tests/tcg: target/mips: Fix some test cases for pack MSA instructions
[qemu/ar7.git] / block / nvme.c
blob73ed5fa75f2e6c8833a9b7c09e8bcce93c9b8eee
1 /*
2 * NVMe block driver based on vfio
4 * Copyright 2016 - 2018 Red Hat, Inc.
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/module.h"
21 #include "qemu/cutils.h"
22 #include "qemu/option.h"
23 #include "qemu/vfio-helpers.h"
24 #include "block/block_int.h"
25 #include "trace.h"
27 #include "block/nvme.h"
29 #define NVME_SQ_ENTRY_BYTES 64
30 #define NVME_CQ_ENTRY_BYTES 16
31 #define NVME_QUEUE_SIZE 128
32 #define NVME_BAR_SIZE 8192
34 typedef struct {
35 int32_t head, tail;
36 uint8_t *queue;
37 uint64_t iova;
38 /* Hardware MMIO register */
39 volatile uint32_t *doorbell;
40 } NVMeQueue;
42 typedef struct {
43 BlockCompletionFunc *cb;
44 void *opaque;
45 int cid;
46 void *prp_list_page;
47 uint64_t prp_list_iova;
48 bool busy;
49 } NVMeRequest;
51 typedef struct {
52 CoQueue free_req_queue;
53 QemuMutex lock;
55 /* Fields protected by BQL */
56 int index;
57 uint8_t *prp_list_pages;
59 /* Fields protected by @lock */
60 NVMeQueue sq, cq;
61 int cq_phase;
62 NVMeRequest reqs[NVME_QUEUE_SIZE];
63 bool busy;
64 int need_kick;
65 int inflight;
66 } NVMeQueuePair;
68 /* Memory mapped registers */
69 typedef volatile struct {
70 uint64_t cap;
71 uint32_t vs;
72 uint32_t intms;
73 uint32_t intmc;
74 uint32_t cc;
75 uint32_t reserved0;
76 uint32_t csts;
77 uint32_t nssr;
78 uint32_t aqa;
79 uint64_t asq;
80 uint64_t acq;
81 uint32_t cmbloc;
82 uint32_t cmbsz;
83 uint8_t reserved1[0xec0];
84 uint8_t cmd_set_specfic[0x100];
85 uint32_t doorbells[];
86 } NVMeRegs;
88 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
90 typedef struct {
91 AioContext *aio_context;
92 QEMUVFIOState *vfio;
93 NVMeRegs *regs;
94 /* The submission/completion queue pairs.
95 * [0]: admin queue.
96 * [1..]: io queues.
98 NVMeQueuePair **queues;
99 int nr_queues;
100 size_t page_size;
101 /* How many uint32_t elements does each doorbell entry take. */
102 size_t doorbell_scale;
103 bool write_cache_supported;
104 EventNotifier irq_notifier;
105 uint64_t nsze; /* Namespace size reported by identify command */
106 int nsid; /* The namespace id to read/write data. */
107 uint64_t max_transfer;
108 bool plugged;
110 CoMutex dma_map_lock;
111 CoQueue dma_flush_queue;
113 /* Total size of mapped qiov, accessed under dma_map_lock */
114 int dma_map_count;
116 /* PCI address (required for nvme_refresh_filename()) */
117 char *device;
118 } BDRVNVMeState;
120 #define NVME_BLOCK_OPT_DEVICE "device"
121 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
123 static QemuOptsList runtime_opts = {
124 .name = "nvme",
125 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
126 .desc = {
128 .name = NVME_BLOCK_OPT_DEVICE,
129 .type = QEMU_OPT_STRING,
130 .help = "NVMe PCI device address",
133 .name = NVME_BLOCK_OPT_NAMESPACE,
134 .type = QEMU_OPT_NUMBER,
135 .help = "NVMe namespace",
137 { /* end of list */ }
141 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
142 int nentries, int entry_bytes, Error **errp)
144 BDRVNVMeState *s = bs->opaque;
145 size_t bytes;
146 int r;
148 bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
149 q->head = q->tail = 0;
150 q->queue = qemu_try_blockalign0(bs, bytes);
152 if (!q->queue) {
153 error_setg(errp, "Cannot allocate queue");
154 return;
156 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
157 if (r) {
158 error_setg(errp, "Cannot map queue");
162 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q)
164 qemu_vfree(q->prp_list_pages);
165 qemu_vfree(q->sq.queue);
166 qemu_vfree(q->cq.queue);
167 qemu_mutex_destroy(&q->lock);
168 g_free(q);
171 static void nvme_free_req_queue_cb(void *opaque)
173 NVMeQueuePair *q = opaque;
