1 HXCOMM Use
DEFHEADING() to define headings
in both help text and rST
.
2 HXCOMM Text between SRST and ERST is copied to the rST version and
3 HXCOMM discarded from C version
.
4 HXCOMM
DEF(option
, HAS_ARG
/0, opt_enum
, opt_help
, arch_mask
) is used to
5 HXCOMM construct option structures
, enums and help message
for specified
7 HXCOMM HXCOMM can be used
for comments
, discarded from both rST and C
.
9 DEFHEADING(Standard options
:)
11 DEF("help", 0, QEMU_OPTION_h
,
12 "-h or -help display this help and exit\n", QEMU_ARCH_ALL
)
18 DEF("version", 0, QEMU_OPTION_version
,
19 "-version display version information and exit\n", QEMU_ARCH_ALL
)
22 Display version information and exit
25 DEF("machine", HAS_ARG
, QEMU_OPTION_machine
, \
26 "-machine [type=]name[,prop[=value][,...]]\n"
27 " selects emulated machine ('-machine help' for list)\n"
28 " property accel=accel1[:accel2[:...]] selects accelerator\n"
29 " supported accelerators are kvm, xen, hax, hvf, whpx or tcg (default: tcg)\n"
30 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
31 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
32 " mem-merge=on|off controls memory merge support (default: on)\n"
33 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
34 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
35 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
36 " nvdimm=on|off controls NVDIMM support (default=off)\n"
37 " memory-encryption=@var{} memory encryption object to use (default=none)\n"
38 " hmat=on|off controls ACPI HMAT support (default=off)\n",
41 ``
-machine
[type
=]name
[,prop
=value
[,...]]``
42 Select the emulated machine by name
. Use ``
-machine help`` to list
45 For architectures which aim to support live migration compatibility
46 across releases
, each release will introduce a
new versioned machine
47 type
. For example
, the
2.8.0 release introduced machine types
48 "pc-i440fx-2.8" and
"pc-q35-2.8" for the x86\_64
/i686 architectures
.
50 To allow live migration of guests from QEMU version
2.8.0, to QEMU
51 version
2.9.0, the
2.9.0 version must support the
"pc-i440fx-2.8"
52 and
"pc-q35-2.8" machines too
. To allow users live migrating VMs to
53 skip multiple intermediate releases when upgrading
, new releases of
54 QEMU will support machine types from many previous versions
.
56 Supported machine properties are
:
58 ``accel
=accels1
[:accels2
[:...]]``
59 This is used to enable an accelerator
. Depending on the target
60 architecture
, kvm
, xen
, hax
, hvf
, whpx or tcg can be available
.
61 By
default, tcg is used
. If there is more than one accelerator
62 specified
, the next one is used
if the previous one fails to
65 ``vmport
=on|off|auto``
66 Enables emulation of VMWare IO port
, for vmmouse etc
. auto says
67 to select the value based on accel
. For accel
=xen the
default is
68 off otherwise the
default is on
.
70 ``dump
-guest
-core
=on|off``
71 Include guest memory
in a core dump
. The
default is on
.
74 Enables or disables memory merge support
. This feature
, when
75 supported by the host
, de
-duplicates identical memory pages
76 among VMs
instances (enabled by
default).
78 ``aes
-key
-wrap
=on|off``
79 Enables or disables AES key wrapping support on s390
-ccw hosts
.
80 This feature controls whether AES wrapping keys will be created
81 to allow execution of AES cryptographic functions
. The
default
84 ``dea
-key
-wrap
=on|off``
85 Enables or disables DEA key wrapping support on s390
-ccw hosts
.
86 This feature controls whether DEA wrapping keys will be created
87 to allow execution of DEA cryptographic functions
. The
default
91 Enables or disables NVDIMM support
. The
default is off
.
93 ``memory
-encryption
=``
94 Memory encryption object to use
. The
default is none
.
97 Enables or disables ACPI Heterogeneous Memory Attribute Table
98 (HMAT
) support
. The
default is off
.
101 HXCOMM Deprecated by
-machine
102 DEF("M", HAS_ARG
, QEMU_OPTION_M
, "", QEMU_ARCH_ALL
)
104 DEF("cpu", HAS_ARG
, QEMU_OPTION_cpu
,
105 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL
)
108 Select CPU
model (``
-cpu help``
for list and additional feature
112 DEF("accel", HAS_ARG
, QEMU_OPTION_accel
,
113 "-accel [accel=]accelerator[,prop[=value][,...]]\n"
114 " select accelerator (kvm, xen, hax, hvf, whpx or tcg; use 'help' for a list)\n"
115 " igd-passthru=on|off (enable Xen integrated Intel graphics passthrough, default=off)\n"
116 " kernel-irqchip=on|off|split controls accelerated irqchip support (default=on)\n"
117 " kvm-shadow-mem=size of KVM shadow MMU in bytes\n"
118 " tb-size=n (TCG translation block cache size)\n"
119 " thread=single|multi (enable multi-threaded TCG)\n", QEMU_ARCH_ALL
)
121 ``
-accel name
[,prop
=value
[,...]]``
122 This is used to enable an accelerator
. Depending on the target
123 architecture
, kvm
, xen
, hax
, hvf
, whpx or tcg can be available
. By
124 default, tcg is used
. If there is more than one accelerator
125 specified
, the next one is used
if the previous one fails to
128 ``igd
-passthru
=on|off``
129 When Xen is
in use
, this option controls whether Intel
130 integrated graphics devices can be passed through to the guest
133 ``kernel
-irqchip
=on|off|split``
134 Controls KVM
in-kernel irqchip support
. The
default is full
135 acceleration of the interrupt controllers
. On x86
, split irqchip
136 reduces the kernel attack surface
, at a performance cost
for
137 non
-MSI interrupts
. Disabling the
in-kernel irqchip completely
138 is not recommended except
for debugging purposes
.
140 ``kvm
-shadow
-mem
=size``
141 Defines the size of the KVM shadow MMU
.
144 Controls the
size (in MiB
) of the TCG translation block cache
.
146 ``thread
=single|multi``
147 Controls number of TCG threads
. When the TCG is multi
-threaded
148 there will be one thread per vCPU therefor taking advantage of
149 additional host cores
. The
default is to enable multi
-threading
150 where both the back
-end and front
-ends support it and no
151 incompatible TCG features have been
enabled (e
.g
.
155 DEF("smp", HAS_ARG
, QEMU_OPTION_smp
,
156 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,dies=dies][,sockets=sockets]\n"
157 " set the number of CPUs to 'n' [default=1]\n"
158 " maxcpus= maximum number of total cpus, including\n"
159 " offline CPUs for hotplug, etc\n"
160 " cores= number of CPU cores on one socket (for PC, it's on one die)\n"
161 " threads= number of threads on one CPU core\n"
162 " dies= number of CPU dies on one socket (for PC only)\n"
163 " sockets= number of discrete sockets in the system\n",
166 ``
-smp
[cpus
=]n
[,cores
=cores
][,threads
=threads
][,dies
=dies
][,sockets
=sockets
][,maxcpus
=maxcpus
]``
167 Simulate an SMP system with n CPUs
. On the PC target
, up to
255 CPUs
168 are supported
. On Sparc32 target
, Linux limits the number of usable
169 CPUs to
4. For the PC target
, the number of cores per die
, the
170 number of threads per cores
, the number of dies per packages and the
171 total number of sockets can be specified
. Missing values will be
172 computed
. If any on the three values is given
, the total number of
173 CPUs n can be omitted
. maxcpus specifies the maximum number of
177 DEF("numa", HAS_ARG
, QEMU_OPTION_numa
,
178 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
179 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
180 "-numa dist,src=source,dst=destination,val=distance\n"
181 "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n"
182 "-numa hmat-lb,initiator=node,target=node,hierarchy=memory|first-level|second-level|third-level,data-type=access-latency|read-latency|write-latency[,latency=lat][,bandwidth=bw]\n"
183 "-numa hmat-cache,node-id=node,size=size,level=level[,associativity=none|direct|complex][,policy=none|write-back|write-through][,line=size]\n",
186 ``
-numa node
[,mem
=size
][,cpus
=firstcpu
[-lastcpu
]][,nodeid
=node
][,initiator
=initiator
]``
188 ``
-numa node
[,memdev
=id
][,cpus
=firstcpu
[-lastcpu
]][,nodeid
=node
][,initiator
=initiator
]``
190 ``
-numa dist
,src
=source
,dst
=destination
,val
=distance``
192 ``
-numa cpu
,node
-id
=node
[,socket
-id
=x
][,core
-id
=y
][,thread
-id
=z
]``
194 ``
-numa hmat
-lb
,initiator
=node
,target
=node
,hierarchy
=hierarchy
,data
-type
=tpye
[,latency
=lat
][,bandwidth
=bw
]``
196 ``
-numa hmat
-cache
,node
-id
=node
,size
=size
,level
=level
[,associativity
=str
][,policy
=str
][,line
=size
]``
197 Define a NUMA node and assign RAM and VCPUs to it
. Set the NUMA
198 distance from a source node to a destination node
. Set the ACPI
199 Heterogeneous Memory Attributes
for the given nodes
.
201 Legacy VCPU assignment uses
'\ ``cpus``\ ' option where firstcpu and
202 lastcpu are CPU indexes
. Each
'\ ``cpus``\ ' option represent a
203 contiguous range of CPU
indexes (or a single VCPU
if lastcpu is
204 omitted
). A non
-contiguous set of VCPUs can be represented by
205 providing multiple
'\ ``cpus``\ ' options
. If
'\ ``cpus``\ ' is
206 omitted on all nodes
, VCPUs are automatically split between them
.
208 For example
, the following option assigns VCPUs
0, 1, 2 and
5 to a
213 -numa node
,cpus
=0-2,cpus
=5
215 '\ ``cpu``\ ' option is a
new alternative to
'\ ``cpus``\ ' option
216 which uses
'\ ``socket-id|core-id|thread-id``\ ' properties to
217 assign CPU objects to a node
using topology layout properties of
218 CPU
. The set of properties is machine specific
, and depends on used
219 machine type
/'\ ``smp``\ ' options
. It could be queried with
220 '\ ``hotpluggable-cpus``\ ' monitor command
. '\ ``node-id``\ '
221 property specifies node to which CPU object will be assigned
, it
's
222 required for node to be declared with '\ ``node``\
' option before
223 it's used with
'\ ``cpu``\ ' option
.
230 -smp
1,sockets
=2,maxcpus
=2 \
231 -numa node
,nodeid
=0 -numa node
,nodeid
=1 \
232 -numa cpu
,node
-id
=0,socket
-id
=0 -numa cpu
,node
-id
=1,socket
-id
=1
234 Legacy
'\ ``mem``\ ' assigns a given RAM amount to a
node (not supported
235 for 5.1 and newer machine types
). '\ ``memdev``\ ' assigns RAM from
236 a given memory backend device to a node
. If
'\ ``mem``\ ' and
237 '\ ``memdev``\ ' are omitted
in all nodes
, RAM is split equally between them
.
240 '\ ``mem``\ ' and
'\ ``memdev``\ ' are mutually exclusive
.
241 Furthermore
, if one node uses
'\ ``memdev``\ ', all of them have to
244 '\ ``initiator``\ ' is an additional option that points to an
245 initiator NUMA node that has best
performance (the lowest latency or
246 largest bandwidth
) to
this NUMA node
. Note that
this option can be
247 set only when the machine property
'hmat' is set to
'on'.
249 Following example creates a machine with
2 NUMA nodes
, node
0 has
250 CPU
. node
1 has only memory
, and its initiator is node
0. Note that
251 because node
0 has CPU
, by
default the initiator of node
0 is itself
257 -m
2G
,slots
=2,maxmem
=4G \
258 -object memory
-backend
-ram
,size
=1G
,id
=m0 \
259 -object memory
-backend
-ram
,size
=1G
,id
=m1 \
260 -numa node
,nodeid
=0,memdev
=m0 \
261 -numa node
,nodeid
=1,memdev
=m1
,initiator
=0 \
262 -smp
2,sockets
=2,maxcpus
=2 \
263 -numa cpu
,node
-id
=0,socket
-id
=0 \
264 -numa cpu
,node
-id
=0,socket
-id
=1
266 source and destination are NUMA node IDs
. distance is the NUMA
267 distance from source to destination
. The distance from a node to
268 itself is always
10. If any pair of nodes is given a distance
, then
269 all pairs must be given distances
. Although
, when distances are only
270 given
in one direction
for each pair of nodes
, then the distances
in
271 the opposite directions are assumed to be the same
. If
, however
, an
272 asymmetrical pair of distances is given
for even one node pair
, then
273 all node pairs must be provided distance values
for both directions
,
274 even when they are symmetrical
. When a node is unreachable from
275 another node
, set the pair
's distance to 255.
277 Note that the -``numa`` option doesn't allocate any of the specified
278 resources
, it just assigns existing resources to NUMA nodes
. This
279 means that one still has to use the ``
-m``
, ``
-smp`` options to
280 allocate RAM and VCPUs respectively
.
282 Use
'\ ``hmat-lb``\ ' to set System Locality Latency and Bandwidth
283 Information between initiator and target NUMA nodes
in ACPI
284 Heterogeneous Attribute Memory
Table (HMAT
). Initiator NUMA node can
285 create memory requests
, usually it has one or more processors
.
286 Target NUMA node contains addressable memory
.
288 In
'\ ``hmat-lb``\ ' option
, node are NUMA node IDs
. hierarchy is
289 the memory hierarchy of the target NUMA node
: if hierarchy is
290 'memory', the structure represents the memory performance
; if
291 hierarchy is
'first-level\|second-level\|third-level', this
292 structure represents aggregated performance of memory side caches
293 for each domain
. type of
'data-type' is type of data represented by
294 this structure instance
: if 'hierarchy' is
'memory', 'data-type' is
295 'access\|read\|write' latency or
'access\|read\|write' bandwidth of
296 the target memory
; if 'hierarchy' is
297 'first-level\|second-level\|third-level', 'data-type' is
298 'access\|read\|write' hit latency or
'access\|read\|write' hit
299 bandwidth of the target memory side cache
.
301 lat is latency value
in nanoseconds
. bw is bandwidth value
, the
302 possible value and units are NUM
[M\|G\|T
], mean that the bandwidth
303 value are NUM byte per
second (or MB
/s
, GB
/s or TB
/s depending on
304 used suffix
). Note that
if latency or bandwidth value is
0, means
305 the corresponding latency or bandwidth information is not provided
.
307 In
'\ ``hmat-cache``\ ' option
, node
-id is the NUMA
-id of the memory
308 belongs
. size is the size of memory side cache
in bytes
. level is
309 the cache level described
in this structure
, note that the cache
310 level
0 should not be used with
'\ ``hmat-cache``\ ' option
.
311 associativity is the cache associativity
, the possible value is
312 'none/direct(direct-mapped)/complex(complex cache indexing)'. policy
313 is the write policy
. line is the cache Line size
in bytes
.
315 For example
, the following options describe
2 NUMA nodes
. Node
0 has
316 2 cpus and a ram
, node
1 has only a ram
. The processors
in node
0
317 access memory
in node
0 with access
-latency
5 nanoseconds
,
318 access
-bandwidth is
200 MB
/s
; The processors
in NUMA node
0 access
319 memory
in NUMA node
1 with access
-latency
10 nanoseconds
,
320 access
-bandwidth is
100 MB
/s
. And
for memory side cache information
,
321 NUMA node
0 and
1 both have
1 level memory cache
, size is
10KB
,
322 policy is write
-back
, the cache Line size is
8 bytes
:
328 -object memory
-backend
-ram
,size
=1G
,id
=m0 \
329 -object memory
-backend
-ram
,size
=1G
,id
=m1 \
331 -numa node
,nodeid
=0,memdev
=m0 \
332 -numa node
,nodeid
=1,memdev
=m1
,initiator
=0 \
333 -numa cpu
,node
-id
=0,socket
-id
=0 \
334 -numa cpu
,node
-id
=0,socket
-id
=1 \
335 -numa hmat
-lb
,initiator
=0,target
=0,hierarchy
=memory
,data
-type
=access
-latency
,latency
=5 \
336 -numa hmat
-lb
,initiator
=0,target
=0,hierarchy
=memory
,data
-type
=access
-bandwidth
,bandwidth
=200M \
337 -numa hmat
-lb
,initiator
=0,target
=1,hierarchy
=memory
,data
-type
=access
-latency
,latency
=10 \
338 -numa hmat
-lb
,initiator
=0,target
=1,hierarchy
=memory
,data
-type
=access
-bandwidth
,bandwidth
=100M \
339 -numa hmat
-cache
,node
-id
=0,size
=10K
,level
=1,associativity
=direct
,policy
=write
-back
,line
=8 \
340 -numa hmat
-cache
,node
-id
=1,size
=10K
,level
=1,associativity
=direct
,policy
=write
-back
,line
=8
343 DEF("add-fd", HAS_ARG
, QEMU_OPTION_add_fd
,
344 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
345 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL
)
347 ``
-add
-fd fd
=fd
,set
=set
[,opaque
=opaque
]``
348 Add a file descriptor to an fd set
. Valid options are
:
351 This option defines the file descriptor of which a duplicate is
352 added to fd set
. The file descriptor cannot be stdin
, stdout
, or
356 This option defines the ID of the fd set to add the file
360 This option defines a free
-form string that can be used to
363 You can open an image
using pre
-opened file descriptors from an fd
369 -add
-fd fd
=3,set
=2,opaque
="rdwr:/path/to/file" \\
370 -add
-fd fd
=4,set
=2,opaque
="rdonly:/path/to/file" \\
371 -drive file
=/dev
/fdset
/2,index
=0,media
=disk
374 DEF("set", HAS_ARG
, QEMU_OPTION_set
,
375 "-set group.id.arg=value\n"
376 " set <arg> parameter for item <id> of type <group>\n"
377 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL
)
379 ``
-set group
.id
.arg
=value``
380 Set parameter arg
for item id of type group
383 DEF("global", HAS_ARG
, QEMU_OPTION_global
,
384 "-global driver.property=value\n"
385 "-global driver=driver,property=property,value=value\n"
386 " set a global default for a driver property\n",
389 ``
-global driver
.prop
=value``
391 ``
-global driver
=driver
,property
=property
,value
=value``
392 Set
default value of driver
's property prop to value, e.g.:
396 |qemu_system_x86| -global ide-hd.physical_block_size=4096 disk-image.img
398 In particular, you can use this to set driver properties for devices
399 which are created automatically by the machine model. To create a
400 device which is not created automatically and set properties on it,
403 -global driver.prop=value is shorthand for -global
404 driver=driver,property=prop,value=value. The longhand syntax works
405 even when driver contains a dot.
408 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
409 "-boot [order=drives][,once=drives][,menu=on|off]\n"
410 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
411 " 'drives
': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
412 " 'sp_name
': the file's name that would be passed to bios as logo picture
, if menu
=on
\n"
413 " 'sp_time': the period that splash picture last
if menu
=on
, unit is ms
\n"
414 " 'rb_timeout': the timeout before guest reboot when boot failed
, unit is ms
\n",
417 ``-boot [order=drives][,once=drives][,menu=on|off][,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_timeout][,strict=on|off]``
418 Specify boot order drives as a string of drive letters. Valid drive
419 letters depend on the target architecture. The x86 PC uses: a, b
420 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p
421 (Etherboot from network adapter 1-4), hard disk boot is the default.
422 To apply a particular boot order only on the first startup, specify
423 it via ``once``. Note that the ``order`` or ``once`` parameter
424 should not be used together with the ``bootindex`` property of
425 devices, since the firmware implementations normally do not support
426 both at the same time.
428 Interactive boot menus/prompts can be enabled via ``menu=on`` as far
429 as firmware/BIOS supports them. The default is non-interactive boot.
431 A splash picture could be passed to bios, enabling user to show it
432 as logo, when option splash=sp\_name is given and menu=on, If
433 firmware/BIOS supports them. Currently Seabios for X86 system
434 support it. limitation: The splash file could be a jpeg file or a
435 BMP file in 24 BPP format(true color). The resolution should be
436 supported by the SVGA mode, so the recommended is 320x240, 640x480,
439 A timeout could be passed to bios, guest will pause for rb\_timeout
440 ms when boot failed, then reboot. If rb\_timeout is '-1', guest will
441 not reboot, qemu passes '-1' to bios by default. Currently Seabios
442 for X86 system support it.
444 Do strict boot via ``strict=on`` as far as firmware/BIOS supports
445 it. This only effects when boot priority is changed by bootindex
446 options. The default is non-strict boot.
450 # try to boot from network first, then from hard disk
451 |qemu_system_x86| -boot order=nc
452 # boot from CD-ROM first, switch back to default order after reboot
453 |qemu_system_x86| -boot once=d
454 # boot with a splash picture for 5 seconds.
455 |qemu_system_x86| -boot menu=on,splash=/root/boot.bmp,splash-time=5000
457 Note: The legacy format '-boot drives' is still supported but its
458 use is discouraged as it may be removed from future versions.
461 DEF("m
", HAS_ARG, QEMU_OPTION_m,
462 "-m
[size
=]megs
[,slots
=n
,maxmem
=size
]\n"
463 " configure guest RAM
\n"
464 " size
: initial amount of guest memory
\n"
465 " slots
: number of hotplug
slots (default: none
)\n"
466 " maxmem
: maximum amount of guest
memory (default: none
)\n"
467 "NOTE
: Some architectures might enforce a specific granularity
\n",
470 ``-m [size=]megs[,slots=n,maxmem=size]``
471 Sets guest startup RAM size to megs megabytes. Default is 128 MiB.
472 Optionally, a suffix of "M
" or "G
" can be used to signify a value in
473 megabytes or gigabytes respectively. Optional pair slots, maxmem
474 could be used to set amount of hotpluggable memory slots and maximum
475 amount of memory. Note that maxmem must be aligned to the page size.
477 For example, the following command-line sets the guest startup RAM
478 size to 1GB, creates 3 slots to hotplug additional memory and sets
479 the maximum memory the guest can reach to 4GB:
483 |qemu_system| -m 1G,slots=3,maxmem=4G
485 If slots and maxmem are not specified, memory hotplug won't be
486 enabled and the guest startup RAM will never increase.
489 DEF("mem
-path
", HAS_ARG, QEMU_OPTION_mempath,
490 "-mem
-path FILE provide backing storage
for guest RAM
\n", QEMU_ARCH_ALL)
493 Allocate guest RAM from a temporarily created file in path.
496 DEF("mem
-prealloc
", 0, QEMU_OPTION_mem_prealloc,
497 "-mem
-prealloc preallocate guest
memory (use with
-mem
-path
)\n",
501 Preallocate memory when using -mem-path.
504 DEF("k
", HAS_ARG, QEMU_OPTION_k,
505 "-k language use keyboard
layout (for example
'fr' for French
)\n",
509 Use keyboard layout language (for example ``fr`` for French). This
510 option is only needed where it is not easy to get raw PC keycodes
511 (e.g. on Macs, with some X11 servers or with a VNC or curses
512 display). You don't normally need to use it on PC/Linux or
515 The available layouts are:
519 ar de-ch es fo fr-ca hu ja mk no pt-br sv
520 da en-gb et fr fr-ch is lt nl pl ru th
521 de en-us fi fr-be hr it lv nl-be pt sl tr
523 The default is ``en-us``.
527 HXCOMM Deprecated by -audiodev
528 DEF("audio
-help
", 0, QEMU_OPTION_audio_help,
529 "-audio
-help show
-audiodev equivalent of the currently specified audio settings
\n",
533 Will show the -audiodev equivalent of the currently specified
534 (deprecated) environment variables.
