Merge remote-tracking branch 'remotes/armbru/tags/pull-build-2019-07-02-v2' into...
[qemu/ar7.git] / target / ppc / kvm.c
blob8a06d3171e9fd958ae52dcf4cdc27d78b013a109
1 /*
2 * PowerPC implementation of KVM hooks
4 * Copyright IBM Corp. 2007
5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
7 * Authors:
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
22 #include <linux/kvm.h>
24 #include "qemu-common.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "cpu.h"
28 #include "cpu-models.h"
29 #include "qemu/timer.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/hw_accel.h"
32 #include "kvm_ppc.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/device_tree.h"
35 #include "mmu-hash64.h"
37 #include "hw/sysbus.h"
38 #include "hw/ppc/spapr.h"
39 #include "hw/ppc/spapr_cpu_core.h"
40 #include "hw/ppc/ppc.h"
41 #include "sysemu/watchdog.h"
42 #include "trace.h"
43 #include "exec/gdbstub.h"
44 #include "exec/memattrs.h"
45 #include "exec/ram_addr.h"
46 #include "sysemu/hostmem.h"
47 #include "qemu/cutils.h"
48 #include "qemu/mmap-alloc.h"
49 #include "elf.h"
50 #include "sysemu/kvm_int.h"
52 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
54 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
55 KVM_CAP_LAST_INFO
58 static int cap_interrupt_unset;
59 static int cap_interrupt_level;
60 static int cap_segstate;
61 static int cap_booke_sregs;
62 static int cap_ppc_smt;
63 static int cap_ppc_smt_possible;
64 static int cap_spapr_tce;
65 static int cap_spapr_tce_64;
66 static int cap_spapr_multitce;
67 static int cap_spapr_vfio;
68 static int cap_hior;
69 static int cap_one_reg;
70 static int cap_epr;
71 static int cap_ppc_watchdog;
72 static int cap_papr;
73 static int cap_htab_fd;
74 static int cap_fixup_hcalls;
75 static int cap_htm; /* Hardware transactional memory support */
76 static int cap_mmu_radix;
77 static int cap_mmu_hash_v3;
78 static int cap_xive;
79 static int cap_resize_hpt;
80 static int cap_ppc_pvr_compat;
81 static int cap_ppc_safe_cache;
82 static int cap_ppc_safe_bounds_check;
83 static int cap_ppc_safe_indirect_branch;
84 static int cap_ppc_count_cache_flush_assist;
85 static int cap_ppc_nested_kvm_hv;
86 static int cap_large_decr;
88 static uint32_t debug_inst_opcode;
91 * XXX We have a race condition where we actually have a level triggered
92 * interrupt, but the infrastructure can't expose that yet, so the guest
93 * takes but ignores it, goes to sleep and never gets notified that there's
94 * still an interrupt pending.
96 * As a quick workaround, let's just wake up again 20 ms after we injected
97 * an interrupt. That way we can assure that we're always reinjecting
98 * interrupts in case the guest swallowed them.
100 static QEMUTimer *idle_timer;
102 static void kvm_kick_cpu(void *opaque)
104 PowerPCCPU *cpu = opaque;
106 qemu_cpu_kick(CPU(cpu));
110 * Check whether we are running with KVM-PR (instead of KVM-HV). This
111 * should only be used for fallback tests - generally we should use
112 * explicit capabilities for the features we want, rather than
113 * assuming what is/isn't available depending on the KVM variant.
115 static bool kvmppc_is_pr(KVMState *ks)
117 /* Assume KVM-PR if the GET_PVINFO capability is available */
118 return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
121 static int kvm_ppc_register_host_cpu_type(MachineState *ms);
122 static void kvmppc_get_cpu_characteristics(KVMState *s);
123 static int kvmppc_get_dec_bits(void);
125 int kvm_arch_init(MachineState *ms, KVMState *s)
127 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
128 cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
129 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
130 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
131 cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
132 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
133 cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
134 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
135 cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
136 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
137 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
138 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
139 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
141 * Note: we don't set cap_papr here, because this capability is
142 * only activated after this by kvmppc_set_papr()
144 cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
145 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
146 cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
147 cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
148 cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
149 cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
150 cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
151 cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
152 kvmppc_get_cpu_characteristics(s);
153 cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
154 cap_large_decr = kvmppc_get_dec_bits();
156 * Note: setting it to false because there is not such capability
157 * in KVM at this moment.
159 * TODO: call kvm_vm_check_extension() with the right capability
160 * after the kernel starts implementing it.
162 cap_ppc_pvr_compat = false;
164 if (!cap_interrupt_level) {
165 fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
166 "VM to stall at times!\n");
169 kvm_ppc_register_host_cpu_type(ms);
171 return 0;
174 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
176 return 0;
179 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
181 CPUPPCState *cenv = &cpu->env;
182 CPUState *cs = CPU(cpu);
183 struct kvm_sregs sregs;
184 int ret;
186 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
188 * What we're really trying to say is "if we're on BookE, we
189 * use the native PVR for now". This is the only sane way to
190 * check it though, so we potentially confuse users that they
191 * can run BookE guests on BookS. Let's hope nobody dares
192 * enough :)
194 return 0;
195 } else {
196 if (!cap_segstate) {
197 fprintf(stderr, "kvm error: missing PVR setting capability\n");
198 return -ENOSYS;
202 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
203 if (ret) {
204 return ret;
207 sregs.pvr = cenv->spr[SPR_PVR];
208 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
211 /* Set up a shared TLB array with KVM */
212 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
214 CPUPPCState *env = &cpu->env;
215 CPUState *cs = CPU(cpu);
216 struct kvm_book3e_206_tlb_params params = {};
217 struct kvm_config_tlb cfg = {};
218 unsigned int entries = 0;
219 int ret, i;
221 if (!kvm_enabled() ||
222 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
223 return 0;
226 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
228 for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
229 params.tlb_sizes[i] = booke206_tlb_size(env, i);
230 params.tlb_ways[i] = booke206_tlb_ways(env, i);
231 entries += params.tlb_sizes[i];
234 assert(entries == env->nb_tlb);
235 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
237 env->tlb_dirty = true;
239 cfg.array = (uintptr_t)env->tlb.tlbm;
240 cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
241 cfg.params = (uintptr_t)&params;
242 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
244 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
245 if (ret < 0) {
246 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
247 __func__, strerror(-ret));
248 return ret;
251 env->kvm_sw_tlb = true;
252 return 0;
256 #if defined(TARGET_PPC64)
257 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
259 int ret;
261 assert(kvm_state != NULL);
263 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
264 error_setg(errp, "KVM doesn't expose the MMU features it supports");
265 error_append_hint(errp, "Consider switching to a newer KVM\n");
266 return;
269 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
270 if (ret == 0) {
271 return;
274 error_setg_errno(errp, -ret,
275 "KVM failed to provide the MMU features it supports");
278 struct ppc_radix_page_info *kvm_get_radix_page_info(void)
280 KVMState *s = KVM_STATE(current_machine->accelerator);
281 struct ppc_radix_page_info *radix_page_info;
282 struct kvm_ppc_rmmu_info rmmu_info;
283 int i;
285 if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
286 return NULL;
288 if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
289 return NULL;
291 radix_page_info = g_malloc0(sizeof(*radix_page_info));
292 radix_page_info->count = 0;
293 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
294 if (rmmu_info.ap_encodings[i]) {
295 radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
296 radix_page_info->count++;
299 return radix_page_info;
302 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
303 bool radix, bool gtse,
304 uint64_t proc_tbl)
306 CPUState *cs = CPU(cpu);
307 int ret;
308 uint64_t flags = 0;
309 struct kvm_ppc_mmuv3_cfg cfg = {
310 .process_table = proc_tbl,
313 if (radix) {
314 flags |= KVM_PPC_MMUV3_RADIX;
316 if (gtse) {
317 flags |= KVM_PPC_MMUV3_GTSE;
319 cfg.flags = flags;
320 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
321 switch (ret) {
322 case 0:
323 return H_SUCCESS;
324 case -EINVAL:
325 return H_PARAMETER;
326 case -ENODEV:
327 return H_NOT_AVAILABLE;
328 default:
329 return H_HARDWARE;
333 bool kvmppc_hpt_needs_host_contiguous_pages(void)
335 static struct kvm_ppc_smmu_info smmu_info;
337 if (!kvm_enabled()) {
338 return false;
341 kvm_get_smmu_info(&smmu_info, &error_fatal);
342 return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
345 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
347 struct kvm_ppc_smmu_info smmu_info;
348 int iq, ik, jq, jk;
349 Error *local_err = NULL;
351 /* For now, we only have anything to check on hash64 MMUs */
352 if (!cpu->hash64_opts || !kvm_enabled()) {
353 return;
356 kvm_get_smmu_info(&smmu_info, &local_err);
357 if (local_err) {
358 error_propagate(errp, local_err);
359 return;
362 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
363 && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
364 error_setg(errp,
365 "KVM does not support 1TiB segments which guest expects");
366 return;
369 if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
370 error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
371 smmu_info.slb_size, cpu->hash64_opts->slb_size);
372 return;
376 * Verify that every pagesize supported by the cpu model is
377 * supported by KVM with the same encodings
379 for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
380 PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
381 struct kvm_ppc_one_seg_page_size *ksps;
383 for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
384 if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
385 break;
388 if (ik >= ARRAY_SIZE(smmu_info.sps)) {
389 error_setg(errp, "KVM doesn't support for base page shift %u",
390 qsps->page_shift);
391 return;
394 ksps = &smmu_info.sps[ik];
395 if (ksps->slb_enc != qsps->slb_enc) {
396 error_setg(errp,
397 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
398 ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
399 return;
402 for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
403 for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
404 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
405 break;
409 if (jk >= ARRAY_SIZE(ksps->enc)) {
410 error_setg(errp, "KVM doesn't support page shift %u/%u",
411 qsps->enc[jq].page_shift, qsps->page_shift);
412 return;
414 if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
415 error_setg(errp,
416 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
417 ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
418 qsps->page_shift, qsps->enc[jq].pte_enc);
419 return;
424 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
426 * Mostly what guest pagesizes we can use are related to the
427 * host pages used to map guest RAM, which is handled in the
428 * platform code. Cache-Inhibited largepages (64k) however are
429 * used for I/O, so if they're mapped to the host at all it
430 * will be a normal mapping, not a special hugepage one used
431 * for RAM.