175 qemu_mutex_lock(&q->lock);
176 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
177 /* Retry all pending requests */
179 qemu_mutex_unlock(&q->lock);
182 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
183 int idx, int size,
184 Error **errp)
186 int i, r;
187 BDRVNVMeState *s = bs->opaque;
188 Error *local_err = NULL;
189 NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
190 uint64_t prp_list_iova;
192 qemu_mutex_init(&q->lock);
193 q->index = idx;
194 qemu_co_queue_init(&q->free_req_queue);
195 q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE);
196 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
197 s->page_size * NVME_QUEUE_SIZE,
198 false, &prp_list_iova);
199 if (r) {
200 goto fail;
202 for (i = 0; i < NVME_QUEUE_SIZE; i++) {
203 NVMeRequest *req = &q->reqs[i];
204 req->cid = i + 1;
205 req->prp_list_page = q->prp_list_pages + i * s->page_size;
206 req->prp_list_iova = prp_list_iova + i * s->page_size;
208 nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
209 if (local_err) {
210 error_propagate(errp, local_err);
211 goto fail;
213 q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
215 nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
216 if (local_err) {
217 error_propagate(errp, local_err);
218 goto fail;
220 q->cq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale + 1];
222 return q;
223 fail:
224 nvme_free_queue_pair(bs, q);
225 return NULL;
228 /* With q->lock */
229 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q)
231 if (s->plugged || !q->need_kick) {
232 return;
234 trace_nvme_kick(s, q->index);
235 assert(!(q->sq.tail & 0xFF00));
236 /* Fence the write to submission queue entry before notifying the device. */
237 smp_wmb();
238 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
239 q->inflight += q->need_kick;
240 q->need_kick = 0;
243 /* Find a free request element if any, otherwise:
244 * a) if in coroutine context, try to wait for one to become available;
245 * b) if not in coroutine, return NULL;
247 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
249 int i;
250 NVMeRequest *req = NULL;
252 qemu_mutex_lock(&q->lock);
253 while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) {
254 /* We have to leave one slot empty as that is the full queue case (head
255 * == tail + 1). */
256 if (qemu_in_coroutine()) {
257 trace_nvme_free_req_queue_wait(q);
258 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
259 } else {
260 qemu_mutex_unlock(&q->lock);
261 return NULL;
264 for (i = 0; i < NVME_QUEUE_SIZE; i++) {
265 if (!q->reqs[i].busy) {
266 q->reqs[i].busy = true;
267 req = &q->reqs[i];
268 break;
271 /* We have checked inflight and need_kick while holding q->lock, so one
272 * free req must be available. */
273 assert(req);
274 qemu_mutex_unlock(&q->lock);
275 return req;
278 static inline int nvme_translate_error(const NvmeCqe *c)
280 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
281 if (status) {
282 trace_nvme_error(le32_to_cpu(c->result),
283 le16_to_cpu(c->sq_head),
284 le16_to_cpu(c->sq_id),
285 le16_to_cpu(c->cid),
286 le16_to_cpu(status));
288 switch (status) {
289 case 0:
290 return 0;
291 case 1:
292 return -ENOSYS;
293 case 2:
294 return -EINVAL;
295 default:
296 return -EIO;
300 /* With q->lock */
301 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q)
303 bool progress = false;
304 NVMeRequest *preq;
305 NVMeRequest req;
306 NvmeCqe *c;
308 trace_nvme_process_completion(s, q->index, q->inflight);
309 if (q->busy || s->plugged) {
310 trace_nvme_process_completion_queue_busy(s, q->index);
311 return false;
313 q->busy = true;
314 assert(q->inflight >= 0);
315 while (q->inflight) {
316 int16_t cid;
317 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
