spapr: add hcalls support for the XIVE exploitation interrupt mode
[qemu/ar7.git] / hw / intc / spapr_xive.c
blob9f2820039c0c60e0ee42d3d5bd42211629827541
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qapi/error.h"
13 #include "qemu/error-report.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "monitor/monitor.h"
17 #include "hw/ppc/spapr.h"
18 #include "hw/ppc/spapr_xive.h"
19 #include "hw/ppc/xive.h"
20 #include "hw/ppc/xive_regs.h"
23 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
24 * use for the ESB pages and the TIMA pages
26 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
27 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
30 * The allocation of VP blocks is a complex operation in OPAL and the
31 * VP identifiers have a relation with the number of HW chips, the
32 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
33 * controller model does not have the same constraints and can use a
34 * simple mapping scheme of the CPU vcpu_id
36 * These identifiers are never returned to the OS.
39 #define SPAPR_XIVE_NVT_BASE 0x400
42 * The sPAPR machine has a unique XIVE IC device. Assign a fixed value
43 * to the controller block id value. It can nevertheless be changed
44 * for testing purpose.
46 #define SPAPR_XIVE_BLOCK_ID 0x0
49 * sPAPR NVT and END indexing helpers
51 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
53 return nvt_idx - SPAPR_XIVE_NVT_BASE;
56 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
57 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
59 assert(cpu);
61 if (out_nvt_blk) {
62 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
65 if (out_nvt_blk) {
66 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
70 static int spapr_xive_target_to_nvt(uint32_t target,
71 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
73 PowerPCCPU *cpu = spapr_find_cpu(target);
75 if (!cpu) {
76 return -1;
79 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
80 return 0;
84 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
85 * priorities per CPU
87 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
88 uint8_t *out_end_blk, uint32_t *out_end_idx)
90 assert(cpu);
92 if (out_end_blk) {
93 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
96 if (out_end_idx) {
97 *out_end_idx = (cpu->vcpu_id << 3) + prio;
101 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
102 uint8_t *out_end_blk, uint32_t *out_end_idx)
104 PowerPCCPU *cpu = spapr_find_cpu(target);
106 if (!cpu) {
107 return -1;
110 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
111 return 0;
115 * On sPAPR machines, use a simplified output for the XIVE END
116 * structure dumping only the information related to the OS EQ.
118 static void spapr_xive_end_pic_print_info(sPAPRXive *xive, XiveEND *end,
119 Monitor *mon)
121 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
122 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
123 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
124 uint32_t qentries = 1 << (qsize + 10);
125 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
126 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
128 monitor_printf(mon, "%3d/%d % 6d/%5d ^%d",
129 spapr_xive_nvt_to_target(0, nvt),
130 priority, qindex, qentries, qgen);
132 xive_end_queue_pic_print_info(end, 6, mon);
133 monitor_printf(mon, "]");
136 void spapr_xive_pic_print_info(sPAPRXive *xive, Monitor *mon)
138 XiveSource *xsrc = &xive->source;
139 int i;
141 monitor_printf(mon, " LSIN PQ EISN CPU/PRIO EQ\n");
143 for (i = 0; i < xive->nr_irqs; i++) {
144 uint8_t pq = xive_source_esb_get(xsrc, i);
145 XiveEAS *eas = &xive->eat[i];
147 if (!xive_eas_is_valid(eas)) {
148 continue;
151 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
152 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
153 pq & XIVE_ESB_VAL_P ? 'P' : '-',
154 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
155 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
156 xive_eas_is_masked(eas) ? "M" : " ",
157 (int) xive_get_field64(EAS_END_DATA, eas->w));
159 if (!xive_eas_is_masked(eas)) {
160 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
161 XiveEND *end;
163 assert(end_idx < xive->nr_ends);
164 end = &xive->endt[end_idx];
166 if (xive_end_is_valid(end)) {
167 spapr_xive_end_pic_print_info(xive, end, mon);
170 monitor_printf(mon, "\n");
174 static void spapr_xive_map_mmio(sPAPRXive *xive)
176 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
177 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
178 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
