports the following features */
357 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
358 } else if (function == 1 && reg == R_ECX) {
359 /* We can set the hypervisor flag, even if KVM does not return it on
360 * GET_SUPPORTED_CPUID
362 ret |= CPUID_EXT_HYPERVISOR;
363 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
364 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
365 * and the irqchip is in the kernel.
367 if (kvm_irqchip_in_kernel() &&
368 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
369 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
372 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
373 * without the in-kernel irqchip
375 if (!kvm_irqchip_in_kernel()) {
376 ret &= ~CPUID_EXT_X2APIC;
379 if (enable_cpu_pm) {
380 int disable_exits = kvm_check_extension(s,
381 KVM_CAP_X86_DISABLE_EXITS);
383 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
384 ret |= CPUID_EXT_MONITOR;
387 } else if (function == 6 && reg == R_EAX) {
388 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
389 } else if (function == 7 && index == 0 && reg == R_EBX) {
390 if (host_tsx_broken()) {
391 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
393 } else if (function == 7 && index == 0 && reg == R_EDX) {
395 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
396 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
397 * returned by KVM_GET_MSR_INDEX_LIST.
399 if (!has_msr_arch_capabs) {
400 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
402 } else if (function == 0x80000001 && reg == R_ECX) {
404 * It's safe to enable TOPOEXT even if it's not returned by
405 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
406 * us to keep CPU models including TOPOEXT runnable on older kernels.
408 ret |= CPUID_EXT3_TOPOEXT;
409 } else if (function == 0x80000001 && reg == R_EDX) {
410 /* On Intel, kvm returns cpuid according to the Intel spec,
411 * so add missing bits according to the AMD spec:
413 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
414 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
415 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
416 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
417 * be enabled without the in-kernel irqchip
419 if (!kvm_irqchip_in_kernel()) {
420 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
422 if (kvm_irqchip_is_split()) {
423 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
425 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
426 ret |= 1U << KVM_HINTS_REALTIME;
429 return ret;
432 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
434 struct {
435 struct kvm_msrs info;
436 struct kvm_msr_entry entries[1];
437 } msr_data = {};
438 uint64_t value;
439 uint32_t ret, can_be_one, must_be_one;
441 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
442 return 0;
445 /* Check if requested MSR is supported feature MSR */
446 int i;
447 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
448 if (kvm_feature_msrs->indices[i] == index) {
449 break;
451 if (i == kvm_feature_msrs->nmsrs) {
452 return 0; /* if the feature MSR is not supported, simply return 0 */
455 msr_data.info.nmsrs = 1;
456 msr_data.entries[0].index = index;
458 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
459 if (ret != 1) {
460 error_report("KVM get MSR (index=0x%x) feature failed, %s",
461 index, strerror(-ret));
462 exit(1);
465 value = msr_data.entries[0].data;
466 switch (index) {
467 case MSR_IA32_VMX_PROCBASED_CTLS2:
468 if (!has_msr_vmx_procbased_ctls2) {
469 /* KVM forgot to add these bits for some time, do this ourselves. */
470 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
471 CPUID_XSAVE_XSAVES) {
472 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
474 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
475 CPUID_EXT_RDRAND) {
476 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
478 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
479 CPUID_7_0_EBX_INVPCID) {
480 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
482 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
483 CPUID_7_0_EBX_RDSEED) {
484 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
486 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
487 CPUID_EXT2_RDTSCP) {
488 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
491 /* fall through */
492 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
493 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
494 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
495 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
497 * Return true for bits that can be one, but do not have to be one.
498 * The SDM tells us which bits could have a "must be one" setting,
499 * so we can do the opposite transformation in make_vmx_msr_value.
501 must_be_one = (uint32_t)value;
502 can_be_one = (uint32_t)(value >> 32);
503 return can_be_one & ~must_be_one;
505 default:
506 return value;
510 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
511 int *max_banks)
513 int r;
515 r = kvm_check_extension(s, KVM_CAP_MCE);
516 if (r > 0) {
517 *max_banks = r;
518 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
520 return -ENOSYS;
523 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
525 CPUState *cs = CPU(cpu);
526 CPUX86State *env = &cpu->env;
527 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
528 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
529 uint64_t mcg_status = MCG_STATUS_MCIP;
530 int flags = 0;
532 if (code == BUS_MCEERR_AR) {
533 status |= MCI_STATUS_AR | 0x134;
534 mcg_status |= MCG_STATUS_EIPV;
535 } else {
536 status |= 0xc0;
537 mcg_status |= MCG_STATUS_RIPV;
540 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
541 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
542 * guest kernel back into env->mcg_ext_ctl.
544 cpu_synchronize_state(cs);
545 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
546 mcg_status |= MCG_STATUS_LMCE;
547 flags = 0;
550 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
551 (MCM_ADDR_PHYS << 6) | 0xc, flags);
554 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
556 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
558 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
559 &mff);
562 static void hardware_memory_error(void *host_addr)
564 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
565 error_report("QEMU got Hardware memory error at addr %p", host_addr);
566 exit(1);
569 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
571 X86CPU *cpu = X86_CPU(c);
572 CPUX86State *env = &cpu->env;
573 ram_addr_t ram_addr;
574 hwaddr paddr;
576 /* If we get an action required MCE, it has been injected by KVM
577 * while the VM was running. An action optional MCE instead should
578 * be coming from the main thread, which qemu_init_sigbus identifies
579 * as the "early kill" thread.
581 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
583 if ((env->mcg_cap & MCG_SER_P) && addr) {
584 ram_addr = qemu_ram_addr_from_host(addr);
585 if (ram_addr != RAM_ADDR_INVALID &&
586 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
587 kvm_hwpoison_page_add(ram_addr);
588 kvm_mce_inject(cpu, paddr, code);
591 * Use different logging severity based on error type.
592 * If there is additional MCE reporting on the hypervisor, QEMU VA
593 * could be another source to identify the PA and MCE details.
595 if (code == BUS_MCEERR_AR) {
596 error_report("Guest MCE Memory Error at QEMU addr %p and "
597 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
598 addr, paddr, "BUS_MCEERR_AR");
599 } else {
600 warn_report("Guest MCE Memory Error at QEMU addr %p and "
601 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
602 addr, paddr, "BUS_MCEERR_AO");
605 return;
608 if (code == BUS_MCEERR_AO) {
609 warn_report("Hardware memory error at addr %p of type %s "
610 "for memory used by QEMU itself instead of guest system!",
611 addr, "BUS_MCEERR_AO");
615 if (code == BUS_MCEERR_AR) {
616 hardware_memory_error(addr);
619 /* Hope we are lucky for AO MCE, just notify a event */
620 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
623 static void kvm_reset_exception(CPUX86State *env)
625 env->exception_nr = -1;
626 env->exception_pending = 0;
627 env->exception_injected = 0;
628 env->exception_has_payload = false;
629 env->exception_payload = 0;
632 static void kvm_queue_exception(CPUX86State *env,
633 int32_t exception_nr,
634 uint8_t exception_has_payload,
635 uint64_t exception_payload)
637 assert(env->exception_nr == -1);
638 assert(!env->exception_pending);
639 assert(!env->exception_injected);
640 assert(!env->exception_has_payload);
642 env->exception_nr = exception_nr;
644 if (has_exception_payload) {
645 env->exception_pending = 1;
647 env->exception_has_payload = exception_has_payload;
648 env->exception_payload = exception_payload;
649 } else {
650 env->exception_injected = 1;
652 if (exception_nr == EXCP01_DB) {
653 assert(exception_has_payload);
654 env->dr[6] = exception_payload;
655 } else if (exception_nr == EXCP0E_PAGE) {
656 assert(exception_has_payload);
657 env->cr[2] = exception_payload;
658 } else {
659 assert(!exception_has_payload);
664 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
666 CPUX86State *env = &cpu->env;
668 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
669 unsigned int bank, bank_num = env->mcg_cap & 0xff;
670 struct kvm_x86_mce mce;
672 kvm_reset_exception(env);
675 * There must be at least one bank in use if an MCE is pending.
676 * Find it and use its values for the event injection.
678 for (bank = 0; bank < bank_num; bank++) {
679 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
680 break;
683 assert(bank < bank_num);
685 mce.bank = bank;
686 mce.status = env->mce_banks[bank * 4 + 1];
687 mce.mcg_status = env->mcg_status;
688 mce.addr = env->mce_banks[bank * 4 + 2];
689 mce.misc = env->mce_banks[bank * 4 + 3];
691 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
693 return 0;
696 static void cpu_update_state(void *opaque, int running, RunState state)
698 CPUX86State *env = opaque;
700 if (running) {
701 env->tsc_valid = false;
705 unsigned long kvm_arch_vcpu_id(CPUState *cs)
707 X86CPU *cpu = X86_CPU(cs);
708 return cpu->apic_id;
711 #ifndef KVM_CPUID_SIGNATURE_NEXT
712 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
713 #endif
715 static bool hyperv_enabled(X86CPU *cpu)
717 CPUState *cs = CPU(cpu);
718 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
719 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
720 cpu->hyperv_features || cpu->hyperv_passthrough);
724 * Check whether target_freq is within conservative
725 * ntp correctable bounds (250ppm) of freq
727 static inline bool freq_within_bounds(int freq, int target_freq)
729 int max_freq = freq + (freq * 250 / 1000000);
730 int min_freq = freq - (freq * 250 / 1000000);
732 if (target_freq >= min_freq && target_freq <= max_freq) {
733 return true;
736 return false;
739 static int kvm_arch_set_tsc_khz(CPUState *cs)
741 X86CPU *cpu = X86_CPU(cs);
742 CPUX86State *env = &cpu->env;
743 int r, cur_freq;
744 bool set_ioctl = false;
746 if (!env->tsc_khz) {
747 return 0;
750 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
751 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
754 * If TSC scaling is supported, attempt to set TSC frequency.
756 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
757 set_ioctl = true;
761 * If desired TSC frequency is within bounds of NTP correction,
762 * attempt to set TSC frequency.
764 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
765 set_ioctl = true;
768 r = set_ioctl ?
769 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
770 -ENOTSUP;
772 if (r < 0) {
773 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
774 * TSC frequency doesn't match the one we want.
776 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
777 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
778 -ENOTSUP;
779 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
780 warn_report("TSC frequency mismatch between "
781 "VM (%" PRId64 " kHz) and host (%d kHz), "
782 "and TSC scaling unavailable",
783 env->tsc_khz, cur_freq);
784 return r;
788 return 0;
791 static bool tsc_is_stable_and_known(CPUX86State *env)
793 if (!env->tsc_khz) {
794 return false;
796 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
797 || env->user_tsc_khz;
800 static struct {
801 const char *desc;
802 struct {
803 uint32_t fw;
804 uint32_t bits;
805 } flags[2];
806 uint64_t dependencies;
807 } kvm_hyperv_properties[] = {
808 [HYPERV_FEAT_RELAXED] = {
809 .desc = "relaxed timing (hv-relaxed)",
810 .flags = {
811 {.fw = FEAT_HYPERV_EAX,
812 .bits = HV_HYPERCALL_AVAILABLE},
813 {.fw = FEAT_HV_RECOMM_EAX,
814 .bits = HV_RELAXED_TIMING_RECOMMENDED}
817 [HYPERV_FEAT_VAPIC] = {
818 .desc = "virtual APIC (hv-vapic)",
819 .flags = {
820 {.fw = FEAT_HYPERV_EAX,
821 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
822 {.fw = FEAT_HV_RECOMM_EAX,
823 .bits = HV_APIC_ACCESS_RECOMMENDED}
826 [HYPERV_FEAT_TIME] = {
827 .desc = "clocksources (hv-time)",
828 .flags = {
829 {.fw = FEAT_HYPERV_EAX,
830 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
831 HV_REFERENCE_TSC_AVAILABLE}
834 [HYPERV_FEAT_CRASH] = {
835 .desc = "crash MSRs (hv-crash)",
836 .flags = {
837 {.fw = FEAT_HYPERV_EDX,
838 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
841 [HYPERV_FEAT_RESET] = {
842 .desc = "reset MSR (hv-reset)",
843 .flags = {
844 {.fw = FEAT_HYPERV_EAX,
845 .bits = HV_RESET_AVAILABLE}
848 [HYPERV_FEAT_VPINDEX] = {
849 .desc = "VP_INDEX MSR (hv-vpindex)",
850 .flags = {
851 {.fw = FEAT_HYPERV_EAX,
852 .bits = HV_VP_INDEX_AVAILABLE}
855 [HYPERV_FEAT_RUNTIME] = {
856 .desc = "VP_RUNTIME MSR (hv-runtime)",
857 .flags = {
858 {.fw = FEAT_HYPERV_EAX,
859 .bits = HV_VP_RUNTIME_AVAILABLE}
862 [HYPERV_FEAT_SYNIC] = {
863 .desc = "synthetic interrupt controller (hv-synic)",
864 .flags = {
865 {.fw = FEAT_HYPERV_EAX,
866 .bits = HV_SYNIC_AVAILABLE}
869 [HYPERV_FEAT_STIMER] = {
870 .desc = "synthetic timers (hv-stimer)",
871 .flags = {
872 {.fw = FEAT_HYPERV_EAX,
873 .bits = HV_SYNTIMERS_AVAILABLE}
875 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
877 [HYPERV_FEAT_FREQUENCIES] = {
878 .desc = "frequency MSRs (hv-frequencies)",
879 .flags = {
880 {.fw = FEAT_HYPERV_EAX,
881 .bits = HV_ACCESS_FREQUENCY_MSRS},
882 {.fw = FEAT_HYPERV_EDX,
883 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
886 [HYPERV_FEAT_REENLIGHTENMENT] = {
887 .desc = "reenlightenment MSRs (hv-reenlightenment)",
888 .flags = {
889 {.fw = FEAT_HYPERV_EAX,
890 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
893 [HYPERV_FEAT_TLBFLUSH] = {
894 .desc = "paravirtualized TLB flush (hv-tlbflush)",
895 .flags = {
896 {.fw = FEAT_HV_RECOMM_EAX,
897 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
898 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
900 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
902 [HYPERV_FEAT_EVMCS] = {
903 .desc = "enlightened VMCS (hv-evmcs)",
904 .flags = {
905 {.fw = FEAT_HV_RECOMM_EAX,
906 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
908 .dependencies = BIT(HYPERV_FEAT_VAPIC)
910 [HYPERV_FEAT_IPI] = {
911 .desc = "paravirtualized IPI (hv-ipi)",
912 .flags = {
913 {.fw = FEAT_HV_RECOMM_EAX,
914 .bits = HV_CLUSTER_IPI_RECOMMENDED |
915 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
917 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
919 [HYPERV_FEAT_STIMER_DIRECT] = {
920 .desc = "direct mode synthetic timers (hv-stimer-direct)",
921 .flags = {
922 {.fw = FEAT_HYPERV_EDX,
923 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
925 .dependencies = BIT(HYPERV_FEAT_STIMER)
929 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
931 struct kvm_cpuid2 *cpuid;
932 int r, size;
934 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
935 cpuid = g_malloc0(size);
936 cpuid->nent = max;
938 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
939 if (r == 0 && cpuid->nent >= max) {
940 r = -E2BIG;
942 if (r < 0) {
943 if (r == -E2BIG) {
944 g_free(cpuid);
945 return NULL;
946 } else {
947 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
948 strerror(-r));
949 exit(1);
952 return cpuid;
956 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
957 * for all entries.
