1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
5 #include <sys/resource.h>
8 #include "disas/disas.h"
21 #define ELF_OSABI ELFOSABI_SYSV
23 /* from personality.h */
26 * Flags for bug emulation.
28 * These occupy the top three bytes.
31 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO
= 0x0100000,
35 ADDR_COMPAT_LAYOUT
= 0x0200000,
36 READ_IMPLIES_EXEC
= 0x0400000,
37 ADDR_LIMIT_32BIT
= 0x0800000,
38 SHORT_INODE
= 0x1000000,
39 WHOLE_SECONDS
= 0x2000000,
40 STICKY_TIMEOUTS
= 0x4000000,
41 ADDR_LIMIT_3GB
= 0x8000000,
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
52 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
53 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
54 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
55 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
56 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
57 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
58 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
59 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
61 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
62 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
64 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
65 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
66 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
67 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
69 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
70 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
71 PER_OSF4
= 0x000f, /* OSF/1 v4 */
77 * Return the base personality without flags.
79 #define personality(pers) (pers & PER_MASK)
81 /* this flag is uneffective under linux too, should be deleted */
83 #define MAP_DENYWRITE 0
86 /* should probably go in elf.h */
91 #ifdef TARGET_WORDS_BIGENDIAN
92 #define ELF_DATA ELFDATA2MSB
94 #define ELF_DATA ELFDATA2LSB
97 #ifdef TARGET_ABI_MIPSN32
98 typedef abi_ullong target_elf_greg_t
;
99 #define tswapreg(ptr) tswap64(ptr)
101 typedef abi_ulong target_elf_greg_t
;
102 #define tswapreg(ptr) tswapal(ptr)
106 typedef abi_ushort target_uid_t
;
107 typedef abi_ushort target_gid_t
;
109 typedef abi_uint target_uid_t
;
110 typedef abi_uint target_gid_t
;
112 typedef abi_int target_pid_t
;
116 #define ELF_PLATFORM get_elf_platform()
118 static const char *get_elf_platform(void)
120 static char elf_platform
[] = "i386";
121 int family
= object_property_get_int(OBJECT(thread_cpu
), "family", NULL
);
125 elf_platform
[1] = '0' + family
;
129 #define ELF_HWCAP get_elf_hwcap()
131 static uint32_t get_elf_hwcap(void)
133 X86CPU
*cpu
= X86_CPU(thread_cpu
);
135 return cpu
->env
.features
[FEAT_1_EDX
];
139 #define ELF_START_MMAP 0x2aaaaab000ULL
141 #define ELF_CLASS ELFCLASS64
142 #define ELF_ARCH EM_X86_64
144 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
147 regs
->rsp
= infop
->start_stack
;
148 regs
->rip
= infop
->entry
;
152 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
159 * See linux kernel: arch/x86/include/asm/elf.h
161 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
163 (*regs
)[0] = env
->regs
[15];
164 (*regs
)[1] = env
->regs
[14];
165 (*regs
)[2] = env
->regs
[13];
166 (*regs
)[3] = env
->regs
[12];
167 (*regs
)[4] = env
->regs
[R_EBP
];
168 (*regs
)[5] = env
->regs
[R_EBX
];
169 (*regs
)[6] = env
->regs
[11];
170 (*regs
)[7] = env
->regs
[10];
171 (*regs
)[8] = env
->regs
[9];
172 (*regs
)[9] = env
->regs
[8];
173 (*regs
)[10] = env
->regs
[R_EAX
];
174 (*regs
)[11] = env
->regs
[R_ECX
];
175 (*regs
)[12] = env
->regs
[R_EDX
];
176 (*regs
)[13] = env
->regs
[R_ESI
];
177 (*regs
)[14] = env
->regs
[R_EDI
];
178 (*regs
)[15] = env
->regs
[R_EAX
]; /* XXX */
179 (*regs
)[16] = env
->eip
;
180 (*regs
)[17] = env
->segs
[R_CS
].selector
& 0xffff;
181 (*regs
)[18] = env
->eflags
;
182 (*regs
)[19] = env
->regs
[R_ESP
];
183 (*regs
)[20] = env
->segs
[R_SS
].selector
& 0xffff;
184 (*regs
)[21] = env
->segs
[R_FS
].selector
& 0xffff;
185 (*regs
)[22] = env
->segs
[R_GS
].selector
& 0xffff;
186 (*regs
)[23] = env
->segs
[R_DS
].selector
& 0xffff;
187 (*regs
)[24] = env
->segs
[R_ES
].selector
& 0xffff;
188 (*regs
)[25] = env
->segs
[R_FS
].selector
& 0xffff;
189 (*regs
)[26] = env
->segs
[R_GS
].selector
& 0xffff;
194 #define ELF_START_MMAP 0x80000000
197 * This is used to ensure we don't load something for the wrong architecture.
199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
202 * These are used to set parameters in the core dumps.
204 #define ELF_CLASS ELFCLASS32
205 #define ELF_ARCH EM_386
207 static inline void init_thread(struct target_pt_regs
*regs
,
208 struct image_info
*infop
)
210 regs
->esp
= infop
->start_stack
;
211 regs
->eip
= infop
->entry
;
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
219 A value of 0 tells we have no such handler. */
224 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
231 * See linux kernel: arch/x86/include/asm/elf.h
233 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
235 (*regs
)[0] = env
->regs
[R_EBX
];
236 (*regs
)[1] = env
->regs
[R_ECX
];
237 (*regs
)[2] = env
->regs
[R_EDX
];
238 (*regs
)[3] = env
->regs
[R_ESI
];
239 (*regs
)[4] = env
->regs
[R_EDI
];
240 (*regs
)[5] = env
->regs
[R_EBP
];
241 (*regs
)[6] = env
->regs
[R_EAX
];
242 (*regs
)[7] = env
->segs
[R_DS
].selector
& 0xffff;
243 (*regs
)[8] = env
->segs
[R_ES
].selector
& 0xffff;
244 (*regs
)[9] = env
->segs
[R_FS
].selector
& 0xffff;
245 (*regs
)[10] = env
->segs
[R_GS
].selector
& 0xffff;
246 (*regs
)[11] = env
->regs
[R_EAX
]; /* XXX */
247 (*regs
)[12] = env
->eip
;
248 (*regs
)[13] = env
->segs
[R_CS
].selector
& 0xffff;
249 (*regs
)[14] = env
->eflags
;
250 (*regs
)[15] = env
->regs
[R_ESP
];
251 (*regs
)[16] = env
->segs
[R_SS
].selector
& 0xffff;
255 #define USE_ELF_CORE_DUMP
256 #define ELF_EXEC_PAGESIZE 4096
262 #ifndef TARGET_AARCH64
263 /* 32 bit ARM definitions */
265 #define ELF_START_MMAP 0x80000000
267 #define ELF_ARCH EM_ARM
268 #define ELF_CLASS ELFCLASS32
270 static inline void init_thread(struct target_pt_regs
*regs
,
271 struct image_info
*infop
)
273 abi_long stack
= infop
->start_stack
;
274 memset(regs
, 0, sizeof(*regs
));
276 regs
->uregs
[16] = ARM_CPU_MODE_USR
;
277 if (infop
->entry
& 1) {
278 regs
->uregs
[16] |= CPSR_T
;
280 regs
->uregs
[15] = infop
->entry
& 0xfffffffe;
281 regs
->uregs
[13] = infop
->start_stack
;
282 /* FIXME - what to for failure of get_user()? */
283 get_user_ual(regs
->uregs
[2], stack
+ 8); /* envp */
284 get_user_ual(regs
->uregs
[1], stack
+ 4); /* envp */
285 /* XXX: it seems that r0 is zeroed after ! */
287 /* For uClinux PIC binaries. */
288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
289 regs
->uregs
[10] = infop
->start_data
;
293 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
295 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUARMState
*env
)
297 (*regs
)[0] = tswapreg(env
->regs
[0]);
298 (*regs
)[1] = tswapreg(env
->regs
[1]);
299 (*regs
)[2] = tswapreg(env
->regs
[2]);
300 (*regs
)[3] = tswapreg(env
->regs
[3]);
301 (*regs
)[4] = tswapreg(env
->regs
[4]);
302 (*regs
)[5] = tswapreg(env
->regs
[5]);
303 (*regs
)[6] = tswapreg(env
->regs
[6]);
304 (*regs
)[7] = tswapreg(env
->regs
[7]);
305 (*regs
)[8] = tswapreg(env
->regs
[8]);
306 (*regs
)[9] = tswapreg(env
->regs
[9]);
307 (*regs
)[10] = tswapreg(env
->regs
[10]);
308 (*regs
)[11] = tswapreg(env
->regs
[11]);
309 (*regs
)[12] = tswapreg(env
->regs
[12]);
310 (*regs
)[13] = tswapreg(env
->regs
[13]);
311 (*regs
)[14] = tswapreg(env
->regs
[14]);
312 (*regs
)[15] = tswapreg(env
->regs
[15]);
314 (*regs
)[16] = tswapreg(cpsr_read((CPUARMState
*)env
));
315 (*regs
)[17] = tswapreg(env
->regs
[0]); /* XXX */
318 #define USE_ELF_CORE_DUMP
319 #define ELF_EXEC_PAGESIZE 4096
323 ARM_HWCAP_ARM_SWP
= 1 << 0,
324 ARM_HWCAP_ARM_HALF
= 1 << 1,
325 ARM_HWCAP_ARM_THUMB
= 1 << 2,
326 ARM_HWCAP_ARM_26BIT
= 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
328 ARM_HWCAP_ARM_FPA
= 1 << 5,
329 ARM_HWCAP_ARM_VFP
= 1 << 6,
330 ARM_HWCAP_ARM_EDSP
= 1 << 7,
331 ARM_HWCAP_ARM_JAVA
= 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
333 ARM_HWCAP_ARM_CRUNCH
= 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE
= 1 << 11,
335 ARM_HWCAP_ARM_NEON
= 1 << 12,
336 ARM_HWCAP_ARM_VFPv3
= 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16
= 1 << 14,
338 ARM_HWCAP_ARM_TLS
= 1 << 15,
339 ARM_HWCAP_ARM_VFPv4
= 1 << 16,
340 ARM_HWCAP_ARM_IDIVA
= 1 << 17,
341 ARM_HWCAP_ARM_IDIVT
= 1 << 18,
342 ARM_HWCAP_ARM_VFPD32
= 1 << 19,
343 ARM_HWCAP_ARM_LPAE
= 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM
= 1 << 21,
348 ARM_HWCAP2_ARM_AES
= 1 << 0,
349 ARM_HWCAP2_ARM_PMULL
= 1 << 1,
350 ARM_HWCAP2_ARM_SHA1
= 1 << 2,
351 ARM_HWCAP2_ARM_SHA2
= 1 << 3,
352 ARM_HWCAP2_ARM_CRC32
= 1 << 4,
355 /* The commpage only exists for 32 bit kernels */
357 /* Return 1 if the proposed guest space is suitable for the guest.
358 * Return 0 if the proposed guest space isn't suitable, but another
359 * address space should be tried.
360 * Return -1 if there is no way the proposed guest space can be
361 * valid regardless of the base.
362 * The guest code may leave a page mapped and populate it if the
363 * address is suitable.
365 static int init_guest_commpage(unsigned long guest_base
,
366 unsigned long guest_size
)
368 unsigned long real_start
, test_page_addr
;
370 /* We need to check that we can force a fault on access to the
371 * commpage at 0xffff0fxx
373 test_page_addr
= guest_base
+ (0xffff0f00 & qemu_host_page_mask
);
375 /* If the commpage lies within the already allocated guest space,
376 * then there is no way we can allocate it.
378 * You may be thinking that that this check is redundant because
379 * we already validated the guest size against MAX_RESERVED_VA;
380 * but if qemu_host_page_mask is unusually large, then
381 * test_page_addr may be lower.