433 if (getpagesize() < 0x10000) {
434 error_setg(errp,
435 "KVM can't supply 64kiB CI pages, which guest expects");
439 #endif /* !defined (TARGET_PPC64) */
441 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
443 return POWERPC_CPU(cpu)->vcpu_id;
447 * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports
448 * only 1 watchpoint, so array size of 4 is sufficient for now.
450 #define MAX_HW_BKPTS 4
452 static struct HWBreakpoint {
453 target_ulong addr;
454 int type;
455 } hw_debug_points[MAX_HW_BKPTS];
457 static CPUWatchpoint hw_watchpoint;
459 /* Default there is no breakpoint and watchpoint supported */
460 static int max_hw_breakpoint;
461 static int max_hw_watchpoint;
462 static int nb_hw_breakpoint;
463 static int nb_hw_watchpoint;
465 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
467 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
468 max_hw_breakpoint = 2;
469 max_hw_watchpoint = 2;
472 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
473 fprintf(stderr, "Error initializing h/w breakpoints\n");
474 return;
478 int kvm_arch_init_vcpu(CPUState *cs)
480 PowerPCCPU *cpu = POWERPC_CPU(cs);
481 CPUPPCState *cenv = &cpu->env;
482 int ret;
484 /* Synchronize sregs with kvm */
485 ret = kvm_arch_sync_sregs(cpu);
486 if (ret) {
487 if (ret == -EINVAL) {
488 error_report("Register sync failed... If you're using kvm-hv.ko,"
489 " only \"-cpu host\" is possible");
491 return ret;
494 idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);
496 switch (cenv->mmu_model) {
497 case POWERPC_MMU_BOOKE206:
498 /* This target supports access to KVM's guest TLB */
499 ret = kvm_booke206_tlb_init(cpu);
500 break;
501 case POWERPC_MMU_2_07:
502 if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
504 * KVM-HV has transactional memory on POWER8 also without
505 * the KVM_CAP_PPC_HTM extension, so enable it here
506 * instead as long as it's availble to userspace on the
507 * host.
509 if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
510 cap_htm = true;
513 break;
514 default:
515 break;
518 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
519 kvmppc_hw_debug_points_init(cenv);
521 return ret;
524 int kvm_arch_destroy_vcpu(CPUState *cs)
526 return 0;
529 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
531 CPUPPCState *env = &cpu->env;
532 CPUState *cs = CPU(cpu);
533 struct kvm_dirty_tlb dirty_tlb;
534 unsigned char *bitmap;
535 int ret;
537 if (!env->kvm_sw_tlb) {
538 return;
541 bitmap = g_malloc((env->nb_tlb + 7) / 8);
542 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
544 dirty_tlb.bitmap = (uintptr_t)bitmap;
545 dirty_tlb.num_dirty = env->nb_tlb;
547 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
548 if (ret) {
549 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
550 __func__, strerror(-ret));
553 g_free(bitmap);
556 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
558 PowerPCCPU *cpu = POWERPC_CPU(cs);
559 CPUPPCState *env = &cpu->env;
560 union {
561 uint32_t u32;
562 uint64_t u64;
563 } val;
564 struct kvm_one_reg reg = {
565 .id = id,
566 .addr = (uintptr_t) &val,
568 int ret;
570 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
571 if (ret != 0) {
572 trace_kvm_failed_spr_get(spr, strerror(errno));
573 } else {
574 switch (id & KVM_REG_SIZE_MASK) {
575 case KVM_REG_SIZE_U32:
576 env->spr[spr] = val.u32;
577 break;
579 case KVM_REG_SIZE_U64:
580 env->spr[spr] = val.u64;
581 break;
583 default:
584 /* Don't handle this size yet */
585 abort();
590 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
592 PowerPCCPU *cpu = POWERPC_CPU(cs);
593 CPUPPCState *env = &cpu->env;
594 union {
595 uint32_t u32;
596 uint64_t u64;
597 } val;
598 struct kvm_one_reg reg = {
599 .id = id,
600 .addr = (uintptr_t) &val,
602 int ret;
604 switch (id & KVM_REG_SIZE_MASK) {
605 case KVM_REG_SIZE_U32:
606 val.u32 = env->spr[spr];
607 break;
609 case KVM_REG_SIZE_U64:
610 val.u64 = env->spr[spr];
611 break;
613 default:
614 /* Don't handle this size yet */
615 abort();
618 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
619 if (ret != 0) {
620 trace_kvm_failed_spr_set(spr, strerror(errno));
624 static int kvm_put_fp(CPUState *cs)
626 PowerPCCPU *cpu = POWERPC_CPU(cs);
627 CPUPPCState *env = &cpu->env;
628 struct kvm_one_reg reg;
629 int i;
630 int ret;
632 if (env->insns_flags & PPC_FLOAT) {
633 uint64_t fpscr = env->fpscr;
634 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
636 reg.id = KVM_REG_PPC_FPSCR;
637 reg.addr = (uintptr_t)&fpscr;
638 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
639 if (ret < 0) {
640 trace_kvm_failed_fpscr_set(strerror(errno));
641 return ret;
644 for (i = 0; i < 32; i++) {
645 uint64_t vsr[2];
646 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
647 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
649 #ifdef HOST_WORDS_BIGENDIAN
650 vsr[0] = float64_val(*fpr);
651 vsr[1] = *vsrl;
652 #else
653 vsr[0] = *vsrl;
654 vsr[1] = float64_val(*fpr);
655 #endif
656 reg.addr = (uintptr_t) &vsr;
657 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
659 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
660 if (ret < 0) {
661 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
662 strerror(errno));
663 return ret;
668 if (env->insns_flags & PPC_ALTIVEC) {
669 reg.id = KVM_REG_PPC_VSCR;
670 reg.addr = (uintptr_t)&env->vscr;
671 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
672 if (ret < 0) {
673 trace_kvm_failed_vscr_set(strerror(errno));
674 return ret;
677 for (i = 0; i < 32; i++) {
678 reg.id = KVM_REG_PPC_VR(i);
679 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
680 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
681 if (ret < 0) {
682 trace_kvm_failed_vr_set(i, strerror(errno));
683 return ret;
688 return 0;
691 static int kvm_get_fp(CPUState *cs)
693 PowerPCCPU *cpu = POWERPC_CPU(cs);
694 CPUPPCState *env = &cpu->env;
695 struct kvm_one_reg reg;
696 int i;
697 int ret;
699 if (env->insns_flags & PPC_FLOAT) {
700 uint64_t fpscr;
701 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
703 reg.id = KVM_REG_PPC_FPSCR;
704 reg.addr = (uintptr_t)&fpscr;
705 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
706 if (ret < 0) {
707 trace_kvm_failed_fpscr_get(strerror(errno));
708 return ret;
709 } else {
710 env->fpscr = fpscr;
713 for (i = 0; i < 32; i++) {
714 uint64_t vsr[2];
715 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
716 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
718 reg.addr = (uintptr_t) &vsr;
719 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
721 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
