ramblock-notifier: new
[qemu/ar7.git] / exec.c
blob3f5e1775c06ccab5920210bc4d5d0fceaf15a5b7
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "tcg.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "exec/address-spaces.h"
46 #include "sysemu/xen-mapcache.h"
47 #include "trace.h"
48 #endif
49 #include "exec/cpu-all.h"
50 #include "qemu/rcu_queue.h"
51 #include "qemu/main-loop.h"
52 #include "translate-all.h"
53 #include "sysemu/replay.h"
55 #include "exec/memory-internal.h"
56 #include "exec/ram_addr.h"
57 #include "exec/log.h"
59 #include "migration/vmstate.h"
61 #include "qemu/range.h"
62 #ifndef _WIN32
63 #include "qemu/mmap-alloc.h"
64 #endif
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
70 * are protected by the ramlist lock.
72 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
74 static MemoryRegion *system_memory;
75 static MemoryRegion *system_io;
77 AddressSpace address_space_io;
78 AddressSpace address_space_memory;
80 MemoryRegion io_mem_rom, io_mem_notdirty;
81 static MemoryRegion io_mem_unassigned;
83 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
84 #define RAM_PREALLOC (1 << 0)
86 /* RAM is mmap-ed with MAP_SHARED */
87 #define RAM_SHARED (1 << 1)
89 /* Only a portion of RAM (used_length) is actually used, and migrated.
90 * This used_length size can change across reboots.
92 #define RAM_RESIZEABLE (1 << 2)
94 #endif
96 #ifdef TARGET_PAGE_BITS_VARY
97 int target_page_bits;
98 bool target_page_bits_decided;
99 #endif
101 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
102 /* current CPU in the current thread. It is only valid inside
103 cpu_exec() */
104 __thread CPUState *current_cpu;
105 /* 0 = Do not count executed instructions.
106 1 = Precise instruction counting.
107 2 = Adaptive rate instruction counting. */
108 int use_icount;
110 bool set_preferred_target_page_bits(int bits)
112 /* The target page size is the lowest common denominator for all
113 * the CPUs in the system, so we can only make it smaller, never
114 * larger. And we can't make it smaller once we've committed to
115 * a particular size.
117 #ifdef TARGET_PAGE_BITS_VARY
118 assert(bits >= TARGET_PAGE_BITS_MIN);
119 if (target_page_bits == 0 || target_page_bits > bits) {
120 if (target_page_bits_decided) {
121 return false;
123 target_page_bits = bits;
125 #endif
126 return true;
129 #if !defined(CONFIG_USER_ONLY)
131 static void finalize_target_page_bits(void)
133 #ifdef TARGET_PAGE_BITS_VARY
134 if (target_page_bits == 0) {
135 target_page_bits = TARGET_PAGE_BITS_MIN;
137 target_page_bits_decided = true;
138 #endif
141 typedef struct PhysPageEntry PhysPageEntry;
143 struct PhysPageEntry {
144 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
145 uint32_t skip : 6;
146 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
147 uint32_t ptr : 26;
150 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
152 /* Size of the L2 (and L3, etc) page tables. */
153 #define ADDR_SPACE_BITS 64
155 #define P_L2_BITS 9
156 #define P_L2_SIZE (1 << P_L2_BITS)
158 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
160 typedef PhysPageEntry Node[P_L2_SIZE];
162 typedef struct PhysPageMap {
163 struct rcu_head rcu;
165 unsigned sections_nb;
166 unsigned sections_nb_alloc;
167 unsigned nodes_nb;
168 unsigned nodes_nb_alloc;
169 Node *nodes;
170 MemoryRegionSection *sections;
171 } PhysPageMap;
173 struct AddressSpaceDispatch {
174 struct rcu_head rcu;
176 MemoryRegionSection *mru_section;
177 /* This is a multi-level map on the physical address space.
178 * The bottom level has pointers to MemoryRegionSections.
180 PhysPageEntry phys_map;
181 PhysPageMap map;
182 AddressSpace *as;
185 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186 typedef struct subpage_t {
187 MemoryRegion iomem;
188 AddressSpace *as;
189 hwaddr base;
190 uint16_t sub_section[];
191 } subpage_t;
193 #define PHYS_SECTION_UNASSIGNED 0
194 #define PHYS_SECTION_NOTDIRTY 1
195 #define PHYS_SECTION_ROM 2
196 #define PHYS_SECTION_WATCH 3
198 static void io_mem_init(void);
199 static void memory_map_init(void);
200 static void tcg_commit(MemoryListener *listener);
202 static MemoryRegion io_mem_watch;
205 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
206 * @cpu: the CPU whose AddressSpace this is
207 * @as: the AddressSpace itself
208 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
209 * @tcg_as_listener: listener for tracking changes to the AddressSpace
211 struct CPUAddressSpace {
212 CPUState *cpu;
213 AddressSpace *as;
214 struct AddressSpaceDispatch *memory_dispatch;
215 MemoryListener tcg_as_listener;
218 #endif
220 #if !defined(CONFIG_USER_ONLY)
222 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
224 static unsigned alloc_hint = 16;
225 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
226 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
227 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
228 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
229 alloc_hint = map->nodes_nb_alloc;
233 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
235 unsigned i;
236 uint32_t ret;
237 PhysPageEntry e;
238 PhysPageEntry *p;
240 ret = map->nodes_nb++;
241 p = map->nodes[ret];
242 assert(ret != PHYS_MAP_NODE_NIL);
243 assert(ret != map->nodes_nb_alloc);
245 e.skip = leaf ? 0 : 1;
246 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
247 for (i = 0; i < P_L2_SIZE; ++i) {
248 memcpy(&p[i], &e, sizeof(e));
250 return ret;
253 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
254 hwaddr *index, hwaddr *nb, uint16_t leaf,
255 int level)
257 PhysPageEntry *p;
258 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
260 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
261 lp->ptr = phys_map_node_alloc(map, level == 0);
263 p = map->nodes[lp->ptr];
264 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
266 while (*nb && lp < &p[P_L2_SIZE]) {
267 if ((*index & (step - 1)) == 0 && *nb >= step) {
268 lp->skip = 0;
269 lp->ptr = leaf;
270 *index += step;
271 *nb -= step;
272 } else {
273 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
275 ++lp;
279 static void phys_page_set(AddressSpaceDispatch *d,
280 hwaddr index, hwaddr nb,
281 uint16_t leaf)
283 /* Wildly overreserve - it doesn't matter much. */
284 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
286 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
289 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
290 * and update our entry so we can skip it and go directly to the destination.
292 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
294 unsigned valid_ptr = P_L2_SIZE;
295 int valid = 0;
296 PhysPageEntry *p;
297 int i;
299 if (lp->ptr == PHYS_MAP_NODE_NIL) {
300 return;
303 p = nodes[lp->ptr];
304 for (i = 0; i < P_L2_SIZE; i++) {
305 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
306 continue;
309 valid_ptr = i;
310 valid++;
311 if (p[i].skip) {
312 phys_page_compact(&p[i], nodes);
316 /* We can only compress if there's only one child. */
317 if (valid != 1) {
318 return;
321 assert(valid_ptr < P_L2_SIZE);
323 /* Don't compress if it won't fit in the # of bits we have. */
324 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
325 return;
328 lp->ptr = p[valid_ptr].ptr;
329 if (!p[valid_ptr].skip) {
330 /* If our only child is a leaf, make this a leaf. */
331 /* By design, we should have made this node a leaf to begin with so we
332 * should never reach here.
333 * But since it's so simple to handle this, let's do it just in case we
334 * change this rule.
336 lp->skip = 0;
337 } else {
338 lp->skip += p[valid_ptr].skip;
342 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
344 if (d->phys_map.skip) {
345 phys_page_compact(&d->phys_map, d->map.nodes);
349 static inline bool section_covers_addr(const MemoryRegionSection *section,
350 hwaddr addr)
352 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
353 * the section must cover the entire address space.
355 return int128_gethi(section->size) ||
356 range_covers_byte(section->offset_within_address_space,
357 int128_getlo(section->size), addr);
360 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
361 Node *nodes, MemoryRegionSection *sections)
363 PhysPageEntry *p;
364 hwaddr index = addr >> TARGET_PAGE_BITS;
365 int i;
367 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
368 if (lp.ptr == PHYS_MAP_NODE_NIL) {
369 return &sections[PHYS_SECTION_UNASSIGNED];
371 p = nodes[lp.ptr];
372 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
375 if (section_covers_addr(&sections[lp.ptr], addr)) {
376 return &sections[lp.ptr];
377 } else {
378 return &sections[PHYS_SECTION_UNASSIGNED];
382 bool memory_region_is_unassigned(MemoryRegion *mr)
384 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
385 && mr != &io_mem_watch;
388 /* Called from RCU critical section */
389 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
390 hwaddr addr,
391 bool resolve_subpage)
393 MemoryRegionSection *section = atomic_read(&d->mru_section);
394 subpage_t *subpage;
395 bool update;
397 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
398 section_covers_addr(section, addr)) {
399 update = false;
400 } else {
401 section = phys_page_find(d->phys_map, addr, d->map.nodes,
402 d->map.sections);
403 update = true;
405 if (resolve_subpage && section->mr->subpage) {
406 subpage = container_of(section->mr, subpage_t, iomem);
407 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
409 if (update) {
410 atomic_set(&d->mru_section, section);
412 return section;
415 /* Called from RCU critical section */
416 static MemoryRegionSection *
417 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
418 hwaddr *plen, bool resolve_subpage)
420 MemoryRegionSection *section;
421 MemoryRegion *mr;
422 Int128 diff;
424 section = address_space_lookup_region(d, addr, resolve_subpage);
425 /* Compute offset within MemoryRegionSection */
426 addr -= section->offset_within_address_space;
428 /* Compute offset within MemoryRegion */
429 *xlat = addr + section->offset_within_region;
431 mr = section->mr;
433 /* MMIO registers can be expected to perform full-width accesses based only
434 * on their address, without considering adjacent registers that could
435 * decode to completely different MemoryRegions. When such registers
436 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
437 * regions overlap wildly. For this reason we cannot clamp the accesses
438 * here.