383 if (test_page_addr
>= guest_base
384 && test_page_addr
< (guest_base
+ guest_size
)) {
388 /* Note it needs to be writeable to let us initialise it */
389 real_start
= (unsigned long)
390 mmap((void *)test_page_addr
, qemu_host_page_size
,
391 PROT_READ
| PROT_WRITE
,
392 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
394 /* If we can't map it then try another address */
395 if (real_start
== -1ul) {
399 if (real_start
!= test_page_addr
) {
400 /* OS didn't put the page where we asked - unmap and reject */
401 munmap((void *)real_start
, qemu_host_page_size
);
405 /* Leave the page mapped
406 * Populate it (mmap should have left it all 0'd)
409 /* Kernel helper versions */
410 __put_user(5, (uint32_t *)g2h(0xffff0ffcul
));
412 /* Now it's populated make it RO */
413 if (mprotect((void *)test_page_addr
, qemu_host_page_size
, PROT_READ
)) {
414 perror("Protecting guest commpage");
418 return 1; /* All good */
421 #define ELF_HWCAP get_elf_hwcap()
422 #define ELF_HWCAP2 get_elf_hwcap2()
424 static uint32_t get_elf_hwcap(void)
426 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
429 hwcaps
|= ARM_HWCAP_ARM_SWP
;
430 hwcaps
|= ARM_HWCAP_ARM_HALF
;
431 hwcaps
|= ARM_HWCAP_ARM_THUMB
;
432 hwcaps
|= ARM_HWCAP_ARM_FAST_MULT
;
434 /* probe for the extra features */
435 #define GET_FEATURE(feat, hwcap) \
436 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
437 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
438 GET_FEATURE(ARM_FEATURE_V5
, ARM_HWCAP_ARM_EDSP
);
439 GET_FEATURE(ARM_FEATURE_VFP
, ARM_HWCAP_ARM_VFP
);
440 GET_FEATURE(ARM_FEATURE_IWMMXT
, ARM_HWCAP_ARM_IWMMXT
);
441 GET_FEATURE(ARM_FEATURE_THUMB2EE
, ARM_HWCAP_ARM_THUMBEE
);
442 GET_FEATURE(ARM_FEATURE_NEON
, ARM_HWCAP_ARM_NEON
);
443 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPv3
);
444 GET_FEATURE(ARM_FEATURE_V6K
, ARM_HWCAP_ARM_TLS
);
445 GET_FEATURE(ARM_FEATURE_VFP4
, ARM_HWCAP_ARM_VFPv4
);
446 GET_FEATURE(ARM_FEATURE_ARM_DIV
, ARM_HWCAP_ARM_IDIVA
);
447 GET_FEATURE(ARM_FEATURE_THUMB_DIV
, ARM_HWCAP_ARM_IDIVT
);
448 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
449 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
450 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
451 * to our VFP_FP16 feature bit.
453 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPD32
);
454 GET_FEATURE(ARM_FEATURE_LPAE
, ARM_HWCAP_ARM_LPAE
);
459 static uint32_t get_elf_hwcap2(void)
461 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
464 GET_FEATURE(ARM_FEATURE_V8_AES
, ARM_HWCAP2_ARM_AES
);
465 GET_FEATURE(ARM_FEATURE_V8_PMULL
, ARM_HWCAP2_ARM_PMULL
);
466 GET_FEATURE(ARM_FEATURE_V8_SHA1
, ARM_HWCAP2_ARM_SHA1
);
467 GET_FEATURE(ARM_FEATURE_V8_SHA256
, ARM_HWCAP2_ARM_SHA2
);
468 GET_FEATURE(ARM_FEATURE_CRC
, ARM_HWCAP2_ARM_CRC32
);
475 /* 64 bit ARM definitions */
476 #define ELF_START_MMAP 0x80000000
478 #define ELF_ARCH EM_AARCH64
479 #define ELF_CLASS ELFCLASS64
480 #define ELF_PLATFORM "aarch64"
482 static inline void init_thread(struct target_pt_regs
*regs
,
483 struct image_info
*infop
)
485 abi_long stack
= infop
->start_stack
;
486 memset(regs
, 0, sizeof(*regs
));
488 regs
->pc
= infop
->entry
& ~0x3ULL
;
493 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
495 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
496 const CPUARMState
*env
)
500 for (i
= 0; i
< 32; i
++) {
501 (*regs
)[i
] = tswapreg(env
->xregs
[i
]);
503 (*regs
)[32] = tswapreg(env
->pc
);
504 (*regs
)[33] = tswapreg(pstate_read((CPUARMState
*)env
));
507 #define USE_ELF_CORE_DUMP
508 #define ELF_EXEC_PAGESIZE 4096
511 ARM_HWCAP_A64_FP
= 1 << 0,
512 ARM_HWCAP_A64_ASIMD
= 1 << 1,
513 ARM_HWCAP_A64_EVTSTRM
= 1 << 2,
514 ARM_HWCAP_A64_AES
= 1 << 3,
515 ARM_HWCAP_A64_PMULL
= 1 << 4,
516 ARM_HWCAP_A64_SHA1
= 1 << 5,
517 ARM_HWCAP_A64_SHA2
= 1 << 6,
518 ARM_HWCAP_A64_CRC32
= 1 << 7,
519 ARM_HWCAP_A64_ATOMICS
= 1 << 8,
520 ARM_HWCAP_A64_FPHP
= 1 << 9,
521 ARM_HWCAP_A64_ASIMDHP
= 1 << 10,
522 ARM_HWCAP_A64_CPUID
= 1 << 11,
523 ARM_HWCAP_A64_ASIMDRDM
= 1 << 12,
524 ARM_HWCAP_A64_JSCVT
= 1 << 13,
525 ARM_HWCAP_A64_FCMA
= 1 << 14,
526 ARM_HWCAP_A64_LRCPC
= 1 << 15,
527 ARM_HWCAP_A64_DCPOP
= 1 << 16,
528 ARM_HWCAP_A64_SHA3
= 1 << 17,
529 ARM_HWCAP_A64_SM3
= 1 << 18,
530 ARM_HWCAP_A64_SM4
= 1 << 19,
531 ARM_HWCAP_A64_ASIMDDP
= 1 << 20,
532 ARM_HWCAP_A64_SHA512
= 1 << 21,
533 ARM_HWCAP_A64_SVE
= 1 << 22,
536 #define ELF_HWCAP get_elf_hwcap()
538 static uint32_t get_elf_hwcap(void)
540 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
543 hwcaps
|= ARM_HWCAP_A64_FP
;
544 hwcaps
|= ARM_HWCAP_A64_ASIMD
;
546 /* probe for the extra features */
547 #define GET_FEATURE(feat, hwcap) \
548 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
549 GET_FEATURE(ARM_FEATURE_V8_AES
, ARM_HWCAP_A64_AES
);
550 GET_FEATURE(ARM_FEATURE_V8_PMULL
, ARM_HWCAP_A64_PMULL
);
551 GET_FEATURE(ARM_FEATURE_V8_SHA1
, ARM_HWCAP_A64_SHA1
);
552 GET_FEATURE(ARM_FEATURE_V8_SHA256
, ARM_HWCAP_A64_SHA2
);
553 GET_FEATURE(ARM_FEATURE_CRC
, ARM_HWCAP_A64_CRC32
);
554 GET_FEATURE(ARM_FEATURE_V8_SHA3
, ARM_HWCAP_A64_SHA3
);
555 GET_FEATURE(ARM_FEATURE_V8_SM3
, ARM_HWCAP_A64_SM3
);
556 GET_FEATURE(ARM_FEATURE_V8_SM4
, ARM_HWCAP_A64_SM4
);
557 GET_FEATURE(ARM_FEATURE_V8_SHA512
, ARM_HWCAP_A64_SHA512
);
558 GET_FEATURE(ARM_FEATURE_V8_FP16
,
559 ARM_HWCAP_A64_FPHP
| ARM_HWCAP_A64_ASIMDHP
);
560 GET_FEATURE(ARM_FEATURE_V8_RDM
, ARM_HWCAP_A64_ASIMDRDM
);
561 GET_FEATURE(ARM_FEATURE_V8_FCMA
, ARM_HWCAP_A64_FCMA
);
567 #endif /* not TARGET_AARCH64 */
568 #endif /* TARGET_ARM */
571 #ifdef TARGET_SPARC64
573 #define ELF_START_MMAP 0x80000000
574 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
575 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
577 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
579 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
582 #define ELF_CLASS ELFCLASS64
583 #define ELF_ARCH EM_SPARCV9
585 #define STACK_BIAS 2047
587 static inline void init_thread(struct target_pt_regs
*regs
,
588 struct image_info
*infop
)
593 regs
->pc
= infop
->entry
;
594 regs
->npc
= regs
->pc
+ 4;
597 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
599 if (personality(infop
->personality
) == PER_LINUX32
)
600 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
602 regs
->u_regs
[14] = infop
->start_stack
- 16 * 8 - STACK_BIAS
;
607 #define ELF_START_MMAP 0x80000000
608 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
609 | HWCAP_SPARC_MULDIV)
611 #define ELF_CLASS ELFCLASS32
612 #define ELF_ARCH EM_SPARC
614 static inline void init_thread(struct target_pt_regs
*regs
,
615 struct image_info
*infop
)
618 regs
->pc
= infop
->entry
;
619 regs
->npc
= regs
->pc
+ 4;
621 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
629 #define ELF_MACHINE PPC_ELF_MACHINE
630 #define ELF_START_MMAP 0x80000000
632 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
634 #define elf_check_arch(x) ( (x) == EM_PPC64 )
636 #define ELF_CLASS ELFCLASS64
640 #define ELF_CLASS ELFCLASS32
644 #define ELF_ARCH EM_PPC
646 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
647 See arch/powerpc/include/asm/cputable.h. */
649 QEMU_PPC_FEATURE_32
= 0x80000000,
650 QEMU_PPC_FEATURE_64
= 0x40000000,
651 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
652 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
653 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
654 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
655 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
656 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
657 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
658 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
659 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
660 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
661 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
662 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
663 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
664 QEMU_PPC_FEATURE_CELL
= 0x00010000,
665 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
666 QEMU_PPC_FEATURE_SMT
= 0x00004000,
667 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
668 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
669 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
670 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
671 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
672 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
673 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
674 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
676 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
677 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
679 /* Feature definitions in AT_HWCAP2. */
680 QEMU_PPC_FEATURE2_ARCH_2_07
= 0x80000000, /* ISA 2.07 */
681 QEMU_PPC_FEATURE2_HAS_HTM
= 0x40000000, /* Hardware Transactional Memory */
682 QEMU_PPC_FEATURE2_HAS_DSCR
= 0x20000000, /* Data Stream Control Register */
683 QEMU_PPC_FEATURE2_HAS_EBB
= 0x10000000, /* Event Base Branching */
684 QEMU_PPC_FEATURE2_HAS_ISEL
= 0x08000000, /* Integer Select */
685 QEMU_PPC_FEATURE2_HAS_TAR
= 0x04000000, /* Target Address Register */
688 #define ELF_HWCAP get_elf_hwcap()
690 static uint32_t get_elf_hwcap(void)
692 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
693 uint32_t features
= 0;
695 /* We don't have to be terribly complete here; the high points are
696 Altivec/FP/SPE support. Anything else is just a bonus. */
697 #define GET_FEATURE(flag, feature) \
698 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
699 #define GET_FEATURE2(flags, feature) \
701 if ((cpu->env.insns_flags2 & flags) == flags) { \
702 features |= feature; \
705 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
706 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
707 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
708 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
709 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
710 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
711 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
712 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
713 GET_FEATURE2(PPC2_DFP
, QEMU_PPC_FEATURE_HAS_DFP
);
714 GET_FEATURE2(PPC2_VSX
, QEMU_PPC_FEATURE_HAS_VSX
);
715 GET_FEATURE2((PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
| PPC2_ATOMIC_ISA206
|
716 PPC2_FP_CVT_ISA206
| PPC2_FP_TST_ISA206
),
717 QEMU_PPC_FEATURE_ARCH_2_06
);
724 #define ELF_HWCAP2 get_elf_hwcap2()
726 static uint32_t get_elf_hwcap2(void)
728 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
729 uint32_t features
= 0;
731 #define GET_FEATURE(flag, feature) \
732 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
733 #define GET_FEATURE2(flag, feature) \
734 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
736 GET_FEATURE(PPC_ISEL
, QEMU_PPC_FEATURE2_HAS_ISEL
);
737 GET_FEATURE2(PPC2_BCTAR_ISA207
, QEMU_PPC_FEATURE2_HAS_TAR
);
738 GET_FEATURE2((PPC2_BCTAR_ISA207
| PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
|
739 PPC2_ISA207S
), QEMU_PPC_FEATURE2_ARCH_2_07
);
748 * The requirements here are:
749 * - keep the final alignment of sp (sp & 0xf)
750 * - make sure the 32-bit value at the first 16 byte aligned position of
751 * AUXV is greater than 16 for glibc compatibility.
752 * AT_IGNOREPPC is used for that.