181 static void spapr_xive_end_reset(XiveEND *end)
183 memset(end, 0, sizeof(*end));
185 /* switch off the escalation and notification ESBs */
186 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
189 static void spapr_xive_reset(void *dev)
191 sPAPRXive *xive = SPAPR_XIVE(dev);
192 int i;
195 * The XiveSource has its own reset handler, which mask off all
196 * IRQs (!P|Q)
199 /* Mask all valid EASs in the IRQ number space. */
200 for (i = 0; i < xive->nr_irqs; i++) {
201 XiveEAS *eas = &xive->eat[i];
202 if (xive_eas_is_valid(eas)) {
203 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
204 } else {
205 eas->w = 0;
209 /* Clear all ENDs */
210 for (i = 0; i < xive->nr_ends; i++) {
211 spapr_xive_end_reset(&xive->endt[i]);
215 static void spapr_xive_instance_init(Object *obj)
217 sPAPRXive *xive = SPAPR_XIVE(obj);
219 object_initialize(&xive->source, sizeof(xive->source), TYPE_XIVE_SOURCE);
220 object_property_add_child(obj, "source", OBJECT(&xive->source), NULL);
222 object_initialize(&xive->end_source, sizeof(xive->end_source),
223 TYPE_XIVE_END_SOURCE);
224 object_property_add_child(obj, "end_source", OBJECT(&xive->end_source),
225 NULL);
228 static void spapr_xive_realize(DeviceState *dev, Error **errp)
230 sPAPRXive *xive = SPAPR_XIVE(dev);
231 XiveSource *xsrc = &xive->source;
232 XiveENDSource *end_xsrc = &xive->end_source;
233 Error *local_err = NULL;
235 if (!xive->nr_irqs) {
236 error_setg(errp, "Number of interrupt needs to be greater 0");
237 return;
240 if (!xive->nr_ends) {
241 error_setg(errp, "Number of interrupt needs to be greater 0");
242 return;
246 * Initialize the internal sources, for IPIs and virtual devices.
248 object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs",
249 &error_fatal);
250 object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive),
251 &error_fatal);
252 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
253 if (local_err) {
254 error_propagate(errp, local_err);
255 return;
259 * Initialize the END ESB source
261 object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends",
262 &error_fatal);
263 object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
264 &error_fatal);
265 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
266 if (local_err) {
267 error_propagate(errp, local_err);
268 return;
271 /* Set the mapping address of the END ESB pages after the source ESBs */
272 xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
275 * Allocate the routing tables
277 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
278 xive->endt = g_new0(XiveEND, xive->nr_ends);
280 /* TIMA initialization */
281 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops, xive,
282 "xive.tima", 4ull << TM_SHIFT);
284 /* Define all XIVE MMIO regions on SysBus */
285 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
286 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
287 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
289 /* Map all regions */
290 spapr_xive_map_mmio(xive);
292 qemu_register_reset(spapr_xive_reset, dev);
295 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
296 uint32_t eas_idx, XiveEAS *eas)
298 sPAPRXive *xive = SPAPR_XIVE(xrtr);
300 if (eas_idx >= xive->nr_irqs) {
301 return -1;
304 *eas = xive->eat[eas_idx];
305 return 0;
308 static int spapr_xive_get_end(XiveRouter *xrtr,
309 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
311 sPAPRXive *xive = SPAPR_XIVE(xrtr);
313 if (end_idx >= xive->nr_ends) {
314 return -1;
317 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
318 return 0;
321 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
322 uint32_t end_idx, XiveEND *end,
323 uint8_t word_number)
325 sPAPRXive *xive = SPAPR_XIVE(xrtr);
327 if (end_idx >= xive->nr_ends) {
328 return -1;
331 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
332 return 0;
335 static int spapr_xive_get_nvt(XiveRouter *xrtr,
336 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
338 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
339 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
341 if (!cpu) {
342 /* TODO: should we assert() if we can find a NVT ? */
343 return -1;
347 * sPAPR does not maintain a NVT table. Return that the NVT is
348 * valid if we have found a matching CPU
350 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
351 return 0;
354 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
355 uint32_t nvt_idx, XiveNVT *nvt,
356 uint8_t word_number)
359 * We don't need to write back to the NVTs because the sPAPR
360 * machine should never hit a non-scheduled NVT. It should never
361 * get called.