959 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
961 struct kvm_cpuid2 *cpuid;
962 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
965 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
966 * -E2BIG, however, it doesn't report back the right size. Keep increasing
967 * it and re-trying until we succeed.
969 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
970 max++;
972 return cpuid;
976 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
977 * leaves from KVM_CAP_HYPERV* and present MSRs data.
979 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
981 X86CPU *cpu = X86_CPU(cs);
982 struct kvm_cpuid2 *cpuid;
983 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
985 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
986 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
987 cpuid->nent = 2;
989 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
990 entry_feat = &cpuid->entries[0];
991 entry_feat->function = HV_CPUID_FEATURES;
993 entry_recomm = &cpuid->entries[1];
994 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
995 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
997 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
998 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
999 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1000 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1001 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1002 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1005 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1006 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1007 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1010 if (has_msr_hv_frequencies) {
1011 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1012 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1015 if (has_msr_hv_crash) {
1016 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1019 if (has_msr_hv_reenlightenment) {
1020 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1023 if (has_msr_hv_reset) {
1024 entry_feat->eax |= HV_RESET_AVAILABLE;
1027 if (has_msr_hv_vpindex) {
1028 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1031 if (has_msr_hv_runtime) {
1032 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1035 if (has_msr_hv_synic) {
1036 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1037 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1039 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1040 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1044 if (has_msr_hv_stimer) {
1045 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1048 if (kvm_check_extension(cs->kvm_state,
1049 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1050 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1051 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1054 if (kvm_check_extension(cs->kvm_state,
1055 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1056 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1059 if (kvm_check_extension(cs->kvm_state,
1060 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1061 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1062 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1065 return cpuid;
1068 static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1070 struct kvm_cpuid_entry2 *entry;
1071 uint32_t func;
1072 int reg;
1074 switch (fw) {
1075 case FEAT_HYPERV_EAX:
1076 reg = R_EAX;
1077 func = HV_CPUID_FEATURES;
1078 break;
1079 case FEAT_HYPERV_EDX:
1080 reg = R_EDX;
1081 func = HV_CPUID_FEATURES;
1082 break;
1083 case FEAT_HV_RECOMM_EAX:
1084 reg = R_EAX;
1085 func = HV_CPUID_ENLIGHTMENT_INFO;
1086 break;
1087 default:
1088 return -EINVAL;
1091 entry = cpuid_find_entry(cpuid, func, 0);
1092 if (!entry) {
1093 return -ENOENT;
1096 switch (reg) {
1097 case R_EAX:
1098 *r = entry->eax;
1099 break;
1100 case R_EDX:
1101 *r = entry->edx;
1102 break;
1103 default:
1104 return -EINVAL;
1107 return 0;
1110 static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1111 int feature)
1113 X86CPU *cpu = X86_CPU(cs);
1114 CPUX86State *env = &cpu->env;
1115 uint32_t r, fw, bits;
1116 uint64_t deps;
1117 int i, dep_feat;
1119 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
1120 return 0;
1123 deps = kvm_hyperv_properties[feature].dependencies;
1124 while (deps) {
1125 dep_feat = ctz64(deps);
1126 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1127 fprintf(stderr,
1128 "Hyper-V %s requires Hyper-V %s\n",
1129 kvm_hyperv_properties[feature].desc,
1130 kvm_hyperv_properties[dep_feat].desc);
1131 return 1;
1133 deps &= ~(1ull << dep_feat);
1136 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1137 fw = kvm_hyperv_properties[feature].flags[i].fw;
1138 bits = kvm_hyperv_properties[feature].flags[i].bits;
1140 if (!fw) {
1141 continue;
1144 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
1145 if (hyperv_feat_enabled(cpu, feature)) {
1146 fprintf(stderr,
1147 "Hyper-V %s is not supported by kernel\n",
1148 kvm_hyperv_properties[feature].desc);
1149 return 1;
1150 } else {
1151 return 0;
1155 env->features[fw] |= bits;
1158 if (cpu->hyperv_passthrough) {
1159 cpu->hyperv_features |= BIT(feature);
1162 return 0;
1166 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1167 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1168 * extentions are enabled.
1170 static int hyperv_handle_properties(CPUState *cs,
1171 struct kvm_cpuid_entry2 *cpuid_ent)
1173 X86CPU *cpu = X86_CPU(cs);
1174 CPUX86State *env = &cpu->env;
1175 struct kvm_cpuid2 *cpuid;
1176 struct kvm_cpuid_entry2 *c;
1177 uint32_t cpuid_i = 0;
1178 int r;
1180 if (!hyperv_enabled(cpu))
1181 return 0;
1183 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1184 cpu->hyperv_passthrough) {
1185 uint16_t evmcs_version;
1187 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1188 (uintptr_t)&evmcs_version);
1190 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
1191 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1192 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1193 return -ENOSYS;
1196 if (!r) {
1197 env->features[FEAT_HV_RECOMM_EAX] |=
1198 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1199 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1203 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1204 cpuid = get_supported_hv_cpuid(cs);
1205 } else {
1206 cpuid = get_supported_hv_cpuid_legacy(cs);
1209 if (cpu->hyperv_passthrough) {
1210 memcpy(cpuid_ent, &cpuid->entries[0],
1211 cpuid->nent * sizeof(cpuid->entries[0]));
1213 c = cpuid_find_entry(cpuid, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, 0);
1214 if (c) {
1215 cpu->hyperv_vendor_id[0] = c->ebx;
1216 cpu->hyperv_vendor_id[1] = c->ecx;
1217 cpu->hyperv_vendor_id[2] = c->edx;
1220 c = cpuid_find_entry(cpuid, HV_CPUID_INTERFACE, 0);
1221 if (c) {
1222 cpu->hyperv_interface_id[0] = c->eax;
1223 cpu->hyperv_interface_id[1] = c->ebx;
1224 cpu->hyperv_interface_id[2] = c->ecx;
1225 cpu->hyperv_interface_id[3] = c->edx;
1228 c = cpuid_find_entry(cpuid, HV_CPUID_VERSION, 0);
1229 if (c) {
1230 cpu->hyperv_version_id[0] = c->eax;
1231 cpu->hyperv_version_id[1] = c->ebx;
1232 cpu->hyperv_version_id[2] = c->ecx;
1233 cpu->hyperv_version_id[3] = c->edx;
1236 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1237 if (c) {
1238 env->features[FEAT_HYPERV_EAX] = c->eax;
1239 env->features[FEAT_HYPERV_EBX] = c->ebx;
1240 env->features[FEAT_HYPERV_EDX] = c->edx;
1243 c = cpuid_find_entry(cpuid, HV_CPUID_IMPLEMENT_LIMITS, 0);
1244 if (c) {
1245 cpu->hv_max_vps = c->eax;
1246 cpu->hyperv_limits[0] = c->ebx;
1247 cpu->hyperv_limits[1] = c->ecx;
1248 cpu->hyperv_limits[2] = c->edx;
1251 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1252 if (c) {
1253 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1255 /* hv-spinlocks may have been overriden */
1256 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) {
1257 c->ebx = cpu->hyperv_spinlock_attempts;
1260 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1261 if (c) {
1262 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1266 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1267 env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING;
1268 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1269 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1270 if (c) {
1271 env->features[FEAT_HV_RECOMM_EAX] |=
1272 c->eax & HV_NO_NONARCH_CORESHARING;
1276 /* Features */
1277 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
1278 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1279 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1280 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1281 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1282 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1283 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1284 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1285 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1286 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1287 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1288 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1289 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1290 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
1291 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
1293 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1294 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1295 !cpu->hyperv_synic_kvm_only &&
1296 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1297 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
1298 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1299 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1300 r |= 1;
1303 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1304 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1306 if (r) {
1307 r = -ENOSYS;
1308 goto free;
1311 if (cpu->hyperv_passthrough) {
1312 /* We already copied all feature words from KVM as is */
1313 r = cpuid->nent;
1314 goto free;
1317 c = &cpuid_ent[cpuid_i++];
1318 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1319 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1320 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1321 c->ebx = cpu->hyperv_vendor_id[0];
1322 c->ecx = cpu->hyperv_vendor_id[1];
1323 c->edx = cpu->hyperv_vendor_id[2];
1325 c = &cpuid_ent[cpuid_i++];
1326 c->function = HV_CPUID_INTERFACE;
1327 c->eax = cpu->hyperv_interface_id[0];
1328 c->ebx = cpu->hyperv_interface_id[1];
1329 c->ecx = cpu->hyperv_interface_id[2];
1330 c->edx = cpu->hyperv_interface_id[3];
1332 c = &cpuid_ent[cpuid_i++];
1333 c->function = HV_CPUID_VERSION;
1334 c->eax = cpu->hyperv_version_id[0];
1335 c->ebx = cpu->hyperv_version_id[1];
1336 c->ecx = cpu->hyperv_version_id[2];
1337 c->edx = cpu->hyperv_version_id[3];
1339 c = &cpuid_ent[cpuid_i++];
1340 c->function = HV_CPUID_FEATURES;
1341 c->eax = env->features[FEAT_HYPERV_EAX];
1342 c->ebx = env->features[FEAT_HYPERV_EBX];
1343 c->edx = env->features[FEAT_HYPERV_EDX];
1345 c = &cpuid_ent[cpuid_i++];
1346 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1347 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1348 c->ebx = cpu->hyperv_spinlock_attempts;
1350 c = &cpuid_ent[cpuid_i++];
1351 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1352 c->eax = cpu->hv_max_vps;
1353 c->ebx = cpu->hyperv_limits[0];
1354 c->ecx = cpu->hyperv_limits[1];
1355 c->edx = cpu->hyperv_limits[2];
1357 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1358 __u32 function;
1360 /* Create zeroed 0x40000006..0x40000009 leaves */
1361 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1362 function < HV_CPUID_NESTED_FEATURES; function++) {
1363 c = &cpuid_ent[cpuid_i++];
1364 c->function = function;
1367 c = &cpuid_ent[cpuid_i++];
1368 c->function = HV_CPUID_NESTED_FEATURES;
1369 c->eax = env->features[FEAT_HV_NESTED_EAX];
1371 r = cpuid_i;
1373 free:
1374 g_free(cpuid);
1376 return r;
1379 static Error *hv_passthrough_mig_blocker;
1380 static Error *hv_no_nonarch_cs_mig_blocker;
1382 static int hyperv_init_vcpu(X86CPU *cpu)
1384 CPUState *cs = CPU(cpu);
1385 Error *local_err = NULL;
1386 int ret;
1388 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1389 error_setg(&hv_passthrough_mig_blocker,
1390 "'hv-passthrough' CPU flag prevents migration, use explicit"
1391 " set of hv-* flags instead");
1392 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1393 if (local_err) {
1394 error_report_err(local_err);
1395 error_free(hv_passthrough_mig_blocker);
1396 return ret;
1400 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1401 hv_no_nonarch_cs_mig_blocker == NULL) {
1402 error_setg(&hv_no_nonarch_cs_mig_blocker,
1403 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1404 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1405 " make sure SMT is disabled and/or that vCPUs are properly"
1406 " pinned)");
1407 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1408 if (local_err) {
1409 error_report_err(local_err);
1410 error_free(hv_no_nonarch_cs_mig_blocker);
1411 return ret;
1415 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1417 * the kernel doesn't support setting vp_index; assert that its value
1418 * is in sync
1420 struct {
1421 struct kvm_msrs info;
1422 struct kvm_msr_entry entries[1];
1423 } msr_data = {
1424 .info.nmsrs = 1,
1425 .entries[0].index = HV_X64_MSR_VP_INDEX,
1428 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1429 if (ret < 0) {
1430 return ret;
1432 assert(ret == 1);
1434 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1435 error_report("kernel's vp_index != QEMU's vp_index");
1436 return -ENXIO;
1440 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1441 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1442 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1443 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1444 if (ret < 0) {
1445 error_report("failed to turn on HyperV SynIC in KVM: %s",
1446 strerror(-ret));
1447 return ret;
1450 if (!cpu->hyperv_synic_kvm_only) {
1451 ret = hyperv_x86_synic_add(cpu);
1452 if (ret < 0) {
1453 error_report("failed to create HyperV SynIC: %s",
1454 strerror(-ret));
1455 return ret;
1460 return 0;
1463 static Error *invtsc_mig_blocker;
1465 #define KVM_MAX_CPUID_ENTRIES 100
1467 int kvm_arch_init_vcpu(CPUState *cs)
1469 struct {
1470 struct kvm_cpuid2 cpuid;
1471 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1472 } cpuid_data;
1474 * The kernel defines these structs with padding fields so there
1475 * should be no extra padding in our cpuid_data struct.