753 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
754 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
756 #define DLINFO_ARCH_ITEMS 5
757 #define ARCH_DLINFO \
759 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
761 * Handle glibc compatibility: these magic entries must \
762 * be at the lowest addresses in the final auxv. \
764 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
765 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
766 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
767 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
768 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
771 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
773 _regs
->gpr
[1] = infop
->start_stack
;
774 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
775 if (get_ppc64_abi(infop
) < 2) {
777 get_user_u64(val
, infop
->entry
+ 8);
778 _regs
->gpr
[2] = val
+ infop
->load_bias
;
779 get_user_u64(val
, infop
->entry
);
780 infop
->entry
= val
+ infop
->load_bias
;
782 _regs
->gpr
[12] = infop
->entry
; /* r12 set to global entry address */
785 _regs
->nip
= infop
->entry
;
788 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
790 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
792 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUPPCState
*env
)
795 target_ulong ccr
= 0;
797 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
798 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
801 (*regs
)[32] = tswapreg(env
->nip
);
802 (*regs
)[33] = tswapreg(env
->msr
);
803 (*regs
)[35] = tswapreg(env
->ctr
);
804 (*regs
)[36] = tswapreg(env
->lr
);
805 (*regs
)[37] = tswapreg(env
->xer
);
807 for (i
= 0; i
< ARRAY_SIZE(env
->crf
); i
++) {
808 ccr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
810 (*regs
)[38] = tswapreg(ccr
);
813 #define USE_ELF_CORE_DUMP
814 #define ELF_EXEC_PAGESIZE 4096
820 #define ELF_START_MMAP 0x80000000
823 #define ELF_CLASS ELFCLASS64
825 #define ELF_CLASS ELFCLASS32
827 #define ELF_ARCH EM_MIPS
829 static inline void init_thread(struct target_pt_regs
*regs
,
830 struct image_info
*infop
)
832 regs
->cp0_status
= 2 << CP0St_KSU
;
833 regs
->cp0_epc
= infop
->entry
;
834 regs
->regs
[29] = infop
->start_stack
;
837 /* See linux kernel: arch/mips/include/asm/elf.h. */
839 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
841 /* See linux kernel: arch/mips/include/asm/reg.h. */
848 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
849 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
850 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
851 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
852 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
853 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
854 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
855 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
858 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
859 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMIPSState
*env
)
863 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
866 (*regs
)[TARGET_EF_R0
] = 0;
868 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
869 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->active_tc
.gpr
[i
]);
872 (*regs
)[TARGET_EF_R26
] = 0;
873 (*regs
)[TARGET_EF_R27
] = 0;
874 (*regs
)[TARGET_EF_LO
] = tswapreg(env
->active_tc
.LO
[0]);
875 (*regs
)[TARGET_EF_HI
] = tswapreg(env
->active_tc
.HI
[0]);
876 (*regs
)[TARGET_EF_CP0_EPC
] = tswapreg(env
->active_tc
.PC
);
877 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapreg(env
->CP0_BadVAddr
);
878 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapreg(env
->CP0_Status
);
879 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapreg(env
->CP0_Cause
);
882 #define USE_ELF_CORE_DUMP
883 #define ELF_EXEC_PAGESIZE 4096
885 /* See arch/mips/include/uapi/asm/hwcap.h. */
887 HWCAP_MIPS_R6
= (1 << 0),
888 HWCAP_MIPS_MSA
= (1 << 1),
891 #define ELF_HWCAP get_elf_hwcap()
893 static uint32_t get_elf_hwcap(void)
895 MIPSCPU
*cpu
= MIPS_CPU(thread_cpu
);
898 #define GET_FEATURE(flag, hwcap) \
899 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
901 GET_FEATURE(ISA_MIPS32R6
| ISA_MIPS64R6
, HWCAP_MIPS_R6
);
902 GET_FEATURE(ASE_MSA
, HWCAP_MIPS_MSA
);
909 #endif /* TARGET_MIPS */
911 #ifdef TARGET_MICROBLAZE
913 #define ELF_START_MMAP 0x80000000
915 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
917 #define ELF_CLASS ELFCLASS32
918 #define ELF_ARCH EM_MICROBLAZE
920 static inline void init_thread(struct target_pt_regs
*regs
,
921 struct image_info
*infop
)
923 regs
->pc
= infop
->entry
;
924 regs
->r1
= infop
->start_stack
;
928 #define ELF_EXEC_PAGESIZE 4096
930 #define USE_ELF_CORE_DUMP
932 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
934 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
935 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMBState
*env
)
939 for (i
= 0; i
< 32; i
++) {
940 (*regs
)[pos
++] = tswapreg(env
->regs
[i
]);
943 for (i
= 0; i
< 6; i
++) {
944 (*regs
)[pos
++] = tswapreg(env
->sregs
[i
]);
948 #endif /* TARGET_MICROBLAZE */
952 #define ELF_START_MMAP 0x80000000
954 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
956 #define ELF_CLASS ELFCLASS32
957 #define ELF_ARCH EM_ALTERA_NIOS2
959 static void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
961 regs
->ea
= infop
->entry
;
962 regs
->sp
= infop
->start_stack
;
966 #define ELF_EXEC_PAGESIZE 4096
968 #define USE_ELF_CORE_DUMP
970 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
972 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
973 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
974 const CPUNios2State
*env
)
979 for (i
= 1; i
< 8; i
++) /* r0-r7 */
980 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
982 for (i
= 8; i
< 16; i
++) /* r8-r15 */
983 (*regs
)[i
] = tswapreg(env
->regs
[i
- 8]);
985 for (i
= 16; i
< 24; i
++) /* r16-r23 */
986 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
987 (*regs
)[24] = -1; /* R_ET */
988 (*regs
)[25] = -1; /* R_BT */
989 (*regs
)[26] = tswapreg(env
->regs
[R_GP
]);
990 (*regs
)[27] = tswapreg(env
->regs
[R_SP
]);
991 (*regs
)[28] = tswapreg(env
->regs
[R_FP
]);
992 (*regs
)[29] = tswapreg(env
->regs
[R_EA
]);
993 (*regs
)[30] = -1; /* R_SSTATUS */
994 (*regs
)[31] = tswapreg(env
->regs
[R_RA
]);
996 (*regs
)[32] = tswapreg(env
->regs
[R_PC
]);
998 (*regs
)[33] = -1; /* R_STATUS */
999 (*regs
)[34] = tswapreg(env
->regs
[CR_ESTATUS
]);
1001 for (i
= 35; i
< 49; i
++) /* ... */
1005 #endif /* TARGET_NIOS2 */
1007 #ifdef TARGET_OPENRISC
1009 #define ELF_START_MMAP 0x08000000
1011 #define ELF_ARCH EM_OPENRISC
1012 #define ELF_CLASS ELFCLASS32
1013 #define ELF_DATA ELFDATA2MSB
1015 static inline void init_thread(struct target_pt_regs
*regs
,
1016 struct image_info
*infop
)
1018 regs
->pc
= infop
->entry
;
1019 regs
->gpr
[1] = infop
->start_stack
;
1022 #define USE_ELF_CORE_DUMP
1023 #define ELF_EXEC_PAGESIZE 8192
1025 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1026 #define ELF_NREG 34 /* gprs and pc, sr */
1027 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1029 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1030 const CPUOpenRISCState
*env
)
1034 for (i
= 0; i
< 32; i
++) {
1035 (*regs
)[i
] = tswapreg(cpu_get_gpr(env
, i
));
1037 (*regs
)[32] = tswapreg(env
->pc
);
1038 (*regs
)[33] = tswapreg(cpu_get_sr(env
));
1041 #define ELF_PLATFORM NULL
1043 #endif /* TARGET_OPENRISC */
1047 #define ELF_START_MMAP 0x80000000
1049 #define ELF_CLASS ELFCLASS32
1050 #define ELF_ARCH EM_SH
1052 static inline void init_thread(struct target_pt_regs
*regs
,
1053 struct image_info
*infop
)
1055 /* Check other registers XXXXX */
1056 regs
->pc
= infop
->entry
;
1057 regs
->regs
[15] = infop
->start_stack
;
1060 /* See linux kernel: arch/sh/include/asm/elf.h. */
1062 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1064 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1069 TARGET_REG_GBR
= 19,
1070 TARGET_REG_MACH
= 20,
1071 TARGET_REG_MACL
= 21,
1072 TARGET_REG_SYSCALL
= 22
1075 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1076 const CPUSH4State
*env
)
1080 for (i
= 0; i
< 16; i
++) {
1081 (*regs
)[i
] = tswapreg(env
->gregs
[i
]);
1084 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1085 (*regs
)[TARGET_REG_PR
] = tswapreg(env
->pr
);
1086 (*regs
)[TARGET_REG_SR
] = tswapreg(env
->sr
);
1087 (*regs
)[TARGET_REG_GBR
] = tswapreg(env
->gbr
);
1088 (*regs
)[TARGET_REG_MACH
] = tswapreg(env
->mach
);
1089 (*regs
)[TARGET_REG_MACL
] = tswapreg(env
->macl
);
1090 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
1093 #define USE_ELF_CORE_DUMP
1094 #define ELF_EXEC_PAGESIZE 4096
1097 SH_CPU_HAS_FPU
= 0x0001, /* Hardware FPU support */
1098 SH_CPU_HAS_P2_FLUSH_BUG
= 0x0002, /* Need to flush the cache in P2 area */
1099 SH_CPU_HAS_MMU_PAGE_ASSOC
= 0x0004, /* SH3: TLB way selection bit support */
1100 SH_CPU_HAS_DSP
= 0x0008, /* SH-DSP: DSP support */
1101 SH_CPU_HAS_PERF_COUNTER
= 0x0010, /* Hardware performance counters */
1102 SH_CPU_HAS_PTEA
= 0x0020, /* PTEA register */
1103 SH_CPU_HAS_LLSC
= 0x0040, /* movli.l/movco.l */
1104 SH_CPU_HAS_L2_CACHE
= 0x0080, /* Secondary cache / URAM */
1105 SH_CPU_HAS_OP32
= 0x0100, /* 32-bit instruction support */
1106 SH_CPU_HAS_PTEAEX
= 0x0200, /* PTE ASID Extension support */
1109 #define ELF_HWCAP get_elf_hwcap()
1111 static uint32_t get_elf_hwcap(void)
1113 SuperHCPU
*cpu
= SUPERH_CPU(thread_cpu
);
1116 hwcap
|= SH_CPU_HAS_FPU
;
1118 if (cpu
->env
.features
& SH_FEATURE_SH4A
) {
1119 hwcap
|= SH_CPU_HAS_LLSC
;
1129 #define ELF_START_MMAP 0x80000000
1131 #define ELF_CLASS ELFCLASS32
1132 #define ELF_ARCH EM_CRIS
1134 static inline void init_thread(struct target_pt_regs
*regs
,
1135 struct image_info
*infop
)
1137 regs
->erp
= infop
->entry
;
1140 #define ELF_EXEC_PAGESIZE 8192
1146 #define ELF_START_MMAP 0x80000000
1148 #define ELF_CLASS ELFCLASS32
1149 #define ELF_ARCH EM_68K
1151 /* ??? Does this need to do anything?