722 if (ret < 0) {
723 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
724 strerror(errno));
725 return ret;
726 } else {
727 #ifdef HOST_WORDS_BIGENDIAN
728 *fpr = vsr[0];
729 if (vsx) {
730 *vsrl = vsr[1];
732 #else
733 *fpr = vsr[1];
734 if (vsx) {
735 *vsrl = vsr[0];
737 #endif
742 if (env->insns_flags & PPC_ALTIVEC) {
743 reg.id = KVM_REG_PPC_VSCR;
744 reg.addr = (uintptr_t)&env->vscr;
745 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
746 if (ret < 0) {
747 trace_kvm_failed_vscr_get(strerror(errno));
748 return ret;
751 for (i = 0; i < 32; i++) {
752 reg.id = KVM_REG_PPC_VR(i);
753 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
754 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
755 if (ret < 0) {
756 trace_kvm_failed_vr_get(i, strerror(errno));
757 return ret;
762 return 0;
765 #if defined(TARGET_PPC64)
766 static int kvm_get_vpa(CPUState *cs)
768 PowerPCCPU *cpu = POWERPC_CPU(cs);
769 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
770 struct kvm_one_reg reg;
771 int ret;
773 reg.id = KVM_REG_PPC_VPA_ADDR;
774 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
775 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
776 if (ret < 0) {
777 trace_kvm_failed_vpa_addr_get(strerror(errno));
778 return ret;
781 assert((uintptr_t)&spapr_cpu->slb_shadow_size
782 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
783 reg.id = KVM_REG_PPC_VPA_SLB;
784 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
785 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
786 if (ret < 0) {
787 trace_kvm_failed_slb_get(strerror(errno));
788 return ret;
791 assert((uintptr_t)&spapr_cpu->dtl_size
792 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
793 reg.id = KVM_REG_PPC_VPA_DTL;
794 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
795 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
796 if (ret < 0) {
797 trace_kvm_failed_dtl_get(strerror(errno));
798 return ret;
801 return 0;
804 static int kvm_put_vpa(CPUState *cs)
806 PowerPCCPU *cpu = POWERPC_CPU(cs);
807 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
808 struct kvm_one_reg reg;
809 int ret;
812 * SLB shadow or DTL can't be registered unless a master VPA is
813 * registered. That means when restoring state, if a VPA *is*
814 * registered, we need to set that up first. If not, we need to
815 * deregister the others before deregistering the master VPA
817 assert(spapr_cpu->vpa_addr
818 || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
820 if (spapr_cpu->vpa_addr) {
821 reg.id = KVM_REG_PPC_VPA_ADDR;
822 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
823 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
824 if (ret < 0) {
825 trace_kvm_failed_vpa_addr_set(strerror(errno));
826 return ret;
830 assert((uintptr_t)&spapr_cpu->slb_shadow_size
831 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
832 reg.id = KVM_REG_PPC_VPA_SLB;
833 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
834 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
835 if (ret < 0) {
836 trace_kvm_failed_slb_set(strerror(errno));
837 return ret;
840 assert((uintptr_t)&spapr_cpu->dtl_size
841 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
842 reg.id = KVM_REG_PPC_VPA_DTL;
843 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
844 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
845 if (ret < 0) {
846 trace_kvm_failed_dtl_set(strerror(errno));
847 return ret;
850 if (!spapr_cpu->vpa_addr) {
851 reg.id = KVM_REG_PPC_VPA_ADDR;
852 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
853 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
854 if (ret < 0) {
855 trace_kvm_failed_null_vpa_addr_set(strerror(errno));
856 return ret;
860 return 0;
862 #endif /* TARGET_PPC64 */
864 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
866 CPUPPCState *env = &cpu->env;
867 struct kvm_sregs sregs;
868 int i;
870 sregs.pvr = env->spr[SPR_PVR];
872 if (cpu->vhyp) {
873 PPCVirtualHypervisorClass *vhc =
874 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
875 sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
876 } else {
877 sregs.u.s.sdr1 = env->spr[SPR_SDR1];
880 /* Sync SLB */
881 #ifdef TARGET_PPC64
882 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
883 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
884 if (env->slb[i].esid & SLB_ESID_V) {
885 sregs.u.s.ppc64.slb[i].slbe |= i;
887 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
889 #endif
891 /* Sync SRs */
892 for (i = 0; i < 16; i++) {
893 sregs.u.s.ppc32.sr[i] = env->sr[i];
896 /* Sync BATs */
897 for (i = 0; i < 8; i++) {
898 /* Beware. We have to swap upper and lower bits here */
899 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
900 | env->DBAT[1][i];
901 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
902 | env->IBAT[1][i];
905 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
908 int kvm_arch_put_registers(CPUState *cs, int level)
910 PowerPCCPU *cpu = POWERPC_CPU(cs);
911 CPUPPCState *env = &cpu->env;
912 struct kvm_regs regs;
913 int ret;
914 int i;
916 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
917 if (ret < 0) {
918 return ret;
921 regs.ctr = env->ctr;
922 regs.lr = env->lr;
923 regs.xer = cpu_read_xer(env);
924 regs.msr = env->msr;
925 regs.pc = env->nip;
927 regs.srr0 = env->spr[SPR_SRR0];
928 regs.srr1 = env->spr[SPR_SRR1];
930 regs.sprg0 = env->spr[SPR_SPRG0];
931 regs.sprg1 = env->spr[SPR_SPRG1];
932 regs.sprg2 = env->spr[SPR_SPRG2];
933 regs.sprg3 = env->spr[SPR_SPRG3];
934 regs.sprg4 = env->spr[SPR_SPRG4];
935 regs.sprg5 = env->spr[SPR_SPRG5];
936 regs.sprg6 = env->spr[SPR_SPRG6];
937 regs.sprg7 = env->spr[SPR_SPRG7];
939 regs.pid = env->spr[SPR_BOOKE_PID];
941 for (i = 0; i < 32; i++) {
942 regs.gpr[i] = env->gpr[i];
945 regs.cr = 0;
946 for (i = 0; i < 8; i++) {
947 regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
950 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
951 if (ret < 0) {
952 return ret;
955 kvm_put_fp(cs);
957 if (env->tlb_dirty) {
958 kvm_sw_tlb_put(cpu);
959 env->tlb_dirty = false;
962 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
963 ret = kvmppc_put_books_sregs(cpu);
964 if (ret < 0) {
965 return ret;
969 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
970 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
973 if (cap_one_reg) {
974 int i;
977 * We deliberately ignore errors here, for kernels which have
978 * the ONE_REG calls, but don't support the specific
979 * registers, there's a reasonable chance things will still
980 * work, at least until we try to migrate.