537 DEF("audiodev
", HAS_ARG, QEMU_OPTION_audiodev,
538 "-audiodev
[driver
=]driver
,id
=id
[,prop
[=value
][,...]]\n"
539 " specifies the audio backend to use
\n"
540 " id
= identifier of the backend
\n"
541 " timer
-period
= timer period
in microseconds
\n"
542 " in|out
.mixing
-engine
= use mixing engine to mix streams inside QEMU
\n"
543 " in|out
.fixed
-settings
= use fixed settings
for host audio
\n"
544 " in|out
.frequency
= frequency to use with fixed settings
\n"
545 " in|out
.channels
= number of channels to use with fixed settings
\n"
546 " in|out
.format
= sample format to use with fixed settings
\n"
547 " valid values
: s8
, s16
, s32
, u8
, u16
, u32
, f32
\n"
548 " in|out
.voices
= number of voices to use
\n"
549 " in|out
.buffer
-length
= length of buffer
in microseconds
\n"
550 "-audiodev none
,id
=id
,[,prop
[=value
][,...]]\n"
551 " dummy driver that discards all output
\n"
552 #ifdef CONFIG_AUDIO_ALSA
553 "-audiodev alsa
,id
=id
[,prop
[=value
][,...]]\n"
554 " in|out
.dev
= name of the audio device to use
\n"
555 " in|out
.period
-length
= length of period
in microseconds
\n"
556 " in|out
.try-poll
= attempt to use poll mode
\n"
557 " threshold
= threshold (in microseconds
) when playback starts
\n"
559 #ifdef CONFIG_AUDIO_COREAUDIO
560 "-audiodev coreaudio
,id
=id
[,prop
[=value
][,...]]\n"
561 " in|out
.buffer
-count
= number of buffers
\n"
563 #ifdef CONFIG_AUDIO_DSOUND
564 "-audiodev dsound
,id
=id
[,prop
[=value
][,...]]\n"
565 " latency
= add extra latency to playback
in microseconds
\n"
567 #ifdef CONFIG_AUDIO_OSS
568 "-audiodev oss
,id
=id
[,prop
[=value
][,...]]\n"
569 " in|out
.dev
= path of the audio device to use
\n"
570 " in|out
.buffer
-count
= number of buffers
\n"
571 " in|out
.try-poll
= attempt to use poll mode
\n"
572 " try-mmap
= try using memory mapped access
\n"
573 " exclusive
= open device
in exclusive mode
\n"
574 " dsp
-policy
= set timing
policy (0..10), -1 to use fragment mode
\n"
576 #ifdef CONFIG_AUDIO_PA
577 "-audiodev pa
,id
=id
[,prop
[=value
][,...]]\n"
578 " server
= PulseAudio server address
\n"
579 " in|out
.name
= source
/sink device name
\n"
580 " in|out
.latency
= desired latency
in microseconds
\n"
582 #ifdef CONFIG_AUDIO_SDL
583 "-audiodev sdl
,id
=id
[,prop
[=value
][,...]]\n"
586 "-audiodev spice
,id
=id
[,prop
[=value
][,...]]\n"
588 "-audiodev wav
,id
=id
[,prop
[=value
][,...]]\n"
589 " path
= path of wav file to record
\n",
592 ``-audiodev [driver=]driver,id=id[,prop[=value][,...]]``
593 Adds a new audio backend driver identified by id. There are global
594 and driver specific properties. Some values can be set differently
595 for input and output, they're marked with ``in|out.``. You can set
596 the input's property with ``in.prop`` and the output's property with
597 ``out.prop``. For example:
601 -audiodev alsa,id=example,in.frequency=44110,out.frequency=8000
602 -audiodev alsa,id=example,out.channels=1 # leaves in.channels unspecified
604 NOTE: parameter validation is known to be incomplete, in many cases
605 specifying an invalid option causes QEMU to print an error message
606 and continue emulation without sound.
608 Valid global options are:
611 Identifies the audio backend.
613 ``timer-period=period``
614 Sets the timer period used by the audio subsystem in
615 microseconds. Default is 10000 (10 ms).
617 ``in|out.mixing-engine=on|off``
618 Use QEMU's mixing engine to mix all streams inside QEMU and
619 convert audio formats when not supported by the backend. When
620 off, fixed-settings must be off too. Note that disabling this
621 option means that the selected backend must support multiple
622 streams and the audio formats used by the virtual cards,
623 otherwise you'll get no sound. It's not recommended to disable
624 this option unless you want to use 5.1 or 7.1 audio, as mixing
625 engine only supports mono and stereo audio. Default is on.
627 ``in|out.fixed-settings=on|off``
628 Use fixed settings for host audio. When off, it will change
629 based on how the guest opens the sound card. In this case you
630 must not specify frequency, channels or format. Default is on.
632 ``in|out.frequency=frequency``
633 Specify the frequency to use when using fixed-settings. Default
636 ``in|out.channels=channels``
637 Specify the number of channels to use when using fixed-settings.
638 Default is 2 (stereo).
640 ``in|out.format=format``
641 Specify the sample format to use when using fixed-settings.
642 Valid values are: ``s8``, ``s16``, ``s32``, ``u8``, ``u16``,
643 ``u32``, ``f32``. Default is ``s16``.
645 ``in|out.voices=voices``
646 Specify the number of voices to use. Default is 1.
648 ``in|out.buffer-length=usecs``
649 Sets the size of the buffer in microseconds.
651 ``-audiodev none,id=id[,prop[=value][,...]]``
652 Creates a dummy backend that discards all outputs. This backend has
653 no backend specific properties.
655 ``-audiodev alsa,id=id[,prop[=value][,...]]``
656 Creates backend using the ALSA. This backend is only available on
659 ALSA specific options are:
661 ``in|out.dev=device``
662 Specify the ALSA device to use for input and/or output. Default
665 ``in|out.period-length=usecs``
666 Sets the period length in microseconds.
668 ``in|out.try-poll=on|off``
669 Attempt to use poll mode with the device. Default is on.
671 ``threshold=threshold``
672 Threshold (in microseconds) when playback starts. Default is 0.
674 ``-audiodev coreaudio,id=id[,prop[=value][,...]]``
675 Creates a backend using Apple's Core Audio. This backend is only
676 available on Mac OS and only supports playback.
678 Core Audio specific options are:
680 ``in|out.buffer-count=count``
681 Sets the count of the buffers.
683 ``-audiodev dsound,id=id[,prop[=value][,...]]``
684 Creates a backend using Microsoft's DirectSound. This backend is
685 only available on Windows and only supports playback.
687 DirectSound specific options are:
690 Add extra usecs microseconds latency to playback. Default is
693 ``-audiodev oss,id=id[,prop[=value][,...]]``
694 Creates a backend using OSS. This backend is available on most
697 OSS specific options are:
699 ``in|out.dev=device``
700 Specify the file name of the OSS device to use. Default is
703 ``in|out.buffer-count=count``
704 Sets the count of the buffers.
706 ``in|out.try-poll=on|of``
707 Attempt to use poll mode with the device. Default is on.
710 Try using memory mapped device access. Default is off.
713 Open the device in exclusive mode (vmix won't work in this
714 case). Default is off.
716 ``dsp-policy=policy``
717 Sets the timing policy (between 0 and 10, where smaller number
718 means smaller latency but higher CPU usage). Use -1 to use
719 buffer sizes specified by ``buffer`` and ``buffer-count``. This
720 option is ignored if you do not have OSS 4. Default is 5.
722 ``-audiodev pa,id=id[,prop[=value][,...]]``
723 Creates a backend using PulseAudio. This backend is available on
726 PulseAudio specific options are:
729 Sets the PulseAudio server to connect to.
732 Use the specified source/sink for recording/playback.
734 ``in|out.latency=usecs``
735 Desired latency in microseconds. The PulseAudio server will try
736 to honor this value but actual latencies may be lower or higher.
738 ``-audiodev sdl,id=id[,prop[=value][,...]]``
739 Creates a backend using SDL. This backend is available on most
740 systems, but you should use your platform's native backend if
741 possible. This backend has no backend specific properties.
743 ``-audiodev spice,id=id[,prop[=value][,...]]``
744 Creates a backend that sends audio through SPICE. This backend
745 requires ``-spice`` and automatically selected in that case, so
746 usually you can ignore this option. This backend has no backend
749 ``-audiodev wav,id=id[,prop[=value][,...]]``
750 Creates a backend that writes audio to a WAV file.
752 Backend specific options are:
755 Write recorded audio into the specified file. Default is
759 DEF("soundhw
", HAS_ARG, QEMU_OPTION_soundhw,
760 "-soundhw c1
,... enable audio support
\n"
761 " and only specified sound
cards (comma separated list
)\n"
762 " use
'-soundhw help' to get the list of supported cards
\n"
763 " use
'-soundhw all' to enable all of them
\n", QEMU_ARCH_ALL)
765 ``-soundhw card1[,card2,...] or -soundhw all``
766 Enable audio and selected sound hardware. Use 'help' to print all
767 available sound hardware. For example:
771 |qemu_system_x86| -soundhw sb16,adlib disk.img
772 |qemu_system_x86| -soundhw es1370 disk.img
773 |qemu_system_x86| -soundhw ac97 disk.img
774 |qemu_system_x86| -soundhw hda disk.img
775 |qemu_system_x86| -soundhw all disk.img
776 |qemu_system_x86| -soundhw help
778 Note that Linux's i810\_audio OSS kernel (for AC97) module might
779 require manually specifying clocking.
783 modprobe i810_audio clocking=48000
786 DEF("device
", HAS_ARG, QEMU_OPTION_device,
787 "-device driver
[,prop
[=value
][,...]]\n"
788 " add
device (based on driver
)\n"
789 " prop
=value
,... sets driver properties
\n"
790 " use
'-device help' to print all possible drivers
\n"
791 " use
'-device driver,help' to print all possible properties
\n",
794 ``-device driver[,prop[=value][,...]]``
795 Add device driver. prop=value sets driver properties. Valid
796 properties depend on the driver. To get help on possible drivers and
797 properties, use ``-device help`` and ``-device driver,help``.
801 ``-device ipmi-bmc-sim,id=id[,prop[=value][,...]]``
802 Add an IPMI BMC. This is a simulation of a hardware management
803 interface processor that normally sits on a system. It provides a
804 watchdog and the ability to reset and power control the system. You
805 need to connect this to an IPMI interface to make it useful
807 The IPMI slave address to use for the BMC. The default is 0x20. This
808 address is the BMC's address on the I2C network of management
809 controllers. If you don't know what this means, it is safe to ignore
813 The BMC id for interfaces to use this device.
816 Define slave address to use for the BMC. The default is 0x20.
819 file containing raw Sensor Data Records (SDR) data. The default
823 size of a Field Replaceable Unit (FRU) area. The default is
827 file containing raw Field Replaceable Unit (FRU) inventory data.
831 value for the GUID for the BMC, in standard UUID format. If this
832 is set, get "Get GUID
" command to the BMC will return it.
833 Otherwise "Get GUID
" will return an error.
835 ``-device ipmi-bmc-extern,id=id,chardev=id[,slave_addr=val]``
836 Add a connection to an external IPMI BMC simulator. Instead of
837 locally emulating the BMC like the above item, instead connect to an
838 external entity that provides the IPMI services.
840 A connection is made to an external BMC simulator. If you do this,
841 it is strongly recommended that you use the "reconnect
=" chardev
842 option to reconnect to the simulator if the connection is lost. Note
843 that if this is not used carefully, it can be a security issue, as
844 the interface has the ability to send resets, NMIs, and power off
845 the VM. It's best if QEMU makes a connection to an external
846 simulator running on a secure port on localhost, so neither the
847 simulator nor QEMU is exposed to any outside network.
849 See the "lanserv
/README
.vm
" file in the OpenIPMI library for more
850 details on the external interface.
852 ``-device isa-ipmi-kcs,bmc=id[,ioport=val][,irq=val]``
853 Add a KCS IPMI interafce on the ISA bus. This also adds a
854 corresponding ACPI and SMBIOS entries, if appropriate.
857 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern
861 Define the I/O address of the interface. The default is 0xca0
865 Define the interrupt to use. The default is 5. To disable
866 interrupts, set this to 0.
868 ``-device isa-ipmi-bt,bmc=id[,ioport=val][,irq=val]``
869 Like the KCS interface, but defines a BT interface. The default port
870 is 0xe4 and the default interrupt is 5.
872 ``-device pci-ipmi-kcs,bmc=id``
873 Add a KCS IPMI interafce on the PCI bus.
876 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
878 ``-device pci-ipmi-bt,bmc=id``
879 Like the KCS interface, but defines a BT interface on the PCI bus.
882 DEF("name
", HAS_ARG, QEMU_OPTION_name,
883 "-name string1
[,process
=string2
][,debug
-threads
=on|off
]\n"
884 " set the name of the guest
\n"
885 " string1 sets the window title and string2 the process name
\n"
886 " When debug
-threads is enabled
, individual threads are given a separate name
\n"
887 " NOTE
: The thread names are
for debugging and not a stable API
.\n",
891 Sets the name of the guest. This name will be displayed in the SDL
892 window caption. The name will also be used for the VNC server. Also
893 optionally set the top visible process name in Linux. Naming of
894 individual threads can also be enabled on Linux to aid debugging.
897 DEF("uuid
", HAS_ARG, QEMU_OPTION_uuid,
898 "-uuid
%08x
-%04x
-%04x
-%04x
-%012x
\n"
899 " specify machine UUID
\n", QEMU_ARCH_ALL)
907 DEFHEADING(Block device options:)
909 DEF("fda
", HAS_ARG, QEMU_OPTION_fda,
910 "-fda
/-fdb file use
'file' as floppy disk
0/1 image
\n", QEMU_ARCH_ALL)
911 DEF("fdb
", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
916 Use file as floppy disk 0/1 image (see the :ref:`disk images` chapter in
917 the System Emulation Users Guide).
920 DEF("hda
", HAS_ARG, QEMU_OPTION_hda,
921 "-hda
/-hdb file use
'file' as IDE hard disk
0/1 image
\n", QEMU_ARCH_ALL)
922 DEF("hdb
", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
923 DEF("hdc
", HAS_ARG, QEMU_OPTION_hdc,
924 "-hdc
/-hdd file use
'file' as IDE hard disk
2/3 image
\n", QEMU_ARCH_ALL)
925 DEF("hdd
", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
934 Use file as hard disk 0, 1, 2 or 3 image (see the :ref:`disk images`
935 chapter in the System Emulation Users Guide).
938 DEF("cdrom
", HAS_ARG, QEMU_OPTION_cdrom,
939 "-cdrom file use
'file' as IDE cdrom
image (cdrom is ide1 master
)\n",
943 Use file as CD-ROM image (you cannot use ``-hdc`` and ``-cdrom`` at
944 the same time). You can use the host CD-ROM by using ``/dev/cdrom``
948 DEF("blockdev
", HAS_ARG, QEMU_OPTION_blockdev,
949 "-blockdev
[driver
=]driver
[,node
-name
=N
][,discard
=ignore|unmap
]\n"
950 " [,cache
.direct
=on|off
][,cache
.no
-flush
=on|off
]\n"
951 " [,read
-only
=on|off
][,auto
-read
-only
=on|off
]\n"
952 " [,force
-share
=on|off
][,detect
-zeroes
=on|off|unmap
]\n"
953 " [,driver specific parameters
...]\n"
954 " configure a block backend
\n", QEMU_ARCH_ALL)
956 ``-blockdev option[,option[,option[,...]]]``
957 Define a new block driver node. Some of the options apply to all
958 block drivers, other options are only accepted for a specific block
959 driver. See below for a list of generic options and options for the
960 most common block drivers.
962 Options that expect a reference to another node (e.g. ``file``) can
963 be given in two ways. Either you specify the node name of an already
964 existing node (file=node-name), or you define a new node inline,
965 adding options for the referenced node after a dot
966 (file.filename=path,file.aio=native).
968 A block driver node created with ``-blockdev`` can be used for a
969 guest device by specifying its node name for the ``drive`` property
970 in a ``-device`` argument that defines a block device.
972 ``Valid options for any block driver node:``
974 Specifies the block driver to use for the given node.
977 This defines the name of the block driver node by which it
978 will be referenced later. The name must be unique, i.e. it
979 must not match the name of a different block driver node, or
980 (if you use ``-drive`` as well) the ID of a drive.
982 If no node name is specified, it is automatically generated.
983 The generated node name is not intended to be predictable
984 and changes between QEMU invocations. For the top level, an
985 explicit node name must be specified.
988 Open the node read-only. Guest write attempts will fail.
990 Note that some block drivers support only read-only access,
991 either generally or in certain configurations. In this case,
992 the default value ``read-only=off`` does not work and the
993 option must be specified explicitly.
996 If ``auto-read-only=on`` is set, QEMU may fall back to
997 read-only usage even when ``read-only=off`` is requested, or
998 even switch between modes as needed, e.g. depending on
999 whether the image file is writable or whether a writing user
1000 is attached to the node.
1003 Override the image locking system of QEMU by forcing the
1004 node to utilize weaker shared access for permissions where
1005 it would normally request exclusive access. When there is
1006 the potential for multiple instances to have the same file
1007 open (whether this invocation of QEMU is the first or the
1008 second instance), both instances must permit shared access
1009 for the second instance to succeed at opening the file.
1011 Enabling ``force-share=on`` requires ``read-only=on``.
1014 The host page cache can be avoided with ``cache.direct=on``.
1015 This will attempt to do disk IO directly to the guest's
1016 memory. QEMU may still perform an internal copy of the data.
1019 In case you don't care about data integrity over host
1020 failures, you can use ``cache.no-flush=on``. This option
1021 tells QEMU that it never needs to write any data to the disk
1022 but can instead keep things in cache. If anything goes
1023 wrong, like your host losing power, the disk storage getting
1024 disconnected accidentally, etc. your image will most
1025 probably be rendered unusable.
1028 discard is one of "ignore
" (or "off
") or "unmap
" (or "on
")
1029 and controls whether ``discard`` (also known as ``trim`` or
1030 ``unmap``) requests are ignored or passed to the filesystem.
1031 Some machine types may not support discard requests.
1033 ``detect-zeroes=detect-zeroes``
1034 detect-zeroes is "off
", "on
" or "unmap
" and enables the
1035 automatic conversion of plain zero writes by the OS to
1036 driver specific optimized zero write commands. You may even
1037 choose "unmap
" if discard is set to "unmap
" to allow a zero
1038 write to be converted to an ``unmap`` operation.
1040 ``Driver-specific options for file``
1041 This is the protocol-level block driver for accessing regular
1045 The path to the image file in the local filesystem
1048 Specifies the AIO backend (threads/native/io_uring,
1052 Specifies whether the image file is protected with Linux OFD
1053 / POSIX locks. The default is to use the Linux Open File
1054 Descriptor API if available, otherwise no lock is applied.
1055 (auto/on/off, default: auto)
1061 -blockdev driver=file,node-name=disk,filename=disk.img
1063 ``Driver-specific options for raw``
1064 This is the image format block driver for raw images. It is
1065 usually stacked on top of a protocol level block driver such as
1069 Reference to or definition of the data source block driver
1070 node (e.g. a ``file`` driver node)
1076 -blockdev driver=file,node-name=disk_file,filename=disk.img
1077 -blockdev driver=raw,node-name=disk,file=disk_file
1083 -blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img
1085 ``Driver-specific options for qcow2``
1086 This is the image format block driver for qcow2 images. It is
1087 usually stacked on top of a protocol level block driver such as
1091 Reference to or definition of the data source block driver
1092 node (e.g. a ``file`` driver node)
1095 Reference to or definition of the backing file block device
1096 (default is taken from the image file). It is allowed to
1097 pass ``null`` here in order to disable the default backing
1101 Whether to enable the lazy refcounts feature (on/off;
1102 default is taken from the image file)
1105 The maximum total size of the L2 table and refcount block
1106 caches in bytes (default: the sum of l2-cache-size and
1107 refcount-cache-size)
1110 The maximum size of the L2 table cache in bytes (default: if
1111 cache-size is not specified - 32M on Linux platforms, and 8M
1112 on non-Linux platforms; otherwise, as large as possible
1113 within the cache-size, while permitting the requested or the
1114 minimal refcount cache size)
1116 ``refcount-cache-size``
1117 The maximum size of the refcount block cache in bytes
1118 (default: 4 times the cluster size; or if cache-size is
1119 specified, the part of it which is not used for the L2
1122 ``cache-clean-interval``
1123 Clean unused entries in the L2 and refcount caches. The
1124 interval is in seconds. The default value is 600 on
1125 supporting platforms, and 0 on other platforms. Setting it
1126 to 0 disables this feature.
1128 ``pass-discard-request``
1129 Whether discard requests to the qcow2 device should be
1130 forwarded to the data source (on/off; default: on if
1131 discard=unmap is specified, off otherwise)
1133 ``pass-discard-snapshot``
1134 Whether discard requests for the data source should be
1135 issued when a snapshot operation (e.g. deleting a snapshot)
1136 frees clusters in the qcow2 file (on/off; default: on)
1138 ``pass-discard-other``
1139 Whether discard requests for the data source should be
1140 issued on other occasions where a cluster gets freed
1141 (on/off; default: off)
1144 Which overlap checks to perform for writes to the image
1145 (none/constant/cached/all; default: cached). For details or
1146 finer granularity control refer to the QAPI documentation of
1153 -blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2
1154 -blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216
1160 -blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2
1162 ``Driver-specific options for other drivers``
1163 Please refer to the QAPI documentation of the ``blockdev-add``
1167 DEF("drive
", HAS_ARG, QEMU_OPTION_drive,
1168 "-drive
[file
=file
][,if=type
][,bus
=n
][,unit
=m
][,media
=d
][,index
=i
]\n"
1169 " [,cache
=writethrough|writeback|none|directsync|unsafe
][,format
=f
]\n"
1170 " [,snapshot
=on|off
][,rerror
=ignore|stop|report
]\n"
1171 " [,werror
=ignore|stop|report|enospc
][,id
=name
]\n"
1172 " [,aio
=threads|native|io_uring
]\n"
1173 " [,readonly
=on|off
][,copy
-on
-read
=on|off
]\n"
1174 " [,discard
=ignore|unmap
][,detect
-zeroes
=on|off|unmap
]\n"
1175 " [[,bps
=b
]|
[[,bps_rd
=r
][,bps_wr
=w
]]]\n"
1176 " [[,iops
=i
]|
[[,iops_rd
=r
][,iops_wr
=w
]]]\n"
1177 " [[,bps_max
=bm
]|
[[,bps_rd_max
=rm
][,bps_wr_max
=wm
]]]\n"
1178 " [[,iops_max
=im
]|
[[,iops_rd_max
=irm
][,iops_wr_max
=iwm
]]]\n"
1179 " [[,iops_size
=is
]]\n"
1181 " use
'file' as a drive image
\n", QEMU_ARCH_ALL)
1183 ``-drive option[,option[,option[,...]]]``
1184 Define a new drive. This includes creating a block driver node (the
1185 backend) as well as a guest device, and is mostly a shortcut for
1186 defining the corresponding ``-blockdev`` and ``-device`` options.
1188 ``-drive`` accepts all options that are accepted by ``-blockdev``.
1189 In addition, it knows the following options:
1192 This option defines which disk image (see the :ref:`disk images`
1193 chapter in the System Emulation Users Guide) to use with this drive.
1194 If the filename contains comma, you must double it (for instance,
1195 "file
=my
,,file
" to use file "my
,file
").