1477 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1478 sizeof(struct kvm_cpuid2) +
1479 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1481 X86CPU *cpu = X86_CPU(cs);
1482 CPUX86State *env = &cpu->env;
1483 uint32_t limit, i, j, cpuid_i;
1484 uint32_t unused;
1485 struct kvm_cpuid_entry2 *c;
1486 uint32_t signature[3];
1487 int kvm_base = KVM_CPUID_SIGNATURE;
1488 int max_nested_state_len;
1489 int r;
1490 Error *local_err = NULL;
1492 memset(&cpuid_data, 0, sizeof(cpuid_data));
1494 cpuid_i = 0;
1496 r = kvm_arch_set_tsc_khz(cs);
1497 if (r < 0) {
1498 return r;
1501 /* vcpu's TSC frequency is either specified by user, or following
1502 * the value used by KVM if the former is not present. In the
1503 * latter case, we query it from KVM and record in env->tsc_khz,
1504 * so that vcpu's TSC frequency can be migrated later via this field.
1506 if (!env->tsc_khz) {
1507 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1508 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1509 -ENOTSUP;
1510 if (r > 0) {
1511 env->tsc_khz = r;
1515 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1517 /* Paravirtualization CPUIDs */
1518 r = hyperv_handle_properties(cs, cpuid_data.entries);
1519 if (r < 0) {
1520 return r;
1521 } else if (r > 0) {
1522 cpuid_i = r;
1523 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1524 has_msr_hv_hypercall = true;
1527 if (cpu->expose_kvm) {
1528 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1529 c = &cpuid_data.entries[cpuid_i++];
1530 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1531 c->eax = KVM_CPUID_FEATURES | kvm_base;
1532 c->ebx = signature[0];
1533 c->ecx = signature[1];
1534 c->edx = signature[2];
1536 c = &cpuid_data.entries[cpuid_i++];
1537 c->function = KVM_CPUID_FEATURES | kvm_base;
1538 c->eax = env->features[FEAT_KVM];
1539 c->edx = env->features[FEAT_KVM_HINTS];
1542 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1544 for (i = 0; i <= limit; i++) {
1545 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1546 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1547 abort();
1549 c = &cpuid_data.entries[cpuid_i++];
1551 switch (i) {
1552 case 2: {
1553 /* Keep reading function 2 till all the input is received */
1554 int times;
1556 c->function = i;
1557 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1558 KVM_CPUID_FLAG_STATE_READ_NEXT;
1559 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1560 times = c->eax & 0xff;
1562 for (j = 1; j < times; ++j) {
1563 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1564 fprintf(stderr, "cpuid_data is full, no space for "
1565 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1566 abort();
1568 c = &cpuid_data.entries[cpuid_i++];
1569 c->function = i;
1570 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1571 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1573 break;
1575 case 0x1f:
1576 if (env->nr_dies < 2) {
1577 break;
1579 /* fallthrough */
1580 case 4:
1581 case 0xb:
1582 case 0xd:
1583 for (j = 0; ; j++) {
1584 if (i == 0xd && j == 64) {
1585 break;
1588 if (i == 0x1f && j == 64) {
1589 break;
1592 c->function = i;
1593 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1594 c->index = j;
1595 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1597 if (i == 4 && c->eax == 0) {
1598 break;
1600 if (i == 0xb && !(c->ecx & 0xff00)) {
1601 break;
1603 if (i == 0x1f && !(c->ecx & 0xff00)) {
1604 break;
1606 if (i == 0xd && c->eax == 0) {
1607 continue;
1609 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1610 fprintf(stderr, "cpuid_data is full, no space for "
1611 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1612 abort();
1614 c = &cpuid_data.entries[cpuid_i++];
1616 break;
1617 case 0x7:
1618 case 0x14: {
1619 uint32_t times;
1621 c->function = i;
1622 c->index = 0;
1623 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1624 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1625 times = c->eax;
1627 for (j = 1; j <= times; ++j) {
1628 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1629 fprintf(stderr, "cpuid_data is full, no space for "
1630 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1631 abort();
1633 c = &cpuid_data.entries[cpuid_i++];
1634 c->function = i;
1635 c->index = j;
1636 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1637 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1639 break;
1641 default:
1642 c->function = i;
1643 c->flags = 0;
1644 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1645 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1647 * KVM already returns all zeroes if a CPUID entry is missing,
1648 * so we can omit it and avoid hitting KVM's 80-entry limit.
1650 cpuid_i--;
1652 break;
1656 if (limit >= 0x0a) {
1657 uint32_t eax, edx;
1659 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1661 has_architectural_pmu_version = eax & 0xff;
1662 if (has_architectural_pmu_version > 0) {
1663 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1665 /* Shouldn't be more than 32, since that's the number of bits
1666 * available in EBX to tell us _which_ counters are available.
1667 * Play it safe.
1669 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1670 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1673 if (has_architectural_pmu_version > 1) {
1674 num_architectural_pmu_fixed_counters = edx & 0x1f;
1676 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1677 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1683 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1685 for (i = 0x80000000; i <= limit; i++) {
1686 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1687 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1688 abort();
1690 c = &cpuid_data.entries[cpuid_i++];
1692 switch (i) {
1693 case 0x8000001d:
1694 /* Query for all AMD cache information leaves */
1695 for (j = 0; ; j++) {
1696 c->function = i;
1697 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1698 c->index = j;
1699 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1701 if (c->eax == 0) {
1702 break;
1704 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1705 fprintf(stderr, "cpuid_data is full, no space for "
1706 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1707 abort();
1709 c = &cpuid_data.entries[cpuid_i++];
1711 break;
1712 default:
1713 c->function = i;
1714 c->flags = 0;
1715 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1716 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1718 * KVM already returns all zeroes if a CPUID entry is missing,
1719 * so we can omit it and avoid hitting KVM's 80-entry limit.
1721 cpuid_i--;
1723 break;
1727 /* Call Centaur's CPUID instructions they are supported. */
1728 if (env->cpuid_xlevel2 > 0) {
1729 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1731 for (i = 0xC0000000; i <= limit; i++) {
1732 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1733 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1734 abort();
1736 c = &cpuid_data.entries[cpuid_i++];
1738 c->function = i;
1739 c->flags = 0;
1740 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1744 cpuid_data.cpuid.nent = cpuid_i;
1746 if (((env->cpuid_version >> 8)&0xF) >= 6
1747 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1748 (CPUID_MCE | CPUID_MCA)
1749 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1750 uint64_t mcg_cap, unsupported_caps;
1751 int banks;
1752 int ret;
1754 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1755 if (ret < 0) {
1756 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1757 return ret;
1760 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1761 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1762 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1763 return -ENOTSUP;
1766 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1767 if (unsupported_caps) {
1768 if (unsupported_caps & MCG_LMCE_P) {
1769 error_report("kvm: LMCE not supported");
1770 return -ENOTSUP;
1772 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1773 unsupported_caps);
1776 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1777 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1778 if (ret < 0) {
1779 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1780 return ret;
1784 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
1786 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1787 if (c) {
1788 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1789 !!(c->ecx & CPUID_EXT_SMX);
1792 if (env->mcg_cap & MCG_LMCE_P) {
1793 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1796 if (!env->user_tsc_khz) {
1797 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1798 invtsc_mig_blocker == NULL) {
1799 error_setg(&invtsc_mig_blocker,
1800 "State blocked by non-migratable CPU device"
1801 " (invtsc flag)");
1802 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1803 if (local_err) {
1804 error_report_err(local_err);
1805 error_free(invtsc_mig_blocker);
1806 return r;
1811 if (cpu->vmware_cpuid_freq
1812 /* Guests depend on 0x40000000 to detect this feature, so only expose
1813 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1814 && cpu->expose_kvm
1815 && kvm_base == KVM_CPUID_SIGNATURE
1816 /* TSC clock must be stable and known for this feature. */
1817 && tsc_is_stable_and_known(env)) {
1819 c = &cpuid_data.entries[cpuid_i++];
1820 c->function = KVM_CPUID_SIGNATURE | 0x10;
1821 c->eax = env->tsc_khz;
1822 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
1823 c->ecx = c->edx = 0;
1825 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1826 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1829 cpuid_data.cpuid.nent = cpuid_i;
1831 cpuid_data.cpuid.padding = 0;
1832 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1833 if (r) {
1834 goto fail;
1837 if (has_xsave) {
1838 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1839 memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
1842 max_nested_state_len = kvm_max_nested_state_length();
1843 if (max_nested_state_len > 0) {
1844 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1846 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
1847 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1849 env->nested_state = g_malloc0(max_nested_state_len);
1850 env->nested_state->size = max_nested_state_len;
1852 if (cpu_has_vmx(env)) {
1853 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1854 vmx_hdr = &env->nested_state->hdr.vmx;
1855 vmx_hdr->vmxon_pa = -1ull;
1856 vmx_hdr->vmcs12_pa = -1ull;
1857 } else {
1858 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1863 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1865 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1866 has_msr_tsc_aux = false;
1869 kvm_init_msrs(cpu);
1871 r = hyperv_init_vcpu(cpu);
1872 if (r) {
1873 goto fail;
1876 return 0;
1878 fail:
1879 migrate_del_blocker(invtsc_mig_blocker);
1881 return r;
1884 int kvm_arch_destroy_vcpu(CPUState *cs)
1886 X86CPU *cpu = X86_CPU(cs);
1887 CPUX86State *env = &cpu->env;
1889 if (cpu->kvm_msr_buf) {
1890 g_free(cpu->kvm_msr_buf);
1891 cpu->kvm_msr_buf = NULL;
1894 if (env->nested_state) {
1895 g_free(env->nested_state);
1896 env->nested_state = NULL;
1899 qemu_del_vm_change_state_handler(cpu->vmsentry);
1901 return 0;
1904 void kvm_arch_reset_vcpu(X86CPU *cpu)
1906 CPUX86State *env = &cpu->env;
1908 env->xcr0 = 1;
1909 if (kvm_irqchip_in_kernel()) {
1910 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1911 KVM_MP_STATE_UNINITIALIZED;
1912 } else {
1913 env->mp_state = KVM_MP_STATE_RUNNABLE;
1916 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1917 int i;
1918 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1919 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1922 hyperv_x86_synic_reset(cpu);
1924 /* enabled by default */
1925 env->poll_control_msr = 1;
1927 sev_es_set_reset_vector(CPU(cpu));
1930 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1932 CPUX86State *env = &cpu->env;
1934 /* APs get directly into wait-for-SIPI state. */
1935 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1936 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1940 static int kvm_get_supported_feature_msrs(KVMState *s)
1942 int ret = 0;
1944 if (kvm_feature_msrs != NULL) {
1945 return 0;
1948 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1949 return 0;
1952 struct kvm_msr_list msr_list;
1954 msr_list.nmsrs = 0;
1955 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1956 if (ret < 0 && ret != -E2BIG) {
1957 error_report("Fetch KVM feature MSR list failed: %s",
1958 strerror(-ret));
1959 return ret;
1962 assert(msr_list.nmsrs > 0);
1963 kvm_feature_msrs = (struct kvm_msr_list *) \
1964 g_malloc0(sizeof(msr_list) +
1965 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1967 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1968 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1970 if (ret < 0) {
1971 error_report("Fetch KVM feature MSR list failed: %s",
1972 strerror(-ret));
1973 g_free(kvm_feature_msrs);
1974 kvm_feature_msrs = NULL;
1975 return ret;
1978 return 0;
1981 static int kvm_get_supported_msrs(KVMState *s)
1983 int ret = 0;
1984 struct kvm_msr_list msr_list, *kvm_msr_list;
1987 * Obtain MSR list from KVM. These are the MSRs that we must
1988 * save/restore.
1990 msr_list.nmsrs = 0;
1991 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1992 if (ret < 0 && ret != -E2BIG) {
1993 return ret;
1996 * Old kernel modules had a bug and could write beyond the provided
1997 * memory. Allocate at least a safe amount of 1K.