363 g_assert_not_reached();
366 static const VMStateDescription vmstate_spapr_xive_end = {
367 .name = TYPE_SPAPR_XIVE "/end",
368 .version_id = 1,
369 .minimum_version_id = 1,
370 .fields = (VMStateField []) {
371 VMSTATE_UINT32(w0, XiveEND),
372 VMSTATE_UINT32(w1, XiveEND),
373 VMSTATE_UINT32(w2, XiveEND),
374 VMSTATE_UINT32(w3, XiveEND),
375 VMSTATE_UINT32(w4, XiveEND),
376 VMSTATE_UINT32(w5, XiveEND),
377 VMSTATE_UINT32(w6, XiveEND),
378 VMSTATE_UINT32(w7, XiveEND),
379 VMSTATE_END_OF_LIST()
383 static const VMStateDescription vmstate_spapr_xive_eas = {
384 .name = TYPE_SPAPR_XIVE "/eas",
385 .version_id = 1,
386 .minimum_version_id = 1,
387 .fields = (VMStateField []) {
388 VMSTATE_UINT64(w, XiveEAS),
389 VMSTATE_END_OF_LIST()
393 static const VMStateDescription vmstate_spapr_xive = {
394 .name = TYPE_SPAPR_XIVE,
395 .version_id = 1,
396 .minimum_version_id = 1,
397 .fields = (VMStateField[]) {
398 VMSTATE_UINT32_EQUAL(nr_irqs, sPAPRXive, NULL),
399 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, sPAPRXive, nr_irqs,
400 vmstate_spapr_xive_eas, XiveEAS),
401 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, sPAPRXive, nr_ends,
402 vmstate_spapr_xive_end, XiveEND),
403 VMSTATE_END_OF_LIST()
407 static Property spapr_xive_properties[] = {
408 DEFINE_PROP_UINT32("nr-irqs", sPAPRXive, nr_irqs, 0),
409 DEFINE_PROP_UINT32("nr-ends", sPAPRXive, nr_ends, 0),
410 DEFINE_PROP_UINT64("vc-base", sPAPRXive, vc_base, SPAPR_XIVE_VC_BASE),
411 DEFINE_PROP_UINT64("tm-base", sPAPRXive, tm_base, SPAPR_XIVE_TM_BASE),
412 DEFINE_PROP_END_OF_LIST(),
415 static void spapr_xive_class_init(ObjectClass *klass, void *data)
417 DeviceClass *dc = DEVICE_CLASS(klass);
418 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
420 dc->desc = "sPAPR XIVE Interrupt Controller";
421 dc->props = spapr_xive_properties;
422 dc->realize = spapr_xive_realize;
423 dc->vmsd = &vmstate_spapr_xive;
425 xrc->get_eas = spapr_xive_get_eas;
426 xrc->get_end = spapr_xive_get_end;
427 xrc->write_end = spapr_xive_write_end;
428 xrc->get_nvt = spapr_xive_get_nvt;
429 xrc->write_nvt = spapr_xive_write_nvt;
432 static const TypeInfo spapr_xive_info = {
433 .name = TYPE_SPAPR_XIVE,
434 .parent = TYPE_XIVE_ROUTER,
435 .instance_init = spapr_xive_instance_init,
436 .instance_size = sizeof(sPAPRXive),
437 .class_init = spapr_xive_class_init,
440 static void spapr_xive_register_types(void)
442 type_register_static(&spapr_xive_info);
445 type_init(spapr_xive_register_types)
447 bool spapr_xive_irq_claim(sPAPRXive *xive, uint32_t lisn, bool lsi)
449 XiveSource *xsrc = &xive->source;
451 if (lisn >= xive->nr_irqs) {
452 return false;
455 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID);
456 xive_source_irq_set(xsrc, lisn, lsi);
457 return true;
460 bool spapr_xive_irq_free(sPAPRXive *xive, uint32_t lisn)
462 XiveSource *xsrc = &xive->source;
464 if (lisn >= xive->nr_irqs) {
465 return false;
468 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
469 xive_source_irq_set(xsrc, lisn, false);
470 return true;
473 qemu_irq spapr_xive_qirq(sPAPRXive *xive, uint32_t lisn)
475 XiveSource *xsrc = &xive->source;
477 if (lisn >= xive->nr_irqs) {
478 return NULL;
481 /* The sPAPR machine/device should have claimed the IRQ before */
482 assert(xive_eas_is_valid(&xive->eat[lisn]));
484 return xive_source_qirq(xsrc, lisn);
488 * XIVE hcalls
490 * The terminology used by the XIVE hcalls is the following :
492 * TARGET vCPU number
493 * EQ Event Queue assigned by OS to receive event data
494 * ESB page for source interrupt management
495 * LISN Logical Interrupt Source Number identifying a source in the
496 * machine
497 * EISN Effective Interrupt Source Number used by guest OS to
498 * identify source in the guest
500 * The EAS, END, NVT structures are not exposed.