318 if (!c->cid || (le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
319 break;
321 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
322 if (!q->cq.head) {
323 q->cq_phase = !q->cq_phase;
325 cid = le16_to_cpu(c->cid);
326 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
327 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
328 cid);
329 continue;
331 assert(cid <= NVME_QUEUE_SIZE);
332 trace_nvme_complete_command(s, q->index, cid);
333 preq = &q->reqs[cid - 1];
334 req = *preq;
335 assert(req.cid == cid);
336 assert(req.cb);
337 preq->busy = false;
338 preq->cb = preq->opaque = NULL;
339 qemu_mutex_unlock(&q->lock);
340 req.cb(req.opaque, nvme_translate_error(c));
341 qemu_mutex_lock(&q->lock);
342 c->cid = cpu_to_le16(0);
343 q->inflight--;
344 /* Flip Phase Tag bit. */
345 c->status = cpu_to_le16(le16_to_cpu(c->status) ^ 0x1);
346 progress = true;
348 if (progress) {
349 /* Notify the device so it can post more completions. */
350 smp_mb_release();
351 *q->cq.doorbell = cpu_to_le32(q->cq.head);
352 if (!qemu_co_queue_empty(&q->free_req_queue)) {
353 aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q);
356 q->busy = false;
357 return progress;
360 static void nvme_trace_command(const NvmeCmd *cmd)
362 int i;
364 for (i = 0; i < 8; ++i) {
365 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
366 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
367 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
371 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q,
372 NVMeRequest *req,
373 NvmeCmd *cmd, BlockCompletionFunc cb,
374 void *opaque)
376 assert(!req->cb);
377 req->cb = cb;
378 req->opaque = opaque;
379 cmd->cid = cpu_to_le32(req->cid);
381 trace_nvme_submit_command(s, q->index, req->cid);
382 nvme_trace_command(cmd);
383 qemu_mutex_lock(&q->lock);
384 memcpy((uint8_t *)q->sq.queue +
385 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
386 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
387 q->need_kick++;
388 nvme_kick(s, q);
389 nvme_process_completion(s, q);
390 qemu_mutex_unlock(&q->lock);
393 static void nvme_cmd_sync_cb(void *opaque, int ret)
395 int *pret = opaque;
396 *pret = ret;
397 aio_wait_kick();
400 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
401 NvmeCmd *cmd)
403 NVMeRequest *req;
404 BDRVNVMeState *s = bs->opaque;
405 int ret = -EINPROGRESS;
406 req = nvme_get_free_req(q);
407 if (!req) {
408 return -EBUSY;
410 nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret);
412 BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
413 return ret;
416 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
418 BDRVNVMeState *s = bs->opaque;
419 NvmeIdCtrl *idctrl;
420 NvmeIdNs *idns;
421 uint8_t *resp;
422 int r;
423 uint64_t iova;
424 NvmeCmd cmd = {
425 .opcode = NVME_ADM_CMD_IDENTIFY,
426 .cdw10 = cpu_to_le32(0x1),
429 resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
430 if (!resp) {
431 error_setg(errp, "Cannot allocate buffer for identify response");
432 goto out;
434 idctrl = (NvmeIdCtrl *)resp;
435 idns = (NvmeIdNs *)resp;
436 r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
437 if (r) {
438 error_setg(errp, "Cannot map buffer for DMA");
439 goto out;
441 cmd.prp1 = cpu_to_le64(iova);
443 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
444 error_setg(errp, "Failed to identify controller");
445 goto out;
448 if (le32_to_cpu(idctrl->nn) < namespace) {
449 error_setg(errp, "Invalid namespace");
450 goto out;
452 s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
453 s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
454 /* For now the page list buffer per command is one page, to hold at most
455 * s->page_size / sizeof(uint64_t) entries. */
456 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
