Merge remote-tracking branch 'remotes/armbru/tags/pull-build-2019-07-02-v2' into...
[qemu/ar7.git] / target / s390x / mmu_helper.c
blob6e9c4d6151bbe829a15826aa26124e66588255d7
1 /*
2 * S390x MMU related functions
4 * Copyright (c) 2011 Alexander Graf
5 * Copyright (c) 2015 Thomas Huth, IBM Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include "qemu/osdep.h"
19 #include "qemu/error-report.h"
20 #include "exec/address-spaces.h"
21 #include "cpu.h"
22 #include "internal.h"
23 #include "kvm_s390x.h"
24 #include "sysemu/kvm.h"
25 #include "sysemu/tcg.h"
26 #include "exec/exec-all.h"
27 #include "trace.h"
28 #include "hw/s390x/storage-keys.h"
30 /* #define DEBUG_S390 */
31 /* #define DEBUG_S390_PTE */
32 /* #define DEBUG_S390_STDOUT */
34 #ifdef DEBUG_S390
35 #ifdef DEBUG_S390_STDOUT
36 #define DPRINTF(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); \
38 if (qemu_log_separate()) qemu_log(fmt, ##__VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { qemu_log(fmt, ## __VA_ARGS__); } while (0)
42 #endif
43 #else
44 #define DPRINTF(fmt, ...) \
45 do { } while (0)
46 #endif
48 #ifdef DEBUG_S390_PTE
49 #define PTE_DPRINTF DPRINTF
50 #else
51 #define PTE_DPRINTF(fmt, ...) \
52 do { } while (0)
53 #endif
55 /* Fetch/store bits in the translation exception code: */
56 #define FS_READ 0x800
57 #define FS_WRITE 0x400
59 static void trigger_access_exception(CPUS390XState *env, uint32_t type,
60 uint32_t ilen, uint64_t tec)
62 S390CPU *cpu = env_archcpu(env);
64 if (kvm_enabled()) {
65 kvm_s390_access_exception(cpu, type, tec);
66 } else {
67 CPUState *cs = env_cpu(env);
68 if (type != PGM_ADDRESSING) {
69 stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec);
71 trigger_pgm_exception(env, type, ilen);
75 static void trigger_prot_fault(CPUS390XState *env, target_ulong vaddr,
76 uint64_t asc, int rw, bool exc)
78 uint64_t tec;
80 tec = vaddr | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ) | 4 | asc >> 46;
82 DPRINTF("%s: trans_exc_code=%016" PRIx64 "\n", __func__, tec);
84 if (!exc) {
85 return;
88 trigger_access_exception(env, PGM_PROTECTION, ILEN_AUTO, tec);
91 static void trigger_page_fault(CPUS390XState *env, target_ulong vaddr,
92 uint32_t type, uint64_t asc, int rw, bool exc)
94 int ilen = ILEN_AUTO;
95 uint64_t tec;
97 tec = vaddr | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ) | asc >> 46;
99 DPRINTF("%s: trans_exc_code=%016" PRIx64 "\n", __func__, tec);
101 if (!exc) {
102 return;
105 /* Code accesses have an undefined ilc. */
106 if (rw == MMU_INST_FETCH) {
107 ilen = 2;
110 trigger_access_exception(env, type, ilen, tec);
113 /* check whether the address would be proteted by Low-Address Protection */
114 static bool is_low_address(uint64_t addr)
116 return addr <= 511 || (addr >= 4096 && addr <= 4607);
119 /* check whether Low-Address Protection is enabled for mmu_translate() */
120 static bool lowprot_enabled(const CPUS390XState *env, uint64_t asc)
122 if (!(env->cregs[0] & CR0_LOWPROT)) {
123 return false;
125 if (!(env->psw.mask & PSW_MASK_DAT)) {
126 return true;
129 /* Check the private-space control bit */
130 switch (asc) {
131 case PSW_ASC_PRIMARY:
132 return !(env->cregs[1] & ASCE_PRIVATE_SPACE);
133 case PSW_ASC_SECONDARY:
134 return !(env->cregs[7] & ASCE_PRIVATE_SPACE);
135 case PSW_ASC_HOME:
136 return !(env->cregs[13] & ASCE_PRIVATE_SPACE);
137 default:
138 /* We don't support access register mode */
139 error_report("unsupported addressing mode");
140 exit(1);
145 * Translate real address to absolute (= physical)
146 * address by taking care of the prefix mapping.