1999 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2000 msr_list.nmsrs *
2001 sizeof(msr_list.indices[0])));
2003 kvm_msr_list->nmsrs = msr_list.nmsrs;
2004 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2005 if (ret >= 0) {
2006 int i;
2008 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2009 switch (kvm_msr_list->indices[i]) {
2010 case MSR_STAR:
2011 has_msr_star = true;
2012 break;
2013 case MSR_VM_HSAVE_PA:
2014 has_msr_hsave_pa = true;
2015 break;
2016 case MSR_TSC_AUX:
2017 has_msr_tsc_aux = true;
2018 break;
2019 case MSR_TSC_ADJUST:
2020 has_msr_tsc_adjust = true;
2021 break;
2022 case MSR_IA32_TSCDEADLINE:
2023 has_msr_tsc_deadline = true;
2024 break;
2025 case MSR_IA32_SMBASE:
2026 has_msr_smbase = true;
2027 break;
2028 case MSR_SMI_COUNT:
2029 has_msr_smi_count = true;
2030 break;
2031 case MSR_IA32_MISC_ENABLE:
2032 has_msr_misc_enable = true;
2033 break;
2034 case MSR_IA32_BNDCFGS:
2035 has_msr_bndcfgs = true;
2036 break;
2037 case MSR_IA32_XSS:
2038 has_msr_xss = true;
2039 break;
2040 case MSR_IA32_UMWAIT_CONTROL:
2041 has_msr_umwait = true;
2042 break;
2043 case HV_X64_MSR_CRASH_CTL:
2044 has_msr_hv_crash = true;
2045 break;
2046 case HV_X64_MSR_RESET:
2047 has_msr_hv_reset = true;
2048 break;
2049 case HV_X64_MSR_VP_INDEX:
2050 has_msr_hv_vpindex = true;
2051 break;
2052 case HV_X64_MSR_VP_RUNTIME:
2053 has_msr_hv_runtime = true;
2054 break;
2055 case HV_X64_MSR_SCONTROL:
2056 has_msr_hv_synic = true;
2057 break;
2058 case HV_X64_MSR_STIMER0_CONFIG:
2059 has_msr_hv_stimer = true;
2060 break;
2061 case HV_X64_MSR_TSC_FREQUENCY:
2062 has_msr_hv_frequencies = true;
2063 break;
2064 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2065 has_msr_hv_reenlightenment = true;
2066 break;
2067 case MSR_IA32_SPEC_CTRL:
2068 has_msr_spec_ctrl = true;
2069 break;
2070 case MSR_IA32_TSX_CTRL:
2071 has_msr_tsx_ctrl = true;
2072 break;
2073 case MSR_VIRT_SSBD:
2074 has_msr_virt_ssbd = true;
2075 break;
2076 case MSR_IA32_ARCH_CAPABILITIES:
2077 has_msr_arch_capabs = true;
2078 break;
2079 case MSR_IA32_CORE_CAPABILITY:
2080 has_msr_core_capabs = true;
2081 break;
2082 case MSR_IA32_PERF_CAPABILITIES:
2083 has_msr_perf_capabs = true;
2084 break;
2085 case MSR_IA32_VMX_VMFUNC:
2086 has_msr_vmx_vmfunc = true;
2087 break;
2088 case MSR_IA32_UCODE_REV:
2089 has_msr_ucode_rev = true;
2090 break;
2091 case MSR_IA32_VMX_PROCBASED_CTLS2:
2092 has_msr_vmx_procbased_ctls2 = true;
2093 break;
2094 case MSR_IA32_PKRS:
2095 has_msr_pkrs = true;
2096 break;
2101 g_free(kvm_msr_list);
2103 return ret;
2106 static Notifier smram_machine_done;
2107 static KVMMemoryListener smram_listener;
2108 static AddressSpace smram_address_space;
2109 static MemoryRegion smram_as_root;
2110 static MemoryRegion smram_as_mem;
2112 static void register_smram_listener(Notifier *n, void *unused)
2114 MemoryRegion *smram =
2115 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2117 /* Outer container... */
2118 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2119 memory_region_set_enabled(&smram_as_root, true);
2121 /* ... with two regions inside: normal system memory with low
2122 * priority, and...
2124 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2125 get_system_memory(), 0, ~0ull);
2126 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2127 memory_region_set_enabled(&smram_as_mem, true);
2129 if (smram) {
2130 /* ... SMRAM with higher priority */
2131 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2132 memory_region_set_enabled(smram, true);
2135 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2136 kvm_memory_listener_register(kvm_state, &smram_listener,
2137 &smram_address_space, 1);
2140 int kvm_arch_init(MachineState *ms, KVMState *s)
2142 uint64_t identity_base = 0xfffbc000;
2143 uint64_t shadow_mem;
2144 int ret;
2145 struct utsname utsname;
2146 Error *local_err = NULL;
2149 * Initialize SEV context, if required
2151 * If no memory encryption is requested (ms->cgs == NULL) this is
2152 * a no-op.
2154 * It's also a no-op if a non-SEV confidential guest support
2155 * mechanism is selected. SEV is the only mechanism available to
2156 * select on x86 at present, so this doesn't arise, but if new
2157 * mechanisms are supported in future (e.g. TDX), they'll need
2158 * their own initialization either here or elsewhere.
2160 ret = sev_kvm_init(ms->cgs, &local_err);
2161 if (ret < 0) {
2162 error_report_err(local_err);
2163 return ret;
2166 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2167 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2168 return -ENOTSUP;
2171 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2172 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2173 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2175 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2177 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2178 if (has_exception_payload) {
2179 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2180 if (ret < 0) {
2181 error_report("kvm: Failed to enable exception payload cap: %s",
2182 strerror(-ret));
2183 return ret;
2187 ret = kvm_get_supported_msrs(s);
2188 if (ret < 0) {
2189 return ret;
2192 kvm_get_supported_feature_msrs(s);
2194 uname(&utsname);
2195 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2198 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2199 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2200 * Since these must be part of guest physical memory, we need to allocate
2201 * them, both by setting their start addresses in the kernel and by
2202 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2204 * Older KVM versions may not support setting the identity map base. In
2205 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2206 * size.
2208 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2209 /* Allows up to 16M BIOSes. */
2210 identity_base = 0xfeffc000;
2212 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2213 if (ret < 0) {
2214 return ret;
2218 /* Set TSS base one page after EPT identity map. */
2219 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2220 if (ret < 0) {
2221 return ret;
2224 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2225 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2226 if (ret < 0) {
2227 fprintf(stderr, "e820_add_entry() table is full\n");
2228 return ret;
2231 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2232 if (shadow_mem != -1) {
2233 shadow_mem /= 4096;
2234 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2235 if (ret < 0) {
2236 return ret;
2240 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2241 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2242 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2243 smram_machine_done.notify = register_smram_listener;
2244 qemu_add_machine_init_done_notifier(&smram_machine_done);
2247 if (enable_cpu_pm) {
2248 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2249 int ret;
2251 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2252 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2253 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2254 #endif
2255 if (disable_exits) {
2256 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2257 KVM_X86_DISABLE_EXITS_HLT |
2258 KVM_X86_DISABLE_EXITS_PAUSE |
2259 KVM_X86_DISABLE_EXITS_CSTATE);
2262 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2263 disable_exits);
2264 if (ret < 0) {
2265 error_report("kvm: guest stopping CPU not supported: %s",
2266 strerror(-ret));
2270 return 0;
2273 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2275 lhs->selector = rhs->selector;
2276 lhs->base = rhs->base;
2277 lhs->limit = rhs->limit;
2278 lhs->type = 3;
2279 lhs->present = 1;
2280 lhs->dpl = 3;
2281 lhs->db = 0;
2282 lhs->s = 1;
2283 lhs->l = 0;
2284 lhs->g = 0;
2285 lhs->avl = 0;
2286 lhs->unusable = 0;
2289 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2291 unsigned flags = rhs->flags;
2292 lhs->selector = rhs->selector;
2293 lhs->base = rhs->base;
2294 lhs->limit = rhs->limit;
2295 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2296 lhs->present = (flags & DESC_P_MASK) != 0;
2297 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2298 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2299 lhs->s = (flags & DESC_S_MASK) != 0;
2300 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2301 lhs->g = (flags & DESC_G_MASK) != 0;
2302 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2303 lhs->unusable = !lhs->present;
2304 lhs->padding = 0;
2307 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2309 lhs->selector = rhs->selector;
2310 lhs->base = rhs->base;
2311 lhs->limit = rhs->limit;
2312 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2313 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2314 (rhs->dpl << DESC_DPL_SHIFT) |
2315 (rhs->db << DESC_B_SHIFT) |
2316 (rhs->s * DESC_S_MASK) |
2317 (rhs->l << DESC_L_SHIFT) |
2318 (rhs->g * DESC_G_MASK) |
2319 (rhs->avl * DESC_AVL_MASK);
2322 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2324 if (set) {
2325 *kvm_reg = *qemu_reg;
2326 } else {
2327 *qemu_reg = *kvm_reg;
2331 static int kvm_getput_regs(X86CPU *cpu, int set)
2333 CPUX86State *env = &cpu->env;
2334 struct kvm_regs regs;
2335 int ret = 0;
2337 if (!set) {
2338 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2339 if (ret < 0) {
2340 return ret;
2344 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2345 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2346 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2347 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2348 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2349 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2350 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2351 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2352 #ifdef TARGET_X86_64
2353 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2354 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2355 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2356 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2357 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2358 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2359 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2360 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2361 #endif
2363 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2364 kvm_getput_reg(&regs.rip, &env->eip, set);
2366 if (set) {
2367 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2370 return ret;
2373 static int kvm_put_fpu(X86CPU *cpu)
2375 CPUX86State *env = &cpu->env;
2376 struct kvm_fpu fpu;
2377 int i;
2379 memset(&fpu, 0, sizeof fpu);
2380 fpu.fsw = env->fpus & ~(7 << 11);
2381 fpu.fsw |= (env->fpstt & 7) << 11;
2382 fpu.fcw = env->fpuc;
2383 fpu.last_opcode = env->fpop;
2384 fpu.last_ip = env->fpip;
2385 fpu.last_dp = env->fpdp;
2386 for (i = 0; i < 8; ++i) {
2387 fpu.ftwx |= (!env->fptags[i]) << i;
2389 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2390 for (i = 0; i < CPU_NB_REGS; i++) {
2391 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2392 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2394 fpu.mxcsr = env->mxcsr;
2396 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2399 #define XSAVE_FCW_FSW 0
2400 #define XSAVE_FTW_FOP 1
2401 #define XSAVE_CWD_RIP 2
2402 #define XSAVE_CWD_RDP 4
2403 #define XSAVE_MXCSR 6
2404 #define XSAVE_ST_SPACE 8
2405 #define XSAVE_XMM_SPACE 40
2406 #define XSAVE_XSTATE_BV 128
2407 #define XSAVE_YMMH_SPACE 144
2408 #define XSAVE_BNDREGS 240
2409 #define XSAVE_BNDCSR 256
2410 #define XSAVE_OPMASK 272
2411 #define XSAVE_ZMM_Hi256 288
2412 #define XSAVE_Hi16_ZMM 416
2413 #define XSAVE_PKRU 672
2415 #define XSAVE_BYTE_OFFSET(word_offset) \
2416 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2418 #define ASSERT_OFFSET(word_offset, field) \
2419 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2420 offsetof(X86XSaveArea, field))
2422 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2423 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2424 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2425 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2426 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2427 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2428 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2429 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2430 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2431 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2432 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2433 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2434 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2435 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2436 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2438 static int kvm_put_xsave(X86CPU *cpu)
2440 CPUX86State *env = &cpu->env;
2441 X86XSaveArea *xsave = env->xsave_buf;
2443 if (!has_xsave) {
2444 return kvm_put_fpu(cpu);
2446 x86_cpu_xsave_all_areas(cpu, xsave);
2448 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2451 static int kvm_put_xcrs(X86CPU *cpu)
2453 CPUX86State *env = &cpu->env;
2454 struct kvm_xcrs xcrs = {};
2456 if (!has_xcrs) {
2457 return 0;
2460 xcrs.nr_xcrs = 1;
2461 xcrs.flags = 0;
2462 xcrs.xcrs[0].xcr = 0;
2463 xcrs.xcrs[0].value = env->xcr0;
2464 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2467 static int kvm_put_sregs(X86CPU *cpu)
2469 CPUX86State *env = &cpu->env;
2470 struct kvm_sregs sregs;
2472 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2473 if (env->interrupt_injected >= 0) {
2474 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2475 (uint64_t)1 << (env->interrupt_injected % 64);
2478 if ((env->eflags & VM_MASK)) {
2479 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2480 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2481 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2482 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2483 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2484 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2485 } else {
2486 set_seg(&sregs.cs, &env->segs[R_CS]);
2487 set_seg(&sregs.ds, &env->segs[R_DS]);
2488 set_seg(&sregs.es, &env->segs[R_ES]);
2489 set_seg(&sregs.fs, &env->segs[R_FS]);
2490 set_seg(&sregs.gs, &env->segs[R_GS]);
2491 set_seg(&sregs.ss, &env->segs[R_SS]);
2494 set_seg(&sregs.tr, &env->tr);
2495 set_seg(&sregs.ldt, &env->ldt);
2497 sregs.idt.limit = env->idt.limit;
2498 sregs.idt.base = env->idt.base;
2499 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2500 sregs.gdt.limit = env->gdt.limit;
2501 sregs.gdt.base = env->gdt.base;
2502 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2504 sregs.cr0 = env->cr[0];
2505 sregs.cr2 = env->cr[2];
2506 sregs.cr3 = env->cr[3];
2507 sregs.cr4 = env->cr[4];
2509 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2510 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2512 sregs.efer = env->efer;
2514 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2517 static void kvm_msr_buf_reset(X86CPU *cpu)
2519 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2522 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2524 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2525 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2526 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2528 assert((void *)(entry + 1) <= limit);
2530 entry->index = index;
2531 entry->reserved = 0;
2532 entry->data = value;
2533 msrs->nmsrs++;
2536 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2538 kvm_msr_buf_reset(cpu);
2539 kvm_msr_entry_add(cpu, index, value);
2541 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2544 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2546 int ret;
2548 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2549 assert(ret == 1);
2552 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2554 CPUX86State *env = &cpu->env;
2555 int ret;
2557 if (!has_msr_tsc_deadline) {
2558 return 0;
2561 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2562 if (ret < 0) {
2563 return ret;
2566 assert(ret == 1);
2567 return 0;
2571 * Provide a separate write service for the feature control MSR in order to
2572 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2573 * before writing any other state because forcibly leaving nested mode
2574 * invalidates the VCPU state.
2576 static int kvm_put_msr_feature_control(X86CPU *cpu)
2578 int ret;
2580 if (!has_msr_feature_control) {
2581 return 0;
2584 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2585 cpu->env.msr_ia32_feature_control);
2586 if (ret < 0) {
2587 return ret;
2590 assert(ret == 1);
2591 return 0;
2594 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2596 uint32_t default1, can_be_one, can_be_zero;
2597 uint32_t must_be_one;
2599 switch (index) {
2600 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2601 default1 = 0x00000016;
2602 break;
2603 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2604 default1 = 0x0401e172;
2605 break;
2606 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2607 default1 = 0x000011ff;
2608 break;
2609 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2610 default1 = 0x00036dff;
2611 break;
2612 case MSR_IA32_VMX_PROCBASED_CTLS2:
2613 default1 = 0;
2614 break;
2615 default:
2616 abort();
2619 /* If a feature bit is set, the control can be either set or clear.