1152 #define ELF_PLAT_INIT(_r) */
1154 static inline void init_thread(struct target_pt_regs
*regs
,
1155 struct image_info
*infop
)
1157 regs
->usp
= infop
->start_stack
;
1159 regs
->pc
= infop
->entry
;
1162 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1164 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1166 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUM68KState
*env
)
1168 (*regs
)[0] = tswapreg(env
->dregs
[1]);
1169 (*regs
)[1] = tswapreg(env
->dregs
[2]);
1170 (*regs
)[2] = tswapreg(env
->dregs
[3]);
1171 (*regs
)[3] = tswapreg(env
->dregs
[4]);
1172 (*regs
)[4] = tswapreg(env
->dregs
[5]);
1173 (*regs
)[5] = tswapreg(env
->dregs
[6]);
1174 (*regs
)[6] = tswapreg(env
->dregs
[7]);
1175 (*regs
)[7] = tswapreg(env
->aregs
[0]);
1176 (*regs
)[8] = tswapreg(env
->aregs
[1]);
1177 (*regs
)[9] = tswapreg(env
->aregs
[2]);
1178 (*regs
)[10] = tswapreg(env
->aregs
[3]);
1179 (*regs
)[11] = tswapreg(env
->aregs
[4]);
1180 (*regs
)[12] = tswapreg(env
->aregs
[5]);
1181 (*regs
)[13] = tswapreg(env
->aregs
[6]);
1182 (*regs
)[14] = tswapreg(env
->dregs
[0]);
1183 (*regs
)[15] = tswapreg(env
->aregs
[7]);
1184 (*regs
)[16] = tswapreg(env
->dregs
[0]); /* FIXME: orig_d0 */
1185 (*regs
)[17] = tswapreg(env
->sr
);
1186 (*regs
)[18] = tswapreg(env
->pc
);
1187 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
1190 #define USE_ELF_CORE_DUMP
1191 #define ELF_EXEC_PAGESIZE 8192
1197 #define ELF_START_MMAP (0x30000000000ULL)
1199 #define ELF_CLASS ELFCLASS64
1200 #define ELF_ARCH EM_ALPHA
1202 static inline void init_thread(struct target_pt_regs
*regs
,
1203 struct image_info
*infop
)
1205 regs
->pc
= infop
->entry
;
1207 regs
->usp
= infop
->start_stack
;
1210 #define ELF_EXEC_PAGESIZE 8192
1212 #endif /* TARGET_ALPHA */
1216 #define ELF_START_MMAP (0x20000000000ULL)
1218 #define ELF_CLASS ELFCLASS64
1219 #define ELF_DATA ELFDATA2MSB
1220 #define ELF_ARCH EM_S390
1222 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1224 regs
->psw
.addr
= infop
->entry
;
1225 regs
->psw
.mask
= PSW_MASK_64
| PSW_MASK_32
;
1226 regs
->gprs
[15] = infop
->start_stack
;
1229 #endif /* TARGET_S390X */
1231 #ifdef TARGET_TILEGX
1233 /* 42 bits real used address, a half for user mode */
1234 #define ELF_START_MMAP (0x00000020000000000ULL)
1236 #define elf_check_arch(x) ((x) == EM_TILEGX)
1238 #define ELF_CLASS ELFCLASS64
1239 #define ELF_DATA ELFDATA2LSB
1240 #define ELF_ARCH EM_TILEGX
1242 static inline void init_thread(struct target_pt_regs
*regs
,
1243 struct image_info
*infop
)
1245 regs
->pc
= infop
->entry
;
1246 regs
->sp
= infop
->start_stack
;
1250 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1252 #endif /* TARGET_TILEGX */
1256 #define ELF_START_MMAP 0x80000000
1257 #define ELF_ARCH EM_RISCV
1259 #ifdef TARGET_RISCV32
1260 #define ELF_CLASS ELFCLASS32
1262 #define ELF_CLASS ELFCLASS64
1265 static inline void init_thread(struct target_pt_regs
*regs
,
1266 struct image_info
*infop
)
1268 regs
->sepc
= infop
->entry
;
1269 regs
->sp
= infop
->start_stack
;
1272 #define ELF_EXEC_PAGESIZE 4096
1274 #endif /* TARGET_RISCV */
1278 #define ELF_START_MMAP 0x80000000
1279 #define ELF_CLASS ELFCLASS32
1280 #define ELF_ARCH EM_PARISC
1281 #define ELF_PLATFORM "PARISC"
1282 #define STACK_GROWS_DOWN 0
1283 #define STACK_ALIGNMENT 64
1285 static inline void init_thread(struct target_pt_regs
*regs
,
1286 struct image_info
*infop
)
1288 regs
->iaoq
[0] = infop
->entry
;
1289 regs
->iaoq
[1] = infop
->entry
+ 4;
1291 regs
->gr
[24] = infop
->arg_start
;
1292 regs
->gr
[25] = (infop
->arg_end
- infop
->arg_start
) / sizeof(abi_ulong
);
1293 /* The top-of-stack contains a linkage buffer. */
1294 regs
->gr
[30] = infop
->start_stack
+ 64;
1295 regs
->gr
[31] = infop
->entry
;
1298 #endif /* TARGET_HPPA */
1300 #ifdef TARGET_XTENSA
1302 #define ELF_START_MMAP 0x20000000
1304 #define ELF_CLASS ELFCLASS32
1305 #define ELF_ARCH EM_XTENSA
1307 static inline void init_thread(struct target_pt_regs
*regs
,
1308 struct image_info
*infop
)
1310 regs
->windowbase
= 0;
1311 regs
->windowstart
= 1;
1312 regs
->areg
[1] = infop
->start_stack
;
1313 regs
->pc
= infop
->entry
;
1316 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1317 #define ELF_NREG 128
1318 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1327 TARGET_REG_WINDOWSTART
,
1328 TARGET_REG_WINDOWBASE
,
1329 TARGET_REG_THREADPTR
,
1330 TARGET_REG_AR0
= 64,
1333 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1334 const CPUXtensaState
*env
)
1338 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1339 (*regs
)[TARGET_REG_PS
] = tswapreg(env
->sregs
[PS
] & ~PS_EXCM
);
1340 (*regs
)[TARGET_REG_LBEG
] = tswapreg(env
->sregs
[LBEG
]);
1341 (*regs
)[TARGET_REG_LEND
] = tswapreg(env
->sregs
[LEND
]);
1342 (*regs
)[TARGET_REG_LCOUNT
] = tswapreg(env
->sregs
[LCOUNT
]);
1343 (*regs
)[TARGET_REG_SAR
] = tswapreg(env
->sregs
[SAR
]);
1344 (*regs
)[TARGET_REG_WINDOWSTART
] = tswapreg(env
->sregs
[WINDOW_START
]);
1345 (*regs
)[TARGET_REG_WINDOWBASE
] = tswapreg(env
->sregs
[WINDOW_BASE
]);
1346 (*regs
)[TARGET_REG_THREADPTR
] = tswapreg(env
->uregs
[THREADPTR
]);
1347 xtensa_sync_phys_from_window((CPUXtensaState
*)env
);
1348 for (i
= 0; i
< env
->config
->nareg
; ++i
) {
1349 (*regs
)[TARGET_REG_AR0
+ i
] = tswapreg(env
->phys_regs
[i
]);
1353 #define USE_ELF_CORE_DUMP
1354 #define ELF_EXEC_PAGESIZE 4096
1356 #endif /* TARGET_XTENSA */
1358 #ifndef ELF_PLATFORM
1359 #define ELF_PLATFORM (NULL)
1363 #define ELF_MACHINE ELF_ARCH
1366 #ifndef elf_check_arch
1367 #define elf_check_arch(x) ((x) == ELF_ARCH)
1374 #ifndef STACK_GROWS_DOWN
1375 #define STACK_GROWS_DOWN 1
1378 #ifndef STACK_ALIGNMENT
1379 #define STACK_ALIGNMENT 16
1384 #define ELF_CLASS ELFCLASS32
1386 #define bswaptls(ptr) bswap32s(ptr)
1393 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
1394 unsigned int a_text
; /* length of text, in bytes */
1395 unsigned int a_data
; /* length of data, in bytes */
1396 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
1397 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
1398 unsigned int a_entry
; /* start address */
1399 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
1400 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
1404 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1410 /* Necessary parameters */
1411 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1412 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1413 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1414 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1416 #define DLINFO_ITEMS 15
1418 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
1420 memcpy(to
, from
, n
);
1424 static void bswap_ehdr(struct elfhdr
*ehdr
)
1426 bswap16s(&ehdr
->e_type
); /* Object file type */
1427 bswap16s(&ehdr
->e_machine
); /* Architecture */
1428 bswap32s(&ehdr
->e_version
); /* Object file version */
1429 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
1430 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
1431 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
1432 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
1433 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
1434 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
1435 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
1436 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
1437 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
1438 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
1441 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
1444 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
1445 bswap32s(&phdr
->p_type
); /* Segment type */
1446 bswap32s(&phdr
->p_flags
); /* Segment flags */
1447 bswaptls(&phdr
->p_offset
); /* Segment file offset */
1448 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
1449 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
1450 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
1451 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
1452 bswaptls(&phdr
->p_align
); /* Segment alignment */
1456 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
1459 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
1460 bswap32s(&shdr
->sh_name
);
1461 bswap32s(&shdr
->sh_type
);
1462 bswaptls(&shdr
->sh_flags
);
1463 bswaptls(&shdr
->sh_addr
);
1464 bswaptls(&shdr
->sh_offset
);
1465 bswaptls(&shdr
->sh_size
);
1466 bswap32s(&shdr
->sh_link
);
1467 bswap32s(&shdr
->sh_info
);
1468 bswaptls(&shdr
->sh_addralign
);
1469 bswaptls(&shdr
->sh_entsize
);
1473 static void bswap_sym(struct elf_sym
*sym
)
1475 bswap32s(&sym
->st_name
);
1476 bswaptls(&sym
->st_value
);
1477 bswaptls(&sym
->st_size
);
1478 bswap16s(&sym
->st_shndx
);
1481 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
1482 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
1483 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
1484 static inline void bswap_sym(struct elf_sym
*sym
) { }
1487 #ifdef USE_ELF_CORE_DUMP
1488 static int elf_core_dump(int, const CPUArchState
*);
1489 #endif /* USE_ELF_CORE_DUMP */
1490 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
);
1492 /* Verify the portions of EHDR within E_IDENT for the target.
1493 This can be performed before bswapping the entire header. */
1494 static bool elf_check_ident(struct elfhdr
*ehdr
)
1496 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
1497 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
1498 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
1499 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
1500 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
1501 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
1502 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
1505 /* Verify the portions of EHDR outside of E_IDENT for the target.
1506 This has to wait until after bswapping the header. */
1507 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
1509 return (elf_check_arch(ehdr
->e_machine
)
1510 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
1511 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
1512 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
1516 * 'copy_elf_strings()' copies argument/envelope strings from user
1517 * memory to free pages in kernel mem. These are in a format ready
1518 * to be put directly into the top of new user memory.
1521 static abi_ulong
copy_elf_strings(int argc
, char **argv
, char *scratch
,
1522 abi_ulong p
, abi_ulong stack_limit
)
1529 return 0; /* bullet-proofing */
1532 if (STACK_GROWS_DOWN
) {
1533 int offset
= ((p
- 1) % TARGET_PAGE_SIZE
) + 1;
1534 for (i
= argc
- 1; i
>= 0; --i
) {
1537 fprintf(stderr
, "VFS: argc is wrong");
1540 len
= strlen(tmp
) + 1;
1543 if (len
> (p
- stack_limit
)) {
1547 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
1548 tmp
-= bytes_to_copy
;
1550 offset
-= bytes_to_copy
;
1551 len
-= bytes_to_copy
;
1553 memcpy_fromfs(scratch
+ offset
, tmp
, bytes_to_copy
);
1556 memcpy_to_target(p
, scratch
, top
- p
);
1558 offset
= TARGET_PAGE_SIZE
;
1563 memcpy_to_target(p
, scratch
+ offset
, top
- p
);
1566 int remaining
= TARGET_PAGE_SIZE
- (p
% TARGET_PAGE_SIZE
);
1567 for (i
= 0; i
< argc
; ++i
) {
1570 fprintf(stderr
, "VFS: argc is wrong");
1573 len
= strlen(tmp
) + 1;
1574 if (len
> (stack_limit
- p
)) {
1578 int bytes_to_copy
= (len
> remaining
) ? remaining
: len
;
1580 memcpy_fromfs(scratch
+ (p
- top
), tmp
, bytes_to_copy
);
1582 tmp
+= bytes_to_copy
;
1583 remaining
-= bytes_to_copy
;
1585 len
-= bytes_to_copy
;
1587 if (remaining
== 0) {
1588 memcpy_to_target(top
, scratch
, p
- top
);
1590 remaining
= TARGET_PAGE_SIZE
;
1595 memcpy_to_target(top
, scratch
, p
- top
);
1602 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1603 * argument/environment space. Newer kernels (>2.6.33) allow more,
1604 * dependent on stack size, but guarantee at least 32 pages for
1605 * backwards compatibility.