982 for (i = 0; i < 1024; i++) {
983 uint64_t id = env->spr_cb[i].one_reg_id;
985 if (id != 0) {
986 kvm_put_one_spr(cs, id, i);
990 #ifdef TARGET_PPC64
991 if (msr_ts) {
992 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
993 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
995 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
996 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
998 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
999 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1000 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1001 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1002 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1003 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1004 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1005 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1006 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1007 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1010 if (cap_papr) {
1011 if (kvm_put_vpa(cs) < 0) {
1012 trace_kvm_failed_put_vpa();
1016 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1017 #endif /* TARGET_PPC64 */
1020 return ret;
1023 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1025 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1028 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1030 CPUPPCState *env = &cpu->env;
1031 struct kvm_sregs sregs;
1032 int ret;
1034 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1035 if (ret < 0) {
1036 return ret;
1039 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1040 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1041 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1042 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1043 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1044 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1045 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1046 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1047 env->spr[SPR_DECR] = sregs.u.e.dec;
1048 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1049 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1050 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1053 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1054 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1055 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1056 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1057 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1058 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1061 if (sregs.u.e.features & KVM_SREGS_E_64) {
1062 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1065 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1066 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1069 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1070 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1071 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0);
1072 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1073 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1);
1074 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1075 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2);
1076 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1077 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3);
1078 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1079 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4);
1080 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1081 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5);
1082 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1083 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6);
1084 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1085 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7);
1086 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1087 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8);
1088 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1089 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9);
1090 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1091 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10);
1092 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1093 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11);
1094 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1095 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12);
1096 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1097 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13);
1098 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1099 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14);
1100 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1101 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15);
1103 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1104 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1105 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32);
1106 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1107 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33);
1108 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1109 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34);
1112 if (sregs.u.e.features & KVM_SREGS_E_PM) {
1113 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1114 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35);
1117 if (sregs.u.e.features & KVM_SREGS_E_PC) {
1118 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1119 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36);
1120 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1121 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1125 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1126 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1127 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1128 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1129 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1130 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1131 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1132 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1133 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1134 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1135 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1138 if (sregs.u.e.features & KVM_SREGS_EXP) {
1139 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1142 if (sregs.u.e.features & KVM_SREGS_E_PD) {
1143 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1144 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1147 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1148 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1149 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1150 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1152 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1153 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1154 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1158 return 0;
1161 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1163 CPUPPCState *env = &cpu->env;
1164 struct kvm_sregs sregs;
1165 int ret;
1166 int i;
1168 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1169 if (ret < 0) {
1170 return ret;
1173 if (!cpu->vhyp) {
1174 ppc_store_sdr1(env, sregs.u.s.sdr1);
1177 /* Sync SLB */
1178 #ifdef TARGET_PPC64
1180 * The packed SLB array we get from KVM_GET_SREGS only contains
1181 * information about valid entries. So we flush our internal copy
1182 * to get rid of stale ones, then put all valid SLB entries back
1183 * in.
1185 memset(env->slb, 0, sizeof(env->slb));
1186 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1187 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1188 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1190 * Only restore valid entries
1192 if (rb & SLB_ESID_V) {
1193 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1196 #endif
1198 /* Sync SRs */
1199 for (i = 0; i < 16; i++) {
1200 env->sr[i] = sregs.u.s.ppc32.sr[i];
1203 /* Sync BATs */
1204 for (i = 0; i < 8; i++) {
1205 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1206 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1207 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1208 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1211 return 0;
1214 int kvm_arch_get_registers(CPUState *cs)
1216 PowerPCCPU *cpu = POWERPC_CPU(cs);
1217 CPUPPCState *env = &cpu->env;
1218 struct kvm_regs regs;
1219 uint32_t cr;
1220 int i, ret;
1222 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1223 if (ret < 0) {
1224 return ret;
1227 cr = regs.cr;
1228 for (i = 7; i >= 0; i--) {
1229 env->crf[i] = cr & 15;
1230 cr >>= 4;
1233 env->ctr = regs.ctr;
1234 env->lr = regs.lr;
1235 cpu_write_xer(env, regs.xer);
1236 env->msr = regs.msr;
1237 env->nip = regs.pc;
1239 env->spr[SPR_SRR0] = regs.srr0;
1240 env->spr[SPR_SRR1] = regs.srr1;
1242 env->spr[SPR_SPRG0] = regs.sprg0;
1243 env->spr[SPR_SPRG1] = regs.sprg1;
1244 env->spr[SPR_SPRG2] = regs.sprg2;
1245 env->spr[SPR_SPRG3] = regs.sprg3;
1246 env->spr[SPR_SPRG4] = regs.sprg4;
1247 env->spr[SPR_SPRG5] = regs.sprg5;
1248 env->spr[SPR_SPRG6] = regs.sprg6;
1249 env->spr[SPR_SPRG7] = regs.sprg7;
1251 env->spr[SPR_BOOKE_PID] = regs.pid;
1253 for (i = 0; i < 32; i++) {
1254 env->gpr[i] = regs.gpr[i];
1257 kvm_get_fp(cs);
1259 if (cap_booke_sregs) {
1260 ret = kvmppc_get_booke_sregs(cpu);
1261 if (ret < 0) {
1262 return ret;
1266 if (cap_segstate) {
1267 ret = kvmppc_get_books_sregs(cpu);
1268 if (ret < 0) {
1269 return ret;
1273 if (cap_hior) {
1274 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1277 if (cap_one_reg) {
1278 int i;
1281 * We deliberately ignore errors here, for kernels which have
1282 * the ONE_REG calls, but don't support the specific
1283 * registers, there's a reasonable chance things will still
1284 * work, at least until we try to migrate.
1286 for (i = 0; i < 1024; i++) {
1287 uint64_t id = env->spr_cb[i].one_reg_id;
1289 if (id != 0) {
1290 kvm_get_one_spr(cs, id, i);
1294 #ifdef TARGET_PPC64
1295 if (msr_ts) {
1296 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1297 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1299 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1300 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1302 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1303 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1304 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1305 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1306 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1307 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1308 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1309 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1310 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1311 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1314 if (cap_papr) {
1315 if (kvm_get_vpa(cs) < 0) {
1316 trace_kvm_failed_get_vpa();
1320 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1321 #endif
1324 return 0;
1327 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1329 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1331 if (irq != PPC_INTERRUPT_EXT) {
1332 return 0;
1335 if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
1336 return 0;
1339 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1341 return 0;
1344 #if defined(TARGET_PPC64)
1345 #define PPC_INPUT_INT PPC970_INPUT_INT
1346 #else
1347 #define PPC_INPUT_INT PPC6xx_INPUT_INT
1348 #endif
1350 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1352 PowerPCCPU *cpu = POWERPC_CPU(cs);
1353 CPUPPCState *env = &cpu->env;
1354 int r;
1355 unsigned irq;
1357 qemu_mutex_lock_iothread();
1360 * PowerPC QEMU tracks the various core input pins (interrupt,
1361 * critical interrupt, reset, etc) in PPC-specific
1362 * env->irq_input_state.
1364 if (!cap_interrupt_level &&
1365 run->ready_for_interrupt_injection &&
1366 (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1367 (env->irq_input_state & (1 << PPC_INPUT_INT)))
1370 * For now KVM disregards the 'irq' argument. However, in the
1371 * future KVM could cache it in-kernel to avoid a heavyweight
1372 * exit when reading the UIC.
1374 irq = KVM_INTERRUPT_SET;
1376 trace_kvm_injected_interrupt(irq);
1377 r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq);
1378 if (r < 0) {
1379 printf("cpu %d fail inject %x\n", cs->cpu_index, irq);
1382 /* Always wake up soon in case the interrupt was level based */
1383 timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1384 (NANOSECONDS_PER_SECOND / 50));
1388 * We don't know if there are more interrupts pending after
1389 * this. However, the guest will return to userspace in the course
1390 * of handling this one anyways, so we will get a chance to
1391 * deliver the rest.