1197 Special files such as iSCSI devices can be specified using
1198 protocol specific URLs. See the section for "Device URL Syntax
"
1199 for more information.
1202 This option defines on which type on interface the drive is
1203 connected. Available types are: ide, scsi, sd, mtd, floppy,
1204 pflash, virtio, none.
1206 ``bus=bus,unit=unit``
1207 These options define where is connected the drive by defining
1208 the bus number and the unit id.
1211 This option defines where is connected the drive by using an
1212 index in the list of available connectors of a given interface
1216 This option defines the type of the media: disk or cdrom.
1218 ``snapshot=snapshot``
1219 snapshot is "on
" or "off
" and controls snapshot mode for the
1220 given drive (see ``-snapshot``).
1223 cache is "none
", "writeback
", "unsafe
", "directsync
" or
1224 "writethrough
" and controls how the host cache is used to access
1225 block data. This is a shortcut that sets the ``cache.direct``
1226 and ``cache.no-flush`` options (as in ``-blockdev``), and
1227 additionally ``cache.writeback``, which provides a default for
1228 the ``write-cache`` option of block guest devices (as in
1229 ``-device``). The modes correspond to the following settings:
1231 ============= =============== ============ ==============
1232 \ cache.writeback cache.direct cache.no-flush
1233 ============= =============== ============ ==============
1234 writeback on off off
1236 writethrough off off off
1237 directsync off on off
1239 ============= =============== ============ ==============
1241 The default mode is ``cache=writeback``.
1244 aio is "threads
", "native
", or "io_uring
" and selects between pthread
1245 based disk I/O, native Linux AIO, or Linux io_uring API.
1248 Specify which disk format will be used rather than detecting the
1249 format. Can be used to specify format=raw to avoid interpreting
1250 an untrusted format header.
1252 ``werror=action,rerror=action``
1253 Specify which action to take on write and read errors. Valid
1254 actions are: "ignore
" (ignore the error and try to continue),
1255 "stop
" (pause QEMU), "report
" (report the error to the guest),
1256 "enospc
" (pause QEMU only if the host disk is full; report the
1257 error to the guest otherwise). The default setting is
1258 ``werror=enospc`` and ``rerror=report``.
1260 ``copy-on-read=copy-on-read``
1261 copy-on-read is "on
" or "off
" and enables whether to copy read
1262 backing file sectors into the image file.
1264 ``bps=b,bps_rd=r,bps_wr=w``
1265 Specify bandwidth throttling limits in bytes per second, either
1266 for all request types or for reads or writes only. Small values
1267 can lead to timeouts or hangs inside the guest. A safe minimum
1268 for disks is 2 MB/s.
1270 ``bps_max=bm,bps_rd_max=rm,bps_wr_max=wm``
1271 Specify bursts in bytes per second, either for all request types
1272 or for reads or writes only. Bursts allow the guest I/O to spike
1273 above the limit temporarily.
1275 ``iops=i,iops_rd=r,iops_wr=w``
1276 Specify request rate limits in requests per second, either for
1277 all request types or for reads or writes only.
1279 ``iops_max=bm,iops_rd_max=rm,iops_wr_max=wm``
1280 Specify bursts in requests per second, either for all request
1281 types or for reads or writes only. Bursts allow the guest I/O to
1282 spike above the limit temporarily.
1285 Let every is bytes of a request count as a new request for iops
1286 throttling purposes. Use this option to prevent guests from
1287 circumventing iops limits by sending fewer but larger requests.
1290 Join a throttling quota group with given name g. All drives that
1291 are members of the same group are accounted for together. Use
1292 this option to prevent guests from circumventing throttling
1293 limits by using many small disks instead of a single larger
1296 By default, the ``cache.writeback=on`` mode is used. It will report
1297 data writes as completed as soon as the data is present in the host
1298 page cache. This is safe as long as your guest OS makes sure to
1299 correctly flush disk caches where needed. If your guest OS does not
1300 handle volatile disk write caches correctly and your host crashes or
1301 loses power, then the guest may experience data corruption.
1303 For such guests, you should consider using ``cache.writeback=off``.
1304 This means that the host page cache will be used to read and write
1305 data, but write notification will be sent to the guest only after
1306 QEMU has made sure to flush each write to the disk. Be aware that
1307 this has a major impact on performance.
1309 When using the ``-snapshot`` option, unsafe caching is always used.
1311 Copy-on-read avoids accessing the same backing file sectors
1312 repeatedly and is useful when the backing file is over a slow
1313 network. By default copy-on-read is off.
1315 Instead of ``-cdrom`` you can use:
1319 |qemu_system| -drive file=file,index=2,media=cdrom
1321 Instead of ``-hda``, ``-hdb``, ``-hdc``, ``-hdd``, you can use:
1325 |qemu_system| -drive file=file,index=0,media=disk
1326 |qemu_system| -drive file=file,index=1,media=disk
1327 |qemu_system| -drive file=file,index=2,media=disk
1328 |qemu_system| -drive file=file,index=3,media=disk
1330 You can open an image using pre-opened file descriptors from an fd
1336 -add-fd fd=3,set=2,opaque="rdwr
:/path
/to
/file
" \\
1337 -add-fd fd=4,set=2,opaque="rdonly
:/path
/to
/file
" \\
1338 -drive file=/dev/fdset/2,index=0,media=disk
1340 You can connect a CDROM to the slave of ide0:
1344 |qemu_system_x86| -drive file=file,if=ide,index=1,media=cdrom
1346 If you don't specify the "file
=" argument, you define an empty
1351 |qemu_system_x86| -drive if=ide,index=1,media=cdrom
1353 Instead of ``-fda``, ``-fdb``, you can use:
1357 |qemu_system_x86| -drive file=file,index=0,if=floppy
1358 |qemu_system_x86| -drive file=file,index=1,if=floppy
1360 By default, interface is "ide
" and index is automatically
1365 |qemu_system_x86| -drive file=a -drive file=b"
1367 is interpreted like
:
1371 |qemu_system_x86|
-hda a
-hdb b
1374 DEF("mtdblock", HAS_ARG
, QEMU_OPTION_mtdblock
,
1375 "-mtdblock file use 'file' as on-board Flash memory image\n",
1379 Use file as on
-board Flash memory image
.
1382 DEF("sd", HAS_ARG
, QEMU_OPTION_sd
,
1383 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL
)
1386 Use file as SecureDigital card image
.
1389 DEF("pflash", HAS_ARG
, QEMU_OPTION_pflash
,
1390 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL
)
1393 Use file as a parallel flash image
.
1396 DEF("snapshot", 0, QEMU_OPTION_snapshot
,
1397 "-snapshot write to temporary files instead of disk image files\n",
1401 Write to temporary files instead of disk image files
. In
this case,
1402 the raw disk image you use is not written back
. You can however
1403 force the write back by pressing C
-a
s (see the
:ref
:`disk images`
1404 chapter
in the System Emulation Users Guide
).
1407 DEF("fsdev", HAS_ARG
, QEMU_OPTION_fsdev
,
1408 "-fsdev local,id=id,path=path,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1409 " [,writeout=immediate][,readonly=on][,fmode=fmode][,dmode=dmode]\n"
1410 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
1411 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
1412 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
1413 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
1414 " [[,throttling.iops-size=is]]\n"
1415 "-fsdev proxy,id=id,socket=socket[,writeout=immediate][,readonly=on]\n"
1416 "-fsdev proxy,id=id,sock_fd=sock_fd[,writeout=immediate][,readonly=on]\n"
1417 "-fsdev synth,id=id\n",
1421 ``
-fsdev local
,id
=id
,path
=path
,security_model
=security_model
[,writeout
=writeout
][,readonly
=on
][,fmode
=fmode
][,dmode
=dmode
] [,throttling
.option
=value
[,throttling
.option
=value
[,...]]]``
1423 ``
-fsdev proxy
,id
=id
,socket
=socket
[,writeout
=writeout
][,readonly
=on
]``
1425 ``
-fsdev proxy
,id
=id
,sock_fd
=sock_fd
[,writeout
=writeout
][,readonly
=on
]``
1427 ``
-fsdev synth
,id
=id
[,readonly
=on
]``
1428 Define a
new file system device
. Valid options are
:
1431 Accesses to the filesystem are done by QEMU
.
1434 Accesses to the filesystem are done by virtfs
-proxy
-helper(1).
1437 Synthetic filesystem
, only used by QTests
.
1440 Specifies identifier
for this device
.
1443 Specifies the export path
for the file system device
. Files
1444 under
this path will be available to the
9p client on the guest
.
1446 ``security_model
=security_model``
1447 Specifies the security model to be used
for this export path
.
1448 Supported security models are
"passthrough", "mapped-xattr",
1449 "mapped-file" and
"none". In
"passthrough" security model
, files
1450 are stored
using the same credentials as they are created on the
1451 guest
. This requires QEMU to run as root
. In
"mapped-xattr"
1452 security model
, some of the file attributes like uid
, gid
, mode
1453 bits and link target are stored as file attributes
. For
1454 "mapped-file" these attributes are stored
in the hidden
1455 .virtfs\_metadata directory
. Directories exported by
this
1456 security model cannot interact with other unix tools
. "none"
1457 security model is same as passthrough except the sever won
't
1458 report failures if it fails to set file attributes like
1459 ownership. Security model is mandatory only for local fsdriver.
1460 Other fsdrivers (like proxy) don't take security model as a
1463 ``writeout
=writeout``
1464 This is an optional argument
. The only supported value is
1465 "immediate". This means that host page cache will be used to
1466 read and write data but write notification will be sent to the
1467 guest only when the data has been reported as written by the
1471 Enables exporting
9p share as a readonly mount
for guests
. By
1472 default read
-write access is given
.
1475 Enables proxy filesystem driver to use passed socket file
for
1476 communicating with virtfs
-proxy
-helper(1).
1479 Enables proxy filesystem driver to use passed socket descriptor
1480 for communicating with virtfs
-proxy
-helper(1). Usually a helper
1481 like libvirt will create socketpair and pass one of the fds as
1485 Specifies the
default mode
for newly created files on the host
.
1486 Works only with security models
"mapped-xattr" and
1490 Specifies the
default mode
for newly created directories on the
1491 host
. Works only with security models
"mapped-xattr" and
1494 ``throttling
.bps
-total
=b
,throttling
.bps
-read
=r
,throttling
.bps
-write
=w``
1495 Specify bandwidth throttling limits
in bytes per second
, either
1496 for all request types or
for reads or writes only
.
1498 ``throttling
.bps
-total
-max
=bm
,bps
-read
-max
=rm
,bps
-write
-max
=wm``
1499 Specify bursts
in bytes per second
, either
for all request types
1500 or
for reads or writes only
. Bursts allow the guest I
/O to spike
1501 above the limit temporarily
.
1503 ``throttling
.iops
-total
=i
,throttling
.iops
-read
=r
, throttling
.iops
-write
=w``
1504 Specify request rate limits
in requests per second
, either
for
1505 all request types or
for reads or writes only
.
1507 ``throttling
.iops
-total
-max
=im
,throttling
.iops
-read
-max
=irm
, throttling
.iops
-write
-max
=iwm``
1508 Specify bursts
in requests per second
, either
for all request
1509 types or
for reads or writes only
. Bursts allow the guest I
/O to
1510 spike above the limit temporarily
.
1512 ``throttling
.iops
-size
=is``
1513 Let every is bytes of a request count as a
new request
for iops
1514 throttling purposes
.
1516 -fsdev option is used along with
-device driver
"virtio-9p-...".
1518 ``
-device virtio
-9p
-type
,fsdev
=id
,mount_tag
=mount_tag``
1519 Options
for virtio
-9p
-... driver are
:
1522 Specifies the variant to be used
. Supported values are
"pci",
1523 "ccw" or
"device", depending on the machine type
.
1526 Specifies the id value specified along with
-fsdev option
.
1528 ``mount_tag
=mount_tag``
1529 Specifies the tag name to be used by the guest to mount
this
1533 DEF("virtfs", HAS_ARG
, QEMU_OPTION_virtfs
,
1534 "-virtfs local,path=path,mount_tag=tag,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1535 " [,id=id][,writeout=immediate][,readonly=on][,fmode=fmode][,dmode=dmode][,multidevs=remap|forbid|warn]\n"
1536 "-virtfs proxy,mount_tag=tag,socket=socket[,id=id][,writeout=immediate][,readonly=on]\n"
1537 "-virtfs proxy,mount_tag=tag,sock_fd=sock_fd[,id=id][,writeout=immediate][,readonly=on]\n"
1538 "-virtfs synth,mount_tag=tag[,id=id][,readonly=on]\n",
1542 ``
-virtfs local
,path
=path
,mount_tag
=mount_tag
,security_model
=security_model
[,writeout
=writeout
][,readonly
=on
] [,fmode
=fmode
][,dmode
=dmode
][,multidevs
=multidevs
]``
1544 ``
-virtfs proxy
,socket
=socket
,mount_tag
=mount_tag
[,writeout
=writeout
][,readonly
=on
]``
1546 ``
-virtfs proxy
,sock_fd
=sock_fd
,mount_tag
=mount_tag
[,writeout
=writeout
][,readonly
=on
]``
1548 ``
-virtfs synth
,mount_tag
=mount_tag``
1549 Define a
new virtual filesystem device and expose it to the guest
using
1550 a virtio
-9p
-device (a
.k
.a
. 9pfs
), which essentially means that a certain
1551 directory on host is made directly accessible by guest as a pass
-through
1552 file system by
using the
9P network protocol
for communication between
1553 host and guests
, if desired even accessible
, shared by several guests
1556 Note that ``
-virtfs`` is actually just a convenience shortcut
for its
1557 generalized form ``
-fsdev
-device virtio
-9p
-pci``
.
1559 The general form of pass
-through file system options are
:
1562 Accesses to the filesystem are done by QEMU
.
1565 Accesses to the filesystem are done by virtfs
-proxy
-helper(1).
1568 Synthetic filesystem
, only used by QTests
.
1571 Specifies identifier
for the filesystem device
1574 Specifies the export path
for the file system device
. Files
1575 under
this path will be available to the
9p client on the guest
.
1577 ``security_model
=security_model``
1578 Specifies the security model to be used
for this export path
.
1579 Supported security models are
"passthrough", "mapped-xattr",
1580 "mapped-file" and
"none". In
"passthrough" security model
, files
1581 are stored
using the same credentials as they are created on the
1582 guest
. This requires QEMU to run as root
. In
"mapped-xattr"
1583 security model
, some of the file attributes like uid
, gid
, mode
1584 bits and link target are stored as file attributes
. For
1585 "mapped-file" these attributes are stored
in the hidden
1586 .virtfs\_metadata directory
. Directories exported by
this
1587 security model cannot interact with other unix tools
. "none"
1588 security model is same as passthrough except the sever won
't
1589 report failures if it fails to set file attributes like
1590 ownership. Security model is mandatory only for local fsdriver.
1591 Other fsdrivers (like proxy) don't take security model as a
1594 ``writeout
=writeout``
1595 This is an optional argument
. The only supported value is
1596 "immediate". This means that host page cache will be used to
1597 read and write data but write notification will be sent to the
1598 guest only when the data has been reported as written by the
1602 Enables exporting
9p share as a readonly mount
for guests
. By
1603 default read
-write access is given
.
1606 Enables proxy filesystem driver to use passed socket file
for
1607 communicating with virtfs
-proxy
-helper(1). Usually a helper like
1608 libvirt will create socketpair and pass one of the fds as
1612 Enables proxy filesystem driver to use passed
'sock\_fd' as the
1613 socket descriptor
for interfacing with virtfs
-proxy
-helper(1).
1616 Specifies the
default mode
for newly created files on the host
.
1617 Works only with security models
"mapped-xattr" and
1621 Specifies the
default mode
for newly created directories on the
1622 host
. Works only with security models
"mapped-xattr" and
1625 ``mount_tag
=mount_tag``
1626 Specifies the tag name to be used by the guest to mount
this
1629 ``multidevs
=multidevs``
1630 Specifies how to deal with multiple devices being shared with a
1631 9p export
. Supported behaviours are either
"remap", "forbid" or
1632 "warn". The latter is the
default behaviour on which virtfs
9p
1633 expects only one device to be shared with the same export
, and
1634 if more than one device is shared and accessed via the same
9p
1635 export then only a warning message is
logged (once
) by qemu on
1636 host side
. In order to avoid file ID collisions on guest you
1637 should either create a separate virtfs export
for each device to
1638 be shared with
guests (recommended way
) or you might use
"remap"
1639 instead which allows you to share multiple devices with only one
1640 export instead
, which is achieved by remapping the original
1641 inode numbers from host to guest
in a way that would prevent
1642 such collisions
. Remapping inodes
in such use cases is required
1643 because the original device IDs from host are
never passed and
1644 exposed on guest
. Instead all files of an export shared with
1645 virtfs always share the same device id on guest
. So two files
1646 with identical inode numbers but from actually different devices
1647 on host would otherwise cause a file ID collision and hence
1648 potential misbehaviours on guest
. "forbid" on the other hand
1649 assumes like
"warn" that only one device is shared by the same
1650 export
, however it will not only log a warning message but also
1651 deny access to additional devices on guest
. Note though that
1652 "forbid" does currently not block all possible file access
1653 operations (e
.g
. readdir() would still
return entries from other
1657 DEF("iscsi", HAS_ARG
, QEMU_OPTION_iscsi
,
1658 "-iscsi [user=user][,password=password]\n"
1659 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
1660 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
1661 " [,timeout=timeout]\n"
1662 " iSCSI session parameters\n", QEMU_ARCH_ALL
)
1666 Configure iSCSI session parameters
.
1671 DEFHEADING(USB options
:)
1673 DEF("usb", 0, QEMU_OPTION_usb
,
1674 "-usb enable on-board USB host controller (if not enabled by default)\n",
1678 Enable USB emulation on machine types with an on
-board USB host
1679 controller (if not enabled by
default). Note that on
-board USB host
1680 controllers may not support USB
3.0. In
this case
1681 ``
-device qemu
-xhci`` can be used instead on machines with PCI
.
1684 DEF("usbdevice", HAS_ARG
, QEMU_OPTION_usbdevice
,
1685 "-usbdevice name add the host or guest USB device 'name'\n",
1688 ``
-usbdevice devname``
1689 Add the USB device devname
. Note that
this option is deprecated
,
1690 please use ``
-device usb
-...`` instead
. See the chapter about
1691 :ref
:`Connecting USB devices`
in the System Emulation Users Guide
.
1694 Virtual Mouse
. This will
override the PS
/2 mouse emulation when
1698 Pointer device that uses absolute
coordinates (like a
1699 touchscreen
). This means QEMU is able to report the mouse
1700 position without having to grab the mouse
. Also overrides the
1701 PS
/2 mouse emulation when activated
.
1704 Braille device
. This will use BrlAPI to display the braille
1705 output on a real or fake device
.
1710 DEFHEADING(Display options
:)
1712 DEF("display", HAS_ARG
, QEMU_OPTION_display
,
1713 #
if defined(CONFIG_SPICE
)
1714 "-display spice-app[,gl=on|off]\n"
1716 #
if defined(CONFIG_SDL
)
1717 "-display sdl[,alt_grab=on|off][,ctrl_grab=on|off]\n"
1718 " [,window_close=on|off][,gl=on|core|es|off]\n"
1720 #
if defined(CONFIG_GTK
)
1721 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
1723 #
if defined(CONFIG_VNC
)
1724 "-display vnc=<display>[,<optargs>]\n"
1726 #
if defined(CONFIG_CURSES
)
1727 "-display curses[,charset=<encoding>]\n"
1729 #
if defined(CONFIG_OPENGL
)
1730 "-display egl-headless[,rendernode=<file>]\n"
1733 " select display backend type\n"
1734 " The default display is equivalent to\n "
1735 #
if defined(CONFIG_GTK
)
1736 "\"-display gtk\"\n"
1737 #elif
defined(CONFIG_SDL
)
1738 "\"-display sdl\"\n"
1739 #elif
defined(CONFIG_COCOA
)
1740 "\"-display cocoa\"\n"
1741 #elif
defined(CONFIG_VNC
)
1742 "\"-vnc localhost:0,to=99,id=default\"\n"
1744 "\"-display none\"\n"
1749 Select type of display to use
. This option is a replacement
for the
1750 old style
-sdl
/-curses
/... options
. Use ``
-display help`` to list
1751 the available display types
. Valid values
for type are
1754 Display video output via
SDL (usually
in a separate graphics
1755 window
; see the SDL documentation
for other possibilities
).
1758 Display video output via curses
. For graphics device models
1759 which support a text mode
, QEMU can display
this output
using a
1760 curses
/ncurses
interface. Nothing is displayed when the graphics
1761 device is
in graphical mode or
if the graphics device does not
1762 support a text mode
. Generally only the VGA device models
1763 support text mode
. The font charset used by the guest can be
1764 specified with the ``charset`` option
, for example
1765 ``charset
=CP850``
for IBM CP850 encoding
. The
default is
1769 Do not display video output
. The guest will still see an
1770 emulated graphics card
, but its output will not be displayed to
1771 the QEMU user
. This option differs from the
-nographic option
in
1772 that it only affects what is done with video output
; -nographic
1773 also changes the destination of the serial and parallel port
1777 Display video output
in a GTK window
. This
interface provides
1778 drop
-down menus and other UI elements to configure and control
1779 the VM during runtime
.
1782 Start a VNC server on display
<arg
>
1785 Offload all OpenGL operations to a local DRI device
. For any
1786 graphical display
, this display needs to be paired with either
1787 VNC or SPICE displays
.
1790 Start QEMU as a Spice server and launch the
default Spice client
1791 application
. The Spice server will redirect the serial consoles
1792 and QEMU monitors
. (Since
4.0)
1795 DEF("nographic", 0, QEMU_OPTION_nographic
,
1796 "-nographic disable graphical output and redirect serial I/Os to console\n",
1800 Normally
, if QEMU is compiled with graphical window support
, it
1801 displays output such as guest graphics
, guest console
, and the QEMU
1802 monitor
in a window
. With
this option
, you can totally disable
1803 graphical output so that QEMU is a simple command line application
.
1804 The emulated serial port is redirected on the console and muxed with
1805 the
monitor (unless redirected elsewhere explicitly
). Therefore
, you
1806 can still use QEMU to debug a Linux kernel with a serial console
.
1807 Use C
-a h
for help on switching between the console and monitor
.
1810 DEF("curses", 0, QEMU_OPTION_curses
,
1811 "-curses shorthand for -display curses\n",
1815 Normally
, if QEMU is compiled with graphical window support
, it
1816 displays output such as guest graphics
, guest console
, and the QEMU
1817 monitor
in a window
. With
this option
, QEMU can display the VGA
1818 output when
in text mode
using a curses
/ncurses
interface. Nothing
1819 is displayed
in graphical mode
.
1822 DEF("alt-grab", 0, QEMU_OPTION_alt_grab
,
1823 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1827 Use Ctrl
-Alt
-Shift to grab
mouse (instead of Ctrl
-Alt
). Note that
1828 this also affects the special
keys (for fullscreen
, monitor
-mode
1832 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab
,
1833 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1837 Use Right
-Ctrl to grab
mouse (instead of Ctrl
-Alt
). Note that
this
1838 also affects the special
keys (for fullscreen
, monitor
-mode
1842 DEF("no-quit", 0, QEMU_OPTION_no_quit
,
1843 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL
)
1846 Disable SDL window close capability
.