148 target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr)
150 if (raddr < 0x2000) {
151 return raddr + env->psa; /* Map the lowcore. */
152 } else if (raddr >= env->psa && raddr < env->psa + 0x2000) {
153 return raddr - env->psa; /* Map the 0 page. */
155 return raddr;
158 /* Decode page table entry (normal 4KB page) */
159 static int mmu_translate_pte(CPUS390XState *env, target_ulong vaddr,
160 uint64_t asc, uint64_t pt_entry,
161 target_ulong *raddr, int *flags, int rw, bool exc)
163 if (pt_entry & PAGE_INVALID) {
164 DPRINTF("%s: PTE=0x%" PRIx64 " invalid\n", __func__, pt_entry);
165 trigger_page_fault(env, vaddr, PGM_PAGE_TRANS, asc, rw, exc);
166 return -1;
168 if (pt_entry & PAGE_RES0) {
169 trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw, exc);
170 return -1;
172 if (pt_entry & PAGE_RO) {
173 *flags &= ~PAGE_WRITE;
176 *raddr = pt_entry & ASCE_ORIGIN;
178 PTE_DPRINTF("%s: PTE=0x%" PRIx64 "\n", __func__, pt_entry);
180 return 0;
183 /* Decode segment table entry */
184 static int mmu_translate_segment(CPUS390XState *env, target_ulong vaddr,
185 uint64_t asc, uint64_t st_entry,
186 target_ulong *raddr, int *flags, int rw,
187 bool exc)
189 CPUState *cs = env_cpu(env);
190 uint64_t origin, offs, pt_entry;
192 if (st_entry & SEGMENT_ENTRY_RO) {
193 *flags &= ~PAGE_WRITE;
196 if ((st_entry & SEGMENT_ENTRY_FC) && (env->cregs[0] & CR0_EDAT)) {
197 /* Decode EDAT1 segment frame absolute address (1MB page) */
198 *raddr = (st_entry & 0xfffffffffff00000ULL) | (vaddr & 0xfffff);
199 PTE_DPRINTF("%s: SEG=0x%" PRIx64 "\n", __func__, st_entry);
200 return 0;
203 /* Look up 4KB page entry */
204 origin = st_entry & SEGMENT_ENTRY_ORIGIN;
205 offs = (vaddr & VADDR_PX) >> 9;
206 pt_entry = ldq_phys(cs->as, origin + offs);
207 PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n",
208 __func__, origin, offs, pt_entry);
209 return mmu_translate_pte(env, vaddr, asc, pt_entry, raddr, flags, rw, exc);
212 /* Decode region table entries */
213 static int mmu_translate_region(CPUS390XState *env, target_ulong vaddr,
214 uint64_t asc, uint64_t entry, int level,
215 target_ulong *raddr, int *flags, int rw,
216 bool exc)
218 CPUState *cs = env_cpu(env);
219 uint64_t origin, offs, new_entry;
220 const int pchks[4] = {
221 PGM_SEGMENT_TRANS, PGM_REG_THIRD_TRANS,
222 PGM_REG_SEC_TRANS, PGM_REG_FIRST_TRANS
225 PTE_DPRINTF("%s: 0x%" PRIx64 "\n", __func__, entry);
227 origin = entry & REGION_ENTRY_ORIGIN;
228 offs = (vaddr >> (17 + 11 * level / 4)) & 0x3ff8;
230 new_entry = ldq_phys(cs->as, origin + offs);
231 PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n",
232 __func__, origin, offs, new_entry);
234 if ((new_entry & REGION_ENTRY_INV) != 0) {
235 DPRINTF("%s: invalid region\n", __func__);
236 trigger_page_fault(env, vaddr, pchks[level / 4], asc, rw, exc);
237 return -1;
240 if ((new_entry & REGION_ENTRY_TYPE_MASK) != level) {
241 trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw, exc);
242 return -1;
245 if (level == ASCE_TYPE_SEGMENT) {
246 return mmu_translate_segment(env, vaddr, asc, new_entry, raddr, flags,
247 rw, exc);
250 /* Check region table offset and length */
251 offs = (vaddr >> (28 + 11 * (level - 4) / 4)) & 3;
252 if (offs < ((new_entry & REGION_ENTRY_TF) >> 6)
253 || offs > (new_entry & REGION_ENTRY_LENGTH)) {
254 DPRINTF("%s: invalid offset or len (%lx)\n", __func__, new_entry);
255 trigger_page_fault(env, vaddr, pchks[level / 4 - 1], asc, rw, exc);
256 return -1;
259 if ((env->cregs[0] & CR0_EDAT) && (new_entry & REGION_ENTRY_RO)) {
260 *flags &= ~PAGE_WRITE;
263 /* yet another region */
264 return mmu_translate_region(env, vaddr, asc, new_entry, level - 4,
265 raddr, flags, rw, exc);
268 static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr,
269 uint64_t asc, uint64_t asce, target_ulong *raddr,
270 int *flags, int rw, bool exc)
272 int level;
273 int r;
275 if (asce & ASCE_REAL_SPACE) {
276 /* direct mapping */
277 *raddr = vaddr;
278 return 0;
281 level = asce & ASCE_TYPE_MASK;
282 switch (level) {
283 case ASCE_TYPE_REGION1:
284 if ((vaddr >> 62) > (asce & ASCE_TABLE_LENGTH)) {
285 trigger_page_fault(env, vaddr, PGM_REG_FIRST_TRANS, asc, rw, exc);
286 return -1;
288 break;
289 case ASCE_TYPE_REGION2:
290 if (vaddr & 0xffe0000000000000ULL) {
291 DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
292 " 0xffe0000000000000ULL\n", __func__, vaddr);
293 trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