457 s->page_size / sizeof(uint64_t) * s->page_size);
459 memset(resp, 0, 4096);
461 cmd.cdw10 = 0;
462 cmd.nsid = cpu_to_le32(namespace);
463 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
464 error_setg(errp, "Failed to identify namespace");
465 goto out;
468 s->nsze = le64_to_cpu(idns->nsze);
470 out:
471 qemu_vfio_dma_unmap(s->vfio, resp);
472 qemu_vfree(resp);
475 static bool nvme_poll_queues(BDRVNVMeState *s)
477 bool progress = false;
478 int i;
480 for (i = 0; i < s->nr_queues; i++) {
481 NVMeQueuePair *q = s->queues[i];
482 qemu_mutex_lock(&q->lock);
483 while (nvme_process_completion(s, q)) {
484 /* Keep polling */
485 progress = true;
487 qemu_mutex_unlock(&q->lock);
489 return progress;
492 static void nvme_handle_event(EventNotifier *n)
494 BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
496 trace_nvme_handle_event(s);
497 event_notifier_test_and_clear(n);
498 nvme_poll_queues(s);
501 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
503 BDRVNVMeState *s = bs->opaque;
504 int n = s->nr_queues;
505 NVMeQueuePair *q;
506 NvmeCmd cmd;
507 int queue_size = NVME_QUEUE_SIZE;
509 q = nvme_create_queue_pair(bs, n, queue_size, errp);
510 if (!q) {
511 return false;
513 cmd = (NvmeCmd) {
514 .opcode = NVME_ADM_CMD_CREATE_CQ,
515 .prp1 = cpu_to_le64(q->cq.iova),
516 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
517 .cdw11 = cpu_to_le32(0x3),
519 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
520 error_setg(errp, "Failed to create io queue [%d]", n);
521 nvme_free_queue_pair(bs, q);
522 return false;
524 cmd = (NvmeCmd) {
525 .opcode = NVME_ADM_CMD_CREATE_SQ,
526 .prp1 = cpu_to_le64(q->sq.iova),
527 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
528 .cdw11 = cpu_to_le32(0x1 | (n << 16)),
530 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
531 error_setg(errp, "Failed to create io queue [%d]", n);
532 nvme_free_queue_pair(bs, q);
533 return false;
535 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
536 s->queues[n] = q;
537 s->nr_queues++;
538 return true;
541 static bool nvme_poll_cb(void *opaque)
543 EventNotifier *e = opaque;
544 BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
545 bool progress = false;
547 trace_nvme_poll_cb(s);
548 progress = nvme_poll_queues(s);
549 return progress;
552 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
553 Error **errp)
555 BDRVNVMeState *s = bs->opaque;
556 int ret;
557 uint64_t cap;
558 uint64_t timeout_ms;
559 uint64_t deadline, now;
560 Error *local_err = NULL;
562 qemu_co_mutex_init(&s->dma_map_lock);
563 qemu_co_queue_init(&s->dma_flush_queue);
564 s->device = g_strdup(device);
565 s->nsid = namespace;
566 s->aio_context = bdrv_get_aio_context(bs);
567 ret = event_notifier_init(&s->irq_notifier, 0);
568 if (ret) {
569 error_setg(errp, "Failed to init event notifier");
570 return ret;
573 s->vfio = qemu_vfio_open_pci(device, errp);
574 if (!s->vfio) {
575 ret = -EINVAL;
576 goto out;
579 s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
580 if (!s->regs) {
581 ret = -EINVAL;
582 goto out;
585 /* Perform initialize sequence as described in NVMe spec "7.6.1
586 * Initialization". */
588 cap = le64_to_cpu(s->regs->cap);
589 if (!(cap & (1ULL << 37))) {
590 error_setg(errp, "Device doesn't support NVMe command set");
591 ret = -EINVAL;
592 goto out;
595 s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
596 s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
597 bs->bl.opt_mem_alignment = s->page_size;
598 timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
600 /* Reset device to get a clean state. */
601 s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
602 /* Wait for CSTS.RDY = 0. */
603 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
