4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
40 #else /* !CONFIG_USER_ONLY */
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "exec/address-spaces.h"
46 #include "sysemu/xen-mapcache.h"
49 #include "exec/cpu-all.h"
50 #include "qemu/rcu_queue.h"
51 #include "qemu/main-loop.h"
52 #include "translate-all.h"
53 #include "sysemu/replay.h"
55 #include "exec/memory-internal.h"
56 #include "exec/ram_addr.h"
59 #include "migration/vmstate.h"
61 #include "qemu/range.h"
63 #include "qemu/mmap-alloc.h"
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
70 * are protected by the ramlist lock.
72 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
74 static MemoryRegion
*system_memory
;
75 static MemoryRegion
*system_io
;
77 AddressSpace address_space_io
;
78 AddressSpace address_space_memory
;
80 MemoryRegion io_mem_rom
, io_mem_notdirty
;
81 static MemoryRegion io_mem_unassigned
;
83 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
84 #define RAM_PREALLOC (1 << 0)
86 /* RAM is mmap-ed with MAP_SHARED */
87 #define RAM_SHARED (1 << 1)
89 /* Only a portion of RAM (used_length) is actually used, and migrated.
90 * This used_length size can change across reboots.
92 #define RAM_RESIZEABLE (1 << 2)
96 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
97 /* current CPU in the current thread. It is only valid inside
99 __thread CPUState
*current_cpu
;
100 /* 0 = Do not count executed instructions.
101 1 = Precise instruction counting.
102 2 = Adaptive rate instruction counting. */
105 #if !defined(CONFIG_USER_ONLY)
107 typedef struct PhysPageEntry PhysPageEntry
;
109 struct PhysPageEntry
{
110 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
112 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
116 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
118 /* Size of the L2 (and L3, etc) page tables. */
119 #define ADDR_SPACE_BITS 64
122 #define P_L2_SIZE (1 << P_L2_BITS)
124 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
126 typedef PhysPageEntry Node
[P_L2_SIZE
];
128 typedef struct PhysPageMap
{
131 unsigned sections_nb
;
132 unsigned sections_nb_alloc
;
134 unsigned nodes_nb_alloc
;
136 MemoryRegionSection
*sections
;
139 struct AddressSpaceDispatch
{
142 MemoryRegionSection
*mru_section
;
143 /* This is a multi-level map on the physical address space.
144 * The bottom level has pointers to MemoryRegionSections.
146 PhysPageEntry phys_map
;
151 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
152 typedef struct subpage_t
{
156 uint16_t sub_section
[TARGET_PAGE_SIZE
];
159 #define PHYS_SECTION_UNASSIGNED 0
160 #define PHYS_SECTION_NOTDIRTY 1
161 #define PHYS_SECTION_ROM 2
162 #define PHYS_SECTION_WATCH 3
164 static void io_mem_init(void);
165 static void memory_map_init(void);
166 static void tcg_commit(MemoryListener
*listener
);
168 static MemoryRegion io_mem_watch
;
171 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
172 * @cpu: the CPU whose AddressSpace this is
173 * @as: the AddressSpace itself
174 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
175 * @tcg_as_listener: listener for tracking changes to the AddressSpace
177 struct CPUAddressSpace
{
180 struct AddressSpaceDispatch
*memory_dispatch
;
181 MemoryListener tcg_as_listener
;
186 #if !defined(CONFIG_USER_ONLY)
188 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
190 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
191 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
* 2, 16);
192 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
193 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
197 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
204 ret
= map
->nodes_nb
++;
206 assert(ret
!= PHYS_MAP_NODE_NIL
);
207 assert(ret
!= map
->nodes_nb_alloc
);
209 e
.skip
= leaf
? 0 : 1;
210 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
211 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
212 memcpy(&p
[i
], &e
, sizeof(e
));
217 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
218 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
222 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
224 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
225 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
227 p
= map
->nodes
[lp
->ptr
];
228 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
230 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
231 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
237 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
243 static void phys_page_set(AddressSpaceDispatch
*d
,
244 hwaddr index
, hwaddr nb
,
247 /* Wildly overreserve - it doesn't matter much. */
248 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
250 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
253 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
254 * and update our entry so we can skip it and go directly to the destination.
256 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
, unsigned long *compacted
)
258 unsigned valid_ptr
= P_L2_SIZE
;
263 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
268 for (i
= 0; i
< P_L2_SIZE
; i
++) {
269 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
276 phys_page_compact(&p
[i
], nodes
, compacted
);
280 /* We can only compress if there's only one child. */
285 assert(valid_ptr
< P_L2_SIZE
);
287 /* Don't compress if it won't fit in the # of bits we have. */
288 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
292 lp
->ptr
= p
[valid_ptr
].ptr
;
293 if (!p
[valid_ptr
].skip
) {
294 /* If our only child is a leaf, make this a leaf. */
295 /* By design, we should have made this node a leaf to begin with so we
296 * should never reach here.