440 * If the length is small (as is the case for address_space_ldl/stl),
441 * everything works fine. If the incoming length is large, however,
442 * the caller really has to do the clamping through memory_access_size.
444 if (memory_region_is_ram(mr)) {
445 diff = int128_sub(section->size, int128_make64(addr));
446 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
448 return section;
451 /* Called from RCU critical section */
452 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
453 hwaddr *xlat, hwaddr *plen,
454 bool is_write)
456 IOMMUTLBEntry iotlb;
457 MemoryRegionSection *section;
458 MemoryRegion *mr;
460 for (;;) {
461 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
462 section = address_space_translate_internal(d, addr, &addr, plen, true);
463 mr = section->mr;
465 if (!mr->iommu_ops) {
466 break;
469 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
470 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
471 | (addr & iotlb.addr_mask));
472 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
473 if (!(iotlb.perm & (1 << is_write))) {
474 mr = &io_mem_unassigned;
475 break;
478 as = iotlb.target_as;
481 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
482 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
483 *plen = MIN(page, *plen);
486 *xlat = addr;
487 return mr;
490 /* Called from RCU critical section */
491 MemoryRegionSection *
492 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
493 hwaddr *xlat, hwaddr *plen)
495 MemoryRegionSection *section;
496 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
498 section = address_space_translate_internal(d, addr, xlat, plen, false);
500 assert(!section->mr->iommu_ops);
501 return section;
503 #endif
505 #if !defined(CONFIG_USER_ONLY)
507 static int cpu_common_post_load(void *opaque, int version_id)
509 CPUState *cpu = opaque;
511 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
512 version_id is increased. */
513 cpu->interrupt_request &= ~0x01;
514 tlb_flush(cpu, 1);
516 return 0;
519 static int cpu_common_pre_load(void *opaque)
521 CPUState *cpu = opaque;
523 cpu->exception_index = -1;
525 return 0;
528 static bool cpu_common_exception_index_needed(void *opaque)
530 CPUState *cpu = opaque;
532 return tcg_enabled() && cpu->exception_index != -1;
535 static const VMStateDescription vmstate_cpu_common_exception_index = {
536 .name = "cpu_common/exception_index",
537 .version_id = 1,
538 .minimum_version_id = 1,
539 .needed = cpu_common_exception_index_needed,
540 .fields = (VMStateField[]) {
541 VMSTATE_INT32(exception_index, CPUState),
542 VMSTATE_END_OF_LIST()
546 static bool cpu_common_crash_occurred_needed(void *opaque)
548 CPUState *cpu = opaque;
550 return cpu->crash_occurred;
553 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
554 .name = "cpu_common/crash_occurred",
555 .version_id = 1,
556 .minimum_version_id = 1,
557 .needed = cpu_common_crash_occurred_needed,
558 .fields = (VMStateField[]) {
559 VMSTATE_BOOL(crash_occurred, CPUState),
560 VMSTATE_END_OF_LIST()
564 const VMStateDescription vmstate_cpu_common = {
565 .name = "cpu_common",
566 .version_id = 1,
567 .minimum_version_id = 1,
568 .pre_load = cpu_common_pre_load,
569 .post_load = cpu_common_post_load,
570 .fields = (VMStateField[]) {
571 VMSTATE_UINT32(halted, CPUState),
572 VMSTATE_UINT32(interrupt_request, CPUState),
573 VMSTATE_END_OF_LIST()
575 .subsections = (const VMStateDescription*[]) {
576 &vmstate_cpu_common_exception_index,
577 &vmstate_cpu_common_crash_occurred,
578 NULL
582 #endif
584 CPUState *qemu_get_cpu(int index)
586 CPUState *cpu;
588 CPU_FOREACH(cpu) {
589 if (cpu->cpu_index == index) {
590 return cpu;
594 return NULL;
597 #if !defined(CONFIG_USER_ONLY)
598 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
600 CPUAddressSpace *newas;
602 /* Target code should have set num_ases before calling us */
603 assert(asidx < cpu->num_ases);
605 if (asidx == 0) {
606 /* address space 0 gets the convenience alias */
607 cpu->as = as;
610 /* KVM cannot currently support multiple address spaces. */
611 assert(asidx == 0 || !kvm_enabled());
613 if (!cpu->cpu_ases) {
614 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
617 newas = &cpu->cpu_ases[asidx];
618 newas->cpu = cpu;
619 newas->as = as;
620 if (tcg_enabled()) {
621 newas->tcg_as_listener.commit = tcg_commit;
622 memory_listener_register(&newas->tcg_as_listener, as);
626 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
628 /* Return the AddressSpace corresponding to the specified index */
629 return cpu->cpu_ases[asidx].as;
631 #endif
633 void cpu_exec_unrealizefn(CPUState *cpu)
635 CPUClass *cc = CPU_GET_CLASS(cpu);
637 cpu_list_remove(cpu);
639 if (cc->vmsd != NULL) {
640 vmstate_unregister(NULL, cc->vmsd, cpu);
642 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
643 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
647 void cpu_exec_initfn(CPUState *cpu)
649 cpu->as = NULL;
650 cpu->num_ases = 0;
652 #ifndef CONFIG_USER_ONLY
653 cpu->thread_id = qemu_get_thread_id();
655 /* This is a softmmu CPU object, so create a property for it
656 * so users can wire up its memory. (This can't go in qom/cpu.c
657 * because that file is compiled only once for both user-mode
658 * and system builds.) The default if no link is set up is to use
659 * the system address space.
661 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
662 (Object **)&cpu->memory,
663 qdev_prop_allow_set_link_before_realize,
664 OBJ_PROP_LINK_UNREF_ON_RELEASE,
665 &error_abort);
666 cpu->memory = system_memory;
667 object_ref(OBJECT(cpu->memory));
668 #endif
671 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
673 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
675 cpu_list_add(cpu);
677 #ifndef CONFIG_USER_ONLY
678 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
679 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
681 if (cc->vmsd != NULL) {
682 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
684 #endif
687 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
689 /* Flush the whole TB as this will not have race conditions
690 * even if we don't have proper locking yet.
691 * Ideally we would just invalidate the TBs for the
692 * specified PC.
694 tb_flush(cpu);
697 #if defined(CONFIG_USER_ONLY)
698 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
703 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
704 int flags)
706 return -ENOSYS;
709 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
713 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
714 int flags, CPUWatchpoint **watchpoint)
716 return -ENOSYS;
718 #else
719 /* Add a watchpoint. */
720 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
721 int flags, CPUWatchpoint **watchpoint)
723 CPUWatchpoint *wp;
725 /* forbid ranges which are empty or run off the end of the address space */
726 if (len == 0 || (addr + len - 1) < addr) {
727 error_report("tried to set invalid watchpoint at %"
728 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
729 return -EINVAL;
731 wp = g_malloc(sizeof(*wp));
733 wp->vaddr = addr;
734 wp->len = len;
735 wp->flags = flags;
737 /* keep all GDB-injected watchpoints in front */
738 if (flags & BP_GDB) {
739 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
740 } else {
741 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
744 tlb_flush_page(cpu, addr);
746 if (watchpoint)
747 *watchpoint = wp;
748 return 0;
751 /* Remove a specific watchpoint. */
752 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
753 int flags)
755 CPUWatchpoint *wp;
757 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
758 if (addr == wp->vaddr && len == wp->len
759 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
760 cpu_watchpoint_remove_by_ref(cpu, wp);
761 return 0;
764 return -ENOENT;
767 /* Remove a specific watchpoint by reference. */
768 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
770 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
772 tlb_flush_page(cpu, watchpoint->vaddr);
774 g_free(watchpoint);
777 /* Remove all matching watchpoints. */
778 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
780 CPUWatchpoint *wp, *next;
782 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
783 if (wp->flags & mask) {
784 cpu_watchpoint_remove_by_ref(cpu, wp);
789 /* Return true if this watchpoint address matches the specified
790 * access (ie the address range covered by the watchpoint overlaps
791 * partially or completely with the address range covered by the
792 * access).
794 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
795 vaddr addr,
796 vaddr len)
798 /* We know the lengths are non-zero, but a little caution is
799 * required to avoid errors in the case where the range ends
800 * exactly at the top of the address space and so addr + len
801 * wraps round to zero.
803 vaddr wpend = wp->vaddr + wp->len - 1;
804 vaddr addrend = addr + len - 1;
806 return !(addr > wpend || wp->vaddr > addrend);
809 #endif
811 /* Add a breakpoint. */
812 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
813 CPUBreakpoint **breakpoint)
815 CPUBreakpoint *bp;
817 bp = g_malloc(sizeof(*bp));
819 bp->pc = pc;
820 bp->flags = flags;
822 /* keep all GDB-injected breakpoints in front */
823 if (flags & BP_GDB) {
824 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
825 } else {
826 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
829 breakpoint_invalidate(cpu, pc);
831 if (breakpoint) {
832 *breakpoint = bp;
834 return 0;
837 /* Remove a specific breakpoint. */
838 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
840 CPUBreakpoint *bp;
842 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
843 if (bp->pc == pc && bp->flags == flags) {
844 cpu_breakpoint_remove_by_ref(cpu, bp);
845 return 0;
848 return -ENOENT;
851 /* Remove a specific breakpoint by reference. */
852 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
854 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
856 breakpoint_invalidate(cpu, breakpoint->pc);
858 g_free(breakpoint);
861 /* Remove all matching breakpoints. */
862 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
864 CPUBreakpoint *bp, *next;
866 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
867 if (bp->flags & mask) {
868 cpu_breakpoint_remove_by_ref(cpu, bp);
873 /* enable or disable single step mode. EXCP_DEBUG is returned by the
874 CPU loop after each instruction */
875 void cpu_single_step(CPUState *cpu, int enabled)
877 if (cpu->singlestep_enabled != enabled) {
878 cpu->singlestep_enabled = enabled;
879 if (kvm_enabled()) {
880 kvm_update_guest_debug(cpu, 0);
881 } else {
882 /* must flush all the translated code to avoid inconsistencies */
883 /* XXX: only flush what is necessary */
884 tb_flush(cpu);
889 void cpu_abort(CPUState *cpu, const char *fmt, ...)