504 * Linux hosts under OPAL reserve priority 7 for their own escalation
505 * interrupts (DD2.X POWER9). So we only allow the guest to use
506 * priorities [0..6].
508 static bool spapr_xive_priority_is_reserved(uint8_t priority)
510 switch (priority) {
511 case 0 ... 6:
512 return false;
513 case 7: /* OPAL escalation queue */
514 default:
515 return true;
520 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
521 * real address of the MMIO page through which the Event State Buffer
522 * entry associated with the value of the "lisn" parameter is managed.
524 * Parameters:
525 * Input
526 * - R4: "flags"
527 * Bits 0-63 reserved
528 * - R5: "lisn" is per "interrupts", "interrupt-map", or
529 * "ibm,xive-lisn-ranges" properties, or as returned by the
530 * ibm,query-interrupt-source-number RTAS call, or as returned
531 * by the H_ALLOCATE_VAS_WINDOW hcall
533 * Output
534 * - R4: "flags"
535 * Bits 0-59: Reserved
536 * Bit 60: H_INT_ESB must be used for Event State Buffer
537 * management
538 * Bit 61: 1 == LSI 0 == MSI
539 * Bit 62: the full function page supports trigger
540 * Bit 63: Store EOI Supported
541 * - R5: Logical Real address of full function Event State Buffer
542 * management page, -1 if H_INT_ESB hcall flag is set to 1.
543 * - R6: Logical Real Address of trigger only Event State Buffer
544 * management page or -1.
545 * - R7: Power of 2 page size for the ESB management pages returned in
546 * R5 and R6.
549 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
550 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
551 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
552 on same page */
553 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
555 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
556 sPAPRMachineState *spapr,
557 target_ulong opcode,
558 target_ulong *args)
560 sPAPRXive *xive = spapr->xive;
561 XiveSource *xsrc = &xive->source;
562 target_ulong flags = args[0];
563 target_ulong lisn = args[1];
565 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
566 return H_FUNCTION;
569 if (flags) {
570 return H_PARAMETER;
573 if (lisn >= xive->nr_irqs) {
574 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
575 lisn);
576 return H_P2;
579 if (!xive_eas_is_valid(&xive->eat[lisn])) {
580 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
581 lisn);
582 return H_P2;
586 * All sources are emulated under the main XIVE object and share
587 * the same characteristics.
589 args[0] = 0;
590 if (!xive_source_esb_has_2page(xsrc)) {
591 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
593 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
594 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
598 * Force the use of the H_INT_ESB hcall in case of an LSI
599 * interrupt. This is necessary under KVM to re-trigger the
600 * interrupt if the level is still asserted
602 if (xive_source_irq_is_lsi(xsrc, lisn)) {
603 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
606 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
607 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
608 } else {
609 args[1] = -1;
612 if (xive_source_esb_has_2page(xsrc) &&
613 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
614 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
615 } else {
616 args[2] = -1;
619 if (xive_source_esb_has_2page(xsrc)) {
620 args[3] = xsrc->esb_shift - 1;
621 } else {
622 args[3] = xsrc->esb_shift;
625 return H_SUCCESS;
629 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
630 * Interrupt Source to a target. The Logical Interrupt Source is
631 * designated with the "lisn" parameter and the target is designated
632 * with the "target" and "priority" parameters. Upon return from the
633 * hcall(), no additional interrupts will be directed to the old EQ.