1849 DEF("sdl", 0, QEMU_OPTION_sdl
,
1850 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL
)
1856 DEF("spice", HAS_ARG
, QEMU_OPTION_spice
,
1857 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1858 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1859 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1860 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1861 " [,tls-ciphers=<list>]\n"
1862 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1863 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1864 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1865 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1866 " [,jpeg-wan-compression=[auto|never|always]]\n"
1867 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1868 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1869 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1870 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1871 " [,gl=[on|off]][,rendernode=<file>]\n"
1873 " at least one of {port, tls-port} is mandatory\n",
1876 ``
-spice option
[,option
[,...]]``
1877 Enable the spice remote desktop protocol
. Valid options are
1880 Set the TCP port spice is listening on
for plaintext channels
.
1883 Set the IP address spice is listening on
. Default is any
1886 ``ipv4``
; \ ``ipv6``
; \ ``unix``
1887 Force
using the specified IP version
.
1889 ``password
=<secret
>``
1890 Set the password you need to authenticate
.
1893 Require that the client use SASL to authenticate with the spice
.
1894 The exact choice of authentication method used is controlled
1895 from the system
/ user
's SASL configuration file for the 'qemu
'
1896 service. This is typically found in /etc/sasl2/qemu.conf. If
1897 running QEMU as an unprivileged user, an environment variable
1898 SASL\_CONF\_PATH can be used to make it search alternate
1899 locations for the service config. While some SASL auth methods
1900 can also provide data encryption (eg GSSAPI), it is recommended
1901 that SASL always be combined with the 'tls
' and 'x509
' settings
1902 to enable use of SSL and server certificates. This ensures a
1903 data encryption preventing compromise of authentication
1906 ``disable-ticketing``
1907 Allow client connects without authentication.
1909 ``disable-copy-paste``
1910 Disable copy paste between the client and the guest.
1912 ``disable-agent-file-xfer``
1913 Disable spice-vdagent based file-xfer between the client and the
1917 Set the TCP port spice is listening on for encrypted channels.
1920 Set the x509 file directory. Expects same filenames as -vnc
1923 ``x509-key-file=<file>``; \ ``x509-key-password=<file>``; \ ``x509-cert-file=<file>``; \ ``x509-cacert-file=<file>``; \ ``x509-dh-key-file=<file>``
1924 The x509 file names can also be configured individually.
1926 ``tls-ciphers=<list>``
1927 Specify which ciphers to use.
1929 ``tls-channel=[main|display|cursor|inputs|record|playback]``; \ ``plaintext-channel=[main|display|cursor|inputs|record|playback]``
1930 Force specific channel to be used with or without TLS
1931 encryption. The options can be specified multiple times to
1932 configure multiple channels. The special name "default" can be
1933 used to set the default mode. For channels which are not
1934 explicitly forced into one mode the spice client is allowed to
1935 pick tls/plaintext as he pleases.
1937 ``image-compression=[auto_glz|auto_lz|quic|glz|lz|off]``
1938 Configure image compression (lossless). Default is auto\_glz.
1940 ``jpeg-wan-compression=[auto|never|always]``; \ ``zlib-glz-wan-compression=[auto|never|always]``
1941 Configure wan image compression (lossy for slow links). Default
1944 ``streaming-video=[off|all|filter]``
1945 Configure video stream detection. Default is off.
1947 ``agent-mouse=[on|off]``
1948 Enable/disable passing mouse events via vdagent. Default is on.
1950 ``playback-compression=[on|off]``
1951 Enable/disable audio stream compression (using celt 0.5.1).
1954 ``seamless-migration=[on|off]``
1955 Enable/disable spice seamless migration. Default is off.
1958 Enable/disable OpenGL context. Default is off.
1960 ``rendernode=<file>``
1961 DRM render node for OpenGL rendering. If not specified, it will
1962 pick the first available. (Since 2.9)
1965 DEF("portrait", 0, QEMU_OPTION_portrait,
1966 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1970 Rotate graphical output 90 deg left (only PXA LCD).
1973 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1974 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1978 Rotate graphical output some deg left (only PXA LCD).
1981 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1982 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1983 " select video card type\n", QEMU_ARCH_ALL)
1986 Select type of VGA card to emulate. Valid values for type are
1989 Cirrus Logic GD5446 Video card. All Windows versions starting
1990 from Windows 95 should recognize and use this graphic card. For
1991 optimal performances, use 16 bit color depth in the guest and
1992 the host OS. (This card was the default before QEMU 2.2)
1995 Standard VGA card with Bochs VBE extensions. If your guest OS
1996 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if
1997 you want to use high resolution modes (>= 1280x1024x16) then you
1998 should use this option. (This card is the default since QEMU
2002 VMWare SVGA-II compatible adapter. Use it if you have
2003 sufficiently recent XFree86/XOrg server or Windows guest with a
2004 driver for this card.
2007 QXL paravirtual graphic card. It is VGA compatible (including
2008 VESA 2.0 VBE support). Works best with qxl guest drivers
2009 installed though. Recommended choice when using the spice
2013 (sun4m only) Sun TCX framebuffer. This is the default
2014 framebuffer for sun4m machines and offers both 8-bit and 24-bit
2015 colour depths at a fixed resolution of 1024x768.
2018 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit
2019 framebuffer for sun4m machines available in both 1024x768
2020 (OpenBIOS) and 1152x900 (OBP) resolutions aimed at people
2021 wishing to run older Solaris versions.
2030 DEF("full-screen", 0, QEMU_OPTION_full_screen,
2031 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
2034 Start in full screen.
2037 DEF("g", HAS_ARG, QEMU_OPTION_g ,
2038 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
2039 QEMU_ARCH_PPC | QEMU_ARCH_SPARC | QEMU_ARCH_M68K)
2041 ``-g`` *width*\ ``x``\ *height*\ ``[x``\ *depth*\ ``]``
2042 Set the initial graphical resolution and depth (PPC, SPARC only).
2044 For PPC the default is 800x600x32.
2046 For SPARC with the TCX graphics device, the default is 1024x768x8
2047 with the option of 1024x768x24. For cgthree, the default is
2048 1024x768x8 with the option of 1152x900x8 for people who wish to use
2052 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
2053 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
2055 ``-vnc display[,option[,option[,...]]]``
2056 Normally, if QEMU is compiled with graphical window support, it
2057 displays output such as guest graphics, guest console, and the QEMU
2058 monitor in a window. With this option, you can have QEMU listen on
2059 VNC display display and redirect the VGA display over the VNC
2060 session. It is very useful to enable the usb tablet device when
2061 using this option (option ``-device usb-tablet``). When using the
2062 VNC display, you must use the ``-k`` parameter to set the keyboard
2063 layout if you are not using en-us. Valid syntax for the display is
2066 With this option, QEMU will try next available VNC displays,
2067 until the number L, if the origianlly defined "-vnc display" is
2068 not available, e.g. port 5900+display is already used by another
2069 application. By default, to=0.
2072 TCP connections will only be allowed from host on display d. By
2073 convention the TCP port is 5900+d. Optionally, host can be
2074 omitted in which case the server will accept connections from
2078 Connections will be allowed over UNIX domain sockets where path
2079 is the location of a unix socket to listen for connections on.
2082 VNC is initialized but not started. The monitor ``change``
2083 command can be used to later start the VNC server.
2085 Following the display value there may be one or more option flags
2086 separated by commas. Valid options are
2089 Connect to a listening VNC client via a "reverse" connection.
2090 The client is specified by the display. For reverse network
2091 connections (host:d,``reverse``), the d argument is a TCP port
2092 number, not a display number.
2095 Opens an additional TCP listening port dedicated to VNC
2096 Websocket connections. If a bare websocket option is given, the
2097 Websocket port is 5700+display. An alternative port can be
2098 specified with the syntax ``websocket``\ =port.
2100 If host is specified connections will only be allowed from this
2101 host. It is possible to control the websocket listen address
2102 independently, using the syntax ``websocket``\ =host:port.
2104 If no TLS credentials are provided, the websocket connection
2105 runs in unencrypted mode. If TLS credentials are provided, the
2106 websocket connection requires encrypted client connections.
2109 Require that password based authentication is used for client
2112 The password must be set separately using the ``set_password``
2113 command in the :ref:`QEMU monitor`. The
2114 syntax to change your password is:
2115 ``set_password <protocol> <password>`` where <protocol> could be
2116 either "vnc" or "spice".
2118 If you would like to change <protocol> password expiration, you
2119 should use ``expire_password <protocol> <expiration-time>``
2120 where expiration time could be one of the following options:
2121 now, never, +seconds or UNIX time of expiration, e.g. +60 to
2122 make password expire in 60 seconds, or 1335196800 to make
2123 password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for
2124 this date and time).
2126 You can also use keywords "now" or "never" for the expiration
2127 time to allow <protocol> password to expire immediately or never
2131 Provides the ID of a set of TLS credentials to use to secure the
2132 VNC server. They will apply to both the normal VNC server socket
2133 and the websocket socket (if enabled). Setting TLS credentials
2134 will cause the VNC server socket to enable the VeNCrypt auth
2135 mechanism. The credentials should have been previously created
2136 using the ``-object tls-creds`` argument.
2139 Provides the ID of the QAuthZ authorization object against which
2140 the client's x509 distinguished name will validated
. This object
2141 is only resolved at time of use
, so can be deleted and recreated
2142 on the fly
while the VNC server is active
. If missing
, it will
2143 default to denying access
.
2146 Require that the client use SASL to authenticate with the VNC
2147 server
. The exact choice of authentication method used is
2148 controlled from the system
/ user
's SASL configuration file for
2149 the 'qemu
' service. This is typically found in
2150 /etc/sasl2/qemu.conf. If running QEMU as an unprivileged user,
2151 an environment variable SASL\_CONF\_PATH can be used to make it
2152 search alternate locations for the service config. While some
2153 SASL auth methods can also provide data encryption (eg GSSAPI),
2154 it is recommended that SASL always be combined with the 'tls
'
2155 and 'x509
' settings to enable use of SSL and server
2156 certificates. This ensures a data encryption preventing
2157 compromise of authentication credentials. See the
2158 :ref:`VNC security` section in the System Emulation Users Guide
2159 for details on using SASL authentication.
2162 Provides the ID of the QAuthZ authorization object against which
2163 the client's SASL username will validated
. This object is only
2164 resolved at time of use
, so can be deleted and recreated on the
2165 fly
while the VNC server is active
. If missing
, it will
default
2169 Legacy method
for enabling authorization of clients against the
2170 x509 distinguished name and SASL username
. It results
in the
2171 creation of two ``authz
-list`` objects with IDs of
2172 ``vnc
.username`` and ``vnc
.x509dname``
. The rules
for these
2173 objects must be configured with the HMP ACL commands
.
2175 This option is deprecated and should no longer be used
. The
new
2176 ``sasl
-authz`` and ``tls
-authz`` options are a replacement
.
2179 Enable lossy compression
methods (gradient
, JPEG
, ...). If
this
2180 option is set
, VNC client may receive lossy framebuffer updates
2181 depending on its encoding settings
. Enabling
this option can
2182 save a lot of bandwidth at the expense of quality
.
2185 Disable adaptive encodings
. Adaptive encodings are enabled by
2186 default. An adaptive encoding will
try to detect frequently
2187 updated screen regions
, and send updates
in these regions
using
2188 a lossy
encoding (like JPEG
). This can be really helpful to save
2189 bandwidth when playing videos
. Disabling adaptive encodings
2190 restores the original
static behavior of encodings like Tight
.
2192 ``share
=[allow
-exclusive|force
-shared|ignore
]``
2193 Set display sharing policy
. 'allow-exclusive' allows clients to
2194 ask
for exclusive access
. As suggested by the rfb spec
this is
2195 implemented by dropping other connections
. Connecting multiple
2196 clients
in parallel requires all clients asking
for a shared
2197 session (vncviewer
: -shared
switch). This is the
default.
2198 'force-shared' disables exclusive client access
. Useful
for
2199 shared desktop sessions
, where you don
't want someone forgetting
2200 specify -shared disconnect everybody else. 'ignore
' completely
2201 ignores the shared flag and allows everybody connect
2202 unconditionally. Doesn't conform to the rfb spec but is
2203 traditional QEMU behavior
.
2206 Set keyboard delay
, for key down and key up events
, in
2207 milliseconds
. Default is
10. Keyboards are low
-bandwidth
2208 devices
, so
this slowdown can help the device and guest to keep
2209 up and not lose events
in case events are arriving
in bulk
.
2210 Possible causes
for the latter are flaky network connections
, or
2211 scripts
for automated testing
.
2213 ``audiodev
=audiodev``
2214 Use the specified audiodev when the VNC client requests audio
2215 transmission
. When not
using an
-audiodev argument
, this option
2216 must be omitted
, otherwise is must be present and specify a
2220 ARCHHEADING(, QEMU_ARCH_I386
)
2222 ARCHHEADING(i386 target only
:, QEMU_ARCH_I386
)
2224 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack
,
2225 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
2229 Use it when installing Windows
2000 to avoid a disk full bug
. After
2230 Windows
2000 is installed
, you no longer need
this option (this
2231 option slows down the IDE transfers
).
2234 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk
,
2235 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
2239 Disable boot signature checking
for floppy disks
in BIOS
. May be
2240 needed to boot from old floppy disks
.
2243 DEF("no-acpi", 0, QEMU_OPTION_no_acpi
,
2244 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM
)
2247 Disable
ACPI (Advanced Configuration and Power Interface
) support
.
2248 Use it
if your guest OS complains about ACPI
problems (PC target
2252 DEF("no-hpet", 0, QEMU_OPTION_no_hpet
,
2253 "-no-hpet disable HPET\n", QEMU_ARCH_I386
)
2256 Disable HPET support
.
2259 DEF("acpitable", HAS_ARG
, QEMU_OPTION_acpitable
,
2260 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
2261 " ACPI table description\n", QEMU_ARCH_I386
)
2263 ``
-acpitable
[sig
=str
][,rev
=n
][,oem_id
=str
][,oem_table_id
=str
][,oem_rev
=n
] [,asl_compiler_id
=str
][,asl_compiler_rev
=n
][,data
=file1
[:file2
]...]``
2264 Add ACPI table with specified header fields and context from
2265 specified files
. For file
=, take whole ACPI table from the specified
2266 files
, including all ACPI
headers (possible overridden by other
2267 options
). For data
=, only data portion of the table is used
, all
2268 header information is specified
in the command line
. If a SLIC table
2269 is supplied to QEMU
, then the SLIC
's oem\_id and oem\_table\_id
2270 fields will override the same in the RSDT and the FADT (a.k.a.
2271 FACP), in order to ensure the field matches required by the
2272 Microsoft SLIC spec and the ACPI spec.
2275 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
2276 "-smbios file=binary\n"
2277 " load SMBIOS entry from binary file\n"
2278 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
2280 " specify SMBIOS type 0 fields\n"
2281 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2282 " [,uuid=uuid][,sku=str][,family=str]\n"
2283 " specify SMBIOS type 1 fields\n"
2284 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2285 " [,asset=str][,location=str]\n"
2286 " specify SMBIOS type 2 fields\n"
2287 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
2289 " specify SMBIOS type 3 fields\n"
2290 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
2291 " [,asset=str][,part=str][,max-speed=%d][,current-speed=%d]\n"
2292 " specify SMBIOS type 4 fields\n"
2293 "-smbios type=11[,value=str][,path=filename]\n"
2294 " specify SMBIOS type 11 fields\n"
2295 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
2296 " [,asset=str][,part=str][,speed=%d]\n"
2297 " specify SMBIOS type 17 fields\n",
2298 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
2300 ``-smbios file=binary``
2301 Load SMBIOS entry from binary file.
2303 ``-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d][,uefi=on|off]``
2304 Specify SMBIOS type 0 fields
2306 ``-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str][,uuid=uuid][,sku=str][,family=str]``
2307 Specify SMBIOS type 1 fields
2309 ``-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str][,asset=str][,location=str]``
2310 Specify SMBIOS type 2 fields
2312 ``-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str][,sku=str]``
2313 Specify SMBIOS type 3 fields
2315 ``-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str][,asset=str][,part=str]``
2316 Specify SMBIOS type 4 fields
2318 ``-smbios type=11[,value=str][,path=filename]``
2319 Specify SMBIOS type 11 fields
2321 This argument can be repeated multiple times, and values are added in the order they are parsed.
2322 Applications intending to use OEM strings data are encouraged to use their application name as
2323 a prefix for the value string. This facilitates passing information for multiple applications
2326 The ``value=str`` syntax provides the string data inline, while the ``path=filename`` syntax
2327 loads data from a file on disk. Note that the file is not permitted to contain any NUL bytes.
2329 Both the ``value`` and ``path`` options can be repeated multiple times and will be added to
2330 the SMBIOS table in the order in which they appear.
2332 Note that on the x86 architecture, the total size of all SMBIOS tables is limited to 65535
2333 bytes. Thus the OEM strings data is not suitable for passing large amounts of data into the
2334 guest. Instead it should be used as a indicator to inform the guest where to locate the real
2335 data set, for example, by specifying the serial ID of a block device.
2337 An example passing three strings is
2341 -smbios type=11,value=cloud-init:ds=nocloud-net;s=http://10.10.0.1:8000/,\\
2342 value=anaconda:method=http://dl.fedoraproject.org/pub/fedora/linux/releases/25/x86_64/os,\\
2343 path=/some/file/with/oemstringsdata.txt
2345 In the guest OS this is visible with the ``dmidecode`` command
2350 Handle 0x0E00, DMI type 11, 5 bytes
2352 String 1: cloud-init:ds=nocloud-net;s=http://10.10.0.1:8000/
2353 String 2: anaconda:method=http://dl.fedoraproject.org/pub/fedora/linux/releases/25/x86_64/os
2354 String 3: myapp:some extra data
2357 ``-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str][,asset=str][,part=str][,speed=%d]``
2358 Specify SMBIOS type 17 fields
2363 DEFHEADING(Network options:)
2365 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
2367 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
2368 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
2369 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
2370 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,domainname=domain]\n"
2371 " [,tftp=dir][,tftp-server-name=name][,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
2373 "[,smb=dir[,smbserver=addr]]\n"
2375 " configure a user mode network backend with ID 'str
',\n"
2376 " its DHCP server and optional services\n"
2379 "-netdev tap,id=str,ifname=name\n"
2380 " configure a host TAP network backend with ID 'str
'\n"
2382 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
2383 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
2384 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
2386 " configure a host TAP network backend with ID 'str
'\n"
2387 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2388 " use network scripts 'file
' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
2389 " to configure it and 'dfile
' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
2390 " to deconfigure it\n"
2391 " use '[down
]script
=no
' to disable script execution\n"
2392 " use network helper 'helper
' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
2394 " use 'fd
=h
' to connect to an already opened TAP interface\n"
2395 " use 'fds
=x
:y
:...:z
' to connect to already opened multiqueue capable TAP interfaces\n"
2396 " use 'sndbuf
=nbytes
' to limit the size of the send buffer (the\n"
2397 " default is disabled 'sndbuf
=0' to enable flow control set 'sndbuf
=1048576')\n"
2398 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
2399 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
2400 " use vhost=on to enable experimental in kernel accelerator\n"
2401 " (only has effect for virtio guests which use MSIX)\n"
2402 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
2403 " use 'vhostfd
=h
' to connect to an already opened vhost net device\n"
2404 " use 'vhostfds
=x
:y
:...:z to connect to multiple already opened vhost net devices
\n"
2405 " use
'queues=n' to specify the number of queues to be created
for multiqueue TAP
\n"
2406 " use
'poll-us=n' to speciy the maximum number of microseconds that could be
\n"
2407 " spent on busy polling
for vhost net
\n"
2408 "-netdev bridge
,id
=str
[,br
=bridge
][,helper
=helper
]\n"
2409 " configure a host TAP network backend with ID
'str' that is
\n"
2410 " connected to a
bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2411 " using the program
'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
2414 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
2415 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
2416 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
2417 " [,rxcookie=rxcookie][,offset=offset]\n"
2418 " configure a network backend with ID 'str
' connected to\n"
2419 " an Ethernet over L2TPv3 pseudowire.\n"
2420 " Linux kernel 3.3+ as well as most routers can talk\n"
2421 " L2TPv3. This transport allows connecting a VM to a VM,\n"
2422 " VM to a router and even VM to Host. It is a nearly-universal\n"
2423 " standard (RFC3931). Note - this implementation uses static\n"
2424 " pre-configured tunnels (same as the Linux kernel).\n"
2425 " use 'src
=' to specify source address\n"
2426 " use 'dst
=' to specify destination address\n"
2427 " use 'udp
=on
' to specify udp encapsulation\n"
2428 " use 'srcport
=' to specify source udp port\n"
2429 " use 'dstport
=' to specify destination udp port\n"
2430 " use 'ipv6
=on
' to force v6\n"
2431 " L2TPv3 uses cookies to prevent misconfiguration as\n"
2432 " well as a weak security measure\n"
2433 " use 'rxcookie
=0x012345678' to specify a rxcookie\n"
2434 " use 'txcookie
=0x012345678' to specify a txcookie\n"
2435 " use 'cookie64
=on
' to set cookie size to 64 bit, otherwise 32\n"
2436 " use 'counter
=off
' to force a 'cut
-down
' L2TPv3 with no counter\n"
2437 " use 'pincounter
=on
' to work around broken counter handling in peer\n"
2438 " use 'offset
=X
' to add an extra offset between header and data\n"
2440 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
2441 " configure a network backend to connect to another network\n"
2442 " using a socket connection\n"
2443 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
2444 " configure a network backend to connect to a multicast maddr and port\n"
2445 " use 'localaddr
=addr
' to specify the host address to send packets from\n"
2446 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
2447 " configure a network backend to connect to another network\n"
2448 " using an UDP tunnel\n"
2450 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
2451 " configure a network backend to connect to port 'n
' of a vde switch\n"
2452 " running on host and listening for incoming connections on 'socketpath
'.\n"
2453 " Use group 'groupname
' and mode 'octalmode
' to change default\n"
2454 " ownership and permissions for communication port.\n"
2456 #ifdef CONFIG_NETMAP
2457 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
2458 " attach to the existing netmap-enabled network interface 'name
', or to a\n"
2459 " VALE port (created on the fly) called 'name
' ('nmname
' is name of the \n"
2460 " netmap device, defaults to '/dev
/netmap
')\n"
2463 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
2464 " configure a vhost-user network, backed by a chardev 'dev
'\n"
2467 "-netdev vhost-vdpa,id=str,vhostdev=/path/to/dev\n"
2468 " configure a vhost-vdpa network,Establish a vhost-vdpa netdev\n"
2470 "-netdev hubport,id=str,hubid=n[,netdev=nd]\n"
2471 " configure a hub port on the hub with ID 'n
'\n", QEMU_ARCH_ALL)
2472 DEF("nic", HAS_ARG, QEMU_OPTION_nic,
2483 #ifdef CONFIG_NETMAP
2489 "socket][,option][,...][mac=macaddr]\n"
2490 " initialize an on-board / default host NIC (using MAC address\n"
2491 " macaddr) and connect it to the given host network backend\n"
2492 "-nic none use it alone to have zero network devices (the default is to\n"
2493 " provided a 'user
' network connection)\n",
2495 DEF("net", HAS_ARG, QEMU_OPTION_net,
2496 "-net nic[,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
2497 " configure or create an on-board (or machine default) NIC and\n"
2498 " connect it to hub 0 (please use -nic unless you need a hub)\n"
2508 #ifdef CONFIG_NETMAP
2511 "socket][,option][,option][,...]\n"
2512 " old way to initialize a host network interface\n"
2513 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
2515 ``-nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]``
2516 This option is a shortcut for configuring both the on-board
2517 (default) guest NIC hardware and the host network backend in one go.