1394 qemu_mutex_unlock_iothread();
1397 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1399 return MEMTXATTRS_UNSPECIFIED;
1402 int kvm_arch_process_async_events(CPUState *cs)
1404 return cs->halted;
1407 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1409 CPUState *cs = CPU(cpu);
1410 CPUPPCState *env = &cpu->env;
1412 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
1413 cs->halted = 1;
1414 cs->exception_index = EXCP_HLT;
1417 return 0;
1420 /* map dcr access to existing qemu dcr emulation */
1421 static int kvmppc_handle_dcr_read(CPUPPCState *env,
1422 uint32_t dcrn, uint32_t *data)
1424 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1425 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1428 return 0;
1431 static int kvmppc_handle_dcr_write(CPUPPCState *env,
1432 uint32_t dcrn, uint32_t data)
1434 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1435 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1438 return 0;
1441 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1443 /* Mixed endian case is not handled */
1444 uint32_t sc = debug_inst_opcode;
1446 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1447 sizeof(sc), 0) ||
1448 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1449 return -EINVAL;
1452 return 0;
1455 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1457 uint32_t sc;
1459 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1460 sc != debug_inst_opcode ||
1461 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1462 sizeof(sc), 1)) {
1463 return -EINVAL;
1466 return 0;
1469 static int find_hw_breakpoint(target_ulong addr, int type)
1471 int n;
1473 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1474 <= ARRAY_SIZE(hw_debug_points));
1476 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1477 if (hw_debug_points[n].addr == addr &&
1478 hw_debug_points[n].type == type) {
1479 return n;
1483 return -1;
1486 static int find_hw_watchpoint(target_ulong addr, int *flag)
1488 int n;
1490 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1491 if (n >= 0) {
1492 *flag = BP_MEM_ACCESS;
1493 return n;
1496 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1497 if (n >= 0) {
1498 *flag = BP_MEM_WRITE;
1499 return n;
1502 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1503 if (n >= 0) {
1504 *flag = BP_MEM_READ;
1505 return n;
1508 return -1;
1511 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1512 target_ulong len, int type)
1514 if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1515 return -ENOBUFS;
1518 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1519 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1521 switch (type) {
1522 case GDB_BREAKPOINT_HW:
1523 if (nb_hw_breakpoint >= max_hw_breakpoint) {
1524 return -ENOBUFS;
1527 if (find_hw_breakpoint(addr, type) >= 0) {
1528 return -EEXIST;
1531 nb_hw_breakpoint++;
1532 break;
1534 case GDB_WATCHPOINT_WRITE:
1535 case GDB_WATCHPOINT_READ:
1536 case GDB_WATCHPOINT_ACCESS:
1537 if (nb_hw_watchpoint >= max_hw_watchpoint) {
1538 return -ENOBUFS;
1541 if (find_hw_breakpoint(addr, type) >= 0) {
1542 return -EEXIST;
1545 nb_hw_watchpoint++;
1546 break;
1548 default:
1549 return -ENOSYS;
1552 return 0;
1555 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1556 target_ulong len, int type)
1558 int n;
1560 n = find_hw_breakpoint(addr, type);
1561 if (n < 0) {
1562 return -ENOENT;
1565 switch (type) {
1566 case GDB_BREAKPOINT_HW:
1567 nb_hw_breakpoint--;
1568 break;
1570 case GDB_WATCHPOINT_WRITE:
1571 case GDB_WATCHPOINT_READ:
1572 case GDB_WATCHPOINT_ACCESS:
1573 nb_hw_watchpoint--;
1574 break;
1576 default:
1577 return -ENOSYS;
1579 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1581 return 0;
1584 void kvm_arch_remove_all_hw_breakpoints(void)
1586 nb_hw_breakpoint = nb_hw_watchpoint = 0;
1589 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1591 int n;
1593 /* Software Breakpoint updates */
1594 if (kvm_sw_breakpoints_active(cs)) {
1595 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1598 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1599 <= ARRAY_SIZE(hw_debug_points));
1600 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1602 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1603 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1604 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1605 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1606 switch (hw_debug_points[n].type) {
1607 case GDB_BREAKPOINT_HW:
1608 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1609 break;
1610 case GDB_WATCHPOINT_WRITE:
1611 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1612 break;
1613 case GDB_WATCHPOINT_READ:
1614 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1615 break;
1616 case GDB_WATCHPOINT_ACCESS:
1617 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1618 KVMPPC_DEBUG_WATCH_READ;
1619 break;
1620 default:
1621 cpu_abort(cs, "Unsupported breakpoint type\n");
1623 dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1628 static int kvm_handle_hw_breakpoint(CPUState *cs,
1629 struct kvm_debug_exit_arch *arch_info)
1631 int handle = 0;
1632 int n;
1633 int flag = 0;
1635 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1636 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1637 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1638 if (n >= 0) {
1639 handle = 1;
1641 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1642 KVMPPC_DEBUG_WATCH_WRITE)) {
1643 n = find_hw_watchpoint(arch_info->address, &flag);
1644 if (n >= 0) {
1645 handle = 1;
1646 cs->watchpoint_hit = &hw_watchpoint;
1647 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1648 hw_watchpoint.flags = flag;
1652 return handle;
1655 static int kvm_handle_singlestep(void)
1657 return 1;
1660 static int kvm_handle_sw_breakpoint(void)
1662 return 1;
1665 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1667 CPUState *cs = CPU(cpu);
1668 CPUPPCState *env = &cpu->env;
1669 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1671 if (cs->singlestep_enabled) {
1672 return kvm_handle_singlestep();
1675 if (arch_info->status) {
1676 return kvm_handle_hw_breakpoint(cs, arch_info);
1679 if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1680 return kvm_handle_sw_breakpoint();
1684 * QEMU is not able to handle debug exception, so inject
1685 * program exception to guest;
1686 * Yes program exception NOT debug exception !!
1687 * When QEMU is using debug resources then debug exception must
1688 * be always set. To achieve this we set MSR_DE and also set
1689 * MSRP_DEP so guest cannot change MSR_DE.
1690 * When emulating debug resource for guest we want guest
1691 * to control MSR_DE (enable/disable debug interrupt on need).
1692 * Supporting both configurations are NOT possible.
1693 * So the result is that we cannot share debug resources
1694 * between QEMU and Guest on BOOKE architecture.
1695 * In the current design QEMU gets the priority over guest,
1696 * this means that if QEMU is using debug resources then guest
1697 * cannot use them;
1698 * For software breakpoint QEMU uses a privileged instruction;
1699 * So there cannot be any reason that we are here for guest
1700 * set debug exception, only possibility is guest executed a
1701 * privileged / illegal instruction and that's why we are
1702 * injecting a program interrupt.