635 * Parameters:
636 * Input:
637 * - R4: "flags"
638 * Bits 0-61: Reserved
639 * Bit 62: set the "eisn" in the EAS
640 * Bit 63: masks the interrupt source in the hardware interrupt
641 * control structure. An interrupt masked by this mechanism will
642 * be dropped, but it's source state bits will still be
643 * set. There is no race-free way of unmasking and restoring the
644 * source. Thus this should only be used in interrupts that are
645 * also masked at the source, and only in cases where the
646 * interrupt is not meant to be used for a large amount of time
647 * because no valid target exists for it for example
648 * - R5: "lisn" is per "interrupts", "interrupt-map", or
649 * "ibm,xive-lisn-ranges" properties, or as returned by the
650 * ibm,query-interrupt-source-number RTAS call, or as returned by
651 * the H_ALLOCATE_VAS_WINDOW hcall
652 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
653 * "ibm,ppc-interrupt-gserver#s"
654 * - R7: "priority" is a valid priority not in
655 * "ibm,plat-res-int-priorities"
656 * - R8: "eisn" is the guest EISN associated with the "lisn"
658 * Output:
659 * - None
662 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
663 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
665 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
666 sPAPRMachineState *spapr,
667 target_ulong opcode,
668 target_ulong *args)
670 sPAPRXive *xive = spapr->xive;
671 XiveEAS eas, new_eas;
672 target_ulong flags = args[0];
673 target_ulong lisn = args[1];
674 target_ulong target = args[2];
675 target_ulong priority = args[3];
676 target_ulong eisn = args[4];
677 uint8_t end_blk;
678 uint32_t end_idx;
680 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
681 return H_FUNCTION;
684 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
685 return H_PARAMETER;
688 if (lisn >= xive->nr_irqs) {
689 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
690 lisn);
691 return H_P2;
694 eas = xive->eat[lisn];
695 if (!xive_eas_is_valid(&eas)) {
696 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
697 lisn);
698 return H_P2;
701 /* priority 0xff is used to reset the EAS */
702 if (priority == 0xff) {
703 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
704 goto out;
707 if (flags & SPAPR_XIVE_SRC_MASK) {
708 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
709 } else {
710 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
713 if (spapr_xive_priority_is_reserved(priority)) {
714 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
715 " is reserved\n", priority);
716 return H_P4;
720 * Validate that "target" is part of the list of threads allocated
721 * to the partition. For that, find the END corresponding to the
722 * target.
724 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
725 return H_P3;
728 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
729 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
731 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
732 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
735 out:
736 xive->eat[lisn] = new_eas;
737 return H_SUCCESS;
741 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
742 * target/priority pair is assigned to the specified Logical Interrupt
743 * Source.
745 * Parameters:
746 * Input:
747 * - R4: "flags"
748 * Bits 0-63 Reserved
749 * - R5: "lisn" is per "interrupts", "interrupt-map", or
750 * "ibm,xive-lisn-ranges" properties, or as returned by the
751 * ibm,query-interrupt-source-number RTAS call, or as
752 * returned by the H_ALLOCATE_VAS_WINDOW hcall
754 * Output:
755 * - R4: Target to which the specified Logical Interrupt Source is
756 * assigned
757 * - R5: Priority to which the specified Logical Interrupt Source is
758 * assigned
759 * - R6: EISN for the specified Logical Interrupt Source (this will be
760 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
762 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
763 sPAPRMachineState *spapr,
764 target_ulong opcode,
765 target_ulong *args)
767 sPAPRXive *xive = spapr->xive;
768 target_ulong flags = args[0];
769 target_ulong lisn = args[1];
770 XiveEAS eas;
771 XiveEND *end;
772 uint8_t nvt_blk;
773 uint32_t end_idx, nvt_idx;
775 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
776 return H_FUNCTION;
779 if (flags) {
780 return H_PARAMETER;
783 if (lisn >= xive->nr_irqs) {
784 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
785 lisn);
786 return H_P2;
789 eas = xive->eat[lisn];
790 if (!xive_eas_is_valid(&eas)) {
791 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
792 lisn);
793 return H_P2;
796 /* EAS_END_BLOCK is unused on sPAPR */
797 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
799 assert(end_idx < xive->nr_ends);
800 end = &xive->endt[end_idx];
802 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
803 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
804 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
806 if (xive_eas_is_masked(&eas)) {
807 args[1] = 0xff;
808 } else {
809 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
812 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
814 return H_SUCCESS;
818 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
819 * address of the notification management page associated with the
820 * specified target and priority.
822 * Parameters:
823 * Input:
824 * - R4: "flags"
825 * Bits 0-63 Reserved
826 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
827 * "ibm,ppc-interrupt-gserver#s"
828 * - R6: "priority" is a valid priority not in
829 * "ibm,plat-res-int-priorities"
831 * Output:
832 * - R4: Logical real address of notification page
833 * - R5: Power of 2 page size of the notification page
835 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
836 sPAPRMachineState *spapr,
837 target_ulong opcode,
838 target_ulong *args)
840 sPAPRXive *xive = spapr->xive;
841 XiveENDSource *end_xsrc = &xive->end_source;
842 target_ulong flags = args[0];
843 target_ulong target = args[1];
844 target_ulong priority = args[2];
845 XiveEND *end;
846 uint8_t end_blk;
847 uint32_t end_idx;
849 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
850 return H_FUNCTION;
853 if (flags) {
854 return H_PARAMETER;
858 * H_STATE should be returned if a H_INT_RESET is in progress.