2518 The host backend options are the same as with the corresponding
2519 ``-netdev`` options below. The guest NIC model can be set with
2520 ``model=modelname``. Use ``model=help`` to list the available device
2521 types. The hardware MAC address can be set with ``mac=macaddr``.
2523 The following two example do exactly the same, to show how ``-nic``
2524 can be used to shorten the command line length:
2528 |qemu_system| -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
2529 |qemu_system| -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32
2532 Indicate that no network devices should be configured. It is used to
2533 override the default configuration (default NIC with "user" host
2534 network backend) which is activated if no other networking options
2537 ``-netdev user,id=id[,option][,option][,...]``
2538 Configure user mode host network backend which requires no
2539 administrator privilege to run. Valid options are:
2542 Assign symbolic name for use in monitor commands.
2544 ``ipv4=on|off and ipv6=on|off``
2545 Specify that either IPv4 or IPv6 must be enabled. If neither is
2546 specified both protocols are enabled.
2549 Set IP network address the guest will see. Optionally specify
2550 the netmask, either in the form a.b.c.d or as number of valid
2551 top-most bits. Default is 10.0.2.0/24.
2554 Specify the guest-visible address of the host. Default is the
2555 2nd IP in the guest network, i.e. x.x.x.2.
2557 ``ipv6-net=addr[/int]``
2558 Set IPv6 network address the guest will see (default is
2559 fec0::/64). The network prefix is given in the usual hexadecimal
2560 IPv6 address notation. The prefix size is optional, and is given
2561 as the number of valid top-most bits (default is 64).
2564 Specify the guest-visible IPv6 address of the host. Default is
2565 the 2nd IPv6 in the guest network, i.e. xxxx::2.
2568 If this option is enabled, the guest will be isolated, i.e. it
2569 will not be able to contact the host and no guest IP packets
2570 will be routed over the host to the outside. This option does
2571 not affect any explicitly set forwarding rules.
2574 Specifies the client hostname reported by the built-in DHCP
2578 Specify the first of the 16 IPs the built-in DHCP server can
2579 assign. Default is the 15th to 31st IP in the guest network,
2580 i.e. x.x.x.15 to x.x.x.31.
2583 Specify the guest-visible address of the virtual nameserver. The
2584 address must be different from the host address. Default is the
2585 3rd IP in the guest network, i.e. x.x.x.3.
2588 Specify the guest-visible address of the IPv6 virtual
2589 nameserver. The address must be different from the host address.
2590 Default is the 3rd IP in the guest network, i.e. xxxx::3.
2592 ``dnssearch=domain``
2593 Provides an entry for the domain-search list sent by the
2594 built-in DHCP server. More than one domain suffix can be
2595 transmitted by specifying this option multiple times. If
2596 supported, this will cause the guest to automatically try to
2597 append the given domain suffix(es) in case a domain name can not
2604 |qemu_system| -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
2606 ``domainname=domain``
2607 Specifies the client domain name reported by the built-in DHCP
2611 When using the user mode network stack, activate a built-in TFTP
2612 server. The files in dir will be exposed as the root of a TFTP
2613 server. The TFTP client on the guest must be configured in
2614 binary mode (use the command ``bin`` of the Unix TFTP client).
2616 ``tftp-server-name=name``
2617 In BOOTP reply, broadcast name as the "TFTP server name"
2618 (RFC2132 option 66). This can be used to advise the guest to
2619 load boot files or configurations from a different server than
2623 When using the user mode network stack, broadcast file as the
2624 BOOTP filename. In conjunction with ``tftp``, this can be used
2625 to network boot a guest from a local directory.
2627 Example (using pxelinux):
2631 |qemu_system| -hda linux.img -boot n -device e1000,netdev=n1 \\
2632 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
2634 ``smb=dir[,smbserver=addr]``
2635 When using the user mode network stack, activate a built-in SMB
2636 server so that Windows OSes can access to the host files in
2637 ``dir`` transparently. The IP address of the SMB server can be
2638 set to addr. By default the 4th IP in the guest network is used,
2641 In the guest Windows OS, the line:
2647 must be added in the file ``C:\WINDOWS\LMHOSTS`` (for windows
2648 9x/Me) or ``C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS`` (Windows
2651 Then ``dir`` can be accessed in ``\\smbserver\qemu``.
2653 Note that a SAMBA server must be installed on the host OS.
2655 ``hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport``
2656 Redirect incoming TCP or UDP connections to the host port
2657 hostport to the guest IP address guestaddr on guest port
2658 guestport. If guestaddr is not specified, its value is x.x.x.15
2659 (default first address given by the built-in DHCP server). By
2660 specifying hostaddr, the rule can be bound to a specific host
2661 interface. If no connection type is set, TCP is used. This
2662 option can be given multiple times.
2664 For example, to redirect host X11 connection from screen 1 to
2665 guest screen 0, use the following:
2670 |qemu_system| -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
2671 # this host xterm should open in the guest X11 server
2674 To redirect telnet connections from host port 5555 to telnet
2675 port on the guest, use the following:
2680 |qemu_system| -nic user,hostfwd=tcp::5555-:23
2681 telnet localhost 5555
2683 Then when you use on the host ``telnet localhost 5555``, you
2684 connect to the guest telnet server.
2686 ``guestfwd=[tcp]:server:port-dev``; \ ``guestfwd=[tcp]:server:port-cmd:command``
2687 Forward guest TCP connections to the IP address server on port
2688 port to the character device dev or to a program executed by
2689 cmd:command which gets spawned for each connection. This option
2690 can be given multiple times.
2692 You can either use a chardev directly and have that one used
2693 throughout QEMU's lifetime
, like
in the following example
:
2697 # open
10.10.1.1:4321 on bootup
, connect
10.0.2.100:1234 to it whenever
2698 # the guest accesses it
2699 |qemu_system|
-nic user
,guestfwd
=tcp
:10.0.2.100:1234-tcp
:10.10.1.1:4321
2701 Or you can execute a command on every TCP connection established
2702 by the guest
, so that QEMU behaves similar to an inetd process
2703 for that virtual server
:
2707 # call
"netcat 10.10.1.1 4321" on every TCP connection to
10.0.2.100:1234
2708 # and connect the TCP stream to its stdin
/stdout
2709 |qemu_system|
-nic
'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
2711 ``
-netdev tap
,id
=id
[,fd
=h
][,ifname
=name
][,script
=file
][,downscript
=dfile
][,br
=bridge
][,helper
=helper
]``
2712 Configure a host TAP network backend with ID id
.
2714 Use the network script file to configure it and the network script
2715 dfile to deconfigure it
. If name is not provided
, the OS
2716 automatically provides one
. The
default network configure script is
2717 ``
/etc
/qemu
-ifup`` and the
default network deconfigure script is
2718 ``
/etc
/qemu
-ifdown``
. Use ``script
=no`` or ``downscript
=no`` to
2719 disable script execution
.
2721 If running QEMU as an unprivileged user
, use the network helper
2722 to configure the TAP
interface and attach it to the bridge
.
2723 The
default network helper executable is
2724 ``
/path
/to
/qemu
-bridge
-helper`` and the
default bridge device is
2727 ``fd``\
=h can be used to specify the handle of an already opened
2734 #launch a QEMU instance with the
default network script
2735 |qemu_system| linux
.img
-nic tap
2739 #launch a QEMU instance with two NICs
, each one connected
2741 |qemu_system| linux
.img
\\
2742 -netdev tap
,id
=nd0
,ifname
=tap0
-device e1000
,netdev
=nd0
\\
2743 -netdev tap
,id
=nd1
,ifname
=tap1
-device rtl8139
,netdev
=nd1
2747 #launch a QEMU instance with the
default network helper to
2748 #connect a TAP device to bridge br0
2749 |qemu_system| linux
.img
-device virtio
-net
-pci
,netdev
=n1
\\
2750 -netdev tap
,id
=n1
,"helper=/path/to/qemu-bridge-helper"
2752 ``
-netdev bridge
,id
=id
[,br
=bridge
][,helper
=helper
]``
2753 Connect a host TAP network
interface to a host bridge device
.
2755 Use the network helper helper to configure the TAP
interface and
2756 attach it to the bridge
. The
default network helper executable is
2757 ``
/path
/to
/qemu
-bridge
-helper`` and the
default bridge device is
2764 #launch a QEMU instance with the
default network helper to
2765 #connect a TAP device to bridge br0
2766 |qemu_system| linux
.img
-netdev bridge
,id
=n1
-device virtio
-net
,netdev
=n1
2770 #launch a QEMU instance with the
default network helper to
2771 #connect a TAP device to bridge qemubr0
2772 |qemu_system| linux
.img
-netdev bridge
,br
=qemubr0
,id
=n1
-device virtio
-net
,netdev
=n1
2774 ``
-netdev socket
,id
=id
[,fd
=h
][,listen
=[host
]:port
][,connect
=host
:port
]``
2775 This host network backend can be used to connect the guest
's network
2776 to another QEMU virtual machine using a TCP socket connection. If
2777 ``listen`` is specified, QEMU waits for incoming connections on port
2778 (host is optional). ``connect`` is used to connect to another QEMU
2779 instance using the ``listen`` option. ``fd``\ =h specifies an
2780 already opened TCP socket.
2786 # launch a first QEMU instance
2787 |qemu_system| linux.img \\
2788 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \\
2789 -netdev socket,id=n1,listen=:1234
2790 # connect the network of this instance to the network of the first instance
2791 |qemu_system| linux.img \\
2792 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \\
2793 -netdev socket,id=n2,connect=127.0.0.1:1234
2795 ``-netdev socket,id=id[,fd=h][,mcast=maddr:port[,localaddr=addr]]``
2796 Configure a socket host network backend to share the guest's network
2797 traffic with another QEMU virtual machines
using a UDP multicast
2798 socket
, effectively making a bus
for every QEMU with same multicast
2799 address maddr and port
. NOTES
:
2801 1. Several QEMU can be running on different hosts and share same bus
2802 (assuming correct multicast setup
for these hosts
).
2804 2. mcast support is compatible with User Mode
Linux (argument
2805 ``ethN
=mcast``
), see http
://user-mode-linux.sf.net.
2807 3. Use ``fd
=h`` to specify an already opened UDP multicast socket
.
2813 # launch one QEMU instance
2814 |qemu_system| linux
.img
\\
2815 -device e1000
,netdev
=n1
,mac
=52:54:00:12:34:56 \\
2816 -netdev socket
,id
=n1
,mcast
=230.0.0.1:1234
2817 # launch another QEMU instance on same
"bus"
2818 |qemu_system| linux
.img
\\
2819 -device e1000
,netdev
=n2
,mac
=52:54:00:12:34:57 \\
2820 -netdev socket
,id
=n2
,mcast
=230.0.0.1:1234
2821 # launch yet another QEMU instance on same
"bus"
2822 |qemu_system| linux
.img
\\
2823 -device e1000
,netdev
=n3
,mac
=52:54:00:12:34:58 \\
2824 -netdev socket
,id
=n3
,mcast
=230.0.0.1:1234
2826 Example (User Mode Linux compat
.):
2830 # launch QEMU
instance (note mcast address selected is UML
's default)
2831 |qemu_system| linux.img \\
2832 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \\
2833 -netdev socket,id=n1,mcast=239.192.168.1:1102
2835 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2837 Example (send packets from host's
1.2.3.4):
2841 |qemu_system| linux
.img
\\
2842 -device e1000
,netdev
=n1
,mac
=52:54:00:12:34:56 \\
2843 -netdev socket
,id
=n1
,mcast
=239.192.168.1:1102,localaddr
=1.2.3.4
2845 ``
-netdev l2tpv3
,id
=id
,src
=srcaddr
,dst
=dstaddr
[,srcport
=srcport
][,dstport
=dstport
],txsession
=txsession
[,rxsession
=rxsession
][,ipv6
][,udp
][,cookie64
][,counter
][,pincounter
][,txcookie
=txcookie
][,rxcookie
=rxcookie
][,offset
=offset
]``
2846 Configure a L2TPv3 pseudowire host network backend
. L2TPv3 (RFC3931
)
2847 is a popular protocol to transport
Ethernet (and other Layer
2) data
2848 frames between two systems
. It is present
in routers
, firewalls and
2849 the Linux
kernel (from version
3.3 onwards
).
2851 This transport allows a VM to communicate to another VM
, router or
2855 source
address (mandatory
)
2858 destination
address (mandatory
)
2861 select udp
encapsulation (default is ip
).
2867 destination udp port
.
2870 force v6
, otherwise defaults to v4
.
2872 ``rxcookie
=rxcookie``
; \ ``txcookie
=txcookie``
2873 Cookies are a weak form of security
in the l2tpv3 specification
.
2874 Their
function is mostly to prevent misconfiguration
. By
default
2878 Set cookie size to
64 bit instead of the
default 32
2881 Force a
'cut-down' L2TPv3 with no counter as
in
2882 draft
-mkonstan
-l2tpext
-keyed
-ipv6
-tunnel
-00
2885 Work around broken counter handling
in peer
. This may also help
2886 on networks which have packet reorder
.
2889 Add an extra offset between header and data
2891 For example
, to attach a VM running on host
4.3.2.1 via L2TPv3 to
2892 the bridge br
-lan on the remote Linux host
1.2.3.4:
2896 # Setup tunnel on linux host
using raw ip as encapsulation
2898 ip l2tp add tunnel remote
4.3.2.1 local
1.2.3.4 tunnel_id
1 peer_tunnel_id
1 \\
2899 encap udp udp_sport
16384 udp_dport
16384
2900 ip l2tp add session tunnel_id
1 name vmtunnel0 session_id
\\
2901 0xFFFFFFFF peer_session_id
0xFFFFFFFF
2902 ifconfig vmtunnel0 mtu
1500
2903 ifconfig vmtunnel0 up
2904 brctl addif br
-lan vmtunnel0
2908 # launch QEMU instance
- if your network has reorder or is very lossy add
,pincounter
2910 |qemu_system| linux
.img
-device e1000
,netdev
=n1
\\
2911 -netdev l2tpv3
,id
=n1
,src
=4.2.3.1,dst
=1.2.3.4,udp
,srcport
=16384,dstport
=16384,rxsession
=0xffffffff,txsession
=0xffffffff,counter
2913 ``
-netdev vde
,id
=id
[,sock
=socketpath
][,port
=n
][,group
=groupname
][,mode
=octalmode
]``
2914 Configure VDE backend to connect to PORT n of a vde
switch running
2915 on host and listening
for incoming connections on socketpath
. Use
2916 GROUP groupname and MODE octalmode to change
default ownership and
2917 permissions
for communication port
. This option is only available
if
2918 QEMU has been compiled with vde support enabled
.
2925 vde_switch
-F
-sock
/tmp
/myswitch
2926 # launch QEMU instance
2927 |qemu_system| linux
.img
-nic vde
,sock
=/tmp
/myswitch
2929 ``
-netdev vhost
-user
,chardev
=id
[,vhostforce
=on|off
][,queues
=n
]``
2930 Establish a vhost
-user netdev
, backed by a chardev id
. The chardev
2931 should be a unix domain socket backed one
. The vhost
-user uses a
2932 specifically defined protocol to pass vhost ioctl replacement
2933 messages to an application on the other end of the socket
. On
2934 non
-MSIX guests
, the feature can be forced with vhostforce
. Use
2935 'queues=n' to specify the number of queues to be created
for
2936 multiqueue vhost
-user
.
2942 qemu
-m
512 -object memory
-backend
-file
,id
=mem
,size
=512M
,mem
-path
=/hugetlbfs
,share
=on \
2943 -numa node
,memdev
=mem \
2944 -chardev socket
,id
=chr0
,path
=/path
/to
/socket \
2945 -netdev type
=vhost
-user
,id
=net0
,chardev
=chr0 \
2946 -device virtio
-net
-pci
,netdev
=net0
2948 ``
-netdev vhost
-vdpa
,vhostdev
=/path
/to
/dev``
2949 Establish a vhost
-vdpa netdev
.
2951 vDPA device is a device that uses a datapath which complies with
2952 the virtio specifications with a vendor specific control path
.
2953 vDPA devices can be both physically located on the hardware or
2954 emulated by software
.
2956 ``
-netdev hubport
,id
=id
,hubid
=hubid
[,netdev
=nd
]``
2957 Create a hub port on the emulated hub with ID hubid
.
2959 The hubport netdev lets you connect a NIC to a QEMU emulated hub
2960 instead of a single netdev
. Alternatively
, you can also connect the
2961 hubport to another netdev with ID nd by
using the ``netdev
=nd``
2964 ``
-net nic
[,netdev
=nd
][,macaddr
=mac
][,model
=type
] [,name
=name
][,addr
=addr
][,vectors
=v
]``
2965 Legacy option to configure or create an on
-board (or machine
2966 default) Network Interface
Card(NIC
) and connect it either to the
2967 emulated hub with ID
0 (i
.e
. the
default hub
), or to the netdev nd
.
2968 If model is omitted
, then the
default NIC model associated with the
2969 machine type is used
. Note that the
default NIC model may change
in
2970 future QEMU releases
, so it is highly recommended to always specify
2971 a model
. Optionally
, the MAC address can be changed to mac
, the
2972 device address set to
addr (PCI cards only
), and a name can be
2973 assigned
for use
in monitor commands
. Optionally
, for PCI cards
, you
2974 can specify the number v of MSI
-X vectors that the card should have
;
2975 this option currently only affects virtio cards
; set v
= 0 to
2976 disable MSI
-X
. If no ``
-net`` option is specified
, a single NIC is
2977 created
. QEMU can emulate several different models of network card
.
2978 Use ``
-net nic
,model
=help``
for a list of available devices
for your
2981 ``
-net user|tap|bridge|socket|l2tpv3|vde
[,...][,name
=name
]``
2982 Configure a host network
backend (with the options corresponding to
2983 the same ``
-netdev`` option
) and connect it to the emulated hub
0
2984 (the
default hub
). Use name to specify the name of the hub port
.
2989 DEFHEADING(Character device options
:)
2991 DEF("chardev", HAS_ARG
, QEMU_OPTION_chardev
,
2993 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2994 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2995 " [,server][,nowait][,telnet][,websocket][,reconnect=seconds][,mux=on|off]\n"
2996 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID][,tls-authz=ID] (tcp)\n"
2997 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,websocket][,reconnect=seconds]\n"
2998 " [,mux=on|off][,logfile=PATH][,logappend=on|off][,abstract=on|off][,tight=on|off] (unix)\n"
2999 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
3000 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
3001 " [,logfile=PATH][,logappend=on|off]\n"
3002 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3003 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
3004 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3005 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
3006 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3007 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3009 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3010 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3012 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3013 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
3015 #ifdef CONFIG_BRLAPI
3016 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3018 #
if defined(__linux__
) ||
defined(__sun__
) ||
defined(__FreeBSD__
) \
3019 ||
defined(__NetBSD__
) ||
defined(__OpenBSD__
) ||
defined(__DragonFly__
)
3020 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3021 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3023 #
if defined(__linux__
) ||
defined(__FreeBSD__
) ||
defined(__DragonFly__
)
3024 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3025 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3027 #
if defined(CONFIG_SPICE
)
3028 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
3029 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
3035 The general form of a character device option is
:
3037 ``
-chardev backend
,id
=id
[,mux
=on|off
][,options
]``
3038 Backend is one of
: ``
null``
, ``socket``
, ``udp``
, ``msmouse``
,
3039 ``vc``
, ``ringbuf``
, ``file``
, ``pipe``
, ``console``
, ``serial``
,
3040 ``pty``
, ``stdio``
, ``braille``
, ``tty``
, ``parallel``
, ``parport``
,
3041 ``spicevmc``
, ``spiceport``
. The specific backend will determine the
3044 Use ``
-chardev help`` to print all available chardev backend types
.
3046 All devices must have an id
, which can be any string up to
127
3047 characters long
. It is used to uniquely identify
this device
in
3048 other command line directives
.
3050 A character device may be used
in multiplexing mode by multiple
3051 front
-ends
. Specify ``mux
=on`` to enable
this mode
. A multiplexer is
3052 a
"1:N" device
, and
here the
"1" end is your specified chardev
3053 backend
, and the
"N" end is the various parts of QEMU that can talk
3054 to a chardev
. If you create a chardev with ``id
=myid`` and
3055 ``mux
=on``
, QEMU will create a multiplexer with your specified ID
,
3056 and you can then configure multiple front ends to use that chardev
3057 ID
for their input
/output
. Up to four different front ends can be
3058 connected to a single multiplexed chardev
. (Without multiplexing
3059 enabled
, a chardev can only be used by a single front end
.) For
3060 instance you could use
this to allow a single stdio chardev to be
3061 used by two serial ports and the QEMU monitor
:
3065 -chardev stdio
,mux
=on
,id
=char0 \
3066 -mon chardev
=char0
,mode
=readline \
3067 -serial chardev
:char0 \
3068 -serial chardev
:char0
3070 You can have more than one multiplexer
in a system configuration
;
3071 for instance you could have a TCP port multiplexed between UART
0
3072 and UART
1, and stdio multiplexed between the QEMU monitor and a
3077 -chardev stdio
,mux
=on
,id
=char0 \
3078 -mon chardev
=char0
,mode
=readline \
3079 -parallel chardev
:char0 \
3080 -chardev tcp
,...,mux
=on
,id
=char1 \
3081 -serial chardev
:char1 \
3082 -serial chardev
:char1
3084 When you
're using a multiplexed character device, some escape
3085 sequences are interpreted in the input. See the chapter about
3086 :ref:`keys in the character backend multiplexer` in the
3087 System Emulation Users Guide for more details.
3089 Note that some other command line options may implicitly create
3090 multiplexed character backends; for instance ``-serial mon:stdio``
3091 creates a multiplexed stdio backend connected to the serial port and
3092 the QEMU monitor, and ``-nographic`` also multiplexes the console
3093 and the monitor to stdio.
3095 There is currently no support for multiplexing in the other
3096 direction (where a single QEMU front end takes input and output from
3099 Every backend supports the ``logfile`` option, which supplies the
3100 path to a file to record all data transmitted via the backend. The
3101 ``logappend`` option controls whether the log file will be truncated
3102 or appended to when opened.
3104 The available backends are:
3106 ``-chardev null,id=id``
3107 A void device. This device will not emit any data, and will drop any
3108 data it receives. The null backend does not take any options.
3110 ``-chardev socket,id=id[,TCP options or unix options][,server][,nowait][,telnet][,websocket][,reconnect=seconds][,tls-creds=id][,tls-authz=id]``
3111 Create a two-way stream socket, which can be either a TCP or a unix
3112 socket. A unix socket will be created if ``path`` is specified.
3113 Behaviour is undefined if TCP options are specified for a unix
3116 ``server`` specifies that the socket shall be a listening socket.
3118 ``nowait`` specifies that QEMU should not block waiting for a client
3119 to connect to a listening socket.
3121 ``telnet`` specifies that traffic on the socket should interpret
3122 telnet escape sequences.
3124 ``websocket`` specifies that the socket uses WebSocket protocol for
3127 ``reconnect`` sets the timeout for reconnecting on non-server
3128 sockets when the remote end goes away. qemu will delay this many
3129 seconds and then attempt to reconnect. Zero disables reconnecting,
3132 ``tls-creds`` requests enablement of the TLS protocol for
3133 encryption, and specifies the id of the TLS credentials to use for
3134 the handshake. The credentials must be previously created with the
3135 ``-object tls-creds`` argument.
3137 ``tls-auth`` provides the ID of the QAuthZ authorization object
3138 against which the client's x509 distinguished name will be
3139 validated
. This object is only resolved at time of use
, so can be
3140 deleted and recreated on the fly
while the chardev server is active
.