297 * But since it's so simple to handle this, let's do it just in case we
302 lp
->skip
+= p
[valid_ptr
].skip
;
306 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
308 DECLARE_BITMAP(compacted
, nodes_nb
);
310 if (d
->phys_map
.skip
) {
311 phys_page_compact(&d
->phys_map
, d
->map
.nodes
, compacted
);
315 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
318 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
319 * the section must cover the entire address space.
321 return section
->size
.hi
||
322 range_covers_byte(section
->offset_within_address_space
,
323 section
->size
.lo
, addr
);
326 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
327 Node
*nodes
, MemoryRegionSection
*sections
)
330 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
333 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
334 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
335 return §ions
[PHYS_SECTION_UNASSIGNED
];
338 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
341 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
342 return §ions
[lp
.ptr
];
344 return §ions
[PHYS_SECTION_UNASSIGNED
];
348 bool memory_region_is_unassigned(MemoryRegion
*mr
)
350 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
351 && mr
!= &io_mem_watch
;
354 /* Called from RCU critical section */
355 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
357 bool resolve_subpage
)
359 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
363 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
364 section_covers_addr(section
, addr
)) {
367 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
,
371 if (resolve_subpage
&& section
->mr
->subpage
) {
372 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
373 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
376 atomic_set(&d
->mru_section
, section
);
381 /* Called from RCU critical section */
382 static MemoryRegionSection
*
383 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
384 hwaddr
*plen
, bool resolve_subpage
)
386 MemoryRegionSection
*section
;
390 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
391 /* Compute offset within MemoryRegionSection */
392 addr
-= section
->offset_within_address_space
;
394 /* Compute offset within MemoryRegion */
395 *xlat
= addr
+ section
->offset_within_region
;
399 /* MMIO registers can be expected to perform full-width accesses based only
400 * on their address, without considering adjacent registers that could
401 * decode to completely different MemoryRegions. When such registers
402 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
403 * regions overlap wildly. For this reason we cannot clamp the accesses
406 * If the length is small (as is the case for address_space_ldl/stl),
407 * everything works fine. If the incoming length is large, however,
408 * the caller really has to do the clamping through memory_access_size.
410 if (memory_region_is_ram(mr
)) {
411 diff
= int128_sub(section
->size
, int128_make64(addr
));
412 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
417 /* Called from RCU critical section */
418 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
419 hwaddr
*xlat
, hwaddr
*plen
,
423 MemoryRegionSection
*section
;
427 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
428 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, true);
431 if (!mr
->iommu_ops
) {
435 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
436 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
437 | (addr
& iotlb
.addr_mask
));
438 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
439 if (!(iotlb
.perm
& (1 << is_write
))) {
440 mr
= &io_mem_unassigned
;
444 as
= iotlb
.target_as
;
447 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
448 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
449 *plen
= MIN(page
, *plen
);
456 /* Called from RCU critical section */
457 MemoryRegionSection
*
458 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
459 hwaddr
*xlat
, hwaddr
*plen
)
461 MemoryRegionSection
*section
;
462 AddressSpaceDispatch
*d
= cpu
->cpu_ases
[asidx
].memory_dispatch
;
464 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
466 assert(!section
->mr
->iommu_ops
);
471 #if !defined(CONFIG_USER_ONLY)
473 static int cpu_common_post_load(void *opaque
, int version_id
)
475 CPUState
*cpu
= opaque
;
477 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
478 version_id is increased. */
479 cpu
->interrupt_request
&= ~0x01;
485 static int cpu_common_pre_load(void *opaque
)
487 CPUState
*cpu
= opaque
;
489 cpu
->exception_index
= -1;
494 static bool cpu_common_exception_index_needed(void *opaque
)
496 CPUState
*cpu
= opaque
;
498 return tcg_enabled() && cpu
->exception_index
!= -1;
501 static const VMStateDescription vmstate_cpu_common_exception_index
= {
502 .name
= "cpu_common/exception_index",
504 .minimum_version_id
= 1,
505 .needed
= cpu_common_exception_index_needed
,
506 .fields
= (VMStateField
[]) {
507 VMSTATE_INT32(exception_index
, CPUState
),
508 VMSTATE_END_OF_LIST()
512 static bool cpu_common_crash_occurred_needed(void *opaque
)
514 CPUState
*cpu
= opaque
;
516 return cpu
->crash_occurred
;
519 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
520 .name
= "cpu_common/crash_occurred",
522 .minimum_version_id
= 1,
523 .needed
= cpu_common_crash_occurred_needed
,
524 .fields
= (VMStateField
[]) {
525 VMSTATE_BOOL(crash_occurred
, CPUState
),
526 VMSTATE_END_OF_LIST()
530 const VMStateDescription vmstate_cpu_common
= {
531 .name
= "cpu_common",
533 .minimum_version_id
= 1,
534 .pre_load
= cpu_common_pre_load
,
535 .post_load
= cpu_common_post_load
,
536 .fields
= (VMStateField
[]) {
537 VMSTATE_UINT32(halted
, CPUState