859 * This is not needed when running the emulation under QEMU
862 if (spapr_xive_priority_is_reserved(priority)) {
863 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
864 " is reserved\n", priority);
865 return H_P3;
869 * Validate that "target" is part of the list of threads allocated
870 * to the partition. For that, find the END corresponding to the
871 * target.
873 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
874 return H_P2;
877 assert(end_idx < xive->nr_ends);
878 end = &xive->endt[end_idx];
880 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
881 if (xive_end_is_enqueue(end)) {
882 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
883 } else {
884 args[1] = 0;
887 return H_SUCCESS;
891 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
892 * a given "target" and "priority". It is also used to set the
893 * notification config associated with the EQ. An EQ size of 0 is
894 * used to reset the EQ config for a given target and priority. If
895 * resetting the EQ config, the END associated with the given "target"
896 * and "priority" will be changed to disable queueing.
898 * Upon return from the hcall(), no additional interrupts will be
899 * directed to the old EQ (if one was set). The old EQ (if one was
900 * set) should be investigated for interrupts that occurred prior to
901 * or during the hcall().
903 * Parameters:
904 * Input:
905 * - R4: "flags"
906 * Bits 0-62: Reserved
907 * Bit 63: Unconditional Notify (n) per the XIVE spec
908 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
909 * "ibm,ppc-interrupt-gserver#s"
910 * - R6: "priority" is a valid priority not in
911 * "ibm,plat-res-int-priorities"
912 * - R7: "eventQueue": The logical real address of the start of the EQ
913 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
915 * Output:
916 * - None
919 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
921 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
922 sPAPRMachineState *spapr,
923 target_ulong opcode,
924 target_ulong *args)
926 sPAPRXive *xive = spapr->xive;
927 target_ulong flags = args[0];
928 target_ulong target = args[1];
929 target_ulong priority = args[2];
930 target_ulong qpage = args[3];
931 target_ulong qsize = args[4];
932 XiveEND end;
933 uint8_t end_blk, nvt_blk;
934 uint32_t end_idx, nvt_idx;
936 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
937 return H_FUNCTION;
940 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
941 return H_PARAMETER;
945 * H_STATE should be returned if a H_INT_RESET is in progress.
946 * This is not needed when running the emulation under QEMU
949 if (spapr_xive_priority_is_reserved(priority)) {
950 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
951 " is reserved\n", priority);
952 return H_P3;
956 * Validate that "target" is part of the list of threads allocated
957 * to the partition. For that, find the END corresponding to the
958 * target.
961 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
962 return H_P2;
965 assert(end_idx < xive->nr_ends);
966 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
968 switch (qsize) {
969 case 12:
970 case 16:
971 case 21:
972 case 24:
973 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
974 end.w3 = cpu_to_be32(qpage & 0xffffffff);
975 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
976 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
977 break;
978 case 0:
979 /* reset queue and disable queueing */
980 spapr_xive_end_reset(&end);
981 goto out;
983 default:
984 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
985 qsize);
986 return H_P5;
989 if (qsize) {
990 hwaddr plen = 1 << qsize;
991 void *eq;
994 * Validate the guest EQ. We should also check that the queue
995 * has been zeroed by the OS.
997 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
998 MEMTXATTRS_UNSPECIFIED);
999 if (plen != 1 << qsize) {
1000 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1001 HWADDR_PRIx "\n", qpage);
1002 return H_P4;
1004 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1007 /* "target" should have been validated above */
1008 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1009 g_assert_not_reached();
1013 * Ensure the priority and target are correctly set (they will not
1014 * be right after allocation)
1016 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1017 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1018 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1020 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1021 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1022 } else {
1023 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1027 * The generation bit for the END starts at 1 and The END page
1028 * offset counter starts at 0.
1030 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1031 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1032 end.w0 |= cpu_to_be32(END_W0_VALID);
1035 * TODO: issue syncs required to ensure all in-flight interrupts
1036 * are complete on the old END
1039 out:
1040 /* Update END */
1041 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1042 return H_SUCCESS;
1046 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1047 * target and priority.