891 va_list ap;
892 va_list ap2;
894 va_start(ap, fmt);
895 va_copy(ap2, ap);
896 fprintf(stderr, "qemu: fatal: ");
897 vfprintf(stderr, fmt, ap);
898 fprintf(stderr, "\n");
899 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
900 if (qemu_log_separate()) {
901 qemu_log_lock();
902 qemu_log("qemu: fatal: ");
903 qemu_log_vprintf(fmt, ap2);
904 qemu_log("\n");
905 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
906 qemu_log_flush();
907 qemu_log_unlock();
908 qemu_log_close();
910 va_end(ap2);
911 va_end(ap);
912 replay_finish();
913 #if defined(CONFIG_USER_ONLY)
915 struct sigaction act;
916 sigfillset(&act.sa_mask);
917 act.sa_handler = SIG_DFL;
918 sigaction(SIGABRT, &act, NULL);
920 #endif
921 abort();
924 #if !defined(CONFIG_USER_ONLY)
925 /* Called from RCU critical section */
926 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
928 RAMBlock *block;
930 block = atomic_rcu_read(&ram_list.mru_block);
931 if (block && addr - block->offset < block->max_length) {
932 return block;
934 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
935 if (addr - block->offset < block->max_length) {
936 goto found;
940 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
941 abort();
943 found:
944 /* It is safe to write mru_block outside the iothread lock. This
945 * is what happens:
947 * mru_block = xxx
948 * rcu_read_unlock()
949 * xxx removed from list
950 * rcu_read_lock()
951 * read mru_block
952 * mru_block = NULL;
953 * call_rcu(reclaim_ramblock, xxx);
954 * rcu_read_unlock()
956 * atomic_rcu_set is not needed here. The block was already published
957 * when it was placed into the list. Here we're just making an extra
958 * copy of the pointer.
960 ram_list.mru_block = block;
961 return block;
964 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
966 CPUState *cpu;
967 ram_addr_t start1;
968 RAMBlock *block;
969 ram_addr_t end;
971 end = TARGET_PAGE_ALIGN(start + length);
972 start &= TARGET_PAGE_MASK;
974 rcu_read_lock();
975 block = qemu_get_ram_block(start);
976 assert(block == qemu_get_ram_block(end - 1));
977 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
978 CPU_FOREACH(cpu) {
979 tlb_reset_dirty(cpu, start1, length);
981 rcu_read_unlock();
984 /* Note: start and end must be within the same ram block. */
985 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
986 ram_addr_t length,
987 unsigned client)
989 DirtyMemoryBlocks *blocks;
990 unsigned long end, page;
991 bool dirty = false;
993 if (length == 0) {
994 return false;
997 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
998 page = start >> TARGET_PAGE_BITS;
1000 rcu_read_lock();
1002 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1004 while (page < end) {
1005 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1006 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1007 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1009 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1010 offset, num);
1011 page += num;
1014 rcu_read_unlock();
1016 if (dirty && tcg_enabled()) {
1017 tlb_reset_dirty_range_all(start, length);
1020 return dirty;
1023 /* Called from RCU critical section */
1024 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1025 MemoryRegionSection *section,
1026 target_ulong vaddr,
1027 hwaddr paddr, hwaddr xlat,
1028 int prot,
1029 target_ulong *address)
1031 hwaddr iotlb;
1032 CPUWatchpoint *wp;
1034 if (memory_region_is_ram(section->mr)) {
1035 /* Normal RAM. */
1036 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1037 if (!section->readonly) {
1038 iotlb |= PHYS_SECTION_NOTDIRTY;
1039 } else {
1040 iotlb |= PHYS_SECTION_ROM;
1042 } else {
1043 AddressSpaceDispatch *d;
1045 d = atomic_rcu_read(&section->address_space->dispatch);
1046 iotlb = section - d->map.sections;
1047 iotlb += xlat;
1050 /* Make accesses to pages with watchpoints go via the
1051 watchpoint trap routines. */
1052 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1053 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1054 /* Avoid trapping reads of pages with a write breakpoint. */
1055 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1056 iotlb = PHYS_SECTION_WATCH + paddr;
1057 *address |= TLB_MMIO;
1058 break;
1063 return iotlb;
1065 #endif /* defined(CONFIG_USER_ONLY) */
1067 #if !defined(CONFIG_USER_ONLY)
1069 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1070 uint16_t section);
1071 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
1073 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1074 qemu_anon_ram_alloc;
1077 * Set a custom physical guest memory alloator.
1078 * Accelerators with unusual needs may need this. Hopefully, we can
1079 * get rid of it eventually.
1081 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1083 phys_mem_alloc = alloc;
1086 static uint16_t phys_section_add(PhysPageMap *map,
1087 MemoryRegionSection *section)
1089 /* The physical section number is ORed with a page-aligned
1090 * pointer to produce the iotlb entries. Thus it should
1091 * never overflow into the page-aligned value.
1093 assert(map->sections_nb < TARGET_PAGE_SIZE);
1095 if (map->sections_nb == map->sections_nb_alloc) {
1096 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1097 map->sections = g_renew(MemoryRegionSection, map->sections,
1098 map->sections_nb_alloc);
1100 map->sections[map->sections_nb] = *section;
1101 memory_region_ref(section->mr);
1102 return map->sections_nb++;
1105 static void phys_section_destroy(MemoryRegion *mr)
1107 bool have_sub_page = mr->subpage;
1109 memory_region_unref(mr);
1111 if (have_sub_page) {
1112 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1113 object_unref(OBJECT(&subpage->iomem));
1114 g_free(subpage);
1118 static void phys_sections_free(PhysPageMap *map)
1120 while (map->sections_nb > 0) {
1121 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1122 phys_section_destroy(section->mr);
1124 g_free(map->sections);
1125 g_free(map->nodes);
1128 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
1130 subpage_t *subpage;
1131 hwaddr base = section->offset_within_address_space
1132 & TARGET_PAGE_MASK;
1133 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
1134 d->map.nodes, d->map.sections);
1135 MemoryRegionSection subsection = {
1136 .offset_within_address_space = base,
1137 .size = int128_make64(TARGET_PAGE_SIZE),
1139 hwaddr start, end;
1141 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1143 if (!(existing->mr->subpage)) {
1144 subpage = subpage_init(d->as, base);
1145 subsection.address_space = d->as;
1146 subsection.mr = &subpage->iomem;
1147 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1148 phys_section_add(&d->map, &subsection));
1149 } else {
1150 subpage = container_of(existing->mr, subpage_t, iomem);
1152 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1153 end = start + int128_get64(section->size) - 1;
1154 subpage_register(subpage, start, end,
1155 phys_section_add(&d->map, section));
1159 static void register_multipage(AddressSpaceDispatch *d,
1160 MemoryRegionSection *section)
1162 hwaddr start_addr = section->offset_within_address_space;
1163 uint16_t section_index = phys_section_add(&d->map, section);
1164 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1165 TARGET_PAGE_BITS));
1167 assert(num_pages);
1168 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1171 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1173 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1174 AddressSpaceDispatch *d = as->next_dispatch;
1175 MemoryRegionSection now = *section, remain = *section;
1176 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1178 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1179 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1180 - now.offset_within_address_space;
1182 now.size = int128_min(int128_make64(left), now.size);
1183 register_subpage(d, &now);
1184 } else {
1185 now.size = int128_zero();
1187 while (int128_ne(remain.size, now.size)) {
1188 remain.size = int128_sub(remain.size, now.size);
1189 remain.offset_within_address_space += int128_get64(now.size);
1190 remain.offset_within_region += int128_get64(now.size);
1191 now = remain;
1192 if (int128_lt(remain.size, page_size)) {
1193 register_subpage(d, &now);
1194 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1195 now.size = page_size;
1196 register_subpage(d, &now);
1197 } else {
1198 now.size = int128_and(now.size, int128_neg(page_size));
1199 register_multipage(d, &now);
1204 void qemu_flush_coalesced_mmio_buffer(void)
1206 if (kvm_enabled())
1207 kvm_flush_coalesced_mmio_buffer();
1210 void qemu_mutex_lock_ramlist(void)
1212 qemu_mutex_lock(&ram_list.mutex);
1215 void qemu_mutex_unlock_ramlist(void)
1217 qemu_mutex_unlock(&ram_list.mutex);
1220 #ifdef __linux__
1221 static int64_t get_file_size(int fd)
1223 int64_t size = lseek(fd, 0, SEEK_END);
1224 if (size < 0) {
1225 return -errno;
1227 return size;
1230 static void *file_ram_alloc(RAMBlock *block,
1231 ram_addr_t memory,
1232 const char *path,
1233 Error **errp)
1235 bool unlink_on_error = false;
1236 char *filename;
1237 char *sanitized_name;
1238 char *c;
1239 void *area = MAP_FAILED;
1240 int fd = -1;
1241 int64_t file_size;
1243 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1244 error_setg(errp,
1245 "host lacks kvm mmu notifiers, -mem-path unsupported");
1246 return NULL;
1249 for (;;) {
1250 fd = open(path, O_RDWR);
1251 if (fd >= 0) {
1252 /* @path names an existing file, use it */
1253 break;
1255 if (errno == ENOENT) {
1256 /* @path names a file that doesn't exist, create it */
1257 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1258 if (fd >= 0) {
1259 unlink_on_error = true;
1260 break;
1262 } else if (errno == EISDIR) {
1263 /* @path names a directory, create a file there */
1264 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1265 sanitized_name = g_strdup(memory_region_name(block->mr));
1266 for (c = sanitized_name; *c != '\0'; c++) {
1267 if (*c == '/') {
1268 *c = '_';
1272 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1273 sanitized_name);
1274 g_free(sanitized_name);
1276 fd = mkstemp(filename);
1277 if (fd >= 0) {
1278 unlink(filename);
1279 g_free(filename);
1280 break;
1282 g_free(filename);
1284 if (errno != EEXIST && errno != EINTR) {
1285 error_setg_errno(errp, errno,
1286 "can't open backing store %s for guest RAM",
1287 path);
1288 goto error;
1291 * Try again on EINTR and EEXIST. The latter happens when
1292 * something else creates the file between our two open().