604 while (le32_to_cpu(s->regs->csts) & 0x1) {
605 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
606 error_setg(errp, "Timeout while waiting for device to reset (%"
607 PRId64 " ms)",
608 timeout_ms);
609 ret = -ETIMEDOUT;
610 goto out;
614 /* Set up admin queue. */
615 s->queues = g_new(NVMeQueuePair *, 1);
616 s->nr_queues = 1;
617 s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
618 if (!s->queues[0]) {
619 ret = -EINVAL;
620 goto out;
622 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
623 s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
624 s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
625 s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
627 /* After setting up all control registers we can enable device now. */
628 s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
629 (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
630 0x1);
631 /* Wait for CSTS.RDY = 1. */
632 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
633 deadline = now + timeout_ms * 1000000;
634 while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
635 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
636 error_setg(errp, "Timeout while waiting for device to start (%"
637 PRId64 " ms)",
638 timeout_ms);
639 ret = -ETIMEDOUT;
640 goto out;
644 ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
645 VFIO_PCI_MSIX_IRQ_INDEX, errp);
646 if (ret) {
647 goto out;
649 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
650 false, nvme_handle_event, nvme_poll_cb);
652 nvme_identify(bs, namespace, &local_err);
653 if (local_err) {
654 error_propagate(errp, local_err);
655 ret = -EIO;
656 goto out;
659 /* Set up command queues. */
660 if (!nvme_add_io_queue(bs, errp)) {
661 ret = -EIO;
663 out:
664 /* Cleaning up is done in nvme_file_open() upon error. */
665 return ret;
668 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
670 * nvme://0000:44:00.0/1
672 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
673 * is the PCI address, and the last part is the namespace number starting from
674 * 1 according to the NVMe spec. */
675 static void nvme_parse_filename(const char *filename, QDict *options,
676 Error **errp)
678 int pref = strlen("nvme://");
680 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
681 const char *tmp = filename + pref;
682 char *device;
683 const char *namespace;
684 unsigned long ns;
685 const char *slash = strchr(tmp, '/');
686 if (!slash) {
687 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
688 return;
690 device = g_strndup(tmp, slash - tmp);
691 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
692 g_free(device);
693 namespace = slash + 1;
694 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
695 error_setg(errp, "Invalid namespace '%s', positive number expected",
696 namespace);
697 return;
699 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
700 *namespace ? namespace : "1");
704 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
705 Error **errp)
707 int ret;
708 BDRVNVMeState *s = bs->opaque;
709 NvmeCmd cmd = {
710 .opcode = NVME_ADM_CMD_SET_FEATURES,
711 .nsid = cpu_to_le32(s->nsid),
712 .cdw10 = cpu_to_le32(0x06),
713 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
716 ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
717 if (ret) {
718 error_setg(errp, "Failed to configure NVMe write cache");
720 return ret;
723 static void nvme_close(BlockDriverState *bs)
725 int i;
726 BDRVNVMeState *s = bs->opaque;
728 for (i = 0; i < s->nr_queues; ++i) {
729 nvme_free_queue_pair(bs, s->queues[i]);
731 g_free(s->queues);
732 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
733 false, NULL, NULL);
734 event_notifier_cleanup(&s->irq_notifier);
735 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