1704 cpu_synchronize_state(cs);
1706 * env->nip is PC, so increment this by 4 to use
1707 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1709 env->nip += 4;
1710 cs->exception_index = POWERPC_EXCP_PROGRAM;
1711 env->error_code = POWERPC_EXCP_INVAL;
1712 ppc_cpu_do_interrupt(cs);
1714 return 0;
1717 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1719 PowerPCCPU *cpu = POWERPC_CPU(cs);
1720 CPUPPCState *env = &cpu->env;
1721 int ret;
1723 qemu_mutex_lock_iothread();
1725 switch (run->exit_reason) {
1726 case KVM_EXIT_DCR:
1727 if (run->dcr.is_write) {
1728 trace_kvm_handle_dcr_write();
1729 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1730 } else {
1731 trace_kvm_handle_dcr_read();
1732 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1734 break;
1735 case KVM_EXIT_HLT:
1736 trace_kvm_handle_halt();
1737 ret = kvmppc_handle_halt(cpu);
1738 break;
1739 #if defined(TARGET_PPC64)
1740 case KVM_EXIT_PAPR_HCALL:
1741 trace_kvm_handle_papr_hcall();
1742 run->papr_hcall.ret = spapr_hypercall(cpu,
1743 run->papr_hcall.nr,
1744 run->papr_hcall.args);
1745 ret = 0;
1746 break;
1747 #endif
1748 case KVM_EXIT_EPR:
1749 trace_kvm_handle_epr();
1750 run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1751 ret = 0;
1752 break;
1753 case KVM_EXIT_WATCHDOG:
1754 trace_kvm_handle_watchdog_expiry();
1755 watchdog_perform_action();
1756 ret = 0;
1757 break;
1759 case KVM_EXIT_DEBUG:
1760 trace_kvm_handle_debug_exception();
1761 if (kvm_handle_debug(cpu, run)) {
1762 ret = EXCP_DEBUG;
1763 break;
1765 /* re-enter, this exception was guest-internal */
1766 ret = 0;
1767 break;
1769 default:
1770 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1771 ret = -1;
1772 break;
1775 qemu_mutex_unlock_iothread();
1776 return ret;
1779 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1781 CPUState *cs = CPU(cpu);
1782 uint32_t bits = tsr_bits;
1783 struct kvm_one_reg reg = {
1784 .id = KVM_REG_PPC_OR_TSR,
1785 .addr = (uintptr_t) &bits,
1788 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1791 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1794 CPUState *cs = CPU(cpu);
1795 uint32_t bits = tsr_bits;
1796 struct kvm_one_reg reg = {
1797 .id = KVM_REG_PPC_CLEAR_TSR,
1798 .addr = (uintptr_t) &bits,
1801 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1804 int kvmppc_set_tcr(PowerPCCPU *cpu)
1806 CPUState *cs = CPU(cpu);
1807 CPUPPCState *env = &cpu->env;
1808 uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1810 struct kvm_one_reg reg = {
1811 .id = KVM_REG_PPC_TCR,
1812 .addr = (uintptr_t) &tcr,
1815 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1818 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1820 CPUState *cs = CPU(cpu);
1821 int ret;
1823 if (!kvm_enabled()) {
1824 return -1;
1827 if (!cap_ppc_watchdog) {
1828 printf("warning: KVM does not support watchdog");
1829 return -1;
1832 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1833 if (ret < 0) {
1834 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1835 __func__, strerror(-ret));
1836 return ret;
1839 return ret;
1842 static int read_cpuinfo(const char *field, char *value, int len)
1844 FILE *f;
1845 int ret = -1;
1846 int field_len = strlen(field);
1847 char line[512];
1849 f = fopen("/proc/cpuinfo", "r");
1850 if (!f) {
1851 return -1;
1854 do {
1855 if (!fgets(line, sizeof(line), f)) {
1856 break;
1858 if (!strncmp(line, field, field_len)) {
1859 pstrcpy(value, len, line);
1860 ret = 0;
1861 break;
1863 } while (*line);
1865 fclose(f);
1867 return ret;
1870 uint32_t kvmppc_get_tbfreq(void)
1872 char line[512];
1873 char *ns;
1874 uint32_t retval = NANOSECONDS_PER_SECOND;
1876 if (read_cpuinfo("timebase", line, sizeof(line))) {
1877 return retval;
1880 ns = strchr(line, ':');
1881 if (!ns) {
1882 return retval;
1885 ns++;
1887 return atoi(ns);
1890 bool kvmppc_get_host_serial(char **value)
1892 return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1893 NULL);
1896 bool kvmppc_get_host_model(char **value)
1898 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1901 /* Try to find a device tree node for a CPU with clock-frequency property */
1902 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1904 struct dirent *dirp;
1905 DIR *dp;
1907 dp = opendir(PROC_DEVTREE_CPU);
1908 if (!dp) {
1909 printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1910 return -1;
1913 buf[0] = '\0';
1914 while ((dirp = readdir(dp)) != NULL) {
1915 FILE *f;
1916 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1917 dirp->d_name);
1918 f = fopen(buf, "r");
1919 if (f) {
1920 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1921 fclose(f);
1922 break;
1924 buf[0] = '\0';
1926 closedir(dp);
1927 if (buf[0] == '\0') {
1928 printf("Unknown host!\n");
1929 return -1;
1932 return 0;
1935 static uint64_t kvmppc_read_int_dt(const char *filename)
1937 union {
1938 uint32_t v32;
1939 uint64_t v64;
1940 } u;
1941 FILE *f;
1942 int len;
1944 f = fopen(filename, "rb");
1945 if (!f) {
1946 return -1;
1949 len = fread(&u, 1, sizeof(u), f);
1950 fclose(f);
1951 switch (len) {
1952 case 4:
1953 /* property is a 32-bit quantity */
1954 return be32_to_cpu(u.v32);
1955 case 8:
1956 return be64_to_cpu(u.v64);
1959 return 0;
1963 * Read a CPU node property from the host device tree that's a single
1964 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
1965 * (can't find or open the property, or doesn't understand the format)
1967 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1969 char buf[PATH_MAX], *tmp;
1970 uint64_t val;
1972 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1973 return -1;
1976 tmp = g_strdup_printf("%s/%s", buf, propname);
1977 val = kvmppc_read_int_dt(tmp);
1978 g_free(tmp);
1980 return val;
1983 uint64_t kvmppc_get_clockfreq(void)
1985 return kvmppc_read_int_cpu_dt("clock-frequency");
1988 static int kvmppc_get_dec_bits(void)
1990 int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1992 if (nr_bits > 0) {
1993 return nr_bits;
1995 return 0;
1998 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
2000 CPUState *cs = env_cpu(env);
2002 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
2003 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
2004 return 0;
2007 return 1;
2010 int kvmppc_get_hasidle(CPUPPCState *env)
2012 struct kvm_ppc_pvinfo pvinfo;
2014 if (!kvmppc_get_pvinfo(env, &pvinfo) &&
2015 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
2016 return 1;
2019 return 0;
2022 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
2024 uint32_t *hc = (uint32_t *)buf;
2025 struct kvm_ppc_pvinfo pvinfo;
2027 if (!kvmppc_get_pvinfo(env, &pvinfo)) {
2028 memcpy(buf, pvinfo.hcall, buf_len);
2029 return 0;
2033 * Fallback to always fail hypercalls regardless of endianness:
2035 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2036 * li r3, -1
2037 * b .+8 (becomes nop in wrong endian)
2038 * bswap32(li r3, -1)
2041 hc[0] = cpu_to_be32(0x08000048);
2042 hc[1] = cpu_to_be32(0x3860ffff);
2043 hc[2] = cpu_to_be32(0x48000008);
2044 hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2046 return 1;
2049 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2051 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2054 void kvmppc_enable_logical_ci_hcalls(void)
2057 * FIXME: it would be nice if we could detect the cases where
2058 * we're using a device which requires the in kernel
2059 * implementation of these hcalls, but the kernel lacks them and
2060 * produce a warning.