2620 * Otherwise the value is limited to either 0 or 1 by default1.
2622 can_be_one = features | default1;
2623 can_be_zero = features | ~default1;
2624 must_be_one = ~can_be_zero;
2627 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2628 * Bit 32:63 -> 1 if the control bit can be one.
2630 return must_be_one | (((uint64_t)can_be_one) << 32);
2633 #define VMCS12_MAX_FIELD_INDEX (0x17)
2635 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2637 uint64_t kvm_vmx_basic =
2638 kvm_arch_get_supported_msr_feature(kvm_state,
2639 MSR_IA32_VMX_BASIC);
2641 if (!kvm_vmx_basic) {
2642 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2643 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2645 return;
2648 uint64_t kvm_vmx_misc =
2649 kvm_arch_get_supported_msr_feature(kvm_state,
2650 MSR_IA32_VMX_MISC);
2651 uint64_t kvm_vmx_ept_vpid =
2652 kvm_arch_get_supported_msr_feature(kvm_state,
2653 MSR_IA32_VMX_EPT_VPID_CAP);
2656 * If the guest is 64-bit, a value of 1 is allowed for the host address
2657 * space size vmexit control.
2659 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2660 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2663 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2664 * not change them for backwards compatibility.
2666 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2667 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2668 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2669 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2672 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2673 * change in the future but are always zero for now, clear them to be
2674 * future proof. Bits 32-63 in theory could change, though KVM does
2675 * not support dual-monitor treatment and probably never will; mask
2676 * them out as well.
2678 uint64_t fixed_vmx_misc = kvm_vmx_misc &
2679 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2680 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2683 * EPT memory types should not change either, so we do not bother
2684 * adding features for them.
2686 uint64_t fixed_vmx_ept_mask =
2687 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2688 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2689 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2691 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2692 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2693 f[FEAT_VMX_PROCBASED_CTLS]));
2694 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2695 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2696 f[FEAT_VMX_PINBASED_CTLS]));
2697 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2698 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2699 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2700 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2701 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2702 f[FEAT_VMX_ENTRY_CTLS]));
2703 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2704 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2705 f[FEAT_VMX_SECONDARY_CTLS]));
2706 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2707 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2708 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2709 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2710 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2711 f[FEAT_VMX_MISC] | fixed_vmx_misc);
2712 if (has_msr_vmx_vmfunc) {
2713 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2717 * Just to be safe, write these with constant values. The CRn_FIXED1
2718 * MSRs are generated by KVM based on the vCPU's CPUID.
2720 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2721 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2722 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2723 CR4_VMXE_MASK);
2724 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
2725 VMCS12_MAX_FIELD_INDEX << 1);
2728 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2730 uint64_t kvm_perf_cap =
2731 kvm_arch_get_supported_msr_feature(kvm_state,
2732 MSR_IA32_PERF_CAPABILITIES);
2734 if (kvm_perf_cap) {
2735 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2736 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2740 static int kvm_buf_set_msrs(X86CPU *cpu)
2742 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2743 if (ret < 0) {
2744 return ret;
2747 if (ret < cpu->kvm_msr_buf->nmsrs) {
2748 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2749 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2750 (uint32_t)e->index, (uint64_t)e->data);
2753 assert(ret == cpu->kvm_msr_buf->nmsrs);
2754 return 0;
2757 static void kvm_init_msrs(X86CPU *cpu)
2759 CPUX86State *env = &cpu->env;
2761 kvm_msr_buf_reset(cpu);
2762 if (has_msr_arch_capabs) {
2763 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2764 env->features[FEAT_ARCH_CAPABILITIES]);
2767 if (has_msr_core_capabs) {
2768 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2769 env->features[FEAT_CORE_CAPABILITY]);
2772 if (has_msr_perf_capabs && cpu->enable_pmu) {
2773 kvm_msr_entry_add_perf(cpu, env->features);
2776 if (has_msr_ucode_rev) {
2777 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
2781 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2782 * all kernels with MSR features should have them.
2784 if (kvm_feature_msrs && cpu_has_vmx(env)) {
2785 kvm_msr_entry_add_vmx(cpu, env->features);
2788 assert(kvm_buf_set_msrs(cpu) == 0);
2791 static int kvm_put_msrs(X86CPU *cpu, int level)
2793 CPUX86State *env = &cpu->env;
2794 int i;
2796 kvm_msr_buf_reset(cpu);
2798 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2799 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2800 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2801 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2802 if (has_msr_star) {
2803 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2805 if (has_msr_hsave_pa) {
2806 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2808 if (has_msr_tsc_aux) {
2809 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2811 if (has_msr_tsc_adjust) {
2812 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2814 if (has_msr_misc_enable) {
2815 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2816 env->msr_ia32_misc_enable);
2818 if (has_msr_smbase) {
2819 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2821 if (has_msr_smi_count) {
2822 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2824 if (has_msr_pkrs) {
2825 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
2827 if (has_msr_bndcfgs) {
2828 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2830 if (has_msr_xss) {
2831 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2833 if (has_msr_umwait) {
2834 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
2836 if (has_msr_spec_ctrl) {
2837 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2839 if (has_msr_tsx_ctrl) {
2840 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
2842 if (has_msr_virt_ssbd) {
2843 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2846 #ifdef TARGET_X86_64
2847 if (lm_capable_kernel) {
2848 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2849 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2850 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2851 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2853 #endif
2856 * The following MSRs have side effects on the guest or are too heavy
2857 * for normal writeback. Limit them to reset or full state updates.
2859 if (level >= KVM_PUT_RESET_STATE) {
2860 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2861 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2862 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2863 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
2864 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
2866 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2867 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2869 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2870 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2872 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2873 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2876 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2877 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2880 if (has_architectural_pmu_version > 0) {
2881 if (has_architectural_pmu_version > 1) {
2882 /* Stop the counter. */
2883 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2884 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2887 /* Set the counter values. */
2888 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2889 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2890 env->msr_fixed_counters[i]);
2892 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2893 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2894 env->msr_gp_counters[i]);
2895 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2896 env->msr_gp_evtsel[i]);
2898 if (has_architectural_pmu_version > 1) {
2899 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2900 env->msr_global_status);
2901 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2902 env->msr_global_ovf_ctrl);
2904 /* Now start the PMU. */
2905 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2906 env->msr_fixed_ctr_ctrl);
2907 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2908 env->msr_global_ctrl);
2912 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2913 * only sync them to KVM on the first cpu
2915 if (current_cpu == first_cpu) {
2916 if (has_msr_hv_hypercall) {
2917 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2918 env->msr_hv_guest_os_id);
2919 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2920 env->msr_hv_hypercall);
2922 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2923 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2924 env->msr_hv_tsc);
2926 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2927 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2928 env->msr_hv_reenlightenment_control);
2929 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2930 env->msr_hv_tsc_emulation_control);
2931 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2932 env->msr_hv_tsc_emulation_status);
2935 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2936 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2937 env->msr_hv_vapic);
2939 if (has_msr_hv_crash) {
2940 int j;
2942 for (j = 0; j < HV_CRASH_PARAMS; j++)
2943 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2944 env->msr_hv_crash_params[j]);
2946 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2948 if (has_msr_hv_runtime) {
2949 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2951 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2952 && hv_vpindex_settable) {
2953 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2954 hyperv_vp_index(CPU(cpu)));
2956 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2957 int j;
2959 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2961 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2962 env->msr_hv_synic_control);
2963 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2964 env->msr_hv_synic_evt_page);
2965 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2966 env->msr_hv_synic_msg_page);
2968 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2969 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2970 env->msr_hv_synic_sint[j]);
2973 if (has_msr_hv_stimer) {
2974 int j;
2976 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2977 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2978 env->msr_hv_stimer_config[j]);
2981 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2982 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2983 env->msr_hv_stimer_count[j]);
2986 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2987 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2989 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2990 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2991 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2992 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2993 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2994 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2995 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2996 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2997 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2998 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2999 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3000 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3001 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3002 /* The CPU GPs if we write to a bit above the physical limit of
3003 * the host CPU (and KVM emulates that)
3005 uint64_t mask = env->mtrr_var[i].mask;
3006 mask &= phys_mask;
3008 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3009 env->mtrr_var[i].base);
3010 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3013 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3014 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3015 0x14, 1, R_EAX) & 0x7;
3017 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3018 env->msr_rtit_ctrl);
3019 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3020 env->msr_rtit_status);
3021 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3022 env->msr_rtit_output_base);
3023 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3024 env->msr_rtit_output_mask);
3025 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3026 env->msr_rtit_cr3_match);
3027 for (i = 0; i < addr_num; i++) {
3028 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3029 env->msr_rtit_addrs[i]);
3033 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3034 * kvm_put_msr_feature_control. */
3037 if (env->mcg_cap) {
3038 int i;
3040 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3041 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3042 if (has_msr_mcg_ext_ctl) {
3043 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3045 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3046 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3050 return kvm_buf_set_msrs(cpu);
3054 static int kvm_get_fpu(X86CPU *cpu)
3056 CPUX86State *env = &cpu->env;
3057 struct kvm_fpu fpu;
3058 int i, ret;
3060 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3061 if (ret < 0) {
3062 return ret;
3065 env->fpstt = (fpu.fsw >> 11) & 7;
3066 env->fpus = fpu.fsw;
3067 env->fpuc = fpu.fcw;
3068 env->fpop = fpu.last_opcode;
3069 env->fpip = fpu.last_ip;
3070 env->fpdp = fpu.last_dp;
3071 for (i = 0; i < 8; ++i) {
3072 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3074 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3075 for (i = 0; i < CPU_NB_REGS; i++) {
3076 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3077 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3079 env->mxcsr = fpu.mxcsr;
3081 return 0;
3084 static int kvm_get_xsave(X86CPU *cpu)
3086 CPUX86State *env = &cpu->env;
3087 X86XSaveArea *xsave = env->xsave_buf;
3088 int ret;
3090 if (!has_xsave) {
3091 return kvm_get_fpu(cpu);
3094 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
3095 if (ret < 0) {
3096 return ret;
3098 x86_cpu_xrstor_all_areas(cpu, xsave);
3100 return 0;
3103 static int kvm_get_xcrs(X86CPU *cpu)
3105 CPUX86State *env = &cpu->env;
3106 int i, ret;
3107 struct kvm_xcrs xcrs;
3109 if (!has_xcrs) {
3110 return 0;
3113 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3114 if (ret < 0) {
3115 return ret;
3118 for (i = 0; i < xcrs.nr_xcrs; i++) {
3119 /* Only support xcr0 now */
3120 if (xcrs.xcrs[i].xcr == 0) {
3121 env->xcr0 = xcrs.xcrs[i].value;
3122 break;
3125 return 0;
3128 static int kvm_get_sregs(X86CPU *cpu)
3130 CPUX86State *env = &cpu->env;
3131 struct kvm_sregs sregs;
3132 int bit, i, ret;
3134 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3135 if (ret < 0) {
3136 return ret;
3139 /* There can only be one pending IRQ set in the bitmap at a time, so try
3140 to find it and save its number instead (-1 for none). */
3141 env->interrupt_injected = -1;
3142 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3143 if (sregs.interrupt_bitmap[i]) {
3144 bit = ctz64(sregs.interrupt_bitmap[i]);
3145 env->interrupt_injected = i * 64 + bit;
3146 break;
3150 get_seg(&env->segs[R_CS], &sregs.cs);
3151 get_seg(&env->segs[R_DS], &sregs.ds);
3152 get_seg(&env->segs[R_ES], &sregs.es);
3153 get_seg(&env->segs[R_FS], &sregs.fs);
3154 get_seg(&env->segs[R_GS], &sregs.gs);
3155 get_seg(&env->segs[R_SS], &sregs.ss);
3157 get_seg(&env->tr, &sregs.tr);
3158 get_seg(&env->ldt, &sregs.ldt);
3160 env->idt.limit = sregs.idt.limit;
3161 env->idt.base = sregs.idt.base;
3162 env->gdt.limit = sregs.gdt.limit;
3163 env->gdt.base = sregs.gdt.base;
3165 env->cr[0] = sregs.cr0;
3166 env->cr[2] = sregs.cr2;
3167 env->cr[3] = sregs.cr3;
3168 env->cr[4] = sregs.cr4;
3170 env->efer = sregs.efer;
3172 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3173 x86_update_hflags(env);
3175 return 0;
3178 static int kvm_get_msrs(X86CPU *cpu)
3180 CPUX86State *env = &cpu->env;
3181 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3182 int ret, i;
3183 uint64_t mtrr_top_bits;
3185 kvm_msr_buf_reset(cpu);
3187 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3188 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3189 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3190 kvm_msr_entry_add(cpu, MSR_PAT, 0);
3191 if (has_msr_star) {
3192 kvm_msr_entry_add(cpu, MSR_STAR, 0);
3194 if (has_msr_hsave_pa) {
3195 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3197 if (has_msr_tsc_aux) {
3198 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3200 if (has_msr_tsc_adjust) {
3201 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3203 if (has_msr_tsc_deadline) {
3204 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3206 if (has_msr_misc_enable) {
3207 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3209 if (has_msr_smbase) {
3210 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3212 if (has_msr_smi_count) {
3213 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3215 if (has_msr_feature_control) {
3216 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3218 if (has_msr_pkrs) {
3219 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3221 if (has_msr_bndcfgs) {
3222 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3224 if (has_msr_xss) {
3225 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3227 if (has_msr_umwait) {
3228 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3230 if (has_msr_spec_ctrl) {
3231 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3233 if (has_msr_tsx_ctrl) {
3234 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3236 if (has_msr_virt_ssbd) {
3237 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3239 if (!env->tsc_valid) {
3240 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3241 env->tsc_valid = !runstate_is_running();
3244 #ifdef TARGET_X86_64
3245 if (lm_capable_kernel) {
3246 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3247 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3248 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3249 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3251 #endif
3252 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3253 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3254 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3255 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3257 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3258 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3260 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3261 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3263 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3264 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3266 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3267 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3269 if (has_architectural_pmu_version > 0) {
3270 if (has_architectural_pmu_version > 1) {
3271 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3272 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3273 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3274 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3276 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3277 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3279 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3280 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3281 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3285 if (env->mcg_cap) {
3286 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3287 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3288 if (has_msr_mcg_ext_ctl) {
3289 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3291 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3292 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3296 if (has_msr_hv_hypercall) {
3297 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3298 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3300 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3301 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3303 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3304 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3306 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3307 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3308 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3309 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3311 if (has_msr_hv_crash) {
3312 int j;
3314 for (j = 0; j < HV_CRASH_PARAMS; j++) {
3315 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3318 if (has_msr_hv_runtime) {
3319 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3321 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3322 uint32_t msr;
3324 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3325 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3326 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3327 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3328 kvm_msr_entry_add(cpu, msr, 0);
3331 if (has_msr_hv_stimer) {
3332 uint32_t msr;
3334 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3335 msr++) {
3336 kvm_msr_entry_add(cpu, msr, 0);
3339 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3340 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3341 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3342 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3343 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3344 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3345 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3346 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3347 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3348 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3349 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3350 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3351 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3352 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3353 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3354 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3358 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3359 int addr_num =
3360 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3362 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3363 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3364 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3365 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3366 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3367 for (i = 0; i < addr_num; i++) {
3368 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3372 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3373 if (ret < 0) {
3374 return ret;
3377 if (ret < cpu->kvm_msr_buf->nmsrs) {
3378 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3379 error_report("error: failed to get MSR 0x%" PRIx32,
3380 (uint32_t)e->index);
3383 assert(ret == cpu->kvm_msr_buf->nmsrs);
3385 * MTRR masks: Each mask consists of 5 parts
3386 * a 10..0: must be zero
3387 * b 11 : valid bit
3388 * c n-1.12: actual mask bits
3389 * d 51..n: reserved must be zero
3390 * e 63.52: reserved must be zero
3392 * 'n' is the number of physical bits supported by the CPU and is
3393 * apparently always <= 52. We know our 'n' but don't know what
3394 * the destinations 'n' is; it might be smaller, in which case
3395 * it masks (c) on loading. It might be larger, in which case
3396 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3397 * we're migrating to.