3141 If missing
, it will
default to denying access
.
3143 TCP and unix socket options are given below
:
3145 ``TCP options
: port
=port
[,host
=host
][,to
=to
][,ipv4
][,ipv6
][,nodelay
]``
3146 ``host``
for a listening socket specifies the local address to
3147 be bound
. For a connecting socket species the remote host to
3148 connect to
. ``host`` is optional
for listening sockets
. If not
3149 specified it defaults to ``
0.0.0.0``
.
3151 ``port``
for a listening socket specifies the local port to be
3152 bound
. For a connecting socket specifies the port on the remote
3153 host to connect to
. ``port`` can be given as either a port
3154 number or a service name
. ``port`` is required
.
3156 ``to`` is only relevant to listening sockets
. If it is
3157 specified
, and ``port`` cannot be bound
, QEMU will attempt to
3158 bind to subsequent ports up to and including ``to`` until it
3159 succeeds
. ``to`` must be specified as a port number
.
3161 ``ipv4`` and ``ipv6`` specify that either IPv4 or IPv6 must be
3162 used
. If neither is specified the socket may use either
3165 ``nodelay`` disables the Nagle algorithm
.
3167 ``unix options
: path
=path
[,abstract
=on|off
][,tight
=on|off
]``
3168 ``path`` specifies the local path of the unix socket
. ``path``
3170 ``abstract`` specifies the use of the abstract socket namespace
,
3171 rather than the filesystem
. Optional
, defaults to
false.
3172 ``tight`` sets the socket length of abstract sockets to their minimum
,
3173 rather than the full sun_path length
. Optional
, defaults to
true.
3175 ``
-chardev udp
,id
=id
[,host
=host
],port
=port
[,localaddr
=localaddr
][,localport
=localport
][,ipv4
][,ipv6
]``
3176 Sends all traffic from the guest to a remote host over UDP
.
3178 ``host`` specifies the remote host to connect to
. If not specified
3179 it defaults to ``localhost``
.
3181 ``port`` specifies the port on the remote host to connect to
.
3182 ``port`` is required
.
3184 ``localaddr`` specifies the local address to bind to
. If not
3185 specified it defaults to ``
0.0.0.0``
.
3187 ``localport`` specifies the local port to bind to
. If not specified
3188 any available local port will be used
.
3190 ``ipv4`` and ``ipv6`` specify that either IPv4 or IPv6 must be used
.
3191 If neither is specified the device may use either protocol
.
3193 ``
-chardev msmouse
,id
=id``
3194 Forward QEMU
's emulated msmouse events to the guest. ``msmouse``
3195 does not take any options.
3197 ``-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]``
3198 Connect to a QEMU text console. ``vc`` may optionally be given a
3201 ``width`` and ``height`` specify the width and height respectively
3202 of the console, in pixels.
3204 ``cols`` and ``rows`` specify that the console be sized to fit a
3205 text console with the given dimensions.
3207 ``-chardev ringbuf,id=id[,size=size]``
3208 Create a ring buffer with fixed size ``size``. size must be a power
3209 of two and defaults to ``64K``.
3211 ``-chardev file,id=id,path=path``
3212 Log all traffic received from the guest to a file.
3214 ``path`` specifies the path of the file to be opened. This file will
3215 be created if it does not already exist, and overwritten if it does.
3216 ``path`` is required.
3218 ``-chardev pipe,id=id,path=path``
3219 Create a two-way connection to the guest. The behaviour differs
3220 slightly between Windows hosts and other hosts:
3222 On Windows, a single duplex pipe will be created at
3225 On other hosts, 2 pipes will be created called ``path.in`` and
3226 ``path.out``. Data written to ``path.in`` will be received by the
3227 guest. Data written by the guest can be read from ``path.out``. QEMU
3228 will not create these fifos, and requires them to be present.
3230 ``path`` forms part of the pipe path as described above. ``path`` is
3233 ``-chardev console,id=id``
3234 Send traffic from the guest to QEMU's standard output
. ``console``
3235 does not take any options
.
3237 ``console`` is only available on Windows hosts
.
3239 ``
-chardev serial
,id
=id
,path
=path``
3240 Send traffic from the guest to a serial device on the host
.
3242 On Unix hosts serial will actually accept any tty device
, not only
3245 ``path`` specifies the name of the serial device to open
.
3247 ``
-chardev pty
,id
=id``
3248 Create a
new pseudo
-terminal on the host and connect to it
. ``pty``
3249 does not take any options
.
3251 ``pty`` is not available on Windows hosts
.
3253 ``
-chardev stdio
,id
=id
[,signal
=on|off
]``
3254 Connect to standard input and standard output of the QEMU process
.
3256 ``signal`` controls
if signals are enabled on the terminal
, that
3257 includes exiting QEMU with the key sequence Control
-c
. This option
3258 is enabled by
default, use ``signal
=off`` to disable it
.
3260 ``
-chardev braille
,id
=id``
3261 Connect to a local BrlAPI server
. ``braille`` does not take any
3264 ``
-chardev tty
,id
=id
,path
=path``
3265 ``tty`` is only available on Linux
, Sun
, FreeBSD
, NetBSD
, OpenBSD
3266 and DragonFlyBSD hosts
. It is an alias
for ``serial``
.
3268 ``path`` specifies the path to the tty
. ``path`` is required
.
3270 ``
-chardev parallel
,id
=id
,path
=path``
3272 ``
-chardev parport
,id
=id
,path
=path``
3273 ``parallel`` is only available on Linux
, FreeBSD and DragonFlyBSD
3276 Connect to a local parallel port
.
3278 ``path`` specifies the path to the parallel port device
. ``path`` is
3281 ``
-chardev spicevmc
,id
=id
,debug
=debug
,name
=name``
3282 ``spicevmc`` is only available when spice support is built
in.
3284 ``debug`` debug level
for spicevmc
3286 ``name`` name of spice channel to connect to
3288 Connect to a spice virtual machine channel
, such as vdiport
.
3290 ``
-chardev spiceport
,id
=id
,debug
=debug
,name
=name``
3291 ``spiceport`` is only available when spice support is built
in.
3293 ``debug`` debug level
for spicevmc
3295 ``name`` name of spice port to connect to
3297 Connect to a spice port
, allowing a Spice client to handle the
3298 traffic identified by a
name (preferably a fqdn
).
3304 DEFHEADING(TPM device options
:)
3306 DEF("tpmdev", HAS_ARG
, QEMU_OPTION_tpmdev
, \
3307 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
3308 " use path to provide path to a character device; default is /dev/tpm0\n"
3309 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
3310 " not provided it will be searched for in /sys/class/misc/tpm?/device\n"
3311 "-tpmdev emulator,id=id,chardev=dev\n"
3312 " configure the TPM device using chardev backend\n",
3315 The general form of a TPM device option is
:
3317 ``
-tpmdev backend
,id
=id
[,options
]``
3318 The specific backend type will determine the applicable options
. The
3319 ``
-tpmdev`` option creates the TPM backend and requires a
3320 ``
-device`` option that specifies the TPM frontend
interface model
.
3322 Use ``
-tpmdev help`` to print all available TPM backend types
.
3324 The available backends are
:
3326 ``
-tpmdev passthrough
,id
=id
,path
=path
,cancel
-path
=cancel
-path``
3327 (Linux
-host only
) Enable access to the host
's TPM using the
3330 ``path`` specifies the path to the host's TPM device
, i
.e
., on a
3331 Linux host
this would be ``
/dev
/tpm0``
. ``path`` is optional and by
3332 default ``
/dev
/tpm0`` is used
.
3334 ``cancel
-path`` specifies the path to the host TPM device
's sysfs
3335 entry allowing for cancellation of an ongoing TPM command.
3336 ``cancel-path`` is optional and by default QEMU will search for the
3339 Some notes about using the host's TPM with the passthrough driver
:
3341 The TPM device accessed by the passthrough driver must not be used
3342 by any other application on the host
.
3344 Since the host
's firmware (BIOS/UEFI) has already initialized the
3345 TPM, the VM's
firmware (BIOS
/UEFI
) will not be able to initialize
3346 the TPM again and may therefore not show a TPM
-specific menu that
3347 would otherwise allow the user to configure the TPM
, e
.g
., allow the
3348 user to enable
/disable or activate
/deactivate the TPM
. Further
, if
3349 TPM ownership is released from within a VM then the host
's TPM will
3350 get disabled and deactivated. To enable and activate the TPM again
3351 afterwards, the host has to be rebooted and the user is required to
3352 enter the firmware's menu to enable and activate the TPM
. If the TPM
3353 is left disabled and
/or deactivated most TPM commands will fail
.
3355 To create a passthrough TPM use the following two options
:
3359 -tpmdev passthrough
,id
=tpm0
-device tpm
-tis
,tpmdev
=tpm0
3361 Note that the ``
-tpmdev`` id is ``tpm0`` and is referenced by
3362 ``tpmdev
=tpm0``
in the device option
.
3364 ``
-tpmdev emulator
,id
=id
,chardev
=dev``
3365 (Linux
-host only
) Enable access to a TPM emulator
using Unix domain
3366 socket based chardev backend
.
3368 ``chardev`` specifies the unique ID of a character device backend
3369 that provides connection to the software TPM server
.
3371 To create a TPM emulator backend device with chardev socket backend
:
3375 -chardev socket
,id
=chrtpm
,path
=/tmp
/swtpm
-sock
-tpmdev emulator
,id
=tpm0
,chardev
=chrtpm
-device tpm
-tis
,tpmdev
=tpm0
3382 DEFHEADING(Linux
/Multiboot boot specific
:)
3384 When
using these options
, you can use a given Linux or Multiboot kernel
3385 without installing it
in the disk image
. It can be useful
for easier
3386 testing of various kernels
.
3391 DEF("kernel", HAS_ARG
, QEMU_OPTION_kernel
, \
3392 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL
)
3395 Use bzImage as kernel image
. The kernel can be either a Linux kernel
3396 or
in multiboot format
.
3399 DEF("append", HAS_ARG
, QEMU_OPTION_append
, \
3400 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL
)
3403 Use cmdline as kernel command line
3406 DEF("initrd", HAS_ARG
, QEMU_OPTION_initrd
, \
3407 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL
)
3410 Use file as initial ram disk
.
3412 ``
-initrd
"file1 arg=foo,file2"``
3413 This syntax is only available with multiboot
.
3415 Use file1 and file2 as modules and pass arg
=foo as parameter to the
3419 DEF("dtb", HAS_ARG
, QEMU_OPTION_dtb
, \
3420 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL
)
3423 Use file as a device tree
binary (dtb
) image and pass it to the
3429 DEFHEADING(Debug
/Expert options
:)
3431 DEF("fw_cfg", HAS_ARG
, QEMU_OPTION_fwcfg
,
3432 "-fw_cfg [name=]<name>,file=<file>\n"
3433 " add named fw_cfg entry with contents from file\n"
3434 "-fw_cfg [name=]<name>,string=<str>\n"
3435 " add named fw_cfg entry with contents from string\n",
3438 ``
-fw_cfg
[name
=]name
,file
=file``
3439 Add named fw\_cfg entry with contents from file file
.
3441 ``
-fw_cfg
[name
=]name
,string
=str``
3442 Add named fw\_cfg entry with contents from string str
.
3444 The terminating NUL character of the contents of str will not be
3445 included as part of the fw\_cfg item data
. To insert contents with
3446 embedded NUL characters
, you have to use the file parameter
.
3448 The fw\_cfg entries are passed by QEMU through to the guest
.
3454 -fw_cfg name
=opt
/com
.mycompany
/blob
,file
=./my_blob
.bin
3456 creates an fw\_cfg entry named opt
/com
.mycompany
/blob with contents
3457 from
./my\_blob
.bin
.
3460 DEF("serial", HAS_ARG
, QEMU_OPTION_serial
, \
3461 "-serial dev redirect the serial port to char device 'dev'\n",
3465 Redirect the virtual serial port to host character device dev
. The
3466 default device is ``vc``
in graphical mode and ``stdio``
in non
3469 This option can be used several times to simulate up to
4 serial
3472 Use ``
-serial none`` to disable all serial ports
.
3474 Available character devices are
:
3477 Virtual console
. Optionally
, a width and height can be given
in
3484 It is also possible to specify width or height
in characters
:
3491 [Linux only
] Pseudo
TTY (a
new PTY is automatically allocated
)
3494 No device is allocated
.
3500 Use a named character device defined with the ``
-chardev``
3504 [Linux only
] Use host tty
, e
.g
. ``
/dev
/ttyS0``
. The host serial
3505 port parameters are set according to the emulated ones
.
3508 [Linux only
, parallel port only
] Use host parallel port N
.
3509 Currently SPP and EPP parallel port features can be used
.
3512 Write output to filename
. No character can be read
.
3515 [Unix only
] standard input
/output
3521 [Windows only
] Use host serial port n
3523 ``udp
:[remote_host
]:remote_port
[@
[src_ip
]:src_port
]``
3524 This
implements UDP Net Console
. When remote\_host or src\_ip
3525 are not specified they
default to ``
0.0.0.0``
. When not
using a
3526 specified src\_port a random port is automatically chosen
.
3528 If you just want a simple readonly console you can use
3529 ``netcat`` or ``nc``
, by starting QEMU with
:
3530 ``
-serial udp
::4555`` and nc as
: ``nc
-u
-l
-p
4555``
. Any time
3531 QEMU writes something to that port it will appear
in the
3534 If you plan to send characters back via netconsole or you want
3535 to stop and start QEMU a lot of times
, you should have QEMU use
3536 the same source port each time by
using something like ``
-serial
3537 udp
::4555@
:4556`` to QEMU
. Another approach is to use a patched
3538 version of netcat which can listen to a TCP port and send and
3539 receive characters via udp
. If you have a patched version of
3540 netcat which activates telnet remote echo and single char
3541 transfer
, then you can use the following options to set up a
3542 netcat redirector to allow telnet on port
5555 to access the
3546 -serial udp
::4555@
:4556
3549 -u
-P
4555 -L
0.0.0.0:4556 -t
-p
5555 -I
-T
3554 ``tcp
:[host
]:port
[,server
][,nowait
][,nodelay
][,reconnect
=seconds
]``
3555 The TCP Net Console has two modes of operation
. It can send the
3556 serial I
/O to a location or wait
for a connection from a
3557 location
. By
default the TCP Net Console is sent to host at the
3558 port
. If you use the server option QEMU will wait
for a client
3559 socket application to connect to the port before continuing
,
3560 unless the ``nowait`` option was specified
. The ``nodelay``
3561 option disables the Nagle buffering algorithm
. The ``reconnect``
3562 option only applies
if noserver is set
, if the connection goes
3563 down it will attempt to reconnect at the given interval
. If host
3564 is omitted
, 0.0.0.0 is assumed
. Only one TCP connection at a
3565 time is accepted
. You can use ``telnet`` to connect to the
3566 corresponding character device
.
3568 ``Example to send tcp console to
192.168.0.2 port
4444``
3569 -serial tcp
:192.168.0.2:4444
3571 ``Example to listen and wait on port
4444 for connection``
3572 -serial tcp
::4444,server
3574 ``Example to not wait and listen on ip
192.168.0.100 port
4444``
3575 -serial tcp
:192.168.0.100:4444,server
,nowait
3577 ``telnet
:host
:port
[,server
][,nowait
][,nodelay
]``
3578 The telnet protocol is used instead of raw tcp sockets
. The
3579 options work the same as
if you had specified ``
-serial tcp``
.
3580 The difference is that the port acts like a telnet server or
3581 client
using telnet option negotiation
. This will also allow you
3582 to send the MAGIC\_SYSRQ sequence
if you use a telnet that
3583 supports sending the
break sequence
. Typically
in unix telnet
3584 you
do it with Control
-] and then type
"send break" followed by
3585 pressing the enter key
.
3587 ``websocket
:host
:port
,server
[,nowait
][,nodelay
]``
3588 The WebSocket protocol is used instead of raw tcp socket
. The
3589 port acts as a WebSocket server
. Client mode is not supported
.
3591 ``unix
:path
[,server
][,nowait
][,reconnect
=seconds
]``
3592 A unix domain socket is used instead of a tcp socket
. The option
3593 works the same as
if you had specified ``
-serial tcp`` except
3594 the unix domain socket path is used
for connections
.
3597 This is a special option to allow the monitor to be multiplexed
3598 onto another serial port
. The monitor is accessed with key
3599 sequence of Control
-a and then pressing c
. dev\_string should be
3600 any one of the serial devices specified above
. An example to
3601 multiplex the monitor onto a telnet server listening on port
3604 ``
-serial mon
:telnet
::4444,server
,nowait``
3606 When the monitor is multiplexed to stdio
in this way
, Ctrl
+C
3607 will not terminate QEMU any more but will be passed to the guest
3611 Braille device
. This will use BrlAPI to display the braille
3612 output on a real or fake device
.
3615 Three button serial mouse
. Configure the guest to use Microsoft
3619 DEF("parallel", HAS_ARG
, QEMU_OPTION_parallel
, \
3620 "-parallel dev redirect the parallel port to char device 'dev'\n",
3624 Redirect the virtual parallel port to host device
dev (same devices
3625 as the serial port
). On Linux hosts
, ``
/dev
/parportN`` can be used
3626 to use hardware devices connected on the corresponding host parallel
3629 This option can be used several times to simulate up to
3 parallel
3632 Use ``
-parallel none`` to disable all parallel ports
.
3635 DEF("monitor", HAS_ARG
, QEMU_OPTION_monitor
, \
3636 "-monitor dev redirect the monitor to char device 'dev'\n",
3640 Redirect the monitor to host device
dev (same devices as the serial
3641 port
). The
default device is ``vc``
in graphical mode and ``stdio``
3642 in non graphical mode
. Use ``
-monitor none`` to disable the
default
3645 DEF("qmp", HAS_ARG
, QEMU_OPTION_qmp
, \
3646 "-qmp dev like -monitor but opens in 'control' mode\n",
3650 Like
-monitor but opens
in 'control' mode
.
3652 DEF("qmp-pretty", HAS_ARG
, QEMU_OPTION_qmp_pretty
, \
3653 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3657 Like
-qmp but uses pretty JSON formatting
.
3660 DEF("mon", HAS_ARG
, QEMU_OPTION_mon
, \
3661 "-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]\n", QEMU_ARCH_ALL
)
3663 ``
-mon
[chardev
=]name
[,mode
=readline|control
][,pretty
[=on|off
]]``
3664 Setup monitor on chardev name
. ``pretty`` turns on JSON pretty
3665 printing easing human reading and debugging
.
3668 DEF("debugcon", HAS_ARG
, QEMU_OPTION_debugcon
, \
3669 "-debugcon dev redirect the debug console to char device 'dev'\n",
3673 Redirect the debug console to host device
dev (same devices as the
3674 serial port
). The debug console is an I
/O port which is typically
3675 port
0xe9; writing to that I
/O port sends output to
this device
. The
3676 default device is ``vc``
in graphical mode and ``stdio``
in non
3680 DEF("pidfile", HAS_ARG
, QEMU_OPTION_pidfile
, \
3681 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL
)
3684 Store the QEMU process PID
in file
. It is useful
if you launch QEMU
3688 DEF("singlestep", 0, QEMU_OPTION_singlestep
, \
3689 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL
)
3692 Run the emulation
in single step mode
.
3695 DEF("preconfig", 0, QEMU_OPTION_preconfig
, \
3696 "--preconfig pause QEMU before machine is initialized (experimental)\n",
3700 Pause QEMU
for interactive configuration before the machine is
3701 created
, which allows querying and configuring properties that will
3702 affect machine initialization
. Use QMP command
'x-exit-preconfig' to
3703 exit the preconfig state and move to the next
state (i
.e
. run guest
3704 if -S isn
't used or pause the second time if -S is used). This
3705 option is experimental.
3708 DEF("S", 0, QEMU_OPTION_S, \
3709 "-S freeze CPU at startup (use 'c
' to start execution)\n",
3713 Do not start CPU at startup (you must type 'c
' in the monitor).
3716 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3717 "-realtime [mlock=on|off]\n"
3718 " run qemu with realtime features\n"
3719 " mlock=on|off controls mlock support (default: on)\n",
3722 ``-realtime mlock=on|off``
3723 Run qemu with realtime features. mlocking qemu and guest memory can
3724 be enabled via ``mlock=on`` (enabled by default).
3727 DEF("overcommit", HAS_ARG, QEMU_OPTION_overcommit,
3728 "-overcommit [mem-lock=on|off][cpu-pm=on|off]\n"
3729 " run qemu with overcommit hints\n"
3730 " mem-lock=on|off controls memory lock support (default: off)\n"
3731 " cpu-pm=on|off controls cpu power management (default: off)\n",
3734 ``-overcommit mem-lock=on|off``
3736 ``-overcommit cpu-pm=on|off``
3737 Run qemu with hints about host resource overcommit. The default is
3738 to assume that host overcommits all resources.
3740 Locking qemu and guest memory can be enabled via ``mem-lock=on``
3741 (disabled by default). This works when host memory is not
3742 overcommitted and reduces the worst-case latency for guest. This is
3743 equivalent to ``realtime``.
3745 Guest ability to manage power state of host cpus (increasing latency
3746 for other processes on the same host cpu, but decreasing latency for
3747 guest) can be enabled via ``cpu-pm=on`` (disabled by default). This
3748 works best when host CPU is not overcommitted. When used, host
3749 estimates of CPU cycle and power utilization will be incorrect, not
3750 taking into account guest idle time.
3753 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3754 "-gdb dev accept gdb connection on 'dev
'. (QEMU defaults to starting\n"
3755 " the guest without waiting for gdb to connect; use -S too\n"
3756 " if you want it to not start execution.)\n",
3760 Accept a gdb connection on device dev (see the :ref:`GDB usage` chapter
3761 in the System Emulation Users Guide). Note that this option does not pause QEMU
3762 execution -- if you want QEMU to not start the guest until you
3763 connect with gdb and issue a ``continue`` command, you will need to
3764 also pass the ``-S`` option to QEMU.
3766 The most usual configuration is to listen on a local TCP socket::
3770 but you can specify other backends; UDP, pseudo TTY, or even stdio
3771 are all reasonable use cases. For example, a stdio connection
3772 allows you to start QEMU from within gdb and establish the
3773 connection via a pipe:
3777 (gdb) target remote | exec |qemu_system| -gdb stdio ...
3780 DEF("s", 0, QEMU_OPTION_s, \
3781 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3785 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3786 (see the :ref:`GDB usage` chapter in the System Emulation Users Guide).
3789 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3790 "-d item1,... enable logging of specified items (use '-d help
' for a list of log items)\n",
3794 Enable logging of specified items. Use '-d help
' for a list of log
3798 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3799 "-D logfile output log to logfile (default stderr)\n",
3803 Output log in logfile instead of to stderr
3806 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3807 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3810 ``-dfilter range1[,...]``
3811 Filter debug output to that relevant to a range of target addresses.
3812 The filter spec can be either start+size, start-size or start..end
3813 where start end and size are the addresses and sizes required. For
3818 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3820 Will dump output for any code in the 0x1000 sized block starting at
3821 0x8000 and the 0x200 sized block starting at 0xffffffc000080000 and
3822 another 0x1000 sized block starting at 0xffffffc00005f000.
3825 DEF("seed", HAS_ARG, QEMU_OPTION_seed, \
3826 "-seed number seed the pseudo-random number generator\n",
3830 Force the guest to use a deterministic pseudo-random number
3831 generator, seeded with number. This does not affect crypto routines
3835 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3836 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3840 Set the directory for the BIOS, VGA BIOS and keymaps.