1296 block->page_size = qemu_fd_getpagesize(fd);
1297 block->mr->align = block->page_size;
1298 #if defined(__s390x__)
1299 if (kvm_enabled()) {
1300 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1302 #endif
1304 file_size = get_file_size(fd);
1306 if (memory < block->page_size) {
1307 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1308 "or larger than page size 0x%zx",
1309 memory, block->page_size);
1310 goto error;
1313 if (file_size > 0 && file_size < memory) {
1314 error_setg(errp, "backing store %s size 0x%" PRIx64
1315 " does not match 'size' option 0x" RAM_ADDR_FMT,
1316 path, file_size, memory);
1317 goto error;
1320 memory = ROUND_UP(memory, block->page_size);
1323 * ftruncate is not supported by hugetlbfs in older
1324 * hosts, so don't bother bailing out on errors.
1325 * If anything goes wrong with it under other filesystems,
1326 * mmap will fail.
1328 * Do not truncate the non-empty backend file to avoid corrupting
1329 * the existing data in the file. Disabling shrinking is not
1330 * enough. For example, the current vNVDIMM implementation stores
1331 * the guest NVDIMM labels at the end of the backend file. If the
1332 * backend file is later extended, QEMU will not be able to find
1333 * those labels. Therefore, extending the non-empty backend file
1334 * is disabled as well.
1336 if (!file_size && ftruncate(fd, memory)) {
1337 perror("ftruncate");
1340 area = qemu_ram_mmap(fd, memory, block->mr->align,
1341 block->flags & RAM_SHARED);
1342 if (area == MAP_FAILED) {
1343 error_setg_errno(errp, errno,
1344 "unable to map backing store for guest RAM");
1345 goto error;
1348 if (mem_prealloc) {
1349 os_mem_prealloc(fd, area, memory, errp);
1350 if (errp && *errp) {
1351 goto error;
1355 block->fd = fd;
1356 return area;
1358 error:
1359 if (area != MAP_FAILED) {
1360 qemu_ram_munmap(area, memory);
1362 if (unlink_on_error) {
1363 unlink(path);
1365 if (fd != -1) {
1366 close(fd);
1368 return NULL;
1370 #endif
1372 /* Called with the ramlist lock held. */
1373 static ram_addr_t find_ram_offset(ram_addr_t size)
1375 RAMBlock *block, *next_block;
1376 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1378 assert(size != 0); /* it would hand out same offset multiple times */
1380 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1381 return 0;
1384 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1385 ram_addr_t end, next = RAM_ADDR_MAX;
1387 end = block->offset + block->max_length;
1389 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
1390 if (next_block->offset >= end) {
1391 next = MIN(next, next_block->offset);
1394 if (next - end >= size && next - end < mingap) {
1395 offset = end;
1396 mingap = next - end;
1400 if (offset == RAM_ADDR_MAX) {
1401 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1402 (uint64_t)size);
1403 abort();
1406 return offset;
1409 ram_addr_t last_ram_offset(void)
1411 RAMBlock *block;
1412 ram_addr_t last = 0;
1414 rcu_read_lock();
1415 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1416 last = MAX(last, block->offset + block->max_length);
1418 rcu_read_unlock();
1419 return last;
1422 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1424 int ret;
1426 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1427 if (!machine_dump_guest_core(current_machine)) {
1428 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1429 if (ret) {
1430 perror("qemu_madvise");
1431 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1432 "but dump_guest_core=off specified\n");
1437 const char *qemu_ram_get_idstr(RAMBlock *rb)
1439 return rb->idstr;
1442 /* Called with iothread lock held. */
1443 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1445 RAMBlock *block;
1447 assert(new_block);
1448 assert(!new_block->idstr[0]);
1450 if (dev) {
1451 char *id = qdev_get_dev_path(dev);
1452 if (id) {
1453 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1454 g_free(id);
1457 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1459 rcu_read_lock();
1460 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1461 if (block != new_block &&
1462 !strcmp(block->idstr, new_block->idstr)) {
1463 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1464 new_block->idstr);
1465 abort();
1468 rcu_read_unlock();
1471 /* Called with iothread lock held. */
1472 void qemu_ram_unset_idstr(RAMBlock *block)
1474 /* FIXME: arch_init.c assumes that this is not called throughout
1475 * migration. Ignore the problem since hot-unplug during migration
1476 * does not work anyway.
1478 if (block) {
1479 memset(block->idstr, 0, sizeof(block->idstr));
1483 size_t qemu_ram_pagesize(RAMBlock *rb)
1485 return rb->page_size;
1488 static int memory_try_enable_merging(void *addr, size_t len)
1490 if (!machine_mem_merge(current_machine)) {
1491 /* disabled by the user */
1492 return 0;
1495 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1498 /* Only legal before guest might have detected the memory size: e.g. on
1499 * incoming migration, or right after reset.
1501 * As memory core doesn't know how is memory accessed, it is up to
1502 * resize callback to update device state and/or add assertions to detect
1503 * misuse, if necessary.
1505 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1507 assert(block);
1509 newsize = HOST_PAGE_ALIGN(newsize);
1511 if (block->used_length == newsize) {
1512 return 0;
1515 if (!(block->flags & RAM_RESIZEABLE)) {
1516 error_setg_errno(errp, EINVAL,
1517 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1518 " in != 0x" RAM_ADDR_FMT, block->idstr,
1519 newsize, block->used_length);
1520 return -EINVAL;
1523 if (block->max_length < newsize) {
1524 error_setg_errno(errp, EINVAL,
1525 "Length too large: %s: 0x" RAM_ADDR_FMT
1526 " > 0x" RAM_ADDR_FMT, block->idstr,
1527 newsize, block->max_length);
1528 return -EINVAL;
1531 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1532 block->used_length = newsize;
1533 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1534 DIRTY_CLIENTS_ALL);
1535 memory_region_set_size(block->mr, newsize);
1536 if (block->resized) {
1537 block->resized(block->idstr, newsize, block->host);
1539 return 0;
1542 /* Called with ram_list.mutex held */
1543 static void dirty_memory_extend(ram_addr_t old_ram_size,
1544 ram_addr_t new_ram_size)
1546 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1547 DIRTY_MEMORY_BLOCK_SIZE);
1548 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1549 DIRTY_MEMORY_BLOCK_SIZE);
1550 int i;
1552 /* Only need to extend if block count increased */
1553 if (new_num_blocks <= old_num_blocks) {
1554 return;
1557 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1558 DirtyMemoryBlocks *old_blocks;
1559 DirtyMemoryBlocks *new_blocks;
1560 int j;
1562 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1563 new_blocks = g_malloc(sizeof(*new_blocks) +
1564 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1566 if (old_num_blocks) {
1567 memcpy(new_blocks->blocks, old_blocks->blocks,
1568 old_num_blocks * sizeof(old_blocks->blocks[0]));
1571 for (j = old_num_blocks; j < new_num_blocks; j++) {
1572 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1575 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1577 if (old_blocks) {
1578 g_free_rcu(old_blocks, rcu);
1583 static void ram_block_add(RAMBlock *new_block, Error **errp)
1585 RAMBlock *block;
1586 RAMBlock *last_block = NULL;
1587 ram_addr_t old_ram_size, new_ram_size;
1588 Error *err = NULL;
1590 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1592 qemu_mutex_lock_ramlist();
1593 new_block->offset = find_ram_offset(new_block->max_length);
1595 if (!new_block->host) {
1596 if (xen_enabled()) {
1597 xen_ram_alloc(new_block->offset, new_block->max_length,
1598 new_block->mr, &err);
1599 if (err) {
1600 error_propagate(errp, err);
1601 qemu_mutex_unlock_ramlist();
1602 return;
1604 } else {
1605 new_block->host = phys_mem_alloc(new_block->max_length,
1606 &new_block->mr->align);
1607 if (!new_block->host) {
1608 error_setg_errno(errp, errno,
1609 "cannot set up guest memory '%s'",
1610 memory_region_name(new_block->mr));
1611 qemu_mutex_unlock_ramlist();
1612 return;
1614 memory_try_enable_merging(new_block->host, new_block->max_length);
1618 new_ram_size = MAX(old_ram_size,
1619 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1620 if (new_ram_size > old_ram_size) {
1621 migration_bitmap_extend(old_ram_size, new_ram_size);
1622 dirty_memory_extend(old_ram_size, new_ram_size);
1624 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1625 * QLIST (which has an RCU-friendly variant) does not have insertion at
1626 * tail, so save the last element in last_block.
1628 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1629 last_block = block;
1630 if (block->max_length < new_block->max_length) {
1631 break;
1634 if (block) {
1635 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1636 } else if (last_block) {
1637 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1638 } else { /* list is empty */
1639 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1641 ram_list.mru_block = NULL;
1643 /* Write list before version */
1644 smp_wmb();
1645 ram_list.version++;
1646 qemu_mutex_unlock_ramlist();
1648 cpu_physical_memory_set_dirty_range(new_block->offset,
1649 new_block->used_length,
1650 DIRTY_CLIENTS_ALL);
1652 if (new_block->host) {
1653 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1654 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1655 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1656 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1657 ram_block_notify_add(new_block->host, new_block->max_length);
1661 #ifdef __linux__
1662 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1663 bool share, const char *mem_path,
1664 Error **errp)
1666 RAMBlock *new_block;
1667 Error *local_err = NULL;
1669 if (xen_enabled()) {
1670 error_setg(errp, "-mem-path not supported with Xen");
1671 return NULL;
1674 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1676 * file_ram_alloc() needs to allocate just like
1677 * phys_mem_alloc, but we haven't bothered to provide
1678 * a hook there.