3400 if (cpu->fill_mtrr_mask) {
3401 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3402 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3403 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3404 } else {
3405 mtrr_top_bits = 0;
3408 for (i = 0; i < ret; i++) {
3409 uint32_t index = msrs[i].index;
3410 switch (index) {
3411 case MSR_IA32_SYSENTER_CS:
3412 env->sysenter_cs = msrs[i].data;
3413 break;
3414 case MSR_IA32_SYSENTER_ESP:
3415 env->sysenter_esp = msrs[i].data;
3416 break;
3417 case MSR_IA32_SYSENTER_EIP:
3418 env->sysenter_eip = msrs[i].data;
3419 break;
3420 case MSR_PAT:
3421 env->pat = msrs[i].data;
3422 break;
3423 case MSR_STAR:
3424 env->star = msrs[i].data;
3425 break;
3426 #ifdef TARGET_X86_64
3427 case MSR_CSTAR:
3428 env->cstar = msrs[i].data;
3429 break;
3430 case MSR_KERNELGSBASE:
3431 env->kernelgsbase = msrs[i].data;
3432 break;
3433 case MSR_FMASK:
3434 env->fmask = msrs[i].data;
3435 break;
3436 case MSR_LSTAR:
3437 env->lstar = msrs[i].data;
3438 break;
3439 #endif
3440 case MSR_IA32_TSC:
3441 env->tsc = msrs[i].data;
3442 break;
3443 case MSR_TSC_AUX:
3444 env->tsc_aux = msrs[i].data;
3445 break;
3446 case MSR_TSC_ADJUST:
3447 env->tsc_adjust = msrs[i].data;
3448 break;
3449 case MSR_IA32_TSCDEADLINE:
3450 env->tsc_deadline = msrs[i].data;
3451 break;
3452 case MSR_VM_HSAVE_PA:
3453 env->vm_hsave = msrs[i].data;
3454 break;
3455 case MSR_KVM_SYSTEM_TIME:
3456 env->system_time_msr = msrs[i].data;
3457 break;
3458 case MSR_KVM_WALL_CLOCK:
3459 env->wall_clock_msr = msrs[i].data;
3460 break;
3461 case MSR_MCG_STATUS:
3462 env->mcg_status = msrs[i].data;
3463 break;
3464 case MSR_MCG_CTL:
3465 env->mcg_ctl = msrs[i].data;
3466 break;
3467 case MSR_MCG_EXT_CTL:
3468 env->mcg_ext_ctl = msrs[i].data;
3469 break;
3470 case MSR_IA32_MISC_ENABLE:
3471 env->msr_ia32_misc_enable = msrs[i].data;
3472 break;
3473 case MSR_IA32_SMBASE:
3474 env->smbase = msrs[i].data;
3475 break;
3476 case MSR_SMI_COUNT:
3477 env->msr_smi_count = msrs[i].data;
3478 break;
3479 case MSR_IA32_FEATURE_CONTROL:
3480 env->msr_ia32_feature_control = msrs[i].data;
3481 break;
3482 case MSR_IA32_BNDCFGS:
3483 env->msr_bndcfgs = msrs[i].data;
3484 break;
3485 case MSR_IA32_XSS:
3486 env->xss = msrs[i].data;
3487 break;
3488 case MSR_IA32_UMWAIT_CONTROL:
3489 env->umwait = msrs[i].data;
3490 break;
3491 case MSR_IA32_PKRS:
3492 env->pkrs = msrs[i].data;
3493 break;
3494 default:
3495 if (msrs[i].index >= MSR_MC0_CTL &&
3496 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3497 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3499 break;
3500 case MSR_KVM_ASYNC_PF_EN:
3501 env->async_pf_en_msr = msrs[i].data;
3502 break;
3503 case MSR_KVM_ASYNC_PF_INT:
3504 env->async_pf_int_msr = msrs[i].data;
3505 break;
3506 case MSR_KVM_PV_EOI_EN:
3507 env->pv_eoi_en_msr = msrs[i].data;
3508 break;
3509 case MSR_KVM_STEAL_TIME:
3510 env->steal_time_msr = msrs[i].data;
3511 break;
3512 case MSR_KVM_POLL_CONTROL: {
3513 env->poll_control_msr = msrs[i].data;
3514 break;
3516 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3517 env->msr_fixed_ctr_ctrl = msrs[i].data;
3518 break;
3519 case MSR_CORE_PERF_GLOBAL_CTRL:
3520 env->msr_global_ctrl = msrs[i].data;
3521 break;
3522 case MSR_CORE_PERF_GLOBAL_STATUS:
3523 env->msr_global_status = msrs[i].data;
3524 break;
3525 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3526 env->msr_global_ovf_ctrl = msrs[i].data;
3527 break;
3528 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3529 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3530 break;
3531 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3532 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3533 break;
3534 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3535 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3536 break;
3537 case HV_X64_MSR_HYPERCALL:
3538 env->msr_hv_hypercall = msrs[i].data;
3539 break;
3540 case HV_X64_MSR_GUEST_OS_ID:
3541 env->msr_hv_guest_os_id = msrs[i].data;
3542 break;
3543 case HV_X64_MSR_APIC_ASSIST_PAGE:
3544 env->msr_hv_vapic = msrs[i].data;
3545 break;
3546 case HV_X64_MSR_REFERENCE_TSC:
3547 env->msr_hv_tsc = msrs[i].data;
3548 break;
3549 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3550 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3551 break;
3552 case HV_X64_MSR_VP_RUNTIME:
3553 env->msr_hv_runtime = msrs[i].data;
3554 break;
3555 case HV_X64_MSR_SCONTROL:
3556 env->msr_hv_synic_control = msrs[i].data;
3557 break;
3558 case HV_X64_MSR_SIEFP:
3559 env->msr_hv_synic_evt_page = msrs[i].data;
3560 break;
3561 case HV_X64_MSR_SIMP:
3562 env->msr_hv_synic_msg_page = msrs[i].data;
3563 break;
3564 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3565 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3566 break;
3567 case HV_X64_MSR_STIMER0_CONFIG:
3568 case HV_X64_MSR_STIMER1_CONFIG:
3569 case HV_X64_MSR_STIMER2_CONFIG:
3570 case HV_X64_MSR_STIMER3_CONFIG:
3571 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3572 msrs[i].data;
3573 break;
3574 case HV_X64_MSR_STIMER0_COUNT:
3575 case HV_X64_MSR_STIMER1_COUNT:
3576 case HV_X64_MSR_STIMER2_COUNT:
3577 case HV_X64_MSR_STIMER3_COUNT:
3578 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3579 msrs[i].data;
3580 break;
3581 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3582 env->msr_hv_reenlightenment_control = msrs[i].data;
3583 break;
3584 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3585 env->msr_hv_tsc_emulation_control = msrs[i].data;
3586 break;
3587 case HV_X64_MSR_TSC_EMULATION_STATUS:
3588 env->msr_hv_tsc_emulation_status = msrs[i].data;
3589 break;
3590 case MSR_MTRRdefType:
3591 env->mtrr_deftype = msrs[i].data;
3592 break;
3593 case MSR_MTRRfix64K_00000:
3594 env->mtrr_fixed[0] = msrs[i].data;
3595 break;
3596 case MSR_MTRRfix16K_80000:
3597 env->mtrr_fixed[1] = msrs[i].data;
3598 break;
3599 case MSR_MTRRfix16K_A0000:
3600 env->mtrr_fixed[2] = msrs[i].data;
3601 break;
3602 case MSR_MTRRfix4K_C0000:
3603 env->mtrr_fixed[3] = msrs[i].data;
3604 break;
3605 case MSR_MTRRfix4K_C8000:
3606 env->mtrr_fixed[4] = msrs[i].data;
3607 break;
3608 case MSR_MTRRfix4K_D0000:
3609 env->mtrr_fixed[5] = msrs[i].data;
3610 break;
3611 case MSR_MTRRfix4K_D8000:
3612 env->mtrr_fixed[6] = msrs[i].data;
3613 break;
3614 case MSR_MTRRfix4K_E0000:
3615 env->mtrr_fixed[7] = msrs[i].data;
3616 break;
3617 case MSR_MTRRfix4K_E8000:
3618 env->mtrr_fixed[8] = msrs[i].data;
3619 break;
3620 case MSR_MTRRfix4K_F0000:
3621 env->mtrr_fixed[9] = msrs[i].data;
3622 break;
3623 case MSR_MTRRfix4K_F8000:
3624 env->mtrr_fixed[10] = msrs[i].data;
3625 break;
3626 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3627 if (index & 1) {
3628 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3629 mtrr_top_bits;
3630 } else {
3631 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3633 break;
3634 case MSR_IA32_SPEC_CTRL:
3635 env->spec_ctrl = msrs[i].data;
3636 break;
3637 case MSR_IA32_TSX_CTRL:
3638 env->tsx_ctrl = msrs[i].data;
3639 break;
3640 case MSR_VIRT_SSBD:
3641 env->virt_ssbd = msrs[i].data;
3642 break;
3643 case MSR_IA32_RTIT_CTL:
3644 env->msr_rtit_ctrl = msrs[i].data;
3645 break;
3646 case MSR_IA32_RTIT_STATUS:
3647 env->msr_rtit_status = msrs[i].data;
3648 break;
3649 case MSR_IA32_RTIT_OUTPUT_BASE:
3650 env->msr_rtit_output_base = msrs[i].data;
3651 break;
3652 case MSR_IA32_RTIT_OUTPUT_MASK:
3653 env->msr_rtit_output_mask = msrs[i].data;
3654 break;
3655 case MSR_IA32_RTIT_CR3_MATCH:
3656 env->msr_rtit_cr3_match = msrs[i].data;
3657 break;
3658 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3659 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3660 break;
3664 return 0;
3667 static int kvm_put_mp_state(X86CPU *cpu)
3669 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3671 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3674 static int kvm_get_mp_state(X86CPU *cpu)
3676 CPUState *cs = CPU(cpu);
3677 CPUX86State *env = &cpu->env;
3678 struct kvm_mp_state mp_state;
3679 int ret;
3681 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3682 if (ret < 0) {
3683 return ret;
3685 env->mp_state = mp_state.mp_state;
3686 if (kvm_irqchip_in_kernel()) {
3687 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3689 return 0;
3692 static int kvm_get_apic(X86CPU *cpu)
3694 DeviceState *apic = cpu->apic_state;
3695 struct kvm_lapic_state kapic;
3696 int ret;
3698 if (apic && kvm_irqchip_in_kernel()) {
3699 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3700 if (ret < 0) {
3701 return ret;
3704 kvm_get_apic_state(apic, &kapic);
3706 return 0;
3709 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3711 CPUState *cs = CPU(cpu);
3712 CPUX86State *env = &cpu->env;
3713 struct kvm_vcpu_events events = {};
3715 if (!kvm_has_vcpu_events()) {
3716 return 0;
3719 events.flags = 0;
3721 if (has_exception_payload) {
3722 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3723 events.exception.pending = env->exception_pending;
3724 events.exception_has_payload = env->exception_has_payload;
3725 events.exception_payload = env->exception_payload;
3727 events.exception.nr = env->exception_nr;
3728 events.exception.injected = env->exception_injected;
3729 events.exception.has_error_code = env->has_error_code;
3730 events.exception.error_code = env->error_code;
3732 events.interrupt.injected = (env->interrupt_injected >= 0);
3733 events.interrupt.nr = env->interrupt_injected;
3734 events.interrupt.soft = env->soft_interrupt;
3736 events.nmi.injected = env->nmi_injected;
3737 events.nmi.pending = env->nmi_pending;
3738 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3740 events.sipi_vector = env->sipi_vector;
3742 if (has_msr_smbase) {
3743 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3744 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3745 if (kvm_irqchip_in_kernel()) {
3746 /* As soon as these are moved to the kernel, remove them
3747 * from cs->interrupt_request.