3842 To list all the data directories, use ``-L help``.
3845 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3846 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3849 Set the filename for the BIOS.
3852 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3853 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3856 Enable KVM full virtualization support. This option is only
3857 available if KVM support is enabled when compiling.
3860 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3861 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3862 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3863 "-xen-attach attach to existing xen domain\n"
3864 " libxl will use this when starting QEMU\n",
3866 DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict,
3867 "-xen-domid-restrict restrict set of available xen operations\n"
3868 " to specified domain id. (Does not affect\n"
3869 " xenpv machine type).\n",
3873 Specify xen guest domain id (XEN only).
3876 Attach to existing xen domain. libxl will use this when starting
3877 QEMU (XEN only). Restrict set of available xen operations to
3878 specified domain id (XEN only).
3881 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3882 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3885 Exit instead of rebooting.
3888 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3889 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3892 Don't exit QEMU on guest shutdown
, but instead only stop the
3893 emulation
. This allows
for instance switching to monitor to commit
3894 changes to the disk image
.
3897 DEF("loadvm", HAS_ARG
, QEMU_OPTION_loadvm
, \
3898 "-loadvm [tag|id]\n" \
3899 " start right away with a saved state (loadvm in monitor)\n",
3903 Start right away with a saved
state (``loadvm``
in monitor
)
3907 DEF("daemonize", 0, QEMU_OPTION_daemonize
, \
3908 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL
)
3912 Daemonize the QEMU process after initialization
. QEMU will not
3913 detach from standard IO until it is ready to receive connections on
3914 any of its devices
. This option is a useful way
for external
3915 programs to launch QEMU without having to cope with initialization
3919 DEF("option-rom", HAS_ARG
, QEMU_OPTION_option_rom
, \
3920 "-option-rom rom load a file, rom, into the option ROM space\n",
3923 ``
-option
-rom file``
3924 Load the contents of file as an option ROM
. This option is useful to
3925 load things like EtherBoot
.
3928 DEF("rtc", HAS_ARG
, QEMU_OPTION_rtc
, \
3929 "-rtc [base=utc|localtime|<datetime>][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3930 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3934 ``
-rtc
[base
=utc|localtime|datetime
][,clock
=host|rt|vm
][,driftfix
=none|slew
]``
3935 Specify ``base`` as ``utc`` or ``localtime`` to let the RTC start at
3936 the current UTC or local time
, respectively
. ``localtime`` is
3937 required
for correct date
in MS
-DOS or Windows
. To start at a
3938 specific point
in time
, provide datetime
in the format
3939 ``
2006-06-17T16
:01:21`` or ``
2006-06-17``
. The
default base is UTC
.
3941 By
default the RTC is driven by the host system time
. This allows
3942 using of the RTC as accurate reference clock inside the guest
,
3943 specifically
if the host time is smoothly following an accurate
3944 external reference clock
, e
.g
. via NTP
. If you want to isolate the
3945 guest time from the host
, you can set ``clock`` to ``rt`` instead
,
3946 which provides a host monotonic clock
if host support it
. To even
3947 prevent the RTC from progressing during suspension
, you can set
3948 ``clock`` to ``vm``
(virtual clock
). '\ ``clock=vm``\ ' is
3949 recommended especially
in icount mode
in order to preserve
3950 determinism
; however
, note that
in icount mode the speed of the
3951 virtual clock is variable and can
in general differ from the host
3954 Enable ``driftfix``
(i386 targets only
) if you experience time drift
3955 problems
, specifically with Windows
' ACPI HAL. This option will try
3956 to figure out how many timer interrupts were not processed by the
3957 Windows guest and will re-inject them.
3960 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3961 "-icount [shift=N|auto][,align=on|off][,sleep=on|off][,rr=record|replay,rrfile=<filename>[,rrsnapshot=<snapshot>]]\n" \
3962 " enable virtual instruction counter with 2^N clock ticks per\n" \
3963 " instruction, enable aligning the host and virtual clocks\n" \
3964 " or disable real time cpu sleeping, and optionally enable\n" \
3965 " record-and-replay mode\n", QEMU_ARCH_ALL)
3967 ``-icount [shift=N|auto][,align=on|off][,sleep=on|off][,rr=record|replay,rrfile=filename[,rrsnapshot=snapshot]]``
3968 Enable virtual instruction counter. The virtual cpu will execute one
3969 instruction every 2^N ns of virtual time. If ``auto`` is specified
3970 then the virtual cpu speed will be automatically adjusted to keep
3971 virtual time within a few seconds of real time.
3973 Note that while this option can give deterministic behavior, it does
3974 not provide cycle accurate emulation. Modern CPUs contain
3975 superscalar out of order cores with complex cache hierarchies. The
3976 number of instructions executed often has little or no correlation
3977 with actual performance.
3979 When the virtual cpu is sleeping, the virtual time will advance at
3980 default speed unless ``sleep=on`` is specified. With
3981 ``sleep=on``, the virtual time will jump to the next timer
3982 deadline instantly whenever the virtual cpu goes to sleep mode and
3983 will not advance if no timer is enabled. This behavior gives
3984 deterministic execution times from the guest point of view.
3985 The default if icount is enabled is ``sleep=off``.
3986 ``sleep=on`` cannot be used together with either ``shift=auto``
3989 ``align=on`` will activate the delay algorithm which will try to
3990 synchronise the host clock and the virtual clock. The goal is to
3991 have a guest running at the real frequency imposed by the shift
3992 option. Whenever the guest clock is behind the host clock and if
3993 ``align=on`` is specified then we print a message to the user to
3994 inform about the delay. Currently this option does not work when
3995 ``shift`` is ``auto``. Note: The sync algorithm will work for those
3996 shift values for which the guest clock runs ahead of the host clock.
3997 Typically this happens when the shift value is high (how high
3998 depends on the host machine). The default if icount is enabled
4001 When the ``rr`` option is specified deterministic record/replay is
4002 enabled. The ``rrfile=`` option must also be provided to
4003 specify the path to the replay log. In record mode data is written
4004 to this file, and in replay mode it is read back.
4005 If the ``rrsnapshot`` option is given then it specifies a VM snapshot
4006 name. In record mode, a new VM snapshot with the given name is created
4007 at the start of execution recording. In replay mode this option
4008 specifies the snapshot name used to load the initial VM state.
4011 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
4012 "-watchdog model\n" \
4013 " enable virtual hardware watchdog [default=none]\n",
4017 Create a virtual hardware watchdog device. Once enabled (by a guest
4018 action), the watchdog must be periodically polled by an agent inside
4019 the guest or else the guest will be restarted. Choose a model for
4020 which your guest has drivers.
4022 The model is the model of hardware watchdog to emulate. Use
4023 ``-watchdog help`` to list available hardware models. Only one
4024 watchdog can be enabled for a guest.
4026 The following models may be available:
4029 iBASE 700 is a very simple ISA watchdog with a single timer.
4032 Intel 6300ESB I/O controller hub is a much more featureful
4033 PCI-based dual-timer watchdog.
4036 A virtual watchdog for s390x backed by the diagnose 288
4037 hypercall (currently KVM only).
4040 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
4041 "-watchdog-action reset|shutdown|poweroff|inject-nmi|pause|debug|none\n" \
4042 " action when watchdog fires [default=reset]\n",
4045 ``-watchdog-action action``
4046 The action controls what QEMU will do when the watchdog timer
4047 expires. The default is ``reset`` (forcefully reset the guest).
4048 Other possible actions are: ``shutdown`` (attempt to gracefully
4049 shutdown the guest), ``poweroff`` (forcefully poweroff the guest),
4050 ``inject-nmi`` (inject a NMI into the guest), ``pause`` (pause the
4051 guest), ``debug`` (print a debug message and continue), or ``none``
4054 Note that the ``shutdown`` action requires that the guest responds
4055 to ACPI signals, which it may not be able to do in the sort of
4056 situations where the watchdog would have expired, and thus
4057 ``-watchdog-action shutdown`` is not recommended for production use.
4061 ``-watchdog i6300esb -watchdog-action pause``; \ ``-watchdog ib700``
4065 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
4066 "-echr chr set terminal escape character instead of ctrl-a\n",
4069 ``-echr numeric_ascii_value``
4070 Change the escape character used for switching to the monitor when
4071 using monitor and serial sharing. The default is ``0x01`` when using
4072 the ``-nographic`` option. ``0x01`` is equal to pressing
4073 ``Control-a``. You can select a different character from the ascii
4074 control keys where 1 through 26 map to Control-a through Control-z.
4075 For instance you could use the either of the following to change the
4076 escape character to Control-t.
4078 ``-echr 0x14``; \ ``-echr 20``
4082 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
4083 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
4089 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
4090 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
4093 Set TCG translation block cache size. Deprecated, use
4094 '\ ``
-accel tcg
,tb
-size
=n``\
' instead.
4097 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
4098 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
4099 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
4100 "-incoming unix:socketpath\n" \
4101 " prepare for incoming migration, listen on\n" \
4102 " specified protocol and socket address\n" \
4103 "-incoming fd:fd\n" \
4104 "-incoming exec:cmdline\n" \
4105 " accept incoming migration on given file descriptor\n" \
4106 " or from given external command\n" \
4107 "-incoming defer\n" \
4108 " wait for the URI to be specified via migrate_incoming\n",
4111 ``-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]``
4113 ``-incoming rdma:host:port[,ipv4][,ipv6]``
4114 Prepare for incoming migration, listen on a given tcp port.
4116 ``-incoming unix:socketpath``
4117 Prepare for incoming migration, listen on a given unix socket.
4120 Accept incoming migration from a given filedescriptor.
4122 ``-incoming exec:cmdline``
4123 Accept incoming migration as an output from specified external
4127 Wait for the URI to be specified via migrate\_incoming. The monitor
4128 can be used to change settings (such as migration parameters) prior
4129 to issuing the migrate\_incoming to allow the migration to begin.
4132 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
4133 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
4135 ``-only-migratable``
4136 Only allow migratable devices. Devices will not be allowed to enter
4137 an unmigratable state.
4140 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
4141 "-nodefaults don't create
default devices
\n", QEMU_ARCH_ALL)
4144 Don't create default devices. Normally, QEMU sets the default
4145 devices like serial port, parallel port, virtual console, monitor
4146 device, VGA adapter, floppy and CD-ROM drive and others. The
4147 ``-nodefaults`` option will disable all those default devices.
4151 DEF("chroot
", HAS_ARG, QEMU_OPTION_chroot, \
4152 "-chroot dir chroot to dir just before starting the VM
\n",
4157 Immediately before starting guest execution, chroot to the specified
4158 directory. Especially useful in combination with -runas.
4162 DEF("runas
", HAS_ARG, QEMU_OPTION_runas, \
4163 "-runas user change to user id user just before starting the VM
\n" \
4164 " user can be numeric uid
:gid instead
\n",
4169 Immediately before starting guest execution, drop root privileges,
4170 switching to the specified user.
4173 DEF("prom
-env
", HAS_ARG, QEMU_OPTION_prom_env,
4174 "-prom
-env variable
=value
\n"
4175 " set OpenBIOS nvram variables
\n",
4176 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
4178 ``-prom-env variable=value``
4179 Set OpenBIOS nvram variable to given value (PPC, SPARC only).
4183 qemu-system-sparc -prom-env 'auto-boot?=false' \
4184 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
4188 qemu-system-ppc -prom-env 'auto-boot?=false' \
4189 -prom-env 'boot-device=hd:2,\yaboot' \
4190 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
4192 DEF("semihosting
", 0, QEMU_OPTION_semihosting,
4193 "-semihosting semihosting mode
\n",
4194 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4195 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2)
4198 Enable semihosting mode (ARM, M68K, Xtensa, MIPS, Nios II only).
4200 Note that this allows guest direct access to the host filesystem, so
4201 should only be used with a trusted guest OS.
4203 See the -semihosting-config option documentation for further
4204 information about the facilities this enables.
4206 DEF("semihosting
-config
", HAS_ARG, QEMU_OPTION_semihosting_config,
4207 "-semihosting
-config
[enable
=on|off
][,target
=native|gdb|auto
][,chardev
=id
][,arg
=str
[,...]]\n" \
4208 " semihosting configuration
\n",
4209 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4210 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2)
4212 ``-semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]``
4213 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS, Nios II
4216 Note that this allows guest direct access to the host filesystem, so
4217 should only be used with a trusted guest OS.
4219 On Arm this implements the standard semihosting API, version 2.0.
4221 On M68K this implements the "ColdFire GDB
" interface used by
4224 Xtensa semihosting provides basic file IO calls, such as
4225 open/read/write/seek/select. Tensilica baremetal libc for ISS and
4226 linux platform "sim
" use this interface.
4228 ``target=native|gdb|auto``
4229 Defines where the semihosting calls will be addressed, to QEMU
4230 (``native``) or to GDB (``gdb``). The default is ``auto``, which
4231 means ``gdb`` during debug sessions and ``native`` otherwise.
4234 Send the output to a chardev backend output for native or auto
4235 output when not in gdb
4237 ``arg=str1,arg=str2,...``
4238 Allows the user to pass input arguments, and can be used
4239 multiple times to build up a list. The old-style
4240 ``-kernel``/``-append`` method of passing a command line is
4241 still supported for backward compatibility. If both the
4242 ``--semihosting-config arg`` and the ``-kernel``/``-append`` are
4243 specified, the former is passed to semihosting as it always
4246 DEF("old
-param
", 0, QEMU_OPTION_old_param,
4247 "-old
-param old param mode
\n", QEMU_ARCH_ARM)
4250 Old param mode (ARM only).
4253 DEF("sandbox
", HAS_ARG, QEMU_OPTION_sandbox, \
4254 "-sandbox on
[,obsolete
=allow|deny
][,elevateprivileges
=allow|deny|children
]\n" \
4255 " [,spawn
=allow|deny
][,resourcecontrol
=allow|deny
]\n" \
4256 " Enable seccomp mode
2 system call
filter (default 'off').\n" \
4257 " use
'obsolete' to allow obsolete system calls that are provided
\n" \
4258 " by the kernel
, but typically no longer used by modern
\n" \
4259 " C library implementations
.\n" \
4260 " use
'elevateprivileges' to allow or deny QEMU process to elevate
\n" \
4261 " its privileges by blacklisting all set
*uid|gid system calls
.\n" \
4262 " The value
'children' will deny set
*uid|gid system calls
for\n" \
4263 " main QEMU process but will allow forks and execves to run unprivileged
\n" \
4264 " use
'spawn' to avoid QEMU to spawn
new threads or processes by
\n" \
4265 " blacklisting
*fork and execve
\n" \
4266 " use
'resourcecontrol' to disable process affinity and schedular priority
\n",
4269 ``-sandbox arg[,obsolete=string][,elevateprivileges=string][,spawn=string][,resourcecontrol=string]``
4270 Enable Seccomp mode 2 system call filter. 'on' will enable syscall
4271 filtering and 'off' will disable it. The default is 'off'.
4274 Enable Obsolete system calls
4276 ``elevateprivileges=string``
4277 Disable set\*uid\|gid system calls
4280 Disable \*fork and execve
4282 ``resourcecontrol=string``
4283 Disable process affinity and schedular priority
4286 DEF("readconfig
", HAS_ARG, QEMU_OPTION_readconfig,
4287 "-readconfig
<file
>\n", QEMU_ARCH_ALL)
4289 ``-readconfig file``
4290 Read device configuration from file. This approach is useful when
4291 you want to spawn QEMU process with many command line options but
4292 you don't want to exceed the command line character limit.
4294 DEF("writeconfig
", HAS_ARG, QEMU_OPTION_writeconfig,
4295 "-writeconfig
<file
>\n"
4296 " read
/write config file
\n", QEMU_ARCH_ALL)
4298 ``-writeconfig file``
4299 Write device configuration to file. The file can be either filename
4300 to save command line and device configuration into file or dash
4301 ``-``) character to print the output to stdout. This can be later
4302 used as input file for ``-readconfig`` option.
4305 DEF("no
-user
-config
", 0, QEMU_OPTION_nouserconfig,
4307 " do not load
default user
-provided config files at startup
\n",
4311 The ``-no-user-config`` option makes QEMU not load any of the
4312 user-provided config files on sysconfdir.
4315 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
4316 "-trace [[enable
=]<pattern
>][,events
=<file
>][,file
=<file
>]\n"
4317 " specify tracing options
\n",
4320 ``-trace [[enable=]pattern][,events=file][,file=file]``
4321 .. include:: ../qemu-option-trace.rst.inc
4324 DEF("plugin
", HAS_ARG, QEMU_OPTION_plugin,
4325 "-plugin
[file
=]<file
>[,arg
=<string
>]\n"
4329 ``-plugin file=file[,arg=string]``
4333 Load the given plugin from a shared library file.
4336 Argument string passed to the plugin. (Can be given multiple
4341 DEF("qtest
", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
4342 DEF("qtest
-log
", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
4345 DEF("enable
-fips
", 0, QEMU_OPTION_enablefips,
4346 "-enable
-fips enable FIPS
140-2 compliance
\n",
4351 Enable FIPS 140-2 compliance mode.
4354 DEF("msg
", HAS_ARG, QEMU_OPTION_msg,
4355 "-msg
[timestamp
[=on|off
]][,guest
-name
=[on|off
]]\n"
4356 " control error message format
\n"
4357 " timestamp
=on enables
timestamps (default: off
)\n"
4358 " guest
-name
=on enables guest name prefix but only
if\n"
4359 " -name guest option is
set (default: off
)\n",
4362 ``-msg [timestamp[=on|off]][,guest-name[=on|off]]``
4363 Control error message format.
4365 ``timestamp=on|off``
4366 Prefix messages with a timestamp. Default is off.
4368 ``guest-name=on|off``
4369 Prefix messages with guest name but only if -name guest option is set
4370 otherwise the option is ignored. Default is off.
4373 DEF("dump
-vmstate
", HAS_ARG, QEMU_OPTION_dump_vmstate,
4374 "-dump
-vmstate
<file
>\n"
4375 " Output vmstate information
in JSON format to file
.\n"
4376 " Use the scripts
/vmstate
-static-checker
.py file to
\n"
4377 " check
for possible regressions
in migration code
\n"
4378 " by comparing two such vmstate dumps
.\n",
4381 ``-dump-vmstate file``
4382 Dump json-encoded vmstate information for current machine type to
4386 DEF("enable
-sync
-profile
", 0, QEMU_OPTION_enable_sync_profile,
4387 "-enable
-sync
-profile
\n"
4388 " enable synchronization profiling
\n",
4391 ``-enable-sync-profile``
4392 Enable synchronization profiling.
4397 DEFHEADING(Generic object creation:)
4399 DEF("object
", HAS_ARG, QEMU_OPTION_object,
4400 "-object TYPENAME
[,PROP1
=VALUE1
,...]\n"
4401 " create a
new object of type TYPENAME setting properties
\n"
4402 " in the order they are specified
. Note that the
'id'\n"
4403 " property must be set
. These objects are placed
in the
\n"
4404 " '/objects' path
.\n",
4407 ``-object typename[,prop1=value1,...]``
4408 Create a new object of type typename setting properties in the order
4409 they are specified. Note that the 'id' property must be set. These
4410 objects are placed in the '/objects' path.
4412 ``-object memory-backend-file,id=id,size=size,mem-path=dir,share=on|off,discard-data=on|off,merge=on|off,dump=on|off,prealloc=on|off,host-nodes=host-nodes,policy=default|preferred|bind|interleave,align=align``
4413 Creates a memory file backend object, which can be used to back
4414 the guest RAM with huge pages.
4416 The ``id`` parameter is a unique ID that will be used to
4417 reference this memory region when configuring the ``-numa``
4420 The ``size`` option provides the size of the memory region, and
4421 accepts common suffixes, eg ``500M``.
4423 The ``mem-path`` provides the path to either a shared memory or
4424 huge page filesystem mount.
4426 The ``share`` boolean option determines whether the memory
4427 region is marked as private to QEMU, or shared. The latter
4428 allows a co-operating external process to access the QEMU memory
4431 The ``share`` is also required for pvrdma devices due to
4432 limitations in the RDMA API provided by Linux.
4434 Setting share=on might affect the ability to configure NUMA
4435 bindings for the memory backend under some circumstances, see
4436 Documentation/vm/numa\_memory\_policy.txt on the Linux kernel
4437 source tree for additional details.
4439 Setting the ``discard-data`` boolean option to on indicates that
4440 file contents can be destroyed when QEMU exits, to avoid
4441 unnecessarily flushing data to the backing file. Note that
4442 ``discard-data`` is only an optimization, and QEMU might not
4443 discard file contents if it aborts unexpectedly or is terminated
4446 The ``merge`` boolean option enables memory merge, also known as
4447 MADV\_MERGEABLE, so that Kernel Samepage Merging will consider
4448 the pages for memory deduplication.
4450 Setting the ``dump`` boolean option to off excludes the memory
4451 from core dumps. This feature is also known as MADV\_DONTDUMP.
4453 The ``prealloc`` boolean option enables memory preallocation.
4455 The ``host-nodes`` option binds the memory range to a list of
4458 The ``policy`` option sets the NUMA policy to one of the
4465 prefer the given host node list for allocation
4468 restrict memory allocation to the given host node list
4471 interleave memory allocations across the given host node
4474 The ``align`` option specifies the base address alignment when
4475 QEMU mmap(2) ``mem-path``, and accepts common suffixes, eg
4476 ``2M``. Some backend store specified by ``mem-path`` requires an
4477 alignment different than the default one used by QEMU, eg the
4478 device DAX /dev/dax0.0 requires 2M alignment rather than 4K. In
4479 such cases, users can specify the required alignment via this
4482 The ``pmem`` option specifies whether the backing file specified
4483 by ``mem-path`` is in host persistent memory that can be
4484 accessed using the SNIA NVM programming model (e.g. Intel
4485 NVDIMM). If ``pmem`` is set to 'on', QEMU will take necessary
4486 operations to guarantee the persistence of its own writes to
4487 ``mem-path`` (e.g. in vNVDIMM label emulation and live
4488 migration). Also, we will map the backend-file with MAP\_SYNC
4489 flag, which ensures the file metadata is in sync for
4490 ``mem-path`` in case of host crash or a power failure. MAP\_SYNC
4491 requires support from both the host kernel (since Linux kernel
4492 4.15) and the filesystem of ``mem-path`` mounted with DAX
4495 ``-object memory-backend-ram,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size,host-nodes=host-nodes,policy=default|preferred|bind|interleave``
4496 Creates a memory backend object, which can be used to back the
4497 guest RAM. Memory backend objects offer more control than the
4498 ``-m`` option that is traditionally used to define guest RAM.
4499 Please refer to ``memory-backend-file`` for a description of the
4502 ``-object memory-backend-memfd,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size,host-nodes=host-nodes,policy=default|preferred|bind|interleave,seal=on|off,hugetlb=on|off,hugetlbsize=size``
4503 Creates an anonymous memory file backend object, which allows
4504 QEMU to share the memory with an external process (e.g. when
4505 using vhost-user). The memory is allocated with memfd and
4506 optional sealing. (Linux only)
4508 The ``seal`` option creates a sealed-file, that will block
4509 further resizing the memory ('on' by default).