2062 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2063 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2066 void kvmppc_enable_set_mode_hcall(void)
2068 kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2071 void kvmppc_enable_clear_ref_mod_hcalls(void)
2073 kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2074 kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2077 void kvmppc_enable_h_page_init(void)
2079 kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2082 void kvmppc_set_papr(PowerPCCPU *cpu)
2084 CPUState *cs = CPU(cpu);
2085 int ret;
2087 if (!kvm_enabled()) {
2088 return;
2091 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2092 if (ret) {
2093 error_report("This vCPU type or KVM version does not support PAPR");
2094 exit(1);
2098 * Update the capability flag so we sync the right information
2099 * with kvm
2101 cap_papr = 1;
2104 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2106 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2109 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2111 CPUState *cs = CPU(cpu);
2112 int ret;
2114 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2115 if (ret && mpic_proxy) {
2116 error_report("This KVM version does not support EPR");
2117 exit(1);
2121 int kvmppc_smt_threads(void)
2123 return cap_ppc_smt ? cap_ppc_smt : 1;
2126 int kvmppc_set_smt_threads(int smt)
2128 int ret;
2130 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2131 if (!ret) {
2132 cap_ppc_smt = smt;
2134 return ret;
2137 void kvmppc_hint_smt_possible(Error **errp)
2139 int i;
2140 GString *g;
2141 char *s;
2143 assert(kvm_enabled());
2144 if (cap_ppc_smt_possible) {
2145 g = g_string_new("Available VSMT modes:");
2146 for (i = 63; i >= 0; i--) {
2147 if ((1UL << i) & cap_ppc_smt_possible) {
2148 g_string_append_printf(g, " %lu", (1UL << i));
2151 s = g_string_free(g, false);
2152 error_append_hint(errp, "%s.\n", s);
2153 g_free(s);
2154 } else {
2155 error_append_hint(errp,
2156 "This KVM seems to be too old to support VSMT.\n");
2161 #ifdef TARGET_PPC64
2162 uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
2164 struct kvm_ppc_smmu_info info;
2165 long rampagesize, best_page_shift;
2166 int i;
2169 * Find the largest hardware supported page size that's less than
2170 * or equal to the (logical) backing page size of guest RAM
2172 kvm_get_smmu_info(&info, &error_fatal);
2173 rampagesize = qemu_minrampagesize();
2174 best_page_shift = 0;
2176 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2177 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2179 if (!sps->page_shift) {
2180 continue;
2183 if ((sps->page_shift > best_page_shift)
2184 && ((1UL << sps->page_shift) <= rampagesize)) {
2185 best_page_shift = sps->page_shift;
2189 return MIN(current_size,
2190 1ULL << (best_page_shift + hash_shift - 7));
2192 #endif
2194 bool kvmppc_spapr_use_multitce(void)
2196 return cap_spapr_multitce;
2199 int kvmppc_spapr_enable_inkernel_multitce(void)
2201 int ret;
2203 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2204 H_PUT_TCE_INDIRECT, 1);
2205 if (!ret) {
2206 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2207 H_STUFF_TCE, 1);
2210 return ret;
2213 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2214 uint64_t bus_offset, uint32_t nb_table,
2215 int *pfd, bool need_vfio)
2217 long len;
2218 int fd;
2219 void *table;
2222 * Must set fd to -1 so we don't try to munmap when called for
2223 * destroying the table, which the upper layers -will- do
2225 *pfd = -1;
2226 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2227 return NULL;
2230 if (cap_spapr_tce_64) {
2231 struct kvm_create_spapr_tce_64 args = {
2232 .liobn = liobn,
2233 .page_shift = page_shift,
2234 .offset = bus_offset >> page_shift,
2235 .size = nb_table,
2236 .flags = 0
2238 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2239 if (fd < 0) {
2240 fprintf(stderr,
2241 "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2242 liobn);
2243 return NULL;
2245 } else if (cap_spapr_tce) {
2246 uint64_t window_size = (uint64_t) nb_table << page_shift;
2247 struct kvm_create_spapr_tce args = {
2248 .liobn = liobn,
2249 .window_size = window_size,
2251 if ((window_size != args.window_size) || bus_offset) {
2252 return NULL;
2254 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2255 if (fd < 0) {
2256 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2257 liobn);
2258 return NULL;
2260 } else {
2261 return NULL;
2264 len = nb_table * sizeof(uint64_t);
2265 /* FIXME: round this up to page size */
2267 table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2268 if (table == MAP_FAILED) {
2269 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2270 liobn);
2271 close(fd);
2272 return NULL;
2275 *pfd = fd;
2276 return table;
2279 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2281 long len;
2283 if (fd < 0) {
2284 return -1;
2287 len = nb_table * sizeof(uint64_t);
2288 if ((munmap(table, len) < 0) ||
2289 (close(fd) < 0)) {
2290 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2291 strerror(errno));
2292 /* Leak the table */
2295 return 0;
2298 int kvmppc_reset_htab(int shift_hint)
2300 uint32_t shift = shift_hint;
2302 if (!kvm_enabled()) {
2303 /* Full emulation, tell caller to allocate htab itself */
2304 return 0;
2306 if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2307 int ret;
2308 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2309 if (ret == -ENOTTY) {
2311 * At least some versions of PR KVM advertise the
2312 * capability, but don't implement the ioctl(). Oops.
2313 * Return 0 so that we allocate the htab in qemu, as is
2314 * correct for PR.
2316 return 0;
2317 } else if (ret < 0) {
2318 return ret;
2320 return shift;
2324 * We have a kernel that predates the htab reset calls. For PR
2325 * KVM, we need to allocate the htab ourselves, for an HV KVM of
2326 * this era, it has allocated a 16MB fixed size hash table
2327 * already.
2329 if (kvmppc_is_pr(kvm_state)) {
2330 /* PR - tell caller to allocate htab */
2331 return 0;
2332 } else {
2333 /* HV - assume 16MB kernel allocated htab */
2334 return 24;
2338 static inline uint32_t mfpvr(void)
2340 uint32_t pvr;
2342 asm ("mfpvr %0"
2343 : "=r"(pvr));
2344 return pvr;
2347 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2349 if (on) {
2350 *word |= flags;
2351 } else {
2352 *word &= ~flags;
2356 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2358 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2359 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2360 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2362 /* Now fix up the class with information we can query from the host */
2363 pcc->pvr = mfpvr();
2365 alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2366 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2367 alter_insns(&pcc->insns_flags2, PPC2_VSX,
2368 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2369 alter_insns(&pcc->insns_flags2, PPC2_DFP,
2370 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2372 if (dcache_size != -1) {
2373 pcc->l1_dcache_size = dcache_size;
2376 if (icache_size != -1) {
2377 pcc->l1_icache_size = icache_size;
2380 #if defined(TARGET_PPC64)
2381 pcc->radix_page_info = kvm_get_radix_page_info();
2383 if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2385 * POWER9 DD1 has some bugs which make it not really ISA 3.00
2386 * compliant. More importantly, advertising ISA 3.00
2387 * architected mode may prevent guests from activating
2388 * necessary DD1 workarounds.
2390 pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2391 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2393 #endif /* defined(TARGET_PPC64) */
2396 bool kvmppc_has_cap_epr(void)
2398 return cap_epr;
2401 bool kvmppc_has_cap_fixup_hcalls(void)
2403 return cap_fixup_hcalls;
2406 bool kvmppc_has_cap_htm(void)
2408 return cap_htm;
2411 bool kvmppc_has_cap_mmu_radix(void)
2413 return cap_mmu_radix;
2416 bool kvmppc_has_cap_mmu_hash_v3(void)
2418 return cap_mmu_hash_v3;
2421 static bool kvmppc_power8_host(void)
2423 bool ret = false;
2424 #ifdef TARGET_PPC64
2426 uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2427 ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2428 (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2429 (base_pvr == CPU_POWERPC_POWER8_BASE);
2431 #endif /* TARGET_PPC64 */
2432 return ret;
2435 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2437 bool l1d_thread_priv_req = !kvmppc_power8_host();
2439 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2440 return 2;
2441 } else if ((!l1d_thread_priv_req ||
2442 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2443 (c.character & c.character_mask
2444 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2445 return 1;
2448 return 0;
2451 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2453 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2454 return 2;
2455 } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2456 return 1;
2459 return 0;
2462 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2464 if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2465 (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2466 (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2467 return SPAPR_CAP_FIXED_NA;
2468 } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2469 return SPAPR_CAP_WORKAROUND;
2470 } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2471 return SPAPR_CAP_FIXED_CCD;
2472 } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2473 return SPAPR_CAP_FIXED_IBS;
2476 return 0;
2479 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2481 if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2482 return 1;
2484 return 0;
2487 bool kvmppc_has_cap_xive(void)
2489 return cap_xive;
2492 static void kvmppc_get_cpu_characteristics(KVMState *s)
2494 struct kvm_ppc_cpu_char c;
2495 int ret;
2497 /* Assume broken */
2498 cap_ppc_safe_cache = 0;
2499 cap_ppc_safe_bounds_check = 0;
2500 cap_ppc_safe_indirect_branch = 0;
2502 ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2503 if (!ret) {
2504 return;
2506 ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2507 if (ret < 0) {