294 return -1;
296 if ((vaddr >> 51 & 3) > (asce & ASCE_TABLE_LENGTH)) {
297 trigger_page_fault(env, vaddr, PGM_REG_SEC_TRANS, asc, rw, exc);
298 return -1;
300 break;
301 case ASCE_TYPE_REGION3:
302 if (vaddr & 0xfffffc0000000000ULL) {
303 DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
304 " 0xfffffc0000000000ULL\n", __func__, vaddr);
305 trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
306 return -1;
308 if ((vaddr >> 40 & 3) > (asce & ASCE_TABLE_LENGTH)) {
309 trigger_page_fault(env, vaddr, PGM_REG_THIRD_TRANS, asc, rw, exc);
310 return -1;
312 break;
313 case ASCE_TYPE_SEGMENT:
314 if (vaddr & 0xffffffff80000000ULL) {
315 DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
316 " 0xffffffff80000000ULL\n", __func__, vaddr);
317 trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
318 return -1;
320 if ((vaddr >> 29 & 3) > (asce & ASCE_TABLE_LENGTH)) {
321 trigger_page_fault(env, vaddr, PGM_SEGMENT_TRANS, asc, rw, exc);
322 return -1;
324 break;
327 r = mmu_translate_region(env, vaddr, asc, asce, level, raddr, flags, rw,
328 exc);
329 if (!r && rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE)) {
330 trigger_prot_fault(env, vaddr, asc, rw, exc);
331 return -1;
334 return r;
338 * Translate a virtual (logical) address into a physical (absolute) address.
339 * @param vaddr the virtual address
340 * @param rw 0 = read, 1 = write, 2 = code fetch
341 * @param asc address space control (one of the PSW_ASC_* modes)
342 * @param raddr the translated address is stored to this pointer
343 * @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer
344 * @param exc true = inject a program check if a fault occurred
345 * @return 0 if the translation was successful, -1 if a fault occurred
347 int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc,
348 target_ulong *raddr, int *flags, bool exc)
350 static S390SKeysState *ss;
351 static S390SKeysClass *skeyclass;
352 int r = -1;
353 uint8_t key;
355 if (unlikely(!ss)) {
356 ss = s390_get_skeys_device();
357 skeyclass = S390_SKEYS_GET_CLASS(ss);
360 *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
361 if (is_low_address(vaddr & TARGET_PAGE_MASK) && lowprot_enabled(env, asc)) {
363 * If any part of this page is currently protected, make sure the
364 * TLB entry will not be reused.
366 * As the protected range is always the first 512 bytes of the
367 * two first pages, we are able to catch all writes to these areas
368 * just by looking at the start address (triggering the tlb miss).
370 *flags |= PAGE_WRITE_INV;
371 if (is_low_address(vaddr) && rw == MMU_DATA_STORE) {
372 if (exc) {
373 trigger_access_exception(env, PGM_PROTECTION, ILEN_AUTO, 0);
375 return -EACCES;
379 vaddr &= TARGET_PAGE_MASK;
381 if (!(env->psw.mask & PSW_MASK_DAT)) {
382 *raddr = vaddr;
383 r = 0;
384 goto out;
387 switch (asc) {
388 case PSW_ASC_PRIMARY:
389 PTE_DPRINTF("%s: asc=primary\n", __func__);
390 r = mmu_translate_asce(env, vaddr, asc, env->cregs[1], raddr, flags,
391 rw, exc);
392 break;
393 case PSW_ASC_HOME:
394 PTE_DPRINTF("%s: asc=home\n", __func__);
395 r = mmu_translate_asce(env, vaddr, asc, env->cregs[13], raddr, flags,
396 rw, exc);
397 break;
398 case PSW_ASC_SECONDARY:
399 PTE_DPRINTF("%s: asc=secondary\n", __func__);
401 * Instruction: Primary
402 * Data: Secondary
404 if (rw == MMU_INST_FETCH) {
405 r = mmu_translate_asce(env, vaddr, PSW_ASC_PRIMARY, env->cregs[1],
406 raddr, flags, rw, exc);
407 *flags &= ~(PAGE_READ | PAGE_WRITE);
408 } else {
409 r = mmu_translate_asce(env, vaddr, PSW_ASC_SECONDARY, env->cregs[7],
410 raddr, flags, rw, exc);
411 *flags &= ~(PAGE_EXEC);
413 break;
414 case PSW_ASC_ACCREG:
415 default:
416 hw_error("guest switched to unknown asc mode\n");
417 break;
420 out:
421 /* Convert real address -> absolute address */
422 *raddr = mmu_real2abs(env, *raddr);
424 if (r == 0 && *raddr < ram_size) {
425 if (skeyclass->get_skeys(ss, *raddr / TARGET_PAGE_SIZE, 1, &key)) {
426 trace_get_skeys_nonzero(r);
427 return 0;
430 if (*flags & PAGE_READ) {
431 key |= SK_R;
434 if (*flags & PAGE_WRITE) {
435 key |= SK_C;
438 if (skeyclass->set_skeys(ss, *raddr / TARGET_PAGE_SIZE, 1, &key)) {
439 trace_set_skeys_nonzero(r);
440 return 0;
444 return r;
448 * translate_pages: Translate a set of consecutive logical page addresses
449 * to absolute addresses. This function is used for TCG and old KVM without
450 * the MEMOP interface.