736 qemu_vfio_close(s->vfio);
738 g_free(s->device);
741 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
742 Error **errp)
744 const char *device;
745 QemuOpts *opts;
746 int namespace;
747 int ret;
748 BDRVNVMeState *s = bs->opaque;
750 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
751 qemu_opts_absorb_qdict(opts, options, &error_abort);
752 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
753 if (!device) {
754 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
755 qemu_opts_del(opts);
756 return -EINVAL;
759 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
760 ret = nvme_init(bs, device, namespace, errp);
761 qemu_opts_del(opts);
762 if (ret) {
763 goto fail;
765 if (flags & BDRV_O_NOCACHE) {
766 if (!s->write_cache_supported) {
767 error_setg(errp,
768 "NVMe controller doesn't support write cache configuration");
769 ret = -EINVAL;
770 } else {
771 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
772 errp);
774 if (ret) {
775 goto fail;
778 bs->supported_write_flags = BDRV_REQ_FUA;
779 return 0;
780 fail:
781 nvme_close(bs);
782 return ret;
785 static int64_t nvme_getlength(BlockDriverState *bs)
787 BDRVNVMeState *s = bs->opaque;
789 return s->nsze << BDRV_SECTOR_BITS;
792 /* Called with s->dma_map_lock */
793 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
794 QEMUIOVector *qiov)
796 int r = 0;
797 BDRVNVMeState *s = bs->opaque;
799 s->dma_map_count -= qiov->size;
800 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
801 r = qemu_vfio_dma_reset_temporary(s->vfio);
802 if (!r) {
803 qemu_co_queue_restart_all(&s->dma_flush_queue);
806 return r;
809 /* Called with s->dma_map_lock */
810 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
811 NVMeRequest *req, QEMUIOVector *qiov)
813 BDRVNVMeState *s = bs->opaque;
814 uint64_t *pagelist = req->prp_list_page;
815 int i, j, r;
816 int entries = 0;
818 assert(qiov->size);
819 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
820 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
821 for (i = 0; i < qiov->niov; ++i) {
822 bool retry = true;
823 uint64_t iova;
824 try_map:
825 r = qemu_vfio_dma_map(s->vfio,
826 qiov->iov[i].iov_base,
827 qiov->iov[i].iov_len,
828 true, &iova);
829 if (r == -ENOMEM && retry) {
830 retry = false;
831 trace_nvme_dma_flush_queue_wait(s);
832 if (s->dma_map_count) {
833 trace_nvme_dma_map_flush(s);
834 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
835 } else {
836 r = qemu_vfio_dma_reset_temporary(s->vfio);
837 if (r) {
838 goto fail;
841 goto try_map;
843 if (r) {
844 goto fail;
847 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
848 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
850 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
851 qiov->iov[i].iov_len / s->page_size);
854 s->dma_map_count += qiov->size;
856 assert(entries <= s->page_size / sizeof(uint64_t));
857 switch (entries) {
858 case 0:
859 abort();
860 case 1:
861 cmd->prp1 = pagelist[0];
862 cmd->prp2 = 0;
863 break;
864 case 2:
865 cmd->prp1 = pagelist[0];
866 cmd->prp2 = pagelist[1];
867 break;
868 default:
869 cmd->prp1 = pagelist[0];
870 cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
871 break;
873 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
874 for (i = 0; i < entries; ++i) {
875 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
877 return 0;
878 fail:
879 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
880 * increment s->dma_map_count. This is okay for fixed mapping memory areas
881 * because they are already mapped before calling this function; for
882 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
883 * calling qemu_vfio_dma_reset_temporary when necessary. */
884 return r;
887 typedef struct {