1607 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1609 static abi_ulong
setup_arg_pages(struct linux_binprm
*bprm
,
1610 struct image_info
*info
)
1612 abi_ulong size
, error
, guard
;
1614 size
= guest_stack_size
;
1615 if (size
< STACK_LOWER_LIMIT
) {
1616 size
= STACK_LOWER_LIMIT
;
1618 guard
= TARGET_PAGE_SIZE
;
1619 if (guard
< qemu_real_host_page_size
) {
1620 guard
= qemu_real_host_page_size
;
1623 error
= target_mmap(0, size
+ guard
, PROT_READ
| PROT_WRITE
,
1624 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1626 perror("mmap stack");
1630 /* We reserve one extra page at the top of the stack as guard. */
1631 if (STACK_GROWS_DOWN
) {
1632 target_mprotect(error
, guard
, PROT_NONE
);
1633 info
->stack_limit
= error
+ guard
;
1634 return info
->stack_limit
+ size
- sizeof(void *);
1636 target_mprotect(error
+ size
, guard
, PROT_NONE
);
1637 info
->stack_limit
= error
+ size
;
1642 /* Map and zero the bss. We need to explicitly zero any fractional pages
1643 after the data section (i.e. bss). */
1644 static void zero_bss(abi_ulong elf_bss
, abi_ulong last_bss
, int prot
)
1646 uintptr_t host_start
, host_map_start
, host_end
;
1648 last_bss
= TARGET_PAGE_ALIGN(last_bss
);
1650 /* ??? There is confusion between qemu_real_host_page_size and
1651 qemu_host_page_size here and elsewhere in target_mmap, which
1652 may lead to the end of the data section mapping from the file
1653 not being mapped. At least there was an explicit test and
1654 comment for that here, suggesting that "the file size must
1655 be known". The comment probably pre-dates the introduction
1656 of the fstat system call in target_mmap which does in fact
1657 find out the size. What isn't clear is if the workaround
1658 here is still actually needed. For now, continue with it,
1659 but merge it with the "normal" mmap that would allocate the bss. */
1661 host_start
= (uintptr_t) g2h(elf_bss
);
1662 host_end
= (uintptr_t) g2h(last_bss
);
1663 host_map_start
= REAL_HOST_PAGE_ALIGN(host_start
);
1665 if (host_map_start
< host_end
) {
1666 void *p
= mmap((void *)host_map_start
, host_end
- host_map_start
,
1667 prot
, MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1668 if (p
== MAP_FAILED
) {
1669 perror("cannot mmap brk");
1674 /* Ensure that the bss page(s) are valid */
1675 if ((page_get_flags(last_bss
-1) & prot
) != prot
) {
1676 page_set_flags(elf_bss
& TARGET_PAGE_MASK
, last_bss
, prot
| PAGE_VALID
);
1679 if (host_start
< host_map_start
) {
1680 memset((void *)host_start
, 0, host_map_start
- host_start
);
1684 #ifdef CONFIG_USE_FDPIC
1685 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
1688 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
1690 /* elf32_fdpic_loadseg */
1694 put_user_u32(loadsegs
[n
].addr
, sp
+0);
1695 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
1696 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
1699 /* elf32_fdpic_loadmap */
1701 put_user_u16(0, sp
+0); /* version */
1702 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
1704 info
->personality
= PER_LINUX_FDPIC
;
1705 info
->loadmap_addr
= sp
;
1711 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
1712 struct elfhdr
*exec
,
1713 struct image_info
*info
,
1714 struct image_info
*interp_info
)
1717 abi_ulong u_argc
, u_argv
, u_envp
, u_auxv
;
1720 abi_ulong u_rand_bytes
;
1721 uint8_t k_rand_bytes
[16];
1722 abi_ulong u_platform
;
1723 const char *k_platform
;
1724 const int n
= sizeof(elf_addr_t
);
1728 #ifdef CONFIG_USE_FDPIC
1729 /* Needs to be before we load the env/argc/... */
1730 if (elf_is_fdpic(exec
)) {
1731 /* Need 4 byte alignment for these structs */
1733 sp
= loader_build_fdpic_loadmap(info
, sp
);
1734 info
->other_info
= interp_info
;
1736 interp_info
->other_info
= info
;
1737 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
1743 k_platform
= ELF_PLATFORM
;
1745 size_t len
= strlen(k_platform
) + 1;
1746 if (STACK_GROWS_DOWN
) {
1747 sp
-= (len
+ n
- 1) & ~(n
- 1);
1749 /* FIXME - check return value of memcpy_to_target() for failure */
1750 memcpy_to_target(sp
, k_platform
, len
);
1752 memcpy_to_target(sp
, k_platform
, len
);
1758 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1759 * the argv and envp pointers.
1761 if (STACK_GROWS_DOWN
) {
1762 sp
= QEMU_ALIGN_DOWN(sp
, 16);
1764 sp
= QEMU_ALIGN_UP(sp
, 16);
1768 * Generate 16 random bytes for userspace PRNG seeding (not
1769 * cryptically secure but it's not the aim of QEMU).
1771 for (i
= 0; i
< 16; i
++) {
1772 k_rand_bytes
[i
] = rand();
1774 if (STACK_GROWS_DOWN
) {
1777 /* FIXME - check return value of memcpy_to_target() for failure */
1778 memcpy_to_target(sp
, k_rand_bytes
, 16);
1780 memcpy_to_target(sp
, k_rand_bytes
, 16);
1785 size
= (DLINFO_ITEMS
+ 1) * 2;
1788 #ifdef DLINFO_ARCH_ITEMS
1789 size
+= DLINFO_ARCH_ITEMS
* 2;
1794 info
->auxv_len
= size
* n
;
1796 size
+= envc
+ argc
+ 2;
1797 size
+= 1; /* argc itself */
1800 /* Allocate space and finalize stack alignment for entry now. */
1801 if (STACK_GROWS_DOWN
) {
1802 u_argc
= QEMU_ALIGN_DOWN(sp
- size
, STACK_ALIGNMENT
);
1806 sp
= QEMU_ALIGN_UP(sp
+ size
, STACK_ALIGNMENT
);
1809 u_argv
= u_argc
+ n
;
1810 u_envp
= u_argv
+ (argc
+ 1) * n
;
1811 u_auxv
= u_envp
+ (envc
+ 1) * n
;
1812 info
->saved_auxv
= u_auxv
;
1813 info
->arg_start
= u_argv
;
1814 info
->arg_end
= u_argv
+ argc
* n
;
1816 /* This is correct because Linux defines
1817 * elf_addr_t as Elf32_Off / Elf64_Off
1819 #define NEW_AUX_ENT(id, val) do { \
1820 put_user_ual(id, u_auxv); u_auxv += n; \
1821 put_user_ual(val, u_auxv); u_auxv += n; \
1826 * ARCH_DLINFO must come first so platform specific code can enforce
1827 * special alignment requirements on the AUXV if necessary (eg. PPC).
1831 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1832 * on info->auxv_len will trigger.
1834 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
1835 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
1836 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
1837 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(MAX(TARGET_PAGE_SIZE
, getpagesize())));
1838 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
1839 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
1840 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
1841 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
1842 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
1843 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
1844 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
1845 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
1846 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
1847 NEW_AUX_ENT(AT_RANDOM
, (abi_ulong
) u_rand_bytes
);
1848 NEW_AUX_ENT(AT_SECURE
, (abi_ulong
) qemu_getauxval(AT_SECURE
));
1851 NEW_AUX_ENT(AT_HWCAP2
, (abi_ulong
) ELF_HWCAP2
);
1855 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
1857 NEW_AUX_ENT (AT_NULL
, 0);
1860 /* Check that our initial calculation of the auxv length matches how much
1861 * we actually put into it.
1863 assert(info
->auxv_len
== u_auxv
- info
->saved_auxv
);
1865 put_user_ual(argc
, u_argc
);
1867 p
= info
->arg_strings
;
1868 for (i
= 0; i
< argc
; ++i
) {
1869 put_user_ual(p
, u_argv
);
1871 p
+= target_strlen(p
) + 1;
1873 put_user_ual(0, u_argv
);
1875 p
= info
->env_strings
;
1876 for (i
= 0; i
< envc
; ++i
) {
1877 put_user_ual(p
, u_envp
);
1879 p
+= target_strlen(p
) + 1;
1881 put_user_ual(0, u_envp
);
1886 unsigned long init_guest_space(unsigned long host_start
,
1887 unsigned long host_size
,
1888 unsigned long guest_start
,
1891 unsigned long current_start
, aligned_start
;
1894 assert(host_start
|| host_size
);
1896 /* If just a starting address is given, then just verify that
1898 if (host_start
&& !host_size
) {
1899 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1900 if (init_guest_commpage(host_start
, host_size
) != 1) {
1901 return (unsigned long)-1;
1907 /* Setup the initial flags and start address. */
1908 current_start
= host_start
& qemu_host_page_mask
;
1909 flags
= MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
;
1914 /* Otherwise, a non-zero size region of memory needs to be mapped
1917 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1918 /* On 32-bit ARM, we need to map not just the usable memory, but
1919 * also the commpage. Try to find a suitable place by allocating
1920 * a big chunk for all of it. If host_start, then the naive
1921 * strategy probably does good enough.
1924 unsigned long guest_full_size
, host_full_size
, real_start
;
1927 (0xffff0f00 & qemu_host_page_mask
) + qemu_host_page_size
;
1928 host_full_size
= guest_full_size
- guest_start
;
1929 real_start
= (unsigned long)
1930 mmap(NULL
, host_full_size
, PROT_NONE
, flags
, -1, 0);
1931 if (real_start
== (unsigned long)-1) {
1932 if (host_size
< host_full_size
- qemu_host_page_size
) {
1933 /* We failed to map a continous segment, but we're
1934 * allowed to have a gap between the usable memory and
1935 * the commpage where other things can be mapped.
1936 * This sparseness gives us more flexibility to find
1941 return (unsigned long)-1;
1943 munmap((void *)real_start
, host_full_size
);
1944 if (real_start
& ~qemu_host_page_mask
) {
1945 /* The same thing again, but with an extra qemu_host_page_size
1946 * so that we can shift around alignment.
1948 unsigned long real_size
= host_full_size
+ qemu_host_page_size
;
1949 real_start
= (unsigned long)
1950 mmap(NULL
, real_size
, PROT_NONE
, flags
, -1, 0);
1951 if (real_start
== (unsigned long)-1) {
1952 if (host_size
< host_full_size
- qemu_host_page_size
) {
1955 return (unsigned long)-1;
1957 munmap((void *)real_start
, real_size
);
1958 real_start
= HOST_PAGE_ALIGN(real_start
);
1960 current_start
= real_start
;
1966 unsigned long real_start
, real_size
, aligned_size
;
1967 aligned_size
= real_size
= host_size
;
1969 /* Do not use mmap_find_vma here because that is limited to the
1970 * guest address space. We are going to make the
1971 * guest address space fit whatever we're given.
1973 real_start
= (unsigned long)
1974 mmap((void *)current_start
, host_size
, PROT_NONE
, flags
, -1, 0);
1975 if (real_start
== (unsigned long)-1) {
1976 return (unsigned long)-1;
1979 /* Check to see if the address is valid. */
1980 if (host_start
&& real_start
!= current_start
) {
1984 /* Ensure the address is properly aligned. */
1985 if (real_start
& ~qemu_host_page_mask
) {
1986 /* Ideally, we adjust like
1988 * pages: [ ][ ][ ][ ][ ]
1994 * But if there is something else mapped right after it,
1995 * then obviously it won't have room to grow, and the
1996 * kernel will put the new larger real someplace else with
1997 * unknown alignment (if we made it to here, then
1998 * fixed=false). Which is why we grow real by a full page
1999 * size, instead of by part of one; so that even if we get
2000 * moved, we can still guarantee alignment. But this does
2001 * mean that there is a padding of < 1 page both before
2002 * and after the aligned range; the "after" could could
2003 * cause problems for ARM emulation where it could butt in
2004 * to where we need to put the commpage.
2006 munmap((void *)real_start
, host_size
);
2007 real_size
= aligned_size
+ qemu_host_page_size
;
2008 real_start
= (unsigned long)
2009 mmap((void *)real_start
, real_size
, PROT_NONE
, flags
, -1, 0);
2010 if (real_start
== (unsigned long)-1) {
2011 return (unsigned long)-1;
2013 aligned_start
= HOST_PAGE_ALIGN(real_start
);
2015 aligned_start
= real_start
;
2018 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2019 /* On 32-bit ARM, we need to also be able to map the commpage. */
2020 int valid
= init_guest_commpage(aligned_start
- guest_start
,
2021 aligned_size
+ guest_start
);
2023 munmap((void *)real_start
, real_size
);
2024 return (unsigned long)-1;
2025 } else if (valid
== 0) {
2030 /* If nothing has said `return -1` or `goto try_again` yet,
2031 * then the address we have is good.
2036 /* That address didn't work. Unmap and try a different one.
2037 * The address the host picked because is typically right at
2038 * the top of the host address space and leaves the guest with
2039 * no usable address space. Resort to a linear search. We
2040 * already compensated for mmap_min_addr, so this should not
2041 * happen often. Probably means we got unlucky and host
2042 * address space randomization put a shared library somewhere
2045 * This is probably a good strategy if host_start, but is
2046 * probably a bad strategy if not, which means we got here
2047 * because of trouble with ARM commpage setup.