452 static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages,
453 target_ulong *pages, bool is_write)
455 uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC;
456 CPUS390XState *env = &cpu->env;
457 int ret, i, pflags;
459 for (i = 0; i < nr_pages; i++) {
460 ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, true);
461 if (ret) {
462 return ret;
464 if (!address_space_access_valid(&address_space_memory, pages[i],
465 TARGET_PAGE_SIZE, is_write,
466 MEMTXATTRS_UNSPECIFIED)) {
467 trigger_access_exception(env, PGM_ADDRESSING, ILEN_AUTO, 0);
468 return -EFAULT;
470 addr += TARGET_PAGE_SIZE;
473 return 0;
477 * s390_cpu_virt_mem_rw:
478 * @laddr: the logical start address
479 * @ar: the access register number
480 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
481 * @len: length that should be transferred
482 * @is_write: true = write, false = read
483 * Returns: 0 on success, non-zero if an exception occurred
485 * Copy from/to guest memory using logical addresses. Note that we inject a
486 * program interrupt in case there is an error while accessing the memory.
488 * This function will always return (also for TCG), make sure to call
489 * s390_cpu_virt_mem_handle_exc() to properly exit the CPU loop.
491 int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf,
492 int len, bool is_write)
494 int currlen, nr_pages, i;
495 target_ulong *pages;
496 int ret;
498 if (kvm_enabled()) {
499 ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write);
500 if (ret >= 0) {
501 return ret;
505 nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS)
506 + 1;
507 pages = g_malloc(nr_pages * sizeof(*pages));
509 ret = translate_pages(cpu, laddr, nr_pages, pages, is_write);
510 if (ret == 0 && hostbuf != NULL) {
511 /* Copy data by stepping through the area page by page */
512 for (i = 0; i < nr_pages; i++) {
513 currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE));
514 cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK),
515 hostbuf, currlen, is_write);
516 laddr += currlen;
517 hostbuf += currlen;
518 len -= currlen;
522 g_free(pages);
523 return ret;
526 void s390_cpu_virt_mem_handle_exc(S390CPU *cpu, uintptr_t ra)
528 /* KVM will handle the interrupt automatically, TCG has to exit the TB */
529 #ifdef CONFIG_TCG
530 if (tcg_enabled()) {
531 cpu_loop_exit_restore(CPU(cpu), ra);
533 #endif
537 * Translate a real address into a physical (absolute) address.
538 * @param raddr the real address
539 * @param rw 0 = read, 1 = write, 2 = code fetch
540 * @param addr the translated address is stored to this pointer
541 * @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer
542 * @return 0 if the translation was successful, < 0 if a fault occurred
544 int mmu_translate_real(CPUS390XState *env, target_ulong raddr, int rw,
545 target_ulong *addr, int *flags)
547 const bool lowprot_enabled = env->cregs[0] & CR0_LOWPROT;
549 *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
550 if (is_low_address(raddr & TARGET_PAGE_MASK) && lowprot_enabled) {
551 /* see comment in mmu_translate() how this works */
552 *flags |= PAGE_WRITE_INV;
553 if (is_low_address(raddr) && rw == MMU_DATA_STORE) {
554 trigger_access_exception(env, PGM_PROTECTION, ILEN_AUTO, 0);
555 return -EACCES;
559 *addr = mmu_real2abs(env, raddr & TARGET_PAGE_MASK);
561 /* TODO: storage key handling */
562 return 0;