4511 The ``hugetlb`` option specify the file to be created resides in
4512 the hugetlbfs filesystem (since Linux 4.14). Used in conjunction
4513 with the ``hugetlb`` option, the ``hugetlbsize`` option specify
4514 the hugetlb page size on systems that support multiple hugetlb
4515 page sizes (it must be a power of 2 value supported by the
4518 In some versions of Linux, the ``hugetlb`` option is
4519 incompatible with the ``seal`` option (requires at least Linux
4522 Please refer to ``memory-backend-file`` for a description of the
4525 The ``share`` boolean option is on by default with memfd.
4527 ``-object rng-builtin,id=id``
4528 Creates a random number generator backend which obtains entropy
4529 from QEMU builtin functions. The ``id`` parameter is a unique ID
4530 that will be used to reference this entropy backend from the
4531 ``virtio-rng`` device. By default, the ``virtio-rng`` device
4532 uses this RNG backend.
4534 ``-object rng-random,id=id,filename=/dev/random``
4535 Creates a random number generator backend which obtains entropy
4536 from a device on the host. The ``id`` parameter is a unique ID
4537 that will be used to reference this entropy backend from the
4538 ``virtio-rng`` device. The ``filename`` parameter specifies
4539 which file to obtain entropy from and if omitted defaults to
4542 ``-object rng-egd,id=id,chardev=chardevid``
4543 Creates a random number generator backend which obtains entropy
4544 from an external daemon running on the host. The ``id``
4545 parameter is a unique ID that will be used to reference this
4546 entropy backend from the ``virtio-rng`` device. The ``chardev``
4547 parameter is the unique ID of a character device backend that
4548 provides the connection to the RNG daemon.
4550 ``-object tls-creds-anon,id=id,endpoint=endpoint,dir=/path/to/cred/dir,verify-peer=on|off``
4551 Creates a TLS anonymous credentials object, which can be used to
4552 provide TLS support on network backends. The ``id`` parameter is
4553 a unique ID which network backends will use to access the
4554 credentials. The ``endpoint`` is either ``server`` or ``client``
4555 depending on whether the QEMU network backend that uses the
4556 credentials will be acting as a client or as a server. If
4557 ``verify-peer`` is enabled (the default) then once the handshake
4558 is completed, the peer credentials will be verified, though this
4559 is a no-op for anonymous credentials.
4561 The dir parameter tells QEMU where to find the credential files.
4562 For server endpoints, this directory may contain a file
4563 dh-params.pem providing diffie-hellman parameters to use for the
4564 TLS server. If the file is missing, QEMU will generate a set of
4565 DH parameters at startup. This is a computationally expensive
4566 operation that consumes random pool entropy, so it is
4567 recommended that a persistent set of parameters be generated
4570 ``-object tls-creds-psk,id=id,endpoint=endpoint,dir=/path/to/keys/dir[,username=username]``
4571 Creates a TLS Pre-Shared Keys (PSK) credentials object, which
4572 can be used to provide TLS support on network backends. The
4573 ``id`` parameter is a unique ID which network backends will use
4574 to access the credentials. The ``endpoint`` is either ``server``
4575 or ``client`` depending on whether the QEMU network backend that
4576 uses the credentials will be acting as a client or as a server.
4577 For clients only, ``username`` is the username which will be
4578 sent to the server. If omitted it defaults to "qemu
".
4580 The dir parameter tells QEMU where to find the keys file. It is
4581 called "dir
/keys
.psk
" and contains "username
:key
" pairs. This
4582 file can most easily be created using the GnuTLS ``psktool``
4585 For server endpoints, dir may also contain a file dh-params.pem
4586 providing diffie-hellman parameters to use for the TLS server.
4587 If the file is missing, QEMU will generate a set of DH
4588 parameters at startup. This is a computationally expensive
4589 operation that consumes random pool entropy, so it is
4590 recommended that a persistent set of parameters be generated up
4593 ``-object tls-creds-x509,id=id,endpoint=endpoint,dir=/path/to/cred/dir,priority=priority,verify-peer=on|off,passwordid=id``
4594 Creates a TLS anonymous credentials object, which can be used to
4595 provide TLS support on network backends. The ``id`` parameter is
4596 a unique ID which network backends will use to access the
4597 credentials. The ``endpoint`` is either ``server`` or ``client``
4598 depending on whether the QEMU network backend that uses the
4599 credentials will be acting as a client or as a server. If
4600 ``verify-peer`` is enabled (the default) then once the handshake
4601 is completed, the peer credentials will be verified. With x509
4602 certificates, this implies that the clients must be provided
4603 with valid client certificates too.
4605 The dir parameter tells QEMU where to find the credential files.
4606 For server endpoints, this directory may contain a file
4607 dh-params.pem providing diffie-hellman parameters to use for the
4608 TLS server. If the file is missing, QEMU will generate a set of
4609 DH parameters at startup. This is a computationally expensive
4610 operation that consumes random pool entropy, so it is
4611 recommended that a persistent set of parameters be generated
4614 For x509 certificate credentials the directory will contain
4615 further files providing the x509 certificates. The certificates
4616 must be stored in PEM format, in filenames ca-cert.pem,
4617 ca-crl.pem (optional), server-cert.pem (only servers),
4618 server-key.pem (only servers), client-cert.pem (only clients),
4619 and client-key.pem (only clients).
4621 For the server-key.pem and client-key.pem files which contain
4622 sensitive private keys, it is possible to use an encrypted
4623 version by providing the passwordid parameter. This provides the
4624 ID of a previously created ``secret`` object containing the
4625 password for decryption.
4627 The priority parameter allows to override the global default
4628 priority used by gnutls. This can be useful if the system
4629 administrator needs to use a weaker set of crypto priorities for
4630 QEMU without potentially forcing the weakness onto all
4631 applications. Or conversely if one wants wants a stronger
4632 default for QEMU than for all other applications, they can do
4633 this through this parameter. Its format is a gnutls priority
4634 string as described at
4635 https://gnutls.org/manual/html_node/Priority-Strings.html.
4637 ``-object tls-cipher-suites,id=id,priority=priority``
4638 Creates a TLS cipher suites object, which can be used to control
4639 the TLS cipher/protocol algorithms that applications are permitted
4642 The ``id`` parameter is a unique ID which frontends will use to
4643 access the ordered list of permitted TLS cipher suites from the
4646 The ``priority`` parameter allows to override the global default
4647 priority used by gnutls. This can be useful if the system
4648 administrator needs to use a weaker set of crypto priorities for
4649 QEMU without potentially forcing the weakness onto all
4650 applications. Or conversely if one wants wants a stronger
4651 default for QEMU than for all other applications, they can do
4652 this through this parameter. Its format is a gnutls priority
4653 string as described at
4654 https://gnutls.org/manual/html_node/Priority-Strings.html.
4656 An example of use of this object is to control UEFI HTTPS Boot.
4657 The tls-cipher-suites object exposes the ordered list of permitted
4658 TLS cipher suites from the host side to the guest firmware, via
4659 fw_cfg. The list is represented as an array of IANA_TLS_CIPHER
4660 objects. The firmware uses the IANA_TLS_CIPHER array for configuring
4663 In the following example, the priority at which the host-side policy
4664 is retrieved is given by the ``priority`` property.
4665 Given that QEMU uses GNUTLS, ``priority=@SYSTEM`` may be used to
4666 refer to /etc/crypto-policies/back-ends/gnutls.config.
4671 -object tls-cipher-suites,id=mysuite0,priority=@SYSTEM \\
4672 -fw_cfg name=etc/edk2/https/ciphers,gen_id=mysuite0
4674 ``-object filter-buffer,id=id,netdev=netdevid,interval=t[,queue=all|rx|tx][,status=on|off][,position=head|tail|id=<id>][,insert=behind|before]``
4675 Interval t can't be 0, this filter batches the packet delivery:
4676 all packets arriving in a given interval on netdev netdevid are
4677 delayed until the end of the interval. Interval is in
4678 microseconds. ``status`` is optional that indicate whether the
4679 netfilter is on (enabled) or off (disabled), the default status
4680 for netfilter will be 'on'.
4682 queue all\|rx\|tx is an option that can be applied to any
4685 ``all``: the filter is attached both to the receive and the
4686 transmit queue of the netdev (default).
4688 ``rx``: the filter is attached to the receive queue of the
4689 netdev, where it will receive packets sent to the netdev.
4691 ``tx``: the filter is attached to the transmit queue of the
4692 netdev, where it will receive packets sent by the netdev.
4694 position head\|tail\|id=<id> is an option to specify where the
4695 filter should be inserted in the filter list. It can be applied
4698 ``head``: the filter is inserted at the head of the filter list,
4699 before any existing filters.
4701 ``tail``: the filter is inserted at the tail of the filter list,
4702 behind any existing filters (default).
4704 ``id=<id>``: the filter is inserted before or behind the filter
4705 specified by <id>, see the insert option below.
4707 insert behind\|before is an option to specify where to insert
4708 the new filter relative to the one specified with
4709 position=id=<id>. It can be applied to any netfilter.
4711 ``before``: insert before the specified filter.
4713 ``behind``: insert behind the specified filter (default).
4715 ``-object filter-mirror,id=id,netdev=netdevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support][,position=head|tail|id=<id>][,insert=behind|before]``
4716 filter-mirror on netdev netdevid,mirror net packet to
4717 chardevchardevid, if it has the vnet\_hdr\_support flag,
4718 filter-mirror will mirror packet with vnet\_hdr\_len.
4720 ``-object filter-redirector,id=id,netdev=netdevid,indev=chardevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support][,position=head|tail|id=<id>][,insert=behind|before]``
4721 filter-redirector on netdev netdevid,redirect filter's net
4722 packet to chardev chardevid,and redirect indev's packet to
4723 filter.if it has the vnet\_hdr\_support flag, filter-redirector
4724 will redirect packet with vnet\_hdr\_len. Create a
4725 filter-redirector we need to differ outdev id from indev id, id
4726 can not be the same. we can just use indev or outdev, but at
4727 least one of indev or outdev need to be specified.
4729 ``-object filter-rewriter,id=id,netdev=netdevid,queue=all|rx|tx,[vnet_hdr_support][,position=head|tail|id=<id>][,insert=behind|before]``
4730 Filter-rewriter is a part of COLO project.It will rewrite tcp
4731 packet to secondary from primary to keep secondary tcp
4732 connection,and rewrite tcp packet to primary from secondary make
4733 tcp packet can be handled by client.if it has the
4734 vnet\_hdr\_support flag, we can parse packet with vnet header.
4736 usage: colo secondary: -object
4737 filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0 -object
4738 filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1 -object
4739 filter-rewriter,id=rew0,netdev=hn0,queue=all
4741 ``-object filter-dump,id=id,netdev=dev[,file=filename][,maxlen=len][,position=head|tail|id=<id>][,insert=behind|before]``
4742 Dump the network traffic on netdev dev to the file specified by
4743 filename. At most len bytes (64k by default) per packet are
4744 stored. The file format is libpcap, so it can be analyzed with
4745 tools such as tcpdump or Wireshark.
4747 ``-object colo-compare,id=id,primary_in=chardevid,secondary_in=chardevid,outdev=chardevid,iothread=id[,vnet_hdr_support][,notify_dev=id][,compare_timeout=@var{ms}][,expired_scan_cycle=@var{ms}][,max_queue_size=@var{size}]``
4748 Colo-compare gets packet from primary\_in chardevid and
4749 secondary\_in, then compare whether the payload of primary packet
4750 and secondary packet are the same. If same, it will output
4751 primary packet to out\_dev, else it will notify COLO-framework to do
4752 checkpoint and send primary packet to out\_dev. In order to
4753 improve efficiency, we need to put the task of comparison in
4754 another iothread. If it has the vnet\_hdr\_support flag,
4755 colo compare will send/recv packet with vnet\_hdr\_len.
4756 The compare\_timeout=@var{ms} determines the maximum time of the
4757 colo-compare hold the packet. The expired\_scan\_cycle=@var{ms}
4758 is to set the period of scanning expired primary node network packets.
4759 The max\_queue\_size=@var{size} is to set the max compare queue
4760 size depend on user environment.
4761 If user want to use Xen COLO, need to add the notify\_dev to
4762 notify Xen colo-frame to do checkpoint.
4764 COLO-compare must be used with the help of filter-mirror,
4765 filter-redirector and filter-rewriter.
4772 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4773 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4774 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4775 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4776 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4777 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4778 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4779 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4780 -object iothread,id=iothread1
4781 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4782 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4783 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4784 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,iothread=iothread1
4787 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4788 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4789 -chardev socket,id=red0,host=3.3.3.3,port=9003
4790 -chardev socket,id=red1,host=3.3.3.3,port=9004
4791 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4792 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4798 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4799 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4800 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4801 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4802 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4803 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4804 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4805 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4806 -chardev socket,id=notify_way,host=3.3.3.3,port=9009,server,nowait
4807 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4808 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4809 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4810 -object iothread,id=iothread1
4811 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,notify_dev=nofity_way,iothread=iothread1
4814 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4815 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4816 -chardev socket,id=red0,host=3.3.3.3,port=9003
4817 -chardev socket,id=red1,host=3.3.3.3,port=9004
4818 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4819 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4821 If you want to know the detail of above command line, you can
4822 read the colo-compare git log.
4824 ``-object cryptodev-backend-builtin,id=id[,queues=queues]``
4825 Creates a cryptodev backend which executes crypto opreation from
4826 the QEMU cipher APIS. The id parameter is a unique ID that will
4827 be used to reference this cryptodev backend from the
4828 ``virtio-crypto`` device. The queues parameter is optional,
4829 which specify the queue number of cryptodev backend, the default
4836 -object cryptodev-backend-builtin,id=cryptodev0 \\
4837 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \\
4840 ``-object cryptodev-vhost-user,id=id,chardev=chardevid[,queues=queues]``
4841 Creates a vhost-user cryptodev backend, backed by a chardev
4842 chardevid. The id parameter is a unique ID that will be used to
4843 reference this cryptodev backend from the ``virtio-crypto``
4844 device. The chardev should be a unix domain socket backed one.
4845 The vhost-user uses a specifically defined protocol to pass
4846 vhost ioctl replacement messages to an application on the other
4847 end of the socket. The queues parameter is optional, which
4848 specify the queue number of cryptodev backend for multiqueue
4849 vhost-user, the default of queues is 1.
4855 -chardev socket,id=chardev0,path=/path/to/socket \\
4856 -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \\
4857 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \\
4860 ``-object secret,id=id,data=string,format=raw|base64[,keyid=secretid,iv=string]``
4862 ``-object secret,id=id,file=filename,format=raw|base64[,keyid=secretid,iv=string]``
4863 Defines a secret to store a password, encryption key, or some
4864 other sensitive data. The sensitive data can either be passed
4865 directly via the data parameter, or indirectly via the file
4866 parameter. Using the data parameter is insecure unless the
4867 sensitive data is encrypted.
4869 The sensitive data can be provided in raw format (the default),
4870 or base64. When encoded as JSON, the raw format only supports
4871 valid UTF-8 characters, so base64 is recommended for sending
4872 binary data. QEMU will convert from which ever format is
4873 provided to the format it needs internally. eg, an RBD password
4874 can be provided in raw format, even though it will be base64
4875 encoded when passed onto the RBD sever.
4877 For added protection, it is possible to encrypt the data
4878 associated with a secret using the AES-256-CBC cipher. Use of
4879 encryption is indicated by providing the keyid and iv
4880 parameters. The keyid parameter provides the ID of a previously
4881 defined secret that contains the AES-256 decryption key. This
4882 key should be 32-bytes long and be base64 encoded. The iv
4883 parameter provides the random initialization vector used for
4884 encryption of this particular secret and should be a base64
4885 encrypted string of the 16-byte IV.
4887 The simplest (insecure) usage is to provide the secret inline
4891 # |qemu_system| -object secret,id=sec0,data=letmein,format=raw
4893 The simplest secure usage is to provide the secret via a file
4895 # printf "letmein
" > mypasswd.txt # QEMU\_SYSTEM\_MACRO -object
4896 secret,id=sec0,file=mypasswd.txt,format=raw
4898 For greater security, AES-256-CBC should be used. To illustrate
4899 usage, consider the openssl command line tool which can encrypt
4900 the data. Note that when encrypting, the plaintext must be
4901 padded to the cipher block size (32 bytes) using the standard
4902 PKCS#5/6 compatible padding algorithm.
4904 First a master key needs to be created in base64 encoding:
4908 # openssl rand -base64 32 > key.b64
4909 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X
"')
4911 Each secret to be encrypted needs to have a random
4912 initialization vector generated. These do not need to be kept
4917 # openssl rand -base64 16 > iv.b64
4918 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X
"')
4920 The secret to be defined can now be encrypted, in this case
4921 we're telling openssl to base64 encode the result, but it could
4922 be left as raw bytes if desired.
4926 # SECRET=$(printf "letmein
" |
4927 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4929 When launching QEMU, create a master secret pointing to
4930 ``key.b64`` and specify that to be used to decrypt the user
4931 password. Pass the contents of ``iv.b64`` to the second secret
4936 -object secret,id=secmaster0,format=base64,file=key.b64 \\
4937 -object secret,id=sec0,keyid=secmaster0,format=base64,\\
4938 data=$SECRET,iv=$(<iv.b64)
4940 ``-object sev-guest,id=id,cbitpos=cbitpos,reduced-phys-bits=val,[sev-device=string,policy=policy,handle=handle,dh-cert-file=file,session-file=file]``
4941 Create a Secure Encrypted Virtualization (SEV) guest object,
4942 which can be used to provide the guest memory encryption support
4945 When memory encryption is enabled, one of the physical address
4946 bit (aka the C-bit) is utilized to mark if a memory page is
4947 protected. The ``cbitpos`` is used to provide the C-bit
4948 position. The C-bit position is Host family dependent hence user
4949 must provide this value. On EPYC, the value should be 47.
4951 When memory encryption is enabled, we loose certain bits in
4952 physical address space. The ``reduced-phys-bits`` is used to
4953 provide the number of bits we loose in physical address space.
4954 Similar to C-bit, the value is Host family dependent. On EPYC,
4955 the value should be 5.
4957 The ``sev-device`` provides the device file to use for
4958 communicating with the SEV firmware running inside AMD Secure
4959 Processor. The default device is '/dev/sev'. If hardware
4960 supports memory encryption then /dev/sev devices are created by
4963 The ``policy`` provides the guest policy to be enforced by the
4964 SEV firmware and restrict what configuration and operational
4965 commands can be performed on this guest by the hypervisor. The
4966 policy should be provided by the guest owner and is bound to the
4967 guest and cannot be changed throughout the lifetime of the
4968 guest. The default is 0.
4970 If guest ``policy`` allows sharing the key with another SEV
4971 guest then ``handle`` can be use to provide handle of the guest
4972 from which to share the key.
4974 The ``dh-cert-file`` and ``session-file`` provides the guest
4975 owner's Public Diffie-Hillman key defined in SEV spec. The PDH
4976 and session parameters are used for establishing a cryptographic
4977 session with the guest owner to negotiate keys used for
4978 attestation. The file must be encoded in base64.
4980 e.g to launch a SEV guest
4984 # |qemu_system_x86| \\
4986 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \\
4987 -machine ...,memory-encryption=sev0 \\
4990 ``-object authz-simple,id=id,identity=string``
4991 Create an authorization object that will control access to
4994 The ``identity`` parameter is identifies the user and its format
4995 depends on the network service that authorization object is
4996 associated with. For authorizing based on TLS x509 certificates,
4997 the identity must be the x509 distinguished name. Note that care
4998 must be taken to escape any commas in the distinguished name.
5000 An example authorization object to validate a x509 distinguished
5001 name would look like:
5007 -object 'authz-simple,id=auth0,identity=CN=laptop.example.com,,O=Example Org,,L=London,,ST=London,,C=GB' \\
5010 Note the use of quotes due to the x509 distinguished name
5011 containing whitespace, and escaping of ','.
5013 ``-object authz-listfile,id=id,filename=path,refresh=yes|no``
5014 Create an authorization object that will control access to
5017 The ``filename`` parameter is the fully qualified path to a file
5018 containing the access control list rules in JSON format.
5020 An example set of rules that match against SASL usernames might
5027 { "match
": "fred
", "policy
": "allow
", "format
": "exact
" },
5028 { "match
": "bob
", "policy
": "allow
", "format
": "exact
" },
5029 { "match
": "danb
", "policy
": "deny
", "format
": "glob
" },
5030 { "match
": "dan
*", "policy
": "allow
", "format
": "exact
" },
5035 When checking access the object will iterate over all the rules
5036 and the first rule to match will have its ``policy`` value
5037 returned as the result. If no rules match, then the default
5038 ``policy`` value is returned.
5040 The rules can either be an exact string match, or they can use
5041 the simple UNIX glob pattern matching to allow wildcards to be
5044 If ``refresh`` is set to true the file will be monitored and
5045 automatically reloaded whenever its content changes.
5047 As with the ``authz-simple`` object, the format of the identity
5048 strings being matched depends on the network service, but is
5049 usually a TLS x509 distinguished name, or a SASL username.
5051 An example authorization object to validate a SASL username
5058 -object authz-simple,id=auth0,filename=/etc/qemu/vnc-sasl.acl,refresh=yes \\
5061 ``-object authz-pam,id=id,service=string``
5062 Create an authorization object that will control access to
5065 The ``service`` parameter provides the name of a PAM service to
5066 use for authorization. It requires that a file
5067 ``/etc/pam.d/service`` exist to provide the configuration for
5068 the ``account`` subsystem.
5070 An example authorization object to validate a TLS x509
5071 distinguished name would look like:
5077 -object authz-pam,id=auth0,service=qemu-vnc \\
5080 There would then be a corresponding config file for PAM at
5081 ``/etc/pam.d/qemu-vnc`` that contains:
5085 account requisite pam_listfile.so item=user sense=allow \
5086 file=/etc/qemu/vnc.allow
5088 Finally the ``/etc/qemu/vnc.allow`` file would contain the list
5089 of x509 distingished names that are permitted access
5093 CN=laptop.example.com,O=Example Home,L=London,ST=London,C=GB
5095 ``-object iothread,id=id,poll-max-ns=poll-max-ns,poll-grow=poll-grow,poll-shrink=poll-shrink``
5096 Creates a dedicated event loop thread that devices can be
5097 assigned to. This is known as an IOThread. By default device
5098 emulation happens in vCPU threads or the main event loop thread.
5099 This can become a scalability bottleneck. IOThreads allow device
5100 emulation and I/O to run on other host CPUs.
5102 The ``id`` parameter is a unique ID that will be used to
5103 reference this IOThread from ``-device ...,iothread=id``.
5104 Multiple devices can be assigned to an IOThread. Note that not
5105 all devices support an ``iothread`` parameter.
5107 The ``query-iothreads`` QMP command lists IOThreads and reports
5108 their thread IDs so that the user can configure host CPU
5111 IOThreads use an adaptive polling algorithm to reduce event loop
5112 latency. Instead of entering a blocking system call to monitor
5113 file descriptors and then pay the cost of being woken up when an
5114 event occurs, the polling algorithm spins waiting for events for
5115 a short time. The algorithm's default parameters are suitable
5116 for many cases but can be adjusted based on knowledge of the
5117 workload and/or host device latency.
5119 The ``poll-max-ns`` parameter is the maximum number of
5120 nanoseconds to busy wait for events. Polling can be disabled by
5121 setting this value to 0.
5123 The ``poll-grow`` parameter is the multiplier used to increase
5124 the polling time when the algorithm detects it is missing events
5125 due to not polling long enough.
5127 The ``poll-shrink`` parameter is the divisor used to decrease
5128 the polling time when the algorithm detects it is spending too
5129 long polling without encountering events.
5131 The polling parameters can be modified at run-time using the
5132 ``qom-set`` command (where ``iothread1`` is the IOThread's
5137 (qemu) qom-set /objects/iothread1 poll-max-ns 100000
5141 HXCOMM This is the last statement. Insert new options before this line!