888 Coroutine *co;
889 int ret;
890 AioContext *ctx;
891 } NVMeCoData;
893 static void nvme_rw_cb_bh(void *opaque)
895 NVMeCoData *data = opaque;
896 qemu_coroutine_enter(data->co);
899 static void nvme_rw_cb(void *opaque, int ret)
901 NVMeCoData *data = opaque;
902 data->ret = ret;
903 if (!data->co) {
904 /* The rw coroutine hasn't yielded, don't try to enter. */
905 return;
907 aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data);
910 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
911 uint64_t offset, uint64_t bytes,
912 QEMUIOVector *qiov,
913 bool is_write,
914 int flags)
916 int r;
917 BDRVNVMeState *s = bs->opaque;
918 NVMeQueuePair *ioq = s->queues[1];
919 NVMeRequest *req;
920 uint32_t cdw12 = (((bytes >> BDRV_SECTOR_BITS) - 1) & 0xFFFF) |
921 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
922 NvmeCmd cmd = {
923 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
924 .nsid = cpu_to_le32(s->nsid),
925 .cdw10 = cpu_to_le32((offset >> BDRV_SECTOR_BITS) & 0xFFFFFFFF),
926 .cdw11 = cpu_to_le32(((offset >> BDRV_SECTOR_BITS) >> 32) & 0xFFFFFFFF),
927 .cdw12 = cpu_to_le32(cdw12),
929 NVMeCoData data = {
930 .ctx = bdrv_get_aio_context(bs),
931 .ret = -EINPROGRESS,
934 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
935 assert(s->nr_queues > 1);
936 req = nvme_get_free_req(ioq);
937 assert(req);
939 qemu_co_mutex_lock(&s->dma_map_lock);
940 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
941 qemu_co_mutex_unlock(&s->dma_map_lock);
942 if (r) {
943 req->busy = false;
944 return r;
946 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
948 data.co = qemu_coroutine_self();
949 while (data.ret == -EINPROGRESS) {
950 qemu_coroutine_yield();
953 qemu_co_mutex_lock(&s->dma_map_lock);
954 r = nvme_cmd_unmap_qiov(bs, qiov);
955 qemu_co_mutex_unlock(&s->dma_map_lock);
956 if (r) {
957 return r;
960 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
961 return data.ret;
964 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
965 const QEMUIOVector *qiov)
967 int i;
968 BDRVNVMeState *s = bs->opaque;
970 for (i = 0; i < qiov->niov; ++i) {
971 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
972 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
973 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
974 qiov->iov[i].iov_len, s->page_size);
975 return false;
978 return true;
981 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
982 QEMUIOVector *qiov, bool is_write, int flags)
984 BDRVNVMeState *s = bs->opaque;
985 int r;
986 uint8_t *buf = NULL;
987 QEMUIOVector local_qiov;
989 assert(QEMU_IS_ALIGNED(offset, s->page_size));
990 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
991 assert(bytes <= s->max_transfer);
992 if (nvme_qiov_aligned(bs, qiov)) {
993 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
995 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
996 buf = qemu_try_blockalign(bs, bytes);
998 if (!buf) {
999 return -ENOMEM;
1001 qemu_iovec_init(&local_qiov, 1);
1002 if (is_write) {
1003 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1005 qemu_iovec_add(&local_qiov, buf, bytes);
1006 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1007 qemu_iovec_destroy(&local_qiov);
1008 if (!r && !is_write) {
1009 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1011 qemu_vfree(buf);
1012 return r;
1015 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1016 uint64_t offset, uint64_t bytes,
1017 QEMUIOVector *qiov, int flags)
1019 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1022 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1023 uint64_t offset, uint64_t bytes,
1024 QEMUIOVector *qiov, int flags)
1026 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1029 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1031 BDRVNVMeState *s = bs->opaque;