2049 munmap((void *)real_start
, real_size
);
2050 current_start
+= qemu_host_page_size
;
2051 if (host_start
== current_start
) {
2052 /* Theoretically possible if host doesn't have any suitably
2053 * aligned areas. Normally the first mmap will fail.
2055 return (unsigned long)-1;
2059 qemu_log_mask(CPU_LOG_PAGE
, "Reserved 0x%lx bytes of guest address space\n", host_size
);
2061 return aligned_start
;
2064 static void probe_guest_base(const char *image_name
,
2065 abi_ulong loaddr
, abi_ulong hiaddr
)
2067 /* Probe for a suitable guest base address, if the user has not set
2068 * it explicitly, and set guest_base appropriately.
2069 * In case of error we will print a suitable message and exit.
2072 if (!have_guest_base
&& !reserved_va
) {
2073 unsigned long host_start
, real_start
, host_size
;
2075 /* Round addresses to page boundaries. */
2076 loaddr
&= qemu_host_page_mask
;
2077 hiaddr
= HOST_PAGE_ALIGN(hiaddr
);
2079 if (loaddr
< mmap_min_addr
) {
2080 host_start
= HOST_PAGE_ALIGN(mmap_min_addr
);
2082 host_start
= loaddr
;
2083 if (host_start
!= loaddr
) {
2084 errmsg
= "Address overflow loading ELF binary";
2088 host_size
= hiaddr
- loaddr
;
2090 /* Setup the initial guest memory space with ranges gleaned from
2091 * the ELF image that is being loaded.
2093 real_start
= init_guest_space(host_start
, host_size
, loaddr
, false);
2094 if (real_start
== (unsigned long)-1) {
2095 errmsg
= "Unable to find space for application";
2098 guest_base
= real_start
- loaddr
;
2100 qemu_log_mask(CPU_LOG_PAGE
, "Relocating guest address space from 0x"
2101 TARGET_ABI_FMT_lx
" to 0x%lx\n",
2102 loaddr
, real_start
);
2107 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
2112 /* Load an ELF image into the address space.
2114 IMAGE_NAME is the filename of the image, to use in error messages.
2115 IMAGE_FD is the open file descriptor for the image.
2117 BPRM_BUF is a copy of the beginning of the file; this of course
2118 contains the elf file header at offset 0. It is assumed that this
2119 buffer is sufficiently aligned to present no problems to the host
2120 in accessing data at aligned offsets within the buffer.
2122 On return: INFO values will be filled in, as necessary or available. */
2124 static void load_elf_image(const char *image_name
, int image_fd
,
2125 struct image_info
*info
, char **pinterp_name
,
2126 char bprm_buf
[BPRM_BUF_SIZE
])
2128 struct elfhdr
*ehdr
= (struct elfhdr
*)bprm_buf
;
2129 struct elf_phdr
*phdr
;
2130 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
2134 /* First of all, some simple consistency checks */
2135 errmsg
= "Invalid ELF image for this architecture";
2136 if (!elf_check_ident(ehdr
)) {
2140 if (!elf_check_ehdr(ehdr
)) {
2144 i
= ehdr
->e_phnum
* sizeof(struct elf_phdr
);
2145 if (ehdr
->e_phoff
+ i
<= BPRM_BUF_SIZE
) {
2146 phdr
= (struct elf_phdr
*)(bprm_buf
+ ehdr
->e_phoff
);
2148 phdr
= (struct elf_phdr
*) alloca(i
);
2149 retval
= pread(image_fd
, phdr
, i
, ehdr
->e_phoff
);
2154 bswap_phdr(phdr
, ehdr
->e_phnum
);
2156 #ifdef CONFIG_USE_FDPIC
2158 info
->pt_dynamic_addr
= 0;
2163 /* Find the maximum size of the image and allocate an appropriate
2164 amount of memory to handle that. */
2165 loaddr
= -1, hiaddr
= 0;
2166 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
2167 if (phdr
[i
].p_type
== PT_LOAD
) {
2168 abi_ulong a
= phdr
[i
].p_vaddr
- phdr
[i
].p_offset
;
2172 a
= phdr
[i
].p_vaddr
+ phdr
[i
].p_memsz
;
2176 #ifdef CONFIG_USE_FDPIC
2183 if (ehdr
->e_type
== ET_DYN
) {
2184 /* The image indicates that it can be loaded anywhere. Find a
2185 location that can hold the memory space required. If the
2186 image is pre-linked, LOADDR will be non-zero. Since we do
2187 not supply MAP_FIXED here we'll use that address if and
2188 only if it remains available. */
2189 load_addr
= target_mmap(loaddr
, hiaddr
- loaddr
, PROT_NONE
,
2190 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
,
2192 if (load_addr
== -1) {
2195 } else if (pinterp_name
!= NULL
) {
2196 /* This is the main executable. Make sure that the low
2197 address does not conflict with MMAP_MIN_ADDR or the
2198 QEMU application itself. */
2199 probe_guest_base(image_name
, loaddr
, hiaddr
);
2201 load_bias
= load_addr
- loaddr
;
2203 #ifdef CONFIG_USE_FDPIC
2205 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
2206 g_malloc(sizeof(*loadsegs
) * info
->nsegs
);
2208 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
2209 switch (phdr
[i
].p_type
) {
2211 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
2214 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
2215 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
2216 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
2224 info
->load_bias
= load_bias
;
2225 info
->load_addr
= load_addr
;
2226 info
->entry
= ehdr
->e_entry
+ load_bias
;
2227 info
->start_code
= -1;
2229 info
->start_data
= -1;
2232 info
->elf_flags
= ehdr
->e_flags
;
2234 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
2235 struct elf_phdr
*eppnt
= phdr
+ i
;
2236 if (eppnt
->p_type
== PT_LOAD
) {
2237 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
;
2240 if (eppnt
->p_flags
& PF_R
) elf_prot
= PROT_READ
;
2241 if (eppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
2242 if (eppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
2244 vaddr
= load_bias
+ eppnt
->p_vaddr
;
2245 vaddr_po
= TARGET_ELF_PAGEOFFSET(vaddr
);
2246 vaddr_ps
= TARGET_ELF_PAGESTART(vaddr
);
2248 error
= target_mmap(vaddr_ps
, eppnt
->p_filesz
+ vaddr_po
,
2249 elf_prot
, MAP_PRIVATE
| MAP_FIXED
,
2250 image_fd
, eppnt
->p_offset
- vaddr_po
);
2255 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
2256 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
2258 /* If the load segment requests extra zeros (e.g. bss), map it. */
2259 if (vaddr_ef
< vaddr_em
) {
2260 zero_bss(vaddr_ef
, vaddr_em
, elf_prot
);
2263 /* Find the full program boundaries. */
2264 if (elf_prot
& PROT_EXEC
) {
2265 if (vaddr
< info
->start_code
) {
2266 info
->start_code
= vaddr
;
2268 if (vaddr_ef
> info
->end_code
) {
2269 info
->end_code
= vaddr_ef
;
2272 if (elf_prot
& PROT_WRITE
) {
2273 if (vaddr
< info
->start_data
) {
2274 info
->start_data
= vaddr
;
2276 if (vaddr_ef
> info
->end_data
) {
2277 info
->end_data
= vaddr_ef
;
2279 if (vaddr_em
> info
->brk
) {
2280 info
->brk
= vaddr_em
;
2283 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
2286 if (*pinterp_name
) {
2287 errmsg
= "Multiple PT_INTERP entries";
2290 interp_name
= malloc(eppnt
->p_filesz
);
2295 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
2296 memcpy(interp_name
, bprm_buf
+ eppnt
->p_offset
,
2299 retval
= pread(image_fd
, interp_name
, eppnt
->p_filesz
,
2301 if (retval
!= eppnt
->p_filesz
) {
2305 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
2306 errmsg
= "Invalid PT_INTERP entry";
2309 *pinterp_name
= interp_name
;
2313 if (info
->end_data
== 0) {
2314 info
->start_data
= info
->end_code
;
2315 info
->end_data
= info
->end_code
;
2316 info
->brk
= info
->end_code
;
2319 if (qemu_log_enabled()) {
2320 load_symbols(ehdr
, image_fd
, load_bias
);
2330 errmsg
= "Incomplete read of file header";
2334 errmsg
= strerror(errno
);
2336 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
2340 static void load_elf_interp(const char *filename
, struct image_info
*info
,
2341 char bprm_buf
[BPRM_BUF_SIZE
])
2345 fd
= open(path(filename
), O_RDONLY
);
2350 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
2354 if (retval
< BPRM_BUF_SIZE
) {
2355 memset(bprm_buf
+ retval
, 0, BPRM_BUF_SIZE
- retval
);
2358 load_elf_image(filename
, fd
, info
, NULL
, bprm_buf
);
2362 fprintf(stderr
, "%s: %s\n", filename
, strerror(errno
));
2366 static int symfind(const void *s0
, const void *s1
)
2368 target_ulong addr
= *(target_ulong
*)s0
;
2369 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
2371 if (addr
< sym
->st_value
) {
2373 } else if (addr
>= sym
->st_value
+ sym
->st_size
) {
2379 static const char *lookup_symbolxx(struct syminfo
*s
, target_ulong orig_addr
)
2381 #if ELF_CLASS == ELFCLASS32
2382 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
2384 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
2388 struct elf_sym
*sym
;
2390 sym
= bsearch(&orig_addr
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
2392 return s
->disas_strtab
+ sym
->st_name
;
2398 /* FIXME: This should use elf_ops.h */
2399 static int symcmp(const void *s0
, const void *s1
)
2401 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
2402 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
2403 return (sym0
->st_value
< sym1
->st_value
)
2405 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
2408 /* Best attempt to load symbols from this ELF object. */
2409 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
)
2411 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
2413 struct elf_shdr
*shdr
;
2414 char *strings
= NULL
;
2415 struct syminfo
*s
= NULL
;
2416 struct elf_sym
*new_syms
, *syms
= NULL
;
2418 shnum
= hdr
->e_shnum
;
2419 i
= shnum
* sizeof(struct elf_shdr
);
2420 shdr
= (struct elf_shdr
*)alloca(i
);
2421 if (pread(fd
, shdr
, i
, hdr
->e_shoff
) != i
) {
2425 bswap_shdr(shdr
, shnum
);
2426 for (i
= 0; i
< shnum
; ++i
) {
2427 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
2429 str_idx
= shdr
[i
].sh_link
;
2434 /* There will be no symbol table if the file was stripped. */
2438 /* Now know where the strtab and symtab are. Snarf them. */
2439 s
= g_try_new(struct syminfo
, 1);
2444 segsz
= shdr
[str_idx
].sh_size
;
2445 s
->disas_strtab
= strings
= g_try_malloc(segsz
);
2447 pread(fd
, strings
, segsz
, shdr
[str_idx
].sh_offset
) != segsz
) {
2451 segsz
= shdr
[sym_idx
].sh_size
;
2452 syms
= g_try_malloc(segsz
);
2453 if (!syms
|| pread(fd
, syms
, segsz
, shdr
[sym_idx
].sh_offset
) != segsz
) {
2457 if (segsz
/ sizeof(struct elf_sym
) > INT_MAX
) {
2458 /* Implausibly large symbol table: give up rather than ploughing
2459 * on with the number of symbols calculation overflowing
2463 nsyms
= segsz
/ sizeof(struct elf_sym
);
2464 for (i
= 0; i
< nsyms
; ) {
2465 bswap_sym(syms
+ i
);
2466 /* Throw away entries which we do not need. */
2467 if (syms
[i
].st_shndx
== SHN_UNDEF
2468 || syms
[i
].st_shndx
>= SHN_LORESERVE
2469 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
2471 syms
[i
] = syms
[nsyms
];
2474 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2475 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2476 syms
[i
].st_value
&= ~(target_ulong
)1;
2478 syms
[i
].st_value
+= load_bias
;
2483 /* No "useful" symbol. */
2488 /* Attempt to free the storage associated with the local symbols
2489 that we threw away. Whether or not this has any effect on the
2490 memory allocation depends on the malloc implementation and how
2491 many symbols we managed to discard. */
2492 new_syms
= g_try_renew(struct elf_sym
, syms
, nsyms
);
2493 if (new_syms
== NULL
) {
2498 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
2500 s
->disas_num_syms
= nsyms
;
2501 #if ELF_CLASS == ELFCLASS32
2502 s
->disas_symtab
.elf32
= syms
;
2504 s
->disas_symtab
.elf64
= syms
;
2506 s
->lookup_symbol
= lookup_symbolxx
;
2518 uint32_t get_elf_eflags(int fd
)
2524 /* Read ELF header */
2525 offset
= lseek(fd
, 0, SEEK_SET
);
2526 if (offset
== (off_t
) -1) {
2529 ret
= read(fd
, &ehdr
, sizeof(ehdr
));
2530 if (ret
< sizeof(ehdr
)) {
2533 offset
= lseek(fd
, offset
, SEEK_SET
);
2534 if (offset
== (off_t
) -1) {
2538 /* Check ELF signature */
2539 if (!elf_check_ident(&ehdr
)) {
2545 if (!elf_check_ehdr(&ehdr
)) {
2549 /* return architecture id */
2550 return ehdr
.e_flags
;
2553 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
)
2555 struct image_info interp_info
;
2556 struct elfhdr elf_ex
;
2557 char *elf_interpreter
= NULL
;
2560 info
->start_mmap
= (abi_ulong
)ELF_START_MMAP
;
2562 load_elf_image(bprm
->filename
, bprm
->fd
, info
,
2563 &elf_interpreter
, bprm
->buf
);
2565 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2566 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2567 when we load the interpreter. */
2568 elf_ex
= *(struct elfhdr
*)bprm
->buf
;
2570 /* Do this so that we can load the interpreter, if need be. We will
2571 change some of these later */
2572 bprm
->p
= setup_arg_pages(bprm
, info
);
2574 scratch
= g_new0(char, TARGET_PAGE_SIZE
);
2575 if (STACK_GROWS_DOWN
) {
2576 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
2577 bprm
->p
, info
->stack_limit
);
2578 info
->file_string
= bprm
->p
;
2579 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
2580 bprm
->p
, info
->stack_limit
);
2581 info
->env_strings
= bprm
->p
;
2582 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
2583 bprm
->p
, info
->stack_limit
);
2584 info
->arg_strings
= bprm
->p
;
2586 info
->arg_strings
= bprm
->p
;
2587 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
2588 bprm
->p
, info
->stack_limit
);
2589 info
->env_strings
= bprm
->p
;
2590 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
2591 bprm
->p
, info
->stack_limit
);
2592 info
->file_string
= bprm
->p
;
2593 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
2594 bprm
->p
, info
->stack_limit
);
2600 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
2604 if (elf_interpreter
) {
2605 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
2607 /* If the program interpreter is one of these two, then assume
2608 an iBCS2 image. Otherwise assume a native linux image. */
2610 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
2611 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
2612 info
->personality
= PER_SVR4
;
2614 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2615 and some applications "depend" upon this behavior. Since
2616 we do not have the power to recompile these, we emulate
2617 the SVr4 behavior. Sigh. */
2618 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
2619 MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
2623 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &elf_ex
,
2624 info
, (elf_interpreter
? &interp_info
: NULL
));
2625 info
->start_stack
= bprm
->p
;
2627 /* If we have an interpreter, set that as the program's entry point.