3749 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3750 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3751 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3752 } else {
3753 /* Keep these in cs->interrupt_request. */
3754 events.smi.pending = 0;
3755 events.smi.latched_init = 0;
3757 /* Stop SMI delivery on old machine types to avoid a reboot
3758 * on an inward migration of an old VM.
3760 if (!cpu->kvm_no_smi_migration) {
3761 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3765 if (level >= KVM_PUT_RESET_STATE) {
3766 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3767 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3768 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3772 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3775 static int kvm_get_vcpu_events(X86CPU *cpu)
3777 CPUX86State *env = &cpu->env;
3778 struct kvm_vcpu_events events;
3779 int ret;
3781 if (!kvm_has_vcpu_events()) {
3782 return 0;
3785 memset(&events, 0, sizeof(events));
3786 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3787 if (ret < 0) {
3788 return ret;
3791 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3792 env->exception_pending = events.exception.pending;
3793 env->exception_has_payload = events.exception_has_payload;
3794 env->exception_payload = events.exception_payload;
3795 } else {
3796 env->exception_pending = 0;
3797 env->exception_has_payload = false;
3799 env->exception_injected = events.exception.injected;
3800 env->exception_nr =
3801 (env->exception_pending || env->exception_injected) ?
3802 events.exception.nr : -1;
3803 env->has_error_code = events.exception.has_error_code;
3804 env->error_code = events.exception.error_code;
3806 env->interrupt_injected =
3807 events.interrupt.injected ? events.interrupt.nr : -1;
3808 env->soft_interrupt = events.interrupt.soft;
3810 env->nmi_injected = events.nmi.injected;
3811 env->nmi_pending = events.nmi.pending;
3812 if (events.nmi.masked) {
3813 env->hflags2 |= HF2_NMI_MASK;
3814 } else {
3815 env->hflags2 &= ~HF2_NMI_MASK;
3818 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3819 if (events.smi.smm) {
3820 env->hflags |= HF_SMM_MASK;
3821 } else {
3822 env->hflags &= ~HF_SMM_MASK;
3824 if (events.smi.pending) {
3825 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3826 } else {
3827 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3829 if (events.smi.smm_inside_nmi) {
3830 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3831 } else {
3832 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3834 if (events.smi.latched_init) {
3835 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3836 } else {
3837 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3841 env->sipi_vector = events.sipi_vector;
3843 return 0;
3846 static int kvm_guest_debug_workarounds(X86CPU *cpu)
3848 CPUState *cs = CPU(cpu);
3849 CPUX86State *env = &cpu->env;
3850 int ret = 0;
3851 unsigned long reinject_trap = 0;
3853 if (!kvm_has_vcpu_events()) {
3854 if (env->exception_nr == EXCP01_DB) {
3855 reinject_trap = KVM_GUESTDBG_INJECT_DB;
3856 } else if (env->exception_injected == EXCP03_INT3) {
3857 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3859 kvm_reset_exception(env);
3863 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3864 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3865 * by updating the debug state once again if single-stepping is on.
3866 * Another reason to call kvm_update_guest_debug here is a pending debug
3867 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3868 * reinject them via SET_GUEST_DEBUG.
3870 if (reinject_trap ||
3871 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3872 ret = kvm_update_guest_debug(cs, reinject_trap);
3874 return ret;
3877 static int kvm_put_debugregs(X86CPU *cpu)
3879 CPUX86State *env = &cpu->env;
3880 struct kvm_debugregs dbgregs;
3881 int i;
3883 if (!kvm_has_debugregs()) {
3884 return 0;
3887 memset(&dbgregs, 0, sizeof(dbgregs));
3888 for (i = 0; i < 4; i++) {
3889 dbgregs.db[i] = env->dr[i];
3891 dbgregs.dr6 = env->dr[6];
3892 dbgregs.dr7 = env->dr[7];
3893 dbgregs.flags = 0;
3895 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3898 static int kvm_get_debugregs(X86CPU *cpu)
3900 CPUX86State *env = &cpu->env;
3901 struct kvm_debugregs dbgregs;
3902 int i, ret;
3904 if (!kvm_has_debugregs()) {
3905 return 0;
3908 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3909 if (ret < 0) {
3910 return ret;
3912 for (i = 0; i < 4; i++) {
3913 env->dr[i] = dbgregs.db[i];
3915 env->dr[4] = env->dr[6] = dbgregs.dr6;
3916 env->dr[5] = env->dr[7] = dbgregs.dr7;
3918 return 0;
3921 static int kvm_put_nested_state(X86CPU *cpu)
3923 CPUX86State *env = &cpu->env;
3924 int max_nested_state_len = kvm_max_nested_state_length();
3926 if (!env->nested_state) {
3927 return 0;
3931 * Copy flags that are affected by reset from env->hflags and env->hflags2.
3933 if (env->hflags & HF_GUEST_MASK) {
3934 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
3935 } else {
3936 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
3939 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
3940 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
3941 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
3942 } else {
3943 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
3946 assert(env->nested_state->size <= max_nested_state_len);
3947 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3950 static int kvm_get_nested_state(X86CPU *cpu)
3952 CPUX86State *env = &cpu->env;
3953 int max_nested_state_len = kvm_max_nested_state_length();
3954 int ret;
3956 if (!env->nested_state) {
3957 return 0;
3961 * It is possible that migration restored a smaller size into
3962 * nested_state->hdr.size than what our kernel support.
3963 * We preserve migration origin nested_state->hdr.size for
3964 * call to KVM_SET_NESTED_STATE but wish that our next call
3965 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3967 env->nested_state->size = max_nested_state_len;
3969 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3970 if (ret < 0) {
3971 return ret;
3975 * Copy flags that are affected by reset to env->hflags and env->hflags2.
3977 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3978 env->hflags |= HF_GUEST_MASK;
3979 } else {
3980 env->hflags &= ~HF_GUEST_MASK;
3983 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
3984 if (cpu_has_svm(env)) {
3985 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
3986 env->hflags2 |= HF2_GIF_MASK;
3987 } else {
3988 env->hflags2 &= ~HF2_GIF_MASK;
3992 return ret;
3995 int kvm_arch_put_registers(CPUState *cpu, int level)
3997 X86CPU *x86_cpu = X86_CPU(cpu);
3998 int ret;
4000 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4002 /* must be before kvm_put_nested_state so that EFER.SVME is set */
4003 ret = kvm_put_sregs(x86_cpu);
4004 if (ret < 0) {
4005 return ret;
4008 if (level >= KVM_PUT_RESET_STATE) {
4009 ret = kvm_put_nested_state(x86_cpu);
4010 if (ret < 0) {
4011 return ret;
4014 ret = kvm_put_msr_feature_control(x86_cpu);
4015 if (ret < 0) {
4016 return ret;
4020 if (level == KVM_PUT_FULL_STATE) {
4021 /* We don't check for kvm_arch_set_tsc_khz() errors here,
4022 * because TSC frequency mismatch shouldn't abort migration,
4023 * unless the user explicitly asked for a more strict TSC
4024 * setting (e.g. using an explicit "tsc-freq" option).
4026 kvm_arch_set_tsc_khz(cpu);
4029 ret = kvm_getput_regs(x86_cpu, 1);
4030 if (ret < 0) {
4031 return ret;
4033 ret = kvm_put_xsave(x86_cpu);
4034 if (ret < 0) {
4035 return ret;
4037 ret = kvm_put_xcrs(x86_cpu);
4038 if (ret < 0) {
4039 return ret;
4041 /* must be before kvm_put_msrs */
4042 ret = kvm_inject_mce_oldstyle(x86_cpu);
4043 if (ret < 0) {
4044 return ret;
4046 ret = kvm_put_msrs(x86_cpu, level);
4047 if (ret < 0) {
4048 return ret;
4050 ret = kvm_put_vcpu_events(x86_cpu, level);
4051 if (ret < 0) {
4052 return ret;
4054 if (level >= KVM_PUT_RESET_STATE) {
4055 ret = kvm_put_mp_state(x86_cpu);
4056 if (ret < 0) {
4057 return ret;
4061 ret = kvm_put_tscdeadline_msr(x86_cpu);
4062 if (ret < 0) {
4063 return ret;
4065 ret = kvm_put_debugregs(x86_cpu);
4066 if (ret < 0) {
4067 return ret;
4069 /* must be last */
4070 ret = kvm_guest_debug_workarounds(x86_cpu);
4071 if (ret < 0) {
4072 return ret;
4074 return 0;
4077 int kvm_arch_get_registers(CPUState *cs)
4079 X86CPU *cpu = X86_CPU(cs);
4080 int ret;
4082 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4084 ret = kvm_get_vcpu_events(cpu);
4085 if (ret < 0) {
4086 goto out;
4089 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4090 * KVM_GET_REGS and KVM_GET_SREGS.
4092 ret = kvm_get_mp_state(cpu);
4093 if (ret < 0) {
4094 goto out;
4096 ret = kvm_getput_regs(cpu, 0);
4097 if (ret < 0) {
4098 goto out;
4100 ret = kvm_get_xsave(cpu);
4101 if (ret < 0) {
4102 goto out;
4104 ret = kvm_get_xcrs(cpu);
4105 if (ret < 0) {
4106 goto out;
4108 ret = kvm_get_sregs(cpu);
4109 if (ret < 0) {
4110 goto out;
4112 ret = kvm_get_msrs(cpu);
4113 if (ret < 0) {
4114 goto out;
4116 ret = kvm_get_apic(cpu);
4117 if (ret < 0) {
4118 goto out;
4120 ret = kvm_get_debugregs(cpu);
4121 if (ret < 0) {
4122 goto out;
4124 ret = kvm_get_nested_state(cpu);
4125 if (ret < 0) {
4126 goto out;
4128 ret = 0;
4129 out:
4130 cpu_sync_bndcs_hflags(&cpu->env);
4131 return ret;
4134 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4136 X86CPU *x86_cpu = X86_CPU(cpu);
4137 CPUX86State *env = &x86_cpu->env;
4138 int ret;
4140 /* Inject NMI */
4141 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4142 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4143 qemu_mutex_lock_iothread();
4144 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4145 qemu_mutex_unlock_iothread();
4146 DPRINTF("injected NMI\n");
4147 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4148 if (ret < 0) {
4149 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4150 strerror(-ret));
4153 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4154 qemu_mutex_lock_iothread();
4155 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4156 qemu_mutex_unlock_iothread();
4157 DPRINTF("injected SMI\n");
4158 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4159 if (ret < 0) {
4160 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4161 strerror(-ret));
4166 if (!kvm_pic_in_kernel()) {
4167 qemu_mutex_lock_iothread();
4170 /* Force the VCPU out of its inner loop to process any INIT requests
4171 * or (for userspace APIC, but it is cheap to combine the checks here)
4172 * pending TPR access reports.