1032 NVMeQueuePair *ioq = s->queues[1];
1033 NVMeRequest *req;
1034 NvmeCmd cmd = {
1035 .opcode = NVME_CMD_FLUSH,
1036 .nsid = cpu_to_le32(s->nsid),
1038 NVMeCoData data = {
1039 .ctx = bdrv_get_aio_context(bs),
1040 .ret = -EINPROGRESS,
1043 assert(s->nr_queues > 1);
1044 req = nvme_get_free_req(ioq);
1045 assert(req);
1046 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1048 data.co = qemu_coroutine_self();
1049 if (data.ret == -EINPROGRESS) {
1050 qemu_coroutine_yield();
1053 return data.ret;
1057 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1058 BlockReopenQueue *queue, Error **errp)
1060 return 0;
1063 static void nvme_refresh_filename(BlockDriverState *bs)
1065 BDRVNVMeState *s = bs->opaque;
1067 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1068 s->device, s->nsid);
1071 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1073 BDRVNVMeState *s = bs->opaque;
1075 bs->bl.opt_mem_alignment = s->page_size;
1076 bs->bl.request_alignment = s->page_size;
1077 bs->bl.max_transfer = s->max_transfer;
1080 static void nvme_detach_aio_context(BlockDriverState *bs)
1082 BDRVNVMeState *s = bs->opaque;
1084 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1085 false, NULL, NULL);
1088 static void nvme_attach_aio_context(BlockDriverState *bs,
1089 AioContext *new_context)
1091 BDRVNVMeState *s = bs->opaque;
1093 s->aio_context = new_context;
1094 aio_set_event_notifier(new_context, &s->irq_notifier,
1095 false, nvme_handle_event, nvme_poll_cb);
1098 static void nvme_aio_plug(BlockDriverState *bs)
1100 BDRVNVMeState *s = bs->opaque;
1101 assert(!s->plugged);
1102 s->plugged = true;
1105 static void nvme_aio_unplug(BlockDriverState *bs)
1107 int i;
1108 BDRVNVMeState *s = bs->opaque;
1109 assert(s->plugged);
1110 s->plugged = false;
1111 for (i = 1; i < s->nr_queues; i++) {
1112 NVMeQueuePair *q = s->queues[i];
1113 qemu_mutex_lock(&q->lock);
1114 nvme_kick(s, q);
1115 nvme_process_completion(s, q);
1116 qemu_mutex_unlock(&q->lock);
1120 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1122 int ret;
1123 BDRVNVMeState *s = bs->opaque;
1125 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1126 if (ret) {
1127 /* FIXME: we may run out of IOVA addresses after repeated
1128 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1129 * doesn't reclaim addresses for fixed mappings. */
1130 error_report("nvme_register_buf failed: %s", strerror(-ret));
1134 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1136 BDRVNVMeState *s = bs->opaque;
1138 qemu_vfio_dma_unmap(s->vfio, host);
1141 static const char *const nvme_strong_runtime_opts[] = {
1142 NVME_BLOCK_OPT_DEVICE,
1143 NVME_BLOCK_OPT_NAMESPACE,
1145 NULL
1148 static BlockDriver bdrv_nvme = {
1149 .format_name = "nvme",
1150 .protocol_name = "nvme",
1151 .instance_size = sizeof(BDRVNVMeState),
1153 .bdrv_parse_filename = nvme_parse_filename,
1154 .bdrv_file_open = nvme_file_open,
1155 .bdrv_close = nvme_close,
1156 .bdrv_getlength = nvme_getlength,
1158 .bdrv_co_preadv = nvme_co_preadv,
1159 .bdrv_co_pwritev = nvme_co_pwritev,
1160 .bdrv_co_flush_to_disk = nvme_co_flush,
1161 .bdrv_reopen_prepare = nvme_reopen_prepare,
1163 .bdrv_refresh_filename = nvme_refresh_filename,
1164 .bdrv_refresh_limits = nvme_refresh_limits,
1165 .strong_runtime_opts = nvme_strong_runtime_opts,
1167 .bdrv_detach_aio_context = nvme_detach_aio_context,
1168 .bdrv_attach_aio_context = nvme_attach_aio_context,
1170 .bdrv_io_plug = nvme_aio_plug,
1171 .bdrv_io_unplug = nvme_aio_unplug,
1173 .bdrv_register_buf = nvme_register_buf,
1174 .bdrv_unregister_buf = nvme_unregister_buf,
1177 static void bdrv_nvme_init(void)
1179 bdrv_register(&bdrv_nvme);
1182 block_init(bdrv_nvme_init);