2628 Copy the load_bias as well, to help PPC64 interpret the entry
2629 point as a function descriptor. Do this after creating elf tables
2630 so that we copy the original program entry point into the AUXV. */
2631 if (elf_interpreter
) {
2632 info
->load_bias
= interp_info
.load_bias
;
2633 info
->entry
= interp_info
.entry
;
2634 free(elf_interpreter
);
2637 #ifdef USE_ELF_CORE_DUMP
2638 bprm
->core_dump
= &elf_core_dump
;
2644 #ifdef USE_ELF_CORE_DUMP
2646 * Definitions to generate Intel SVR4-like core files.
2647 * These mostly have the same names as the SVR4 types with "target_elf_"
2648 * tacked on the front to prevent clashes with linux definitions,
2649 * and the typedef forms have been avoided. This is mostly like
2650 * the SVR4 structure, but more Linuxy, with things that Linux does
2651 * not support and which gdb doesn't really use excluded.
2653 * Fields we don't dump (their contents is zero) in linux-user qemu
2654 * are marked with XXX.
2656 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2658 * Porting ELF coredump for target is (quite) simple process. First you
2659 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2660 * the target resides):
2662 * #define USE_ELF_CORE_DUMP
2664 * Next you define type of register set used for dumping. ELF specification
2665 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2667 * typedef <target_regtype> target_elf_greg_t;
2668 * #define ELF_NREG <number of registers>
2669 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2671 * Last step is to implement target specific function that copies registers
2672 * from given cpu into just specified register set. Prototype is:
2674 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2675 * const CPUArchState *env);
2678 * regs - copy register values into here (allocated and zeroed by caller)
2679 * env - copy registers from here
2681 * Example for ARM target is provided in this file.
2684 /* An ELF note in memory */
2688 size_t namesz_rounded
;
2691 size_t datasz_rounded
;
2696 struct target_elf_siginfo
{
2697 abi_int si_signo
; /* signal number */
2698 abi_int si_code
; /* extra code */
2699 abi_int si_errno
; /* errno */
2702 struct target_elf_prstatus
{
2703 struct target_elf_siginfo pr_info
; /* Info associated with signal */
2704 abi_short pr_cursig
; /* Current signal */
2705 abi_ulong pr_sigpend
; /* XXX */
2706 abi_ulong pr_sighold
; /* XXX */
2707 target_pid_t pr_pid
;
2708 target_pid_t pr_ppid
;
2709 target_pid_t pr_pgrp
;
2710 target_pid_t pr_sid
;
2711 struct target_timeval pr_utime
; /* XXX User time */
2712 struct target_timeval pr_stime
; /* XXX System time */
2713 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
2714 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
2715 target_elf_gregset_t pr_reg
; /* GP registers */
2716 abi_int pr_fpvalid
; /* XXX */
2719 #define ELF_PRARGSZ (80) /* Number of chars for args */
2721 struct target_elf_prpsinfo
{
2722 char pr_state
; /* numeric process state */
2723 char pr_sname
; /* char for pr_state */
2724 char pr_zomb
; /* zombie */
2725 char pr_nice
; /* nice val */
2726 abi_ulong pr_flag
; /* flags */
2727 target_uid_t pr_uid
;
2728 target_gid_t pr_gid
;
2729 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
2731 char pr_fname
[16]; /* filename of executable */
2732 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
2735 /* Here is the structure in which status of each thread is captured. */
2736 struct elf_thread_status
{
2737 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
2738 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
2740 elf_fpregset_t fpu
; /* NT_PRFPREG */
2741 struct task_struct
*thread
;
2742 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
2744 struct memelfnote notes
[1];
2748 struct elf_note_info
{
2749 struct memelfnote
*notes
;
2750 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
2751 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
2753 QTAILQ_HEAD(thread_list_head
, elf_thread_status
) thread_list
;
2756 * Current version of ELF coredump doesn't support
2757 * dumping fp regs etc.
2759 elf_fpregset_t
*fpu
;
2760 elf_fpxregset_t
*xfpu
;
2761 int thread_status_size
;
2767 struct vm_area_struct
{
2768 target_ulong vma_start
; /* start vaddr of memory region */
2769 target_ulong vma_end
; /* end vaddr of memory region */
2770 abi_ulong vma_flags
; /* protection etc. flags for the region */
2771 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
2775 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
2776 int mm_count
; /* number of mappings */
2779 static struct mm_struct
*vma_init(void);
2780 static void vma_delete(struct mm_struct
*);
2781 static int vma_add_mapping(struct mm_struct
*, target_ulong
,
2782 target_ulong
, abi_ulong
);
2783 static int vma_get_mapping_count(const struct mm_struct
*);
2784 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
2785 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
2786 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
2787 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
2788 unsigned long flags
);
2790 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
2791 static void fill_note(struct memelfnote
*, const char *, int,
2792 unsigned int, void *);
2793 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
2794 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
2795 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
2796 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
2797 static size_t note_size(const struct memelfnote
*);
2798 static void free_note_info(struct elf_note_info
*);
2799 static int fill_note_info(struct elf_note_info
*, long, const CPUArchState
*);
2800 static void fill_thread_info(struct elf_note_info
*, const CPUArchState
*);
2801 static int core_dump_filename(const TaskState
*, char *, size_t);
2803 static int dump_write(int, const void *, size_t);
2804 static int write_note(struct memelfnote
*, int);
2805 static int write_note_info(struct elf_note_info
*, int);
2808 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
2810 prstatus
->pr_info
.si_signo
= tswap32(prstatus
->pr_info
.si_signo
);
2811 prstatus
->pr_info
.si_code
= tswap32(prstatus
->pr_info
.si_code
);
2812 prstatus
->pr_info
.si_errno
= tswap32(prstatus
->pr_info
.si_errno
);
2813 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
2814 prstatus
->pr_sigpend
= tswapal(prstatus
->pr_sigpend
);
2815 prstatus
->pr_sighold
= tswapal(prstatus
->pr_sighold
);
2816 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
2817 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
2818 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
2819 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
2820 /* cpu times are not filled, so we skip them */
2821 /* regs should be in correct format already */
2822 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
2825 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
2827 psinfo
->pr_flag
= tswapal(psinfo
->pr_flag
);
2828 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
2829 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
2830 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
2831 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
2832 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
2833 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
2836 static void bswap_note(struct elf_note
*en
)
2838 bswap32s(&en
->n_namesz
);
2839 bswap32s(&en
->n_descsz
);
2840 bswap32s(&en
->n_type
);
2843 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
2844 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
2845 static inline void bswap_note(struct elf_note
*en
) { }
2846 #endif /* BSWAP_NEEDED */
2849 * Minimal support for linux memory regions. These are needed
2850 * when we are finding out what memory exactly belongs to
2851 * emulated process. No locks needed here, as long as
2852 * thread that received the signal is stopped.
2855 static struct mm_struct
*vma_init(void)
2857 struct mm_struct
*mm
;
2859 if ((mm
= g_malloc(sizeof (*mm
))) == NULL
)
2863 QTAILQ_INIT(&mm
->mm_mmap
);
2868 static void vma_delete(struct mm_struct
*mm
)
2870 struct vm_area_struct
*vma
;
2872 while ((vma
= vma_first(mm
)) != NULL
) {
2873 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
2879 static int vma_add_mapping(struct mm_struct
*mm
, target_ulong start
,
2880 target_ulong end
, abi_ulong flags
)
2882 struct vm_area_struct
*vma
;
2884 if ((vma
= g_malloc0(sizeof (*vma
))) == NULL
)
2887 vma
->vma_start
= start
;
2889 vma
->vma_flags
= flags
;
2891 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
2897 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
2899 return (QTAILQ_FIRST(&mm
->mm_mmap
));
2902 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
2904 return (QTAILQ_NEXT(vma
, vma_link
));
2907 static int vma_get_mapping_count(const struct mm_struct
*mm
)
2909 return (mm
->mm_count
);
2913 * Calculate file (dump) size of given memory region.
2915 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
2917 /* if we cannot even read the first page, skip it */
2918 if (!access_ok(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
2922 * Usually we don't dump executable pages as they contain
2923 * non-writable code that debugger can read directly from
2924 * target library etc. However, thread stacks are marked
2925 * also executable so we read in first page of given region
2926 * and check whether it contains elf header. If there is
2927 * no elf header, we dump it.