1680 error_setg(errp,
1681 "-mem-path not supported with this accelerator");
1682 return NULL;
1685 size = HOST_PAGE_ALIGN(size);
1686 new_block = g_malloc0(sizeof(*new_block));
1687 new_block->mr = mr;
1688 new_block->used_length = size;
1689 new_block->max_length = size;
1690 new_block->flags = share ? RAM_SHARED : 0;
1691 new_block->host = file_ram_alloc(new_block, size,
1692 mem_path, errp);
1693 if (!new_block->host) {
1694 g_free(new_block);
1695 return NULL;
1698 ram_block_add(new_block, &local_err);
1699 if (local_err) {
1700 g_free(new_block);
1701 error_propagate(errp, local_err);
1702 return NULL;
1704 return new_block;
1706 #endif
1708 static
1709 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1710 void (*resized)(const char*,
1711 uint64_t length,
1712 void *host),
1713 void *host, bool resizeable,
1714 MemoryRegion *mr, Error **errp)
1716 RAMBlock *new_block;
1717 Error *local_err = NULL;
1719 size = HOST_PAGE_ALIGN(size);
1720 max_size = HOST_PAGE_ALIGN(max_size);
1721 new_block = g_malloc0(sizeof(*new_block));
1722 new_block->mr = mr;
1723 new_block->resized = resized;
1724 new_block->used_length = size;
1725 new_block->max_length = max_size;
1726 assert(max_size >= size);
1727 new_block->fd = -1;
1728 new_block->page_size = getpagesize();
1729 new_block->host = host;
1730 if (host) {
1731 new_block->flags |= RAM_PREALLOC;
1733 if (resizeable) {
1734 new_block->flags |= RAM_RESIZEABLE;
1736 ram_block_add(new_block, &local_err);
1737 if (local_err) {
1738 g_free(new_block);
1739 error_propagate(errp, local_err);
1740 return NULL;
1742 return new_block;
1745 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1746 MemoryRegion *mr, Error **errp)
1748 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1751 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
1753 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1756 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1757 void (*resized)(const char*,
1758 uint64_t length,
1759 void *host),
1760 MemoryRegion *mr, Error **errp)
1762 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
1765 static void reclaim_ramblock(RAMBlock *block)
1767 if (block->flags & RAM_PREALLOC) {
1769 } else if (xen_enabled()) {
1770 xen_invalidate_map_cache_entry(block->host);
1771 #ifndef _WIN32
1772 } else if (block->fd >= 0) {
1773 qemu_ram_munmap(block->host, block->max_length);
1774 close(block->fd);
1775 #endif
1776 } else {
1777 qemu_anon_ram_free(block->host, block->max_length);
1779 g_free(block);
1782 void qemu_ram_free(RAMBlock *block)
1784 if (!block) {
1785 return;
1788 if (block->host) {
1789 ram_block_notify_remove(block->host, block->max_length);
1792 qemu_mutex_lock_ramlist();
1793 QLIST_REMOVE_RCU(block, next);
1794 ram_list.mru_block = NULL;
1795 /* Write list before version */
1796 smp_wmb();
1797 ram_list.version++;
1798 call_rcu(block, reclaim_ramblock, rcu);
1799 qemu_mutex_unlock_ramlist();
1802 #ifndef _WIN32
1803 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1805 RAMBlock *block;
1806 ram_addr_t offset;
1807 int flags;
1808 void *area, *vaddr;
1810 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1811 offset = addr - block->offset;
1812 if (offset < block->max_length) {
1813 vaddr = ramblock_ptr(block, offset);
1814 if (block->flags & RAM_PREALLOC) {
1816 } else if (xen_enabled()) {
1817 abort();
1818 } else {
1819 flags = MAP_FIXED;
1820 if (block->fd >= 0) {
1821 flags |= (block->flags & RAM_SHARED ?
1822 MAP_SHARED : MAP_PRIVATE);
1823 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1824 flags, block->fd, offset);
1825 } else {
1827 * Remap needs to match alloc. Accelerators that
1828 * set phys_mem_alloc never remap. If they did,
1829 * we'd need a remap hook here.
1831 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1833 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1834 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1835 flags, -1, 0);
1837 if (area != vaddr) {
1838 fprintf(stderr, "Could not remap addr: "
1839 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1840 length, addr);
1841 exit(1);
1843 memory_try_enable_merging(vaddr, length);
1844 qemu_ram_setup_dump(vaddr, length);
1849 #endif /* !_WIN32 */
1851 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1852 * This should not be used for general purpose DMA. Use address_space_map
1853 * or address_space_rw instead. For local memory (e.g. video ram) that the
1854 * device owns, use memory_region_get_ram_ptr.
1856 * Called within RCU critical section.
1858 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1860 RAMBlock *block = ram_block;
1862 if (block == NULL) {
1863 block = qemu_get_ram_block(addr);
1864 addr -= block->offset;
1867 if (xen_enabled() && block->host == NULL) {
1868 /* We need to check if the requested address is in the RAM
1869 * because we don't want to map the entire memory in QEMU.
1870 * In that case just map until the end of the page.
1872 if (block->offset == 0) {
1873 return xen_map_cache(addr, 0, 0);
1876 block->host = xen_map_cache(block->offset, block->max_length, 1);
1878 return ramblock_ptr(block, addr);
1881 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
1882 * but takes a size argument.
1884 * Called within RCU critical section.
1886 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
1887 hwaddr *size)
1889 RAMBlock *block = ram_block;
1890 if (*size == 0) {
1891 return NULL;
1894 if (block == NULL) {
1895 block = qemu_get_ram_block(addr);
1896 addr -= block->offset;
1898 *size = MIN(*size, block->max_length - addr);
1900 if (xen_enabled() && block->host == NULL) {
1901 /* We need to check if the requested address is in the RAM
1902 * because we don't want to map the entire memory in QEMU.
1903 * In that case just map the requested area.
1905 if (block->offset == 0) {
1906 return xen_map_cache(addr, *size, 1);
1909 block->host = xen_map_cache(block->offset, block->max_length, 1);
1912 return ramblock_ptr(block, addr);
1916 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1917 * in that RAMBlock.
1919 * ptr: Host pointer to look up
1920 * round_offset: If true round the result offset down to a page boundary
1921 * *ram_addr: set to result ram_addr
1922 * *offset: set to result offset within the RAMBlock
1924 * Returns: RAMBlock (or NULL if not found)
1926 * By the time this function returns, the returned pointer is not protected
1927 * by RCU anymore. If the caller is not within an RCU critical section and
1928 * does not hold the iothread lock, it must have other means of protecting the
1929 * pointer, such as a reference to the region that includes the incoming
1930 * ram_addr_t.
1932 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1933 ram_addr_t *offset)
1935 RAMBlock *block;
1936 uint8_t *host = ptr;
1938 if (xen_enabled()) {
1939 ram_addr_t ram_addr;
1940 rcu_read_lock();
1941 ram_addr = xen_ram_addr_from_mapcache(ptr);
1942 block = qemu_get_ram_block(ram_addr);
1943 if (block) {
1944 *offset = ram_addr - block->offset;
1946 rcu_read_unlock();
1947 return block;
1950 rcu_read_lock();
1951 block = atomic_rcu_read(&ram_list.mru_block);
1952 if (block && block->host && host - block->host < block->max_length) {
1953 goto found;
1956 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1957 /* This case append when the block is not mapped. */
1958 if (block->host == NULL) {
1959 continue;
1961 if (host - block->host < block->max_length) {
1962 goto found;
1966 rcu_read_unlock();
1967 return NULL;
1969 found:
1970 *offset = (host - block->host);
1971 if (round_offset) {
1972 *offset &= TARGET_PAGE_MASK;
1974 rcu_read_unlock();
1975 return block;
1979 * Finds the named RAMBlock
1981 * name: The name of RAMBlock to find
1983 * Returns: RAMBlock (or NULL if not found)
1985 RAMBlock *qemu_ram_block_by_name(const char *name)
1987 RAMBlock *block;
1989 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1990 if (!strcmp(name, block->idstr)) {
1991 return block;
1995 return NULL;
1998 /* Some of the softmmu routines need to translate from a host pointer
1999 (typically a TLB entry) back to a ram offset. */
2000 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2002 RAMBlock *block;
2003 ram_addr_t offset;
2005 block = qemu_ram_block_from_host(ptr, false, &offset);
2006 if (!block) {
2007 return RAM_ADDR_INVALID;
2010 return block->offset + offset;
2013 /* Called within RCU critical section. */
2014 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2015 uint64_t val, unsigned size)
2017 bool locked = false;
2019 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2020 locked = true;
2021 tb_lock();
2022 tb_invalidate_phys_page_fast(ram_addr, size);
2024 switch (size) {
2025 case 1:
2026 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2027 break;
2028 case 2:
2029 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2030 break;
2031 case 4:
2032 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2033 break;
2034 default:
2035 abort();
2038 if (locked) {
2039 tb_unlock();
2042 /* Set both VGA and migration bits for simplicity and to remove
2043 * the notdirty callback faster.