2508 return;
2511 cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2512 cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2513 cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2514 cap_ppc_count_cache_flush_assist =
2515 parse_cap_ppc_count_cache_flush_assist(c);
2518 int kvmppc_get_cap_safe_cache(void)
2520 return cap_ppc_safe_cache;
2523 int kvmppc_get_cap_safe_bounds_check(void)
2525 return cap_ppc_safe_bounds_check;
2528 int kvmppc_get_cap_safe_indirect_branch(void)
2530 return cap_ppc_safe_indirect_branch;
2533 int kvmppc_get_cap_count_cache_flush_assist(void)
2535 return cap_ppc_count_cache_flush_assist;
2538 bool kvmppc_has_cap_nested_kvm_hv(void)
2540 return !!cap_ppc_nested_kvm_hv;
2543 int kvmppc_set_cap_nested_kvm_hv(int enable)
2545 return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2548 bool kvmppc_has_cap_spapr_vfio(void)
2550 return cap_spapr_vfio;
2553 int kvmppc_get_cap_large_decr(void)
2555 return cap_large_decr;
2558 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2560 CPUState *cs = CPU(cpu);
2561 uint64_t lpcr;
2563 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2564 /* Do we need to modify the LPCR? */
2565 if (!!(lpcr & LPCR_LD) != !!enable) {
2566 if (enable) {
2567 lpcr |= LPCR_LD;
2568 } else {
2569 lpcr &= ~LPCR_LD;
2571 kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2572 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2574 if (!!(lpcr & LPCR_LD) != !!enable) {
2575 return -1;
2579 return 0;
2582 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2584 uint32_t host_pvr = mfpvr();
2585 PowerPCCPUClass *pvr_pcc;
2587 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2588 if (pvr_pcc == NULL) {
2589 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2592 return pvr_pcc;
2595 static int kvm_ppc_register_host_cpu_type(MachineState *ms)
2597 TypeInfo type_info = {
2598 .name = TYPE_HOST_POWERPC_CPU,
2599 .class_init = kvmppc_host_cpu_class_init,
2601 MachineClass *mc = MACHINE_GET_CLASS(ms);
2602 PowerPCCPUClass *pvr_pcc;
2603 ObjectClass *oc;
2604 DeviceClass *dc;
2605 int i;
2607 pvr_pcc = kvm_ppc_get_host_cpu_class();
2608 if (pvr_pcc == NULL) {
2609 return -1;
2611 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2612 type_register(&type_info);
2613 if (object_dynamic_cast(OBJECT(ms), TYPE_SPAPR_MACHINE)) {
2614 /* override TCG default cpu type with 'host' cpu model */
2615 mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2618 oc = object_class_by_name(type_info.name);
2619 g_assert(oc);
2622 * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2623 * we want "POWER8" to be a "family" alias that points to the current
2624 * host CPU type, too)
2626 dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2627 for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2628 if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2629 char *suffix;
2631 ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2632 suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2633 if (suffix) {
2634 *suffix = 0;
2636 break;
2640 return 0;
2643 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2645 struct kvm_rtas_token_args args = {
2646 .token = token,
2649 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2650 return -ENOENT;
2653 strncpy(args.name, function, sizeof(args.name) - 1);
2655 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2658 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2660 struct kvm_get_htab_fd s = {
2661 .flags = write ? KVM_GET_HTAB_WRITE : 0,
2662 .start_index = index,
2664 int ret;
2666 if (!cap_htab_fd) {
2667 error_setg(errp, "KVM version doesn't support %s the HPT",
2668 write ? "writing" : "reading");
2669 return -ENOTSUP;
2672 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2673 if (ret < 0) {
2674 error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2675 write ? "writing" : "reading", write ? "to" : "from",
2676 strerror(errno));
2677 return -errno;
2680 return ret;
2683 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2685 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2686 uint8_t buf[bufsize];
2687 ssize_t rc;
2689 do {
2690 rc = read(fd, buf, bufsize);
2691 if (rc < 0) {
2692 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2693 strerror(errno));
2694 return rc;
2695 } else if (rc) {
2696 uint8_t *buffer = buf;
2697 ssize_t n = rc;
2698 while (n) {
2699 struct kvm_get_htab_header *head =
2700 (struct kvm_get_htab_header *) buffer;
2701 size_t chunksize = sizeof(*head) +
2702 HASH_PTE_SIZE_64 * head->n_valid;
2704 qemu_put_be32(f, head->index);
2705 qemu_put_be16(f, head->n_valid);
2706 qemu_put_be16(f, head->n_invalid);
2707 qemu_put_buffer(f, (void *)(head + 1),
2708 HASH_PTE_SIZE_64 * head->n_valid);
2710 buffer += chunksize;
2711 n -= chunksize;
2714 } while ((rc != 0)
2715 && ((max_ns < 0) ||
2716 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2718 return (rc == 0) ? 1 : 0;
2721 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2722 uint16_t n_valid, uint16_t n_invalid)
2724 struct kvm_get_htab_header *buf;
2725 size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2726 ssize_t rc;
2728 buf = alloca(chunksize);
2729 buf->index = index;
2730 buf->n_valid = n_valid;
2731 buf->n_invalid = n_invalid;
2733 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2735 rc = write(fd, buf, chunksize);
2736 if (rc < 0) {
2737 fprintf(stderr, "Error writing KVM hash table: %s\n",
2738 strerror(errno));
2739 return rc;
2741 if (rc != chunksize) {
2742 /* We should never get a short write on a single chunk */
2743 fprintf(stderr, "Short write, restoring KVM hash table\n");
2744 return -1;
2746 return 0;
2749 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2751 return true;
2754 void kvm_arch_init_irq_routing(KVMState *s)
2758 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2760 int fd, rc;
2761 int i;
2763 fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2765 i = 0;
2766 while (i < n) {
2767 struct kvm_get_htab_header *hdr;
2768 int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2769 char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2771 rc = read(fd, buf, sizeof(buf));
2772 if (rc < 0) {
2773 hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2776 hdr = (struct kvm_get_htab_header *)buf;
2777 while ((i < n) && ((char *)hdr < (buf + rc))) {
2778 int invalid = hdr->n_invalid, valid = hdr->n_valid;
2780 if (hdr->index != (ptex + i)) {
2781 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2782 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2785 if (n - i < valid) {
2786 valid = n - i;
2788 memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2789 i += valid;
2791 if ((n - i) < invalid) {
2792 invalid = n - i;
2794 memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2795 i += invalid;
2797 hdr = (struct kvm_get_htab_header *)
2798 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2802 close(fd);
2805 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2807 int fd, rc;
2808 struct {
2809 struct kvm_get_htab_header hdr;
2810 uint64_t pte0;
2811 uint64_t pte1;
2812 } buf;
2814 fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2816 buf.hdr.n_valid = 1;
2817 buf.hdr.n_invalid = 0;
2818 buf.hdr.index = ptex;
2819 buf.pte0 = cpu_to_be64(pte0);
2820 buf.pte1 = cpu_to_be64(pte1);
2822 rc = write(fd, &buf, sizeof(buf));
2823 if (rc != sizeof(buf)) {
2824 hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2826 close(fd);
2829 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2830 uint64_t address, uint32_t data, PCIDevice *dev)
2832 return 0;
2835 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2836 int vector, PCIDevice *dev)
2838 return 0;
2841 int kvm_arch_release_virq_post(int virq)
2843 return 0;
2846 int kvm_arch_msi_data_to_gsi(uint32_t data)
2848 return data & 0xffff;
2851 int kvmppc_enable_hwrng(void)
2853 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2854 return -1;
2857 return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2860 void kvmppc_check_papr_resize_hpt(Error **errp)
2862 if (!kvm_enabled()) {
2863 return; /* No KVM, we're good */
2866 if (cap_resize_hpt) {
2867 return; /* Kernel has explicit support, we're good */
2870 /* Otherwise fallback on looking for PR KVM */
2871 if (kvmppc_is_pr(kvm_state)) {
2872 return;
2875 error_setg(errp,
2876 "Hash page table resizing not available with this KVM version");
2879 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2881 CPUState *cs = CPU(cpu);
2882 struct kvm_ppc_resize_hpt rhpt = {
2883 .flags = flags,
2884 .shift = shift,
2887 if (!cap_resize_hpt) {
2888 return -ENOSYS;
2891 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2894 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2896 CPUState *cs = CPU(cpu);
2897 struct kvm_ppc_resize_hpt rhpt = {
2898 .flags = flags,
2899 .shift = shift,
2902 if (!cap_resize_hpt) {
2903 return -ENOSYS;
2906 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2910 * This is a helper function to detect a post migration scenario
2911 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2912 * the guest kernel can't handle a PVR value other than the actual host
2913 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2915 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2916 * (so, we're HV), return true. The workaround itself is done in
2917 * cpu_post_load.
2919 * The order here is important: we'll only check for KVM PR as a
2920 * fallback if the guest kernel can't handle the situation itself.
2921 * We need to avoid as much as possible querying the running KVM type
2922 * in QEMU level.
2924 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2926 CPUState *cs = CPU(cpu);
2928 if (!kvm_enabled()) {
2929 return false;
2932 if (cap_ppc_pvr_compat) {
2933 return false;
2936 return !kvmppc_is_pr(cs->kvm_state);
2939 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2941 CPUState *cs = CPU(cpu);
2943 if (kvm_enabled()) {
2944 kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2948 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2950 CPUState *cs = CPU(cpu);
2952 if (kvm_enabled()) {
2953 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);