1049 * Parameters:
1050 * Input:
1051 * - R4: "flags"
1052 * Bits 0-62: Reserved
1053 * Bit 63: Debug: Return debug data
1054 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1055 * "ibm,ppc-interrupt-gserver#s"
1056 * - R6: "priority" is a valid priority not in
1057 * "ibm,plat-res-int-priorities"
1059 * Output:
1060 * - R4: "flags":
1061 * Bits 0-61: Reserved
1062 * Bit 62: The value of Event Queue Generation Number (g) per
1063 * the XIVE spec if "Debug" = 1
1064 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1065 * - R5: The logical real address of the start of the EQ
1066 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1067 * - R7: The value of Event Queue Offset Counter per XIVE spec
1068 * if "Debug" = 1, else 0
1072 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1074 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1075 sPAPRMachineState *spapr,
1076 target_ulong opcode,
1077 target_ulong *args)
1079 sPAPRXive *xive = spapr->xive;
1080 target_ulong flags = args[0];
1081 target_ulong target = args[1];
1082 target_ulong priority = args[2];
1083 XiveEND *end;
1084 uint8_t end_blk;
1085 uint32_t end_idx;
1087 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1088 return H_FUNCTION;
1091 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1092 return H_PARAMETER;
1096 * H_STATE should be returned if a H_INT_RESET is in progress.
1097 * This is not needed when running the emulation under QEMU
1100 if (spapr_xive_priority_is_reserved(priority)) {
1101 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1102 " is reserved\n", priority);
1103 return H_P3;
1107 * Validate that "target" is part of the list of threads allocated
1108 * to the partition. For that, find the END corresponding to the
1109 * target.
1111 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1112 return H_P2;
1115 assert(end_idx < xive->nr_ends);
1116 end = &xive->endt[end_idx];
1118 args[0] = 0;
1119 if (xive_end_is_notify(end)) {
1120 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1123 if (xive_end_is_enqueue(end)) {
1124 args[1] = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1125 | be32_to_cpu(end->w3);
1126 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1127 } else {
1128 args[1] = 0;
1129 args[2] = 0;
1132 /* TODO: do we need any locking on the END ? */
1133 if (flags & SPAPR_XIVE_END_DEBUG) {
1134 /* Load the event queue generation number into the return flags */
1135 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1137 /* Load R7 with the event queue offset counter */
1138 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1139 } else {
1140 args[3] = 0;
1143 return H_SUCCESS;
1147 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1148 * reporting cache line pair for the calling thread. The reporting
1149 * cache lines will contain the OS interrupt context when the OS
1150 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1151 * interrupt. The reporting cache lines can be reset by inputting -1
1152 * in "reportingLine". Issuing the CI store byte without reporting
1153 * cache lines registered will result in the data not being accessible
1154 * to the OS.
1156 * Parameters:
1157 * Input:
1158 * - R4: "flags"
1159 * Bits 0-63: Reserved
1160 * - R5: "reportingLine": The logical real address of the reporting cache
1161 * line pair
1163 * Output:
1164 * - None
1166 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1167 sPAPRMachineState *spapr,
1168 target_ulong opcode,
1169 target_ulong *args)
1171 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1172 return H_FUNCTION;
1176 * H_STATE should be returned if a H_INT_RESET is in progress.
1177 * This is not needed when running the emulation under QEMU
1180 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1181 return H_FUNCTION;
1185 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1186 * real address of the reporting cache line pair set for the input
1187 * "target". If no reporting cache line pair has been set, -1 is
1188 * returned.
1190 * Parameters:
1191 * Input:
1192 * - R4: "flags"
1193 * Bits 0-63: Reserved
1194 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1195 * "ibm,ppc-interrupt-gserver#s"
1196 * - R6: "reportingLine": The logical real address of the reporting
1197 * cache line pair
1199 * Output:
1200 * - R4: The logical real address of the reporting line if set, else -1
1202 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1203 sPAPRMachineState *spapr,
1204 target_ulong opcode,
1205 target_ulong *args)
1207 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1208 return H_FUNCTION;
1212 * H_STATE should be returned if a H_INT_RESET is in progress.
1213 * This is not needed when running the emulation under QEMU
1216 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1217 return H_FUNCTION;
1221 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1222 * page for the input "lisn". This hcall is only supported for LISNs
1223 * that have the ESB hcall flag set to 1 when returned from hcall()
1224 * H_INT_GET_SOURCE_INFO.