2045 cpu_physical_memory_set_dirty_range(ram_addr, size,
2046 DIRTY_CLIENTS_NOCODE);
2047 /* we remove the notdirty callback only if the code has been
2048 flushed */
2049 if (!cpu_physical_memory_is_clean(ram_addr)) {
2050 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2054 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2055 unsigned size, bool is_write)
2057 return is_write;
2060 static const MemoryRegionOps notdirty_mem_ops = {
2061 .write = notdirty_mem_write,
2062 .valid.accepts = notdirty_mem_accepts,
2063 .endianness = DEVICE_NATIVE_ENDIAN,
2066 /* Generate a debug exception if a watchpoint has been hit. */
2067 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2069 CPUState *cpu = current_cpu;
2070 CPUClass *cc = CPU_GET_CLASS(cpu);
2071 CPUArchState *env = cpu->env_ptr;
2072 target_ulong pc, cs_base;
2073 target_ulong vaddr;
2074 CPUWatchpoint *wp;
2075 uint32_t cpu_flags;
2077 if (cpu->watchpoint_hit) {
2078 /* We re-entered the check after replacing the TB. Now raise
2079 * the debug interrupt so that is will trigger after the
2080 * current instruction. */
2081 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2082 return;
2084 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2085 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2086 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2087 && (wp->flags & flags)) {
2088 if (flags == BP_MEM_READ) {
2089 wp->flags |= BP_WATCHPOINT_HIT_READ;
2090 } else {
2091 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2093 wp->hitaddr = vaddr;
2094 wp->hitattrs = attrs;
2095 if (!cpu->watchpoint_hit) {
2096 if (wp->flags & BP_CPU &&
2097 !cc->debug_check_watchpoint(cpu, wp)) {
2098 wp->flags &= ~BP_WATCHPOINT_HIT;
2099 continue;
2101 cpu->watchpoint_hit = wp;
2103 /* The tb_lock will be reset when cpu_loop_exit or
2104 * cpu_loop_exit_noexc longjmp back into the cpu_exec
2105 * main loop.
2107 tb_lock();
2108 tb_check_watchpoint(cpu);
2109 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2110 cpu->exception_index = EXCP_DEBUG;
2111 cpu_loop_exit(cpu);
2112 } else {
2113 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2114 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2115 cpu_loop_exit_noexc(cpu);
2118 } else {
2119 wp->flags &= ~BP_WATCHPOINT_HIT;
2124 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2125 so these check for a hit then pass through to the normal out-of-line
2126 phys routines. */
2127 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2128 unsigned size, MemTxAttrs attrs)
2130 MemTxResult res;
2131 uint64_t data;
2132 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2133 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2135 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2136 switch (size) {
2137 case 1:
2138 data = address_space_ldub(as, addr, attrs, &res);
2139 break;
2140 case 2:
2141 data = address_space_lduw(as, addr, attrs, &res);
2142 break;
2143 case 4:
2144 data = address_space_ldl(as, addr, attrs, &res);
2145 break;
2146 default: abort();
2148 *pdata = data;
2149 return res;
2152 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2153 uint64_t val, unsigned size,
2154 MemTxAttrs attrs)
2156 MemTxResult res;
2157 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2158 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2160 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2161 switch (size) {
2162 case 1:
2163 address_space_stb(as, addr, val, attrs, &res);
2164 break;
2165 case 2:
2166 address_space_stw(as, addr, val, attrs, &res);
2167 break;
2168 case 4:
2169 address_space_stl(as, addr, val, attrs, &res);
2170 break;
2171 default: abort();
2173 return res;
2176 static const MemoryRegionOps watch_mem_ops = {
2177 .read_with_attrs = watch_mem_read,
2178 .write_with_attrs = watch_mem_write,
2179 .endianness = DEVICE_NATIVE_ENDIAN,
2182 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2183 unsigned len, MemTxAttrs attrs)
2185 subpage_t *subpage = opaque;
2186 uint8_t buf[8];
2187 MemTxResult res;
2189 #if defined(DEBUG_SUBPAGE)
2190 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2191 subpage, len, addr);
2192 #endif
2193 res = address_space_read(subpage->as, addr + subpage->base,
2194 attrs, buf, len);
2195 if (res) {
2196 return res;
2198 switch (len) {
2199 case 1:
2200 *data = ldub_p(buf);
2201 return MEMTX_OK;
2202 case 2:
2203 *data = lduw_p(buf);
2204 return MEMTX_OK;
2205 case 4:
2206 *data = ldl_p(buf);
2207 return MEMTX_OK;
2208 case 8:
2209 *data = ldq_p(buf);
2210 return MEMTX_OK;
2211 default:
2212 abort();
2216 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2217 uint64_t value, unsigned len, MemTxAttrs attrs)
2219 subpage_t *subpage = opaque;
2220 uint8_t buf[8];
2222 #if defined(DEBUG_SUBPAGE)
2223 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2224 " value %"PRIx64"\n",
2225 __func__, subpage, len, addr, value);
2226 #endif
2227 switch (len) {
2228 case 1:
2229 stb_p(buf, value);
2230 break;
2231 case 2:
2232 stw_p(buf, value);
2233 break;
2234 case 4:
2235 stl_p(buf, value);
2236 break;
2237 case 8:
2238 stq_p(buf, value);
2239 break;
2240 default:
2241 abort();
2243 return address_space_write(subpage->as, addr + subpage->base,
2244 attrs, buf, len);
2247 static bool subpage_accepts(void *opaque, hwaddr addr,
2248 unsigned len, bool is_write)
2250 subpage_t *subpage = opaque;
2251 #if defined(DEBUG_SUBPAGE)
2252 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2253 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2254 #endif
2256 return address_space_access_valid(subpage->as, addr + subpage->base,
2257 len, is_write);
2260 static const MemoryRegionOps subpage_ops = {
2261 .read_with_attrs = subpage_read,
2262 .write_with_attrs = subpage_write,
2263 .impl.min_access_size = 1,
2264 .impl.max_access_size = 8,
2265 .valid.min_access_size = 1,
2266 .valid.max_access_size = 8,
2267 .valid.accepts = subpage_accepts,
2268 .endianness = DEVICE_NATIVE_ENDIAN,
2271 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2272 uint16_t section)
2274 int idx, eidx;
2276 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2277 return -1;
2278 idx = SUBPAGE_IDX(start);
2279 eidx = SUBPAGE_IDX(end);
2280 #if defined(DEBUG_SUBPAGE)
2281 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2282 __func__, mmio, start, end, idx, eidx, section);
2283 #endif
2284 for (; idx <= eidx; idx++) {
2285 mmio->sub_section[idx] = section;
2288 return 0;
2291 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2293 subpage_t *mmio;
2295 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2296 mmio->as = as;
2297 mmio->base = base;
2298 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2299 NULL, TARGET_PAGE_SIZE);
2300 mmio->iomem.subpage = true;
2301 #if defined(DEBUG_SUBPAGE)
2302 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2303 mmio, base, TARGET_PAGE_SIZE);
2304 #endif
2305 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2307 return mmio;
2310 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2311 MemoryRegion *mr)
2313 assert(as);
2314 MemoryRegionSection section = {
2315 .address_space = as,
2316 .mr = mr,
2317 .offset_within_address_space = 0,
2318 .offset_within_region = 0,
2319 .size = int128_2_64(),
2322 return phys_section_add(map, &section);
2325 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2327 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2328 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2329 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2330 MemoryRegionSection *sections = d->map.sections;
2332 return sections[index & ~TARGET_PAGE_MASK].mr;
2335 static void io_mem_init(void)
2337 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2338 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2339 NULL, UINT64_MAX);
2340 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2341 NULL, UINT64_MAX);
2342 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2343 NULL, UINT64_MAX);
2346 static void mem_begin(MemoryListener *listener)
2348 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2349 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2350 uint16_t n;
2352 n = dummy_section(&d->map, as, &io_mem_unassigned);
2353 assert(n == PHYS_SECTION_UNASSIGNED);
2354 n = dummy_section(&d->map, as, &io_mem_notdirty);
2355 assert(n == PHYS_SECTION_NOTDIRTY);
2356 n = dummy_section(&d->map, as, &io_mem_rom);
2357 assert(n == PHYS_SECTION_ROM);
2358 n = dummy_section(&d->map, as, &io_mem_watch);
2359 assert(n == PHYS_SECTION_WATCH);
2361 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2362 d->as = as;
2363 as->next_dispatch = d;
2366 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2368 phys_sections_free(&d->map);
2369 g_free(d);
2372 static void mem_commit(MemoryListener *listener)
2374 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2375 AddressSpaceDispatch *cur = as->dispatch;
2376 AddressSpaceDispatch *next = as->next_dispatch;
2378 phys_page_compact_all(next, next->map.nodes_nb);
2380 atomic_rcu_set(&as->dispatch, next);
2381 if (cur) {
2382 call_rcu(cur, address_space_dispatch_free, rcu);
2386 static void tcg_commit(MemoryListener *listener)
2388 CPUAddressSpace *cpuas;
2389 AddressSpaceDispatch *d;
2391 /* since each CPU stores ram addresses in its TLB cache, we must
2392 reset the modified entries */
2393 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2394 cpu_reloading_memory_map();
2395 /* The CPU and TLB are protected by the iothread lock.
2396 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2397 * may have split the RCU critical section.
2399 d = atomic_rcu_read(&cpuas->as->dispatch);
2400 atomic_rcu_set(&cpuas->memory_dispatch, d);
2401 tlb_flush(cpuas->cpu, 1);
2404 void address_space_init_dispatch(AddressSpace *as)
2406 as->dispatch = NULL;
2407 as->dispatch_listener = (MemoryListener) {
2408 .begin = mem_begin,
2409 .commit = mem_commit,
2410 .region_add = mem_add,
2411 .region_nop = mem_add,
2412 .priority = 0,
2414 memory_listener_register(&as->dispatch_listener, as);
2417 void address_space_unregister(AddressSpace *as)
2419 memory_listener_unregister(&as->dispatch_listener);
2422 void address_space_destroy_dispatch(AddressSpace *as)
2424 AddressSpaceDispatch *d = as->dispatch;
2426 atomic_rcu_set(&as->dispatch, NULL);
2427 if (d) {
2428 call_rcu(d, address_space_dispatch_free, rcu);
2432 static void memory_map_init(void)
2434 system_memory = g_malloc(sizeof(*system_memory));
2436 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2437 address_space_init(&address_space_memory, system_memory, "memory");
2439 system_io = g_malloc(sizeof(*system_io));
2440 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2441 65536);
2442 address_space_init(&address_space_io, system_io, "I/O");
2445 MemoryRegion *get_system_memory(void)
2447 return system_memory;
2450 MemoryRegion *get_system_io(void)
2452 return system_io;
2455 #endif /* !defined(CONFIG_USER_ONLY) */
2457 /* physical memory access (slow version, mainly for debug) */
2458 #if defined(CONFIG_USER_ONLY)
2459 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2460 uint8_t *buf, int len, int is_write)
2462 int l, flags;
2463 target_ulong page;
2464 void * p;
2466 while (len > 0) {
2467 page = addr & TARGET_PAGE_MASK;
2468 l = (page + TARGET_PAGE_SIZE) - addr;
2469 if (l > len)
2470 l = len;
2471 flags = page_get_flags(page);
2472 if (!(flags & PAGE_VALID))
2473 return -1;
2474 if (is_write) {
2475 if (!(flags & PAGE_WRITE))
2476 return -1;
2477 /* XXX: this code should not depend on lock_user */
2478 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2479 return -1;
2480 memcpy(p, buf, l);
2481 unlock_user(p, addr, l);
2482 } else {
2483 if (!(flags & PAGE_READ))
2484 return -1;
2485 /* XXX: this code should not depend on lock_user */
2486 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2487 return -1;
2488 memcpy(buf, p, l);
2489 unlock_user(p, addr, 0);
2491 len -= l;
2492 buf += l;
2493 addr += l;
2495 return 0;
2498 #else
2500 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2501 hwaddr length)
2503 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2504 addr += memory_region_get_ram_addr(mr);
2506 /* No early return if dirty_log_mask is or becomes 0, because
2507 * cpu_physical_memory_set_dirty_range will still call
2508 * xen_modified_memory.