2929 if (vma
->vma_flags
& PROT_EXEC
) {
2930 char page
[TARGET_PAGE_SIZE
];
2932 copy_from_user(page
, vma
->vma_start
, sizeof (page
));
2933 if ((page
[EI_MAG0
] == ELFMAG0
) &&
2934 (page
[EI_MAG1
] == ELFMAG1
) &&
2935 (page
[EI_MAG2
] == ELFMAG2
) &&
2936 (page
[EI_MAG3
] == ELFMAG3
)) {
2938 * Mappings are possibly from ELF binary. Don't dump
2945 return (vma
->vma_end
- vma
->vma_start
);
2948 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
2949 unsigned long flags
)
2951 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
2953 vma_add_mapping(mm
, start
, end
, flags
);
2957 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
2958 unsigned int sz
, void *data
)
2960 unsigned int namesz
;
2962 namesz
= strlen(name
) + 1;
2964 note
->namesz
= namesz
;
2965 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
2968 note
->datasz_rounded
= roundup(sz
, sizeof (int32_t));
2973 * We calculate rounded up note size here as specified by
2976 note
->notesz
= sizeof (struct elf_note
) +
2977 note
->namesz_rounded
+ note
->datasz_rounded
;
2980 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
2983 (void) memset(elf
, 0, sizeof(*elf
));
2985 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
2986 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
2987 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
2988 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
2989 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
2991 elf
->e_type
= ET_CORE
;
2992 elf
->e_machine
= machine
;
2993 elf
->e_version
= EV_CURRENT
;
2994 elf
->e_phoff
= sizeof(struct elfhdr
);
2995 elf
->e_flags
= flags
;
2996 elf
->e_ehsize
= sizeof(struct elfhdr
);
2997 elf
->e_phentsize
= sizeof(struct elf_phdr
);
2998 elf
->e_phnum
= segs
;
3003 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
3005 phdr
->p_type
= PT_NOTE
;
3006 phdr
->p_offset
= offset
;
3009 phdr
->p_filesz
= sz
;
3014 bswap_phdr(phdr
, 1);
3017 static size_t note_size(const struct memelfnote
*note
)
3019 return (note
->notesz
);
3022 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
3023 const TaskState
*ts
, int signr
)
3025 (void) memset(prstatus
, 0, sizeof (*prstatus
));
3026 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
3027 prstatus
->pr_pid
= ts
->ts_tid
;
3028 prstatus
->pr_ppid
= getppid();
3029 prstatus
->pr_pgrp
= getpgrp();
3030 prstatus
->pr_sid
= getsid(0);
3032 bswap_prstatus(prstatus
);
3035 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
3037 char *base_filename
;
3038 unsigned int i
, len
;
3040 (void) memset(psinfo
, 0, sizeof (*psinfo
));
3042 len
= ts
->info
->arg_end
- ts
->info
->arg_start
;
3043 if (len
>= ELF_PRARGSZ
)
3044 len
= ELF_PRARGSZ
- 1;
3045 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_start
, len
))
3047 for (i
= 0; i
< len
; i
++)
3048 if (psinfo
->pr_psargs
[i
] == 0)
3049 psinfo
->pr_psargs
[i
] = ' ';
3050 psinfo
->pr_psargs
[len
] = 0;
3052 psinfo
->pr_pid
= getpid();
3053 psinfo
->pr_ppid
= getppid();
3054 psinfo
->pr_pgrp
= getpgrp();
3055 psinfo
->pr_sid
= getsid(0);
3056 psinfo
->pr_uid
= getuid();
3057 psinfo
->pr_gid
= getgid();
3059 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
3061 * Using strncpy here is fine: at max-length,
3062 * this field is not NUL-terminated.
3064 (void) strncpy(psinfo
->pr_fname
, base_filename
,
3065 sizeof(psinfo
->pr_fname
));
3067 g_free(base_filename
);
3068 bswap_psinfo(psinfo
);
3072 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
3074 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
3075 elf_addr_t orig_auxv
= auxv
;
3077 int len
= ts
->info
->auxv_len
;
3080 * Auxiliary vector is stored in target process stack. It contains
3081 * {type, value} pairs that we need to dump into note. This is not
3082 * strictly necessary but we do it here for sake of completeness.
3085 /* read in whole auxv vector and copy it to memelfnote */
3086 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
3088 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
3089 unlock_user(ptr
, auxv
, len
);
3094 * Constructs name of coredump file. We have following convention
3096 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3098 * Returns 0 in case of success, -1 otherwise (errno is set).
3100 static int core_dump_filename(const TaskState
*ts
, char *buf
,
3104 char *base_filename
= NULL
;
3108 assert(bufsize
>= PATH_MAX
);
3110 if (gettimeofday(&tv
, NULL
) < 0) {
3111 (void) fprintf(stderr
, "unable to get current timestamp: %s",
3116 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
3117 (void) strftime(timestamp
, sizeof (timestamp
), "%Y%m%d-%H%M%S",
3118 localtime_r(&tv
.tv_sec
, &tm
));
3119 (void) snprintf(buf
, bufsize
, "qemu_%s_%s_%d.core",
3120 base_filename
, timestamp
, (int)getpid());
3121 g_free(base_filename
);
3126 static int dump_write(int fd
, const void *ptr
, size_t size
)
3128 const char *bufp
= (const char *)ptr
;
3129 ssize_t bytes_written
, bytes_left
;
3130 struct rlimit dumpsize
;
3134 getrlimit(RLIMIT_CORE
, &dumpsize
);
3135 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
3136 if (errno
== ESPIPE
) { /* not a seekable stream */
3142 if (dumpsize
.rlim_cur
<= pos
) {
3144 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
3147 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
3148 bytes_left
= limit_left
>= size
? size
: limit_left
;
3153 * In normal conditions, single write(2) should do but
3154 * in case of socket etc. this mechanism is more portable.
3157 bytes_written
= write(fd
, bufp
, bytes_left
);
3158 if (bytes_written
< 0) {
3162 } else if (bytes_written
== 0) { /* eof */
3165 bufp
+= bytes_written
;
3166 bytes_left
-= bytes_written
;
3167 } while (bytes_left
> 0);
3172 static int write_note(struct memelfnote
*men
, int fd
)
3176 en
.n_namesz
= men
->namesz
;
3177 en
.n_type
= men
->type
;
3178 en
.n_descsz
= men
->datasz
;
3182 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
3184 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
3186 if (dump_write(fd
, men
->data
, men
->datasz_rounded
) != 0)
3192 static void fill_thread_info(struct elf_note_info
*info
, const CPUArchState
*env
)
3194 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
3195 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
3196 struct elf_thread_status
*ets
;
3198 ets
= g_malloc0(sizeof (*ets
));
3199 ets
->num_notes
= 1; /* only prstatus is dumped */
3200 fill_prstatus(&ets
->prstatus
, ts
, 0);
3201 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
3202 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
3205 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
3207 info
->notes_size
+= note_size(&ets
->notes
[0]);
3210 static void init_note_info(struct elf_note_info
*info
)
3212 /* Initialize the elf_note_info structure so that it is at
3213 * least safe to call free_note_info() on it. Must be
3214 * called before calling fill_note_info().
3216 memset(info
, 0, sizeof (*info
));
3217 QTAILQ_INIT(&info
->thread_list
);
3220 static int fill_note_info(struct elf_note_info
*info
,
3221 long signr
, const CPUArchState
*env
)
3224 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
3225 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
3228 info
->notes
= g_new0(struct memelfnote
, NUMNOTES
);
3229 if (info
->notes
== NULL
)
3231 info
->prstatus
= g_malloc0(sizeof (*info
->prstatus
));
3232 if (info
->prstatus
== NULL
)
3234 info
->psinfo
= g_malloc0(sizeof (*info
->psinfo
));
3235 if (info
->prstatus
== NULL
)
3239 * First fill in status (and registers) of current thread
3240 * including process info & aux vector.
3242 fill_prstatus(info
->prstatus
, ts
, signr
);
3243 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
3244 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
3245 sizeof (*info
->prstatus
), info
->prstatus
);
3246 fill_psinfo(info
->psinfo
, ts
);
3247 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
3248 sizeof (*info
->psinfo
), info
->psinfo
);
3249 fill_auxv_note(&info
->notes
[2], ts
);
3252 info
->notes_size
= 0;
3253 for (i
= 0; i
< info
->numnote
; i
++)
3254 info
->notes_size
+= note_size(&info
->notes
[i
]);
3256 /* read and fill status of all threads */
3259 if (cpu
== thread_cpu
) {
3262 fill_thread_info(info
, (CPUArchState
*)cpu
->env_ptr
);
3269 static void free_note_info(struct elf_note_info
*info
)
3271 struct elf_thread_status
*ets
;
3273 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
3274 ets
= QTAILQ_FIRST(&info
->thread_list
);
3275 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
3279 g_free(info
->prstatus
);
3280 g_free(info
->psinfo
);
3281 g_free(info
->notes
);
3284 static int write_note_info(struct elf_note_info
*info
, int fd
)
3286 struct elf_thread_status
*ets
;
3289 /* write prstatus, psinfo and auxv for current thread */
3290 for (i
= 0; i
< info
->numnote
; i
++)
3291 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
3294 /* write prstatus for each thread */
3295 QTAILQ_FOREACH(ets
, &info
->thread_list
, ets_link
) {
3296 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
3304 * Write out ELF coredump.
3306 * See documentation of ELF object file format in:
3307 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3309 * Coredump format in linux is following:
3311 * 0 +----------------------+ \
3312 * | ELF header | ET_CORE |
3313 * +----------------------+ |
3314 * | ELF program headers | |--- headers
3315 * | - NOTE section | |
3316 * | - PT_LOAD sections | |
3317 * +----------------------+ /
3322 * +----------------------+ <-- aligned to target page
3323 * | Process memory dump |
3328 * +----------------------+
3330 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3331 * NT_PRSINFO -> struct elf_prpsinfo
3332 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3334 * Format follows System V format as close as possible. Current
3335 * version limitations are as follows:
3336 * - no floating point registers are dumped
3338 * Function returns 0 in case of success, negative errno otherwise.
3340 * TODO: make this work also during runtime: it should be
3341 * possible to force coredump from running process and then
3342 * continue processing. For example qemu could set up SIGUSR2
3343 * handler (provided that target process haven't registered
3344 * handler for that) that does the dump when signal is received.
3346 static int elf_core_dump(int signr
, const CPUArchState
*env
)
3348 const CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
3349 const TaskState
*ts
= (const TaskState
*)cpu
->opaque
;
3350 struct vm_area_struct
*vma
= NULL
;
3351 char corefile
[PATH_MAX
];
3352 struct elf_note_info info
;
3354 struct elf_phdr phdr
;
3355 struct rlimit dumpsize
;
3356 struct mm_struct
*mm
= NULL
;
3357 off_t offset
= 0, data_offset
= 0;
3361 init_note_info(&info
);
3364 getrlimit(RLIMIT_CORE
, &dumpsize
);
3365 if (dumpsize
.rlim_cur
== 0)
3368 if (core_dump_filename(ts
, corefile
, sizeof (corefile
)) < 0)
3371 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
3372 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
3376 * Walk through target process memory mappings and
3377 * set up structure containing this information. After
3378 * this point vma_xxx functions can be used.
3380 if ((mm
= vma_init()) == NULL
)
3383 walk_memory_regions(mm
, vma_walker
);
3384 segs
= vma_get_mapping_count(mm
);
3387 * Construct valid coredump ELF header. We also
3388 * add one more segment for notes.
3390 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
3391 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
3394 /* fill in the in-memory version of notes */
3395 if (fill_note_info(&info
, signr
, env
) < 0)
3398 offset
+= sizeof (elf
); /* elf header */
3399 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
3401 /* write out notes program header */
3402 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
3404 offset
+= info
.notes_size
;
3405 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
3409 * ELF specification wants data to start at page boundary so
3412 data_offset
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
3415 * Write program headers for memory regions mapped in
3416 * the target process.
3418 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3419 (void) memset(&phdr
, 0, sizeof (phdr
));
3421 phdr
.p_type
= PT_LOAD
;
3422 phdr
.p_offset
= offset
;
3423 phdr
.p_vaddr
= vma
->vma_start
;
3425 phdr
.p_filesz
= vma_dump_size(vma
);
3426 offset
+= phdr
.p_filesz
;
3427 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
3428 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
3429 if (vma
->vma_flags
& PROT_WRITE
)
3430 phdr
.p_flags
|= PF_W
;
3431 if (vma
->vma_flags
& PROT_EXEC
)
3432 phdr
.p_flags
|= PF_X
;
3433 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
3435 bswap_phdr(&phdr
, 1);
3436 if (dump_write(fd
, &phdr
, sizeof(phdr
)) != 0) {
3442 * Next we write notes just after program headers. No
3443 * alignment needed here.
3445 if (write_note_info(&info
, fd
) < 0)
3448 /* align data to page boundary */
3449 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
3453 * Finally we can dump process memory into corefile as well.
3455 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3459 end
= vma
->vma_start
+ vma_dump_size(vma
);
3461 for (addr
= vma
->vma_start
; addr
< end
;
3462 addr
+= TARGET_PAGE_SIZE
) {
3463 char page
[TARGET_PAGE_SIZE
];
3467 * Read in page from target process memory and
3468 * write it to coredump file.
3470 error
= copy_from_user(page
, addr
, sizeof (page
));
3472 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
3477 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
3483 free_note_info(&info
);
3492 #endif /* USE_ELF_CORE_DUMP */
3494 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
3496 init_thread(regs
, infop
);