1226 * Parameters:
1227 * Input:
1228 * - R4: "flags"
1229 * Bits 0-62: Reserved
1230 * bit 63: Store: Store=1, store operation, else load operation
1231 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1232 * "ibm,xive-lisn-ranges" properties, or as returned by the
1233 * ibm,query-interrupt-source-number RTAS call, or as
1234 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1235 * - R6: "esbOffset" is the offset into the ESB page for the load or
1236 * store operation
1237 * - R7: "storeData" is the data to write for a store operation
1239 * Output:
1240 * - R4: The value of the load if load operation, else -1
1243 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1245 static target_ulong h_int_esb(PowerPCCPU *cpu,
1246 sPAPRMachineState *spapr,
1247 target_ulong opcode,
1248 target_ulong *args)
1250 sPAPRXive *xive = spapr->xive;
1251 XiveEAS eas;
1252 target_ulong flags = args[0];
1253 target_ulong lisn = args[1];
1254 target_ulong offset = args[2];
1255 target_ulong data = args[3];
1256 hwaddr mmio_addr;
1257 XiveSource *xsrc = &xive->source;
1259 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1260 return H_FUNCTION;
1263 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1264 return H_PARAMETER;
1267 if (lisn >= xive->nr_irqs) {
1268 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1269 lisn);
1270 return H_P2;
1273 eas = xive->eat[lisn];
1274 if (!xive_eas_is_valid(&eas)) {
1275 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1276 lisn);
1277 return H_P2;
1280 if (offset > (1ull << xsrc->esb_shift)) {
1281 return H_P3;
1284 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1286 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1287 (flags & SPAPR_XIVE_ESB_STORE))) {
1288 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1289 HWADDR_PRIx "\n", mmio_addr);
1290 return H_HARDWARE;
1292 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1293 return H_SUCCESS;
1297 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1298 * ensure any in flight events for the input lisn are in the event
1299 * queue.
1301 * Parameters:
1302 * Input:
1303 * - R4: "flags"
1304 * Bits 0-63: Reserved
1305 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1306 * "ibm,xive-lisn-ranges" properties, or as returned by the
1307 * ibm,query-interrupt-source-number RTAS call, or as
1308 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1310 * Output:
1311 * - None
1313 static target_ulong h_int_sync(PowerPCCPU *cpu,
1314 sPAPRMachineState *spapr,
1315 target_ulong opcode,
1316 target_ulong *args)
1318 sPAPRXive *xive = spapr->xive;
1319 XiveEAS eas;
1320 target_ulong flags = args[0];
1321 target_ulong lisn = args[1];
1323 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1324 return H_FUNCTION;
1327 if (flags) {
1328 return H_PARAMETER;
1331 if (lisn >= xive->nr_irqs) {
1332 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1333 lisn);
1334 return H_P2;
1337 eas = xive->eat[lisn];
1338 if (!xive_eas_is_valid(&eas)) {
1339 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1340 lisn);
1341 return H_P2;
1345 * H_STATE should be returned if a H_INT_RESET is in progress.
1346 * This is not needed when running the emulation under QEMU
1349 /* This is not real hardware. Nothing to be done */
1350 return H_SUCCESS;
1354 * The H_INT_RESET hcall() is used to reset all of the partition's
1355 * interrupt exploitation structures to their initial state. This
1356 * means losing all previously set interrupt state set via
1357 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1359 * Parameters:
1360 * Input:
1361 * - R4: "flags"
1362 * Bits 0-63: Reserved
1364 * Output:
1365 * - None
1367 static target_ulong h_int_reset(PowerPCCPU *cpu,
1368 sPAPRMachineState *spapr,
1369 target_ulong opcode,
1370 target_ulong *args)
1372 sPAPRXive *xive = spapr->xive;
1373 target_ulong flags = args[0];
1375 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1376 return H_FUNCTION;
1379 if (flags) {
1380 return H_PARAMETER;
1383 device_reset(DEVICE(xive));
1384 return H_SUCCESS;
1387 void spapr_xive_hcall_init(sPAPRMachineState *spapr)
1389 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1390 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1391 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1392 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1393 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1394 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1395 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1396 h_int_set_os_reporting_line);
1397 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1398 h_int_get_os_reporting_line);
1399 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1400 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1401 spapr_register_hypercall(H_INT_RESET, h_int_reset);