2510 if (dirty_log_mask) {
2511 dirty_log_mask =
2512 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2514 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2515 tb_lock();
2516 tb_invalidate_phys_range(addr, addr + length);
2517 tb_unlock();
2518 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2520 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2523 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2525 unsigned access_size_max = mr->ops->valid.max_access_size;
2527 /* Regions are assumed to support 1-4 byte accesses unless
2528 otherwise specified. */
2529 if (access_size_max == 0) {
2530 access_size_max = 4;
2533 /* Bound the maximum access by the alignment of the address. */
2534 if (!mr->ops->impl.unaligned) {
2535 unsigned align_size_max = addr & -addr;
2536 if (align_size_max != 0 && align_size_max < access_size_max) {
2537 access_size_max = align_size_max;
2541 /* Don't attempt accesses larger than the maximum. */
2542 if (l > access_size_max) {
2543 l = access_size_max;
2545 l = pow2floor(l);
2547 return l;
2550 static bool prepare_mmio_access(MemoryRegion *mr)
2552 bool unlocked = !qemu_mutex_iothread_locked();
2553 bool release_lock = false;
2555 if (unlocked && mr->global_locking) {
2556 qemu_mutex_lock_iothread();
2557 unlocked = false;
2558 release_lock = true;
2560 if (mr->flush_coalesced_mmio) {
2561 if (unlocked) {
2562 qemu_mutex_lock_iothread();
2564 qemu_flush_coalesced_mmio_buffer();
2565 if (unlocked) {
2566 qemu_mutex_unlock_iothread();
2570 return release_lock;
2573 /* Called within RCU critical section. */
2574 static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2575 MemTxAttrs attrs,
2576 const uint8_t *buf,
2577 int len, hwaddr addr1,
2578 hwaddr l, MemoryRegion *mr)
2580 uint8_t *ptr;
2581 uint64_t val;
2582 MemTxResult result = MEMTX_OK;
2583 bool release_lock = false;
2585 for (;;) {
2586 if (!memory_access_is_direct(mr, true)) {
2587 release_lock |= prepare_mmio_access(mr);
2588 l = memory_access_size(mr, l, addr1);
2589 /* XXX: could force current_cpu to NULL to avoid
2590 potential bugs */
2591 switch (l) {
2592 case 8:
2593 /* 64 bit write access */
2594 val = ldq_p(buf);
2595 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2596 attrs);
2597 break;
2598 case 4:
2599 /* 32 bit write access */
2600 val = ldl_p(buf);
2601 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2602 attrs);
2603 break;
2604 case 2:
2605 /* 16 bit write access */
2606 val = lduw_p(buf);
2607 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2608 attrs);
2609 break;
2610 case 1:
2611 /* 8 bit write access */
2612 val = ldub_p(buf);
2613 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2614 attrs);
2615 break;
2616 default:
2617 abort();
2619 } else {
2620 /* RAM case */
2621 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2622 memcpy(ptr, buf, l);
2623 invalidate_and_set_dirty(mr, addr1, l);
2626 if (release_lock) {
2627 qemu_mutex_unlock_iothread();
2628 release_lock = false;
2631 len -= l;
2632 buf += l;
2633 addr += l;
2635 if (!len) {
2636 break;
2639 l = len;
2640 mr = address_space_translate(as, addr, &addr1, &l, true);
2643 return result;
2646 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2647 const uint8_t *buf, int len)
2649 hwaddr l;
2650 hwaddr addr1;
2651 MemoryRegion *mr;
2652 MemTxResult result = MEMTX_OK;
2654 if (len > 0) {
2655 rcu_read_lock();
2656 l = len;
2657 mr = address_space_translate(as, addr, &addr1, &l, true);
2658 result = address_space_write_continue(as, addr, attrs, buf, len,
2659 addr1, l, mr);
2660 rcu_read_unlock();
2663 return result;
2666 /* Called within RCU critical section. */
2667 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2668 MemTxAttrs attrs, uint8_t *buf,
2669 int len, hwaddr addr1, hwaddr l,
2670 MemoryRegion *mr)
2672 uint8_t *ptr;
2673 uint64_t val;
2674 MemTxResult result = MEMTX_OK;
2675 bool release_lock = false;
2677 for (;;) {
2678 if (!memory_access_is_direct(mr, false)) {
2679 /* I/O case */
2680 release_lock |= prepare_mmio_access(mr);
2681 l = memory_access_size(mr, l, addr1);
2682 switch (l) {
2683 case 8:
2684 /* 64 bit read access */
2685 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2686 attrs);
2687 stq_p(buf, val);
2688 break;
2689 case 4:
2690 /* 32 bit read access */
2691 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2692 attrs);
2693 stl_p(buf, val);
2694 break;
2695 case 2:
2696 /* 16 bit read access */
2697 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2698 attrs);
2699 stw_p(buf, val);
2700 break;
2701 case 1:
2702 /* 8 bit read access */
2703 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2704 attrs);
2705 stb_p(buf, val);
2706 break;
2707 default:
2708 abort();
2710 } else {
2711 /* RAM case */
2712 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2713 memcpy(buf, ptr, l);
2716 if (release_lock) {
2717 qemu_mutex_unlock_iothread();
2718 release_lock = false;
2721 len -= l;
2722 buf += l;
2723 addr += l;
2725 if (!len) {
2726 break;
2729 l = len;
2730 mr = address_space_translate(as, addr, &addr1, &l, false);
2733 return result;
2736 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2737 MemTxAttrs attrs, uint8_t *buf, int len)
2739 hwaddr l;
2740 hwaddr addr1;
2741 MemoryRegion *mr;
2742 MemTxResult result = MEMTX_OK;
2744 if (len > 0) {
2745 rcu_read_lock();
2746 l = len;
2747 mr = address_space_translate(as, addr, &addr1, &l, false);
2748 result = address_space_read_continue(as, addr, attrs, buf, len,
2749 addr1, l, mr);
2750 rcu_read_unlock();
2753 return result;
2756 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2757 uint8_t *buf, int len, bool is_write)
2759 if (is_write) {
2760 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2761 } else {
2762 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2766 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2767 int len, int is_write)
2769 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2770 buf, len, is_write);
2773 enum write_rom_type {
2774 WRITE_DATA,
2775 FLUSH_CACHE,
2778 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
2779 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2781 hwaddr l;
2782 uint8_t *ptr;
2783 hwaddr addr1;
2784 MemoryRegion *mr;
2786 rcu_read_lock();
2787 while (len > 0) {
2788 l = len;
2789 mr = address_space_translate(as, addr, &addr1, &l, true);
2791 if (!(memory_region_is_ram(mr) ||
2792 memory_region_is_romd(mr))) {
2793 l = memory_access_size(mr, l, addr1);
2794 } else {
2795 /* ROM/RAM case */
2796 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2797 switch (type) {
2798 case WRITE_DATA:
2799 memcpy(ptr, buf, l);
2800 invalidate_and_set_dirty(mr, addr1, l);
2801 break;
2802 case FLUSH_CACHE:
2803 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2804 break;
2807 len -= l;
2808 buf += l;
2809 addr += l;
2811 rcu_read_unlock();
2814 /* used for ROM loading : can write in RAM and ROM */
2815 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
2816 const uint8_t *buf, int len)
2818 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
2821 void cpu_flush_icache_range(hwaddr start, int len)
2824 * This function should do the same thing as an icache flush that was
2825 * triggered from within the guest. For TCG we are always cache coherent,
2826 * so there is no need to flush anything. For KVM / Xen we need to flush
2827 * the host's instruction cache at least.
2829 if (tcg_enabled()) {
2830 return;
2833 cpu_physical_memory_write_rom_internal(&address_space_memory,
2834 start, NULL, len, FLUSH_CACHE);
2837 typedef struct {
2838 MemoryRegion *mr;
2839 void *buffer;
2840 hwaddr addr;
2841 hwaddr len;
2842 bool in_use;
2843 } BounceBuffer;
2845 static BounceBuffer bounce;
2847 typedef struct MapClient {
2848 QEMUBH *bh;
2849 QLIST_ENTRY(MapClient) link;
2850 } MapClient;
2852 QemuMutex map_client_list_lock;
2853 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2854 = QLIST_HEAD_INITIALIZER(map_client_list);
2856 static void cpu_unregister_map_client_do(MapClient *client)
2858 QLIST_REMOVE(client, link);
2859 g_free(client);
2862 static void cpu_notify_map_clients_locked(void)
2864 MapClient *client;
2866 while (!QLIST_EMPTY(&map_client_list)) {
2867 client = QLIST_FIRST(&map_client_list);
2868 qemu_bh_schedule(client->bh);
2869 cpu_unregister_map_client_do(client);
2873 void cpu_register_map_client(QEMUBH *bh)
2875 MapClient *client = g_malloc(sizeof(*client));
2877 qemu_mutex_lock(&map_client_list_lock);
2878 client->bh = bh;
2879 QLIST_INSERT_HEAD(&map_client_list, client, link);
2880 if (!atomic_read(&bounce.in_use)) {
2881 cpu_notify_map_clients_locked();
2883 qemu_mutex_unlock(&map_client_list_lock);
2886 void cpu_exec_init_all(void)
2888 qemu_mutex_init(&ram_list.mutex);
2889 /* The data structures we set up here depend on knowing the page size,
2890 * so no more changes can be made after this point.