4174 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4175 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4176 !(env->hflags & HF_SMM_MASK)) {
4177 cpu->exit_request = 1;
4179 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4180 cpu->exit_request = 1;
4184 if (!kvm_pic_in_kernel()) {
4185 /* Try to inject an interrupt if the guest can accept it */
4186 if (run->ready_for_interrupt_injection &&
4187 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4188 (env->eflags & IF_MASK)) {
4189 int irq;
4191 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4192 irq = cpu_get_pic_interrupt(env);
4193 if (irq >= 0) {
4194 struct kvm_interrupt intr;
4196 intr.irq = irq;
4197 DPRINTF("injected interrupt %d\n", irq);
4198 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4199 if (ret < 0) {
4200 fprintf(stderr,
4201 "KVM: injection failed, interrupt lost (%s)\n",
4202 strerror(-ret));
4207 /* If we have an interrupt but the guest is not ready to receive an
4208 * interrupt, request an interrupt window exit. This will
4209 * cause a return to userspace as soon as the guest is ready to
4210 * receive interrupts. */
4211 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4212 run->request_interrupt_window = 1;
4213 } else {
4214 run->request_interrupt_window = 0;
4217 DPRINTF("setting tpr\n");
4218 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4220 qemu_mutex_unlock_iothread();
4224 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4226 X86CPU *x86_cpu = X86_CPU(cpu);
4227 CPUX86State *env = &x86_cpu->env;
4229 if (run->flags & KVM_RUN_X86_SMM) {
4230 env->hflags |= HF_SMM_MASK;
4231 } else {
4232 env->hflags &= ~HF_SMM_MASK;
4234 if (run->if_flag) {
4235 env->eflags |= IF_MASK;
4236 } else {
4237 env->eflags &= ~IF_MASK;
4240 /* We need to protect the apic state against concurrent accesses from
4241 * different threads in case the userspace irqchip is used. */
4242 if (!kvm_irqchip_in_kernel()) {
4243 qemu_mutex_lock_iothread();
4245 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4246 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4247 if (!kvm_irqchip_in_kernel()) {
4248 qemu_mutex_unlock_iothread();
4250 return cpu_get_mem_attrs(env);
4253 int kvm_arch_process_async_events(CPUState *cs)
4255 X86CPU *cpu = X86_CPU(cs);
4256 CPUX86State *env = &cpu->env;
4258 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4259 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4260 assert(env->mcg_cap);
4262 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4264 kvm_cpu_synchronize_state(cs);
4266 if (env->exception_nr == EXCP08_DBLE) {
4267 /* this means triple fault */
4268 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4269 cs->exit_request = 1;
4270 return 0;
4272 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4273 env->has_error_code = 0;
4275 cs->halted = 0;
4276 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4277 env->mp_state = KVM_MP_STATE_RUNNABLE;
4281 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4282 !(env->hflags & HF_SMM_MASK)) {
4283 kvm_cpu_synchronize_state(cs);
4284 do_cpu_init(cpu);
4287 if (kvm_irqchip_in_kernel()) {
4288 return 0;
4291 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4292 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4293 apic_poll_irq(cpu->apic_state);
4295 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4296 (env->eflags & IF_MASK)) ||
4297 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4298 cs->halted = 0;
4300 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4301 kvm_cpu_synchronize_state(cs);
4302 do_cpu_sipi(cpu);
4304 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4305 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4306 kvm_cpu_synchronize_state(cs);
4307 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4308 env->tpr_access_type);
4311 return cs->halted;
4314 static int kvm_handle_halt(X86CPU *cpu)
4316 CPUState *cs = CPU(cpu);
4317 CPUX86State *env = &cpu->env;
4319 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4320 (env->eflags & IF_MASK)) &&
4321 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4322 cs->halted = 1;
4323 return EXCP_HLT;
4326 return 0;
4329 static int kvm_handle_tpr_access(X86CPU *cpu)
4331 CPUState *cs = CPU(cpu);
4332 struct kvm_run *run = cs->kvm_run;
4334 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4335 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4336 : TPR_ACCESS_READ);
4337 return 1;
4340 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4342 static const uint8_t int3 = 0xcc;
4344 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4345 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4346 return -EINVAL;
4348 return 0;
4351 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4353 uint8_t int3;
4355 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
4356 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4357 return -EINVAL;
4359 return 0;
4362 static struct {
4363 target_ulong addr;
4364 int len;
4365 int type;
4366 } hw_breakpoint[4];
4368 static int nb_hw_breakpoint;
4370 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4372 int n;
4374 for (n = 0; n < nb_hw_breakpoint; n++) {
4375 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4376 (hw_breakpoint[n].len == len || len == -1)) {
4377 return n;
4380 return -1;
4383 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4384 target_ulong len, int type)
4386 switch (type) {
4387 case GDB_BREAKPOINT_HW:
4388 len = 1;
4389 break;
4390 case GDB_WATCHPOINT_WRITE:
4391 case GDB_WATCHPOINT_ACCESS:
4392 switch (len) {
4393 case 1:
4394 break;
4395 case 2:
4396 case 4:
4397 case 8:
4398 if (addr & (len - 1)) {
4399 return -EINVAL;
4401 break;
4402 default:
4403 return -EINVAL;
4405 break;
4406 default:
4407 return -ENOSYS;
4410 if (nb_hw_breakpoint == 4) {
4411 return -ENOBUFS;
4413 if (find_hw_breakpoint(addr, len, type) >= 0) {
4414 return -EEXIST;
4416 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4417 hw_breakpoint[nb_hw_breakpoint].len = len;
4418 hw_breakpoint[nb_hw_breakpoint].type = type;
4419 nb_hw_breakpoint++;
4421 return 0;
4424 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4425 target_ulong len, int type)
4427 int n;
4429 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4430 if (n < 0) {
4431 return -ENOENT;
4433 nb_hw_breakpoint--;
4434 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4436 return 0;
4439 void kvm_arch_remove_all_hw_breakpoints(void)
4441 nb_hw_breakpoint = 0;
4444 static CPUWatchpoint hw_watchpoint;
4446 static int kvm_handle_debug(X86CPU *cpu,
4447 struct kvm_debug_exit_arch *arch_info)
4449 CPUState *cs = CPU(cpu);
4450 CPUX86State *env = &cpu->env;
4451 int ret = 0;
4452 int n;
4454 if (arch_info->exception == EXCP01_DB) {
4455 if (arch_info->dr6 & DR6_BS) {
4456 if (cs->singlestep_enabled) {
4457 ret = EXCP_DEBUG;
4459 } else {
4460 for (n = 0; n < 4; n++) {
4461 if (arch_info->dr6 & (1 << n)) {
4462 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4463 case 0x0:
4464 ret = EXCP_DEBUG;
4465 break;
4466 case 0x1:
4467 ret = EXCP_DEBUG;
4468 cs->watchpoint_hit = &hw_watchpoint;
4469 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4470 hw_watchpoint.flags = BP_MEM_WRITE;
4471 break;
4472 case 0x3:
4473 ret = EXCP_DEBUG;
4474 cs->watchpoint_hit = &hw_watchpoint;
4475 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4476 hw_watchpoint.flags = BP_MEM_ACCESS;
4477 break;
4482 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4483 ret = EXCP_DEBUG;
4485 if (ret == 0) {
4486 cpu_synchronize_state(cs);
4487 assert(env->exception_nr == -1);
4489 /* pass to guest */
4490 kvm_queue_exception(env, arch_info->exception,
4491 arch_info->exception == EXCP01_DB,
4492 arch_info->dr6);
4493 env->has_error_code = 0;
4496 return ret;
4499 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4501 const uint8_t type_code[] = {
4502 [GDB_BREAKPOINT_HW] = 0x0,
4503 [GDB_WATCHPOINT_WRITE] = 0x1,
4504 [GDB_WATCHPOINT_ACCESS] = 0x3
4506 const uint8_t len_code[] = {
4507 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4509 int n;
4511 if (kvm_sw_breakpoints_active(cpu)) {
4512 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4514 if (nb_hw_breakpoint > 0) {
4515 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4516 dbg->arch.debugreg[7] = 0x0600;
4517 for (n = 0; n < nb_hw_breakpoint; n++) {
4518 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4519 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4520 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4521 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4526 static bool host_supports_vmx(void)
4528 uint32_t ecx, unused;
4530 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4531 return ecx & CPUID_EXT_VMX;
4534 #define VMX_INVALID_GUEST_STATE 0x80000021
4536 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4538 X86CPU *cpu = X86_CPU(cs);
4539 uint64_t code;
4540 int ret;
4542 switch (run->exit_reason) {
4543 case KVM_EXIT_HLT:
4544 DPRINTF("handle_hlt\n");
4545 qemu_mutex_lock_iothread();
4546 ret = kvm_handle_halt(cpu);
4547 qemu_mutex_unlock_iothread();
4548 break;
4549 case KVM_EXIT_SET_TPR:
4550 ret = 0;
4551 break;
4552 case KVM_EXIT_TPR_ACCESS:
4553 qemu_mutex_lock_iothread();
4554 ret = kvm_handle_tpr_access(cpu);
4555 qemu_mutex_unlock_iothread();
4556 break;
4557 case KVM_EXIT_FAIL_ENTRY:
4558 code = run->fail_entry.hardware_entry_failure_reason;
4559 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4560 code);
4561 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4562 fprintf(stderr,
4563 "\nIf you're running a guest on an Intel machine without "
4564 "unrestricted mode\n"
4565 "support, the failure can be most likely due to the guest "
4566 "entering an invalid\n"
4567 "state for Intel VT. For example, the guest maybe running "
4568 "in big real mode\n"
4569 "which is not supported on less recent Intel processors."
4570 "\n\n");
4572 ret = -1;
4573 break;
4574 case KVM_EXIT_EXCEPTION:
4575 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4576 run->ex.exception, run->ex.error_code);
4577 ret = -1;
4578 break;
4579 case KVM_EXIT_DEBUG:
4580 DPRINTF("kvm_exit_debug\n");
4581 qemu_mutex_lock_iothread();
4582 ret = kvm_handle_debug(cpu, &run->debug.arch);
4583 qemu_mutex_unlock_iothread();
4584 break;
4585 case KVM_EXIT_HYPERV:
4586 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4587 break;
4588 case KVM_EXIT_IOAPIC_EOI:
4589 ioapic_eoi_broadcast(run->eoi.vector);
4590 ret = 0;
4591 break;
4592 default:
4593 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4594 ret = -1;
4595 break;
4598 return ret;
4601 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4603 X86CPU *cpu = X86_CPU(cs);
4604 CPUX86State *env = &cpu->env;
4606 kvm_cpu_synchronize_state(cs);
4607 return !(env->cr[0] & CR0_PE_MASK) ||
4608 ((env->segs[R_CS].selector & 3) != 3);
4611 void kvm_arch_init_irq_routing(KVMState *s)
4613 /* We know at this point that we're using the in-kernel
4614 * irqchip, so we can use irqfds, and on x86 we know
4615 * we can use msi via irqfd and GSI routing.
4617 kvm_msi_via_irqfd_allowed = true;
4618 kvm_gsi_routing_allowed = true;
4620 if (kvm_irqchip_is_split()) {
4621 int i;
4623 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4624 MSI routes for signaling interrupts to the local apics. */
4625 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4626 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4627 error_report("Could not enable split IRQ mode.");
4628 exit(1);
4634 int kvm_arch_irqchip_create(KVMState *s)
4636 int ret;
4637 if (kvm_kernel_irqchip_split()) {
4638 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4639 if (ret) {
4640 error_report("Could not enable split irqchip mode: %s",
4641 strerror(-ret));
4642 exit(1);
4643 } else {
4644 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4645 kvm_split_irqchip = true;
4646 return 1;
4648 } else {
4649 return 0;
4653 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
4655 CPUX86State *env;
4656 uint64_t ext_id;
4658 if (!first_cpu) {
4659 return address;
4661 env = &X86_CPU(first_cpu)->env;
4662 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
4663 return address;
4667 * If the remappable format bit is set, or the upper bits are
4668 * already set in address_hi, or the low extended bits aren't
4669 * there anyway, do nothing.
4671 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
4672 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
4673 return address;
4676 address &= ~ext_id;
4677 address |= ext_id << 35;
4678 return address;
4681 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4682 uint64_t address, uint32_t data, PCIDevice *dev)
4684 X86IOMMUState *iommu = x86_iommu_get_default();
4686 if (iommu) {
4687 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
4689 if (class->int_remap) {
4690 int ret;
4691 MSIMessage src, dst;
4693 src.address = route->u.msi.address_hi;
4694 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4695 src.address |= route->u.msi.address_lo;
4696 src.data = route->u.msi.data;
4698 ret = class->int_remap(iommu, &src, &dst, dev ? \
4699 pci_requester_id(dev) : \
4700 X86_IOMMU_SID_INVALID);
4701 if (ret) {
4702 trace_kvm_x86_fixup_msi_error(route->gsi);
4703 return 1;
4707 * Handled untranslated compatibilty format interrupt with
4708 * extended destination ID in the low bits 11-5. */
4709 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
4711 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4712 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4713 route->u.msi.data = dst.data;
4714 return 0;
4718 address = kvm_swizzle_msi_ext_dest_id(address);
4719 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
4720 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
4721 return 0;
4724 typedef struct MSIRouteEntry MSIRouteEntry;
4726 struct MSIRouteEntry {
4727 PCIDevice *dev; /* Device pointer */
4728 int vector; /* MSI/MSIX vector index */
4729 int virq; /* Virtual IRQ index */
4730 QLIST_ENTRY(MSIRouteEntry) list;
4733 /* List of used GSI routes */
4734 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4735 QLIST_HEAD_INITIALIZER(msi_route_list);
4737 static void kvm_update_msi_routes_all(void *private, bool global,
4738 uint32_t index, uint32_t mask)
4740 int cnt = 0, vector;
4741 MSIRouteEntry *entry;
4742 MSIMessage msg;
4743 PCIDevice *dev;
4745 /* TODO: explicit route update */
4746 QLIST_FOREACH(entry, &msi_route_list, list) {
4747 cnt++;
4748 vector = entry->vector;
4749 dev = entry->dev;
4750 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4751 msg = msix_get_message(dev, vector);
4752 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4753 msg = msi_get_message(dev, vector);
4754 } else {
4756 * Either MSI/MSIX is disabled for the device, or the
4757 * specific message was masked out. Skip this one.
4759 continue;
4761 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4763 kvm_irqchip_commit_routes(kvm_state);
4764 trace_kvm_x86_update_msi_routes(cnt);
4767 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4768 int vector, PCIDevice *dev)
4770 static bool notify_list_inited = false;
4771 MSIRouteEntry *entry;
4773 if (!dev) {
4774 /* These are (possibly) IOAPIC routes only used for split
4775 * kernel irqchip mode, while what we are housekeeping are
4776 * PCI devices only. */
4777 return 0;
4780 entry = g_new0(MSIRouteEntry, 1);
4781 entry->dev = dev;
4782 entry->vector = vector;
4783 entry->virq = route->gsi;
4784 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4786 trace_kvm_x86_add_msi_route(route->gsi);
4788 if (!notify_list_inited) {
4789 /* For the first time we do add route, add ourselves into
4790 * IOMMU's IEC notify list if needed. */
4791 X86IOMMUState *iommu = x86_iommu_get_default();
4792 if (iommu) {
4793 x86_iommu_iec_register_notifier(iommu,
4794 kvm_update_msi_routes_all,
4795 NULL);
4797 notify_list_inited = true;
4799 return 0;
4802 int kvm_arch_release_virq_post(int virq)
4804 MSIRouteEntry *entry, *next;
4805 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4806 if (entry->virq == virq) {
4807 trace_kvm_x86_remove_msi_route(virq);
4808 QLIST_REMOVE(entry, list);
4809 g_free(entry);
4810 break;
4813 return 0;
4816 int kvm_arch_msi_data_to_gsi(uint32_t data)
4818 abort();
4821 bool kvm_has_waitpkg(void)
4823 return has_msr_umwait;
4826 bool kvm_arch_cpu_check_are_resettable(void)
4828 return !sev_es_enabled();