2891 * In an ideal world, nothing we did before we had finished the
2892 * machine setup would care about the target page size, and we could
2893 * do this much later, rather than requiring board models to state
2894 * up front what their requirements are.
2896 finalize_target_page_bits();
2897 io_mem_init();
2898 memory_map_init();
2899 qemu_mutex_init(&map_client_list_lock);
2902 void cpu_unregister_map_client(QEMUBH *bh)
2904 MapClient *client;
2906 qemu_mutex_lock(&map_client_list_lock);
2907 QLIST_FOREACH(client, &map_client_list, link) {
2908 if (client->bh == bh) {
2909 cpu_unregister_map_client_do(client);
2910 break;
2913 qemu_mutex_unlock(&map_client_list_lock);
2916 static void cpu_notify_map_clients(void)
2918 qemu_mutex_lock(&map_client_list_lock);
2919 cpu_notify_map_clients_locked();
2920 qemu_mutex_unlock(&map_client_list_lock);
2923 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2925 MemoryRegion *mr;
2926 hwaddr l, xlat;
2928 rcu_read_lock();
2929 while (len > 0) {
2930 l = len;
2931 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2932 if (!memory_access_is_direct(mr, is_write)) {
2933 l = memory_access_size(mr, l, addr);
2934 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2935 return false;
2939 len -= l;
2940 addr += l;
2942 rcu_read_unlock();
2943 return true;
2946 static hwaddr
2947 address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
2948 MemoryRegion *mr, hwaddr base, hwaddr len,
2949 bool is_write)
2951 hwaddr done = 0;
2952 hwaddr xlat;
2953 MemoryRegion *this_mr;
2955 for (;;) {
2956 target_len -= len;
2957 addr += len;
2958 done += len;
2959 if (target_len == 0) {
2960 return done;
2963 len = target_len;
2964 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
2965 if (this_mr != mr || xlat != base + done) {
2966 return done;
2971 /* Map a physical memory region into a host virtual address.
2972 * May map a subset of the requested range, given by and returned in *plen.
2973 * May return NULL if resources needed to perform the mapping are exhausted.
2974 * Use only for reads OR writes - not for read-modify-write operations.
2975 * Use cpu_register_map_client() to know when retrying the map operation is
2976 * likely to succeed.
2978 void *address_space_map(AddressSpace *as,
2979 hwaddr addr,
2980 hwaddr *plen,
2981 bool is_write)
2983 hwaddr len = *plen;
2984 hwaddr l, xlat;
2985 MemoryRegion *mr;
2986 void *ptr;
2988 if (len == 0) {
2989 return NULL;
2992 l = len;
2993 rcu_read_lock();
2994 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2996 if (!memory_access_is_direct(mr, is_write)) {
2997 if (atomic_xchg(&bounce.in_use, true)) {
2998 rcu_read_unlock();
2999 return NULL;
3001 /* Avoid unbounded allocations */
3002 l = MIN(l, TARGET_PAGE_SIZE);
3003 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3004 bounce.addr = addr;
3005 bounce.len = l;
3007 memory_region_ref(mr);
3008 bounce.mr = mr;
3009 if (!is_write) {
3010 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3011 bounce.buffer, l);
3014 rcu_read_unlock();
3015 *plen = l;
3016 return bounce.buffer;
3020 memory_region_ref(mr);
3021 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3022 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
3023 rcu_read_unlock();
3025 return ptr;
3028 /* Unmaps a memory region previously mapped by address_space_map().
3029 * Will also mark the memory as dirty if is_write == 1. access_len gives
3030 * the amount of memory that was actually read or written by the caller.
3032 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3033 int is_write, hwaddr access_len)
3035 if (buffer != bounce.buffer) {
3036 MemoryRegion *mr;
3037 ram_addr_t addr1;
3039 mr = memory_region_from_host(buffer, &addr1);
3040 assert(mr != NULL);
3041 if (is_write) {
3042 invalidate_and_set_dirty(mr, addr1, access_len);
3044 if (xen_enabled()) {
3045 xen_invalidate_map_cache_entry(buffer);
3047 memory_region_unref(mr);
3048 return;
3050 if (is_write) {
3051 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3052 bounce.buffer, access_len);
3054 qemu_vfree(bounce.buffer);
3055 bounce.buffer = NULL;
3056 memory_region_unref(bounce.mr);
3057 atomic_mb_set(&bounce.in_use, false);
3058 cpu_notify_map_clients();
3061 void *cpu_physical_memory_map(hwaddr addr,
3062 hwaddr *plen,
3063 int is_write)
3065 return address_space_map(&address_space_memory, addr, plen, is_write);
3068 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3069 int is_write, hwaddr access_len)
3071 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3074 #define ARG1_DECL AddressSpace *as
3075 #define ARG1 as
3076 #define SUFFIX
3077 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3078 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3079 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3080 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3081 #define RCU_READ_LOCK(...) rcu_read_lock()
3082 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3083 #include "memory_ldst.inc.c"
3085 int64_t address_space_cache_init(MemoryRegionCache *cache,
3086 AddressSpace *as,
3087 hwaddr addr,
3088 hwaddr len,
3089 bool is_write)
3091 hwaddr l, xlat;
3092 MemoryRegion *mr;
3093 void *ptr;
3095 assert(len > 0);
3097 l = len;
3098 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3099 if (!memory_access_is_direct(mr, is_write)) {
3100 return -EINVAL;
3103 l = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3104 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, &l);
3106 cache->xlat = xlat;
3107 cache->is_write = is_write;
3108 cache->mr = mr;
3109 cache->ptr = ptr;
3110 cache->len = l;
3111 memory_region_ref(cache->mr);
3113 return l;
3116 void address_space_cache_invalidate(MemoryRegionCache *cache,
3117 hwaddr addr,
3118 hwaddr access_len)
3120 assert(cache->is_write);
3121 invalidate_and_set_dirty(cache->mr, addr + cache->xlat, access_len);
3124 void address_space_cache_destroy(MemoryRegionCache *cache)
3126 if (!cache->mr) {
3127 return;
3130 if (xen_enabled()) {
3131 xen_invalidate_map_cache_entry(cache->ptr);
3133 memory_region_unref(cache->mr);
3136 /* Called from RCU critical section. This function has the same
3137 * semantics as address_space_translate, but it only works on a
3138 * predefined range of a MemoryRegion that was mapped with
3139 * address_space_cache_init.
3141 static inline MemoryRegion *address_space_translate_cached(
3142 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3143 hwaddr *plen, bool is_write)
3145 assert(addr < cache->len && *plen <= cache->len - addr);
3146 *xlat = addr + cache->xlat;
3147 return cache->mr;
3150 #define ARG1_DECL MemoryRegionCache *cache
3151 #define ARG1 cache
3152 #define SUFFIX _cached
3153 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3154 #define IS_DIRECT(mr, is_write) true
3155 #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3156 #define INVALIDATE(mr, ofs, len) ((void)0)
3157 #define RCU_READ_LOCK() ((void)0)
3158 #define RCU_READ_UNLOCK() ((void)0)
3159 #include "memory_ldst.inc.c"
3161 /* virtual memory access for debug (includes writing to ROM) */
3162 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3163 uint8_t *buf, int len, int is_write)
3165 int l;
3166 hwaddr phys_addr;
3167 target_ulong page;
3169 while (len > 0) {
3170 int asidx;
3171 MemTxAttrs attrs;
3173 page = addr & TARGET_PAGE_MASK;
3174 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3175 asidx = cpu_asidx_from_attrs(cpu, attrs);
3176 /* if no physical page mapped, return an error */
3177 if (phys_addr == -1)
3178 return -1;
3179 l = (page + TARGET_PAGE_SIZE) - addr;
3180 if (l > len)
3181 l = len;
3182 phys_addr += (addr & ~TARGET_PAGE_MASK);
3183 if (is_write) {
3184 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3185 phys_addr, buf, l);
3186 } else {
3187 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3188 MEMTXATTRS_UNSPECIFIED,
3189 buf, l, 0);
3191 len -= l;
3192 buf += l;
3193 addr += l;
3195 return 0;
3199 * Allows code that needs to deal with migration bitmaps etc to still be built
3200 * target independent.
3202 size_t qemu_target_page_bits(void)
3204 return TARGET_PAGE_BITS;
3207 #endif
3210 * A helper function for the _utterly broken_ virtio device model to find out if
3211 * it's running on a big endian machine. Don't do this at home kids!
3213 bool target_words_bigendian(void);
3214 bool target_words_bigendian(void)
3216 #if defined(TARGET_WORDS_BIGENDIAN)
3217 return true;
3218 #else
3219 return false;
3220 #endif
3223 #ifndef CONFIG_USER_ONLY
3224 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3226 MemoryRegion*mr;
3227 hwaddr l = 1;
3228 bool res;
3230 rcu_read_lock();
3231 mr = address_space_translate(&address_space_memory,
3232 phys_addr, &phys_addr, &l, false);
3234 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3235 rcu_read_unlock();
3236 return res;
3239 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3241 RAMBlock *block;
3242 int ret = 0;
3244 rcu_read_lock();
3245 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
3246 ret = func(block->idstr, block->host, block->offset,
3247 block->used_length, opaque);
3248 if (ret) {
3249 break;
3252 rcu_read_unlock();
3253 return ret;
3255 #endif