),
538 VMSTATE_UINT32(interrupt_request
, CPUState
),
539 VMSTATE_END_OF_LIST()
541 .subsections
= (const VMStateDescription
*[]) {
542 &vmstate_cpu_common_exception_index
,
543 &vmstate_cpu_common_crash_occurred
,
550 CPUState
*qemu_get_cpu(int index
)
555 if (cpu
->cpu_index
== index
) {
563 #if !defined(CONFIG_USER_ONLY)
564 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
566 CPUAddressSpace
*newas
;
568 /* Target code should have set num_ases before calling us */
569 assert(asidx
< cpu
->num_ases
);
572 /* address space 0 gets the convenience alias */
576 /* KVM cannot currently support multiple address spaces. */
577 assert(asidx
== 0 || !kvm_enabled());
579 if (!cpu
->cpu_ases
) {
580 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
583 newas
= &cpu
->cpu_ases
[asidx
];
587 newas
->tcg_as_listener
.commit
= tcg_commit
;
588 memory_listener_register(&newas
->tcg_as_listener
, as
);
592 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
594 /* Return the AddressSpace corresponding to the specified index */
595 return cpu
->cpu_ases
[asidx
].as
;
599 #ifndef CONFIG_USER_ONLY
600 static DECLARE_BITMAP(cpu_index_map
, MAX_CPUMASK_BITS
);
602 static int cpu_get_free_index(Error
**errp
)
604 int cpu
= find_first_zero_bit(cpu_index_map
, MAX_CPUMASK_BITS
);
606 if (cpu
>= MAX_CPUMASK_BITS
) {
607 error_setg(errp
, "Trying to use more CPUs than max of %d",
612 bitmap_set(cpu_index_map
, cpu
, 1);
616 static void cpu_release_index(CPUState
*cpu
)
618 bitmap_clear(cpu_index_map
, cpu
->cpu_index
, 1);
622 static int cpu_get_free_index(Error
**errp
)
627 CPU_FOREACH(some_cpu
) {
633 static void cpu_release_index(CPUState
*cpu
)
639 void cpu_exec_exit(CPUState
*cpu
)
641 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
643 #if defined(CONFIG_USER_ONLY)
646 if (cpu
->cpu_index
== -1) {
647 /* cpu_index was never allocated by this @cpu or was already freed. */
648 #if defined(CONFIG_USER_ONLY)
654 QTAILQ_REMOVE(&cpus
, cpu
, node
);
655 cpu_release_index(cpu
);
657 #if defined(CONFIG_USER_ONLY)
661 if (cc
->vmsd
!= NULL
) {
662 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
664 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
665 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
669 void cpu_exec_init(CPUState
*cpu
, Error
**errp
)
671 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
672 Error
*local_err
= NULL
;
674 #ifdef TARGET_WORDS_BIGENDIAN
675 cpu
->bigendian
= true;
677 cpu
->bigendian
= false;
682 #ifndef CONFIG_USER_ONLY
683 cpu
->thread_id
= qemu_get_thread_id();
685 /* This is a softmmu CPU object, so create a property for it
686 * so users can wire up its memory. (This can't go in qom/cpu.c
687 * because that file is compiled only once for both user-mode
688 * and system builds.) The default if no link is set up is to use
689 * the system address space.
691 object_property_add_link(OBJECT(cpu
), "memory", TYPE_MEMORY_REGION
,
692 (Object
**)&cpu
->memory
,
693 qdev_prop_allow_set_link_before_realize
,
694 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
696 cpu
->memory
= system_memory
;
697 object_ref(OBJECT(cpu
->memory
));
700 #if defined(CONFIG_USER_ONLY)
703 cpu
->cpu_index
= cpu_get_free_index(&local_err
);
705 error_propagate(errp
, local_err
);
706 #if defined(CONFIG_USER_ONLY)
711 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
712 #if defined(CONFIG_USER_ONLY)
716 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
717 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
719 if (cc
->vmsd
!= NULL
) {
720 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
725 #if defined(CONFIG_USER_ONLY)
726 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
728 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
731 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
734 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
735 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
737 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
738 phys
| (pc
& ~TARGET_PAGE_MASK
));
743 #if defined(CONFIG_USER_ONLY)
744 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
749 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
755 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
759 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
760 int flags
, CPUWatchpoint
**watchpoint
)
765 /* Add a watchpoint. */
766 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
767 int flags
, CPUWatchpoint
**watchpoint
)
771 /* forbid ranges which are empty or run off the end of the address space */
772 if (len
== 0 || (addr
+ len
- 1) < addr
) {
773 error_report("tried to set invalid watchpoint at %"
774 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
777 wp
= g_malloc(sizeof(*wp
));
783 /* keep all GDB-injected watchpoints in front */
784 if (flags
& BP_GDB
) {
785 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
787 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
790 tlb_flush_page(cpu
, addr
);
797 /* Remove a specific watchpoint. */
798 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
803 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
804 if (addr
== wp
->vaddr
&& len
== wp
->len
805 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
806 cpu_watchpoint_remove_by_ref(cpu
, wp
);
813 /* Remove a specific watchpoint by reference. */
814 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
816 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
818 tlb_flush_page(cpu
, watchpoint
->vaddr
);
823 /* Remove all matching watchpoints. */
824 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
826 CPUWatchpoint
*wp
, *next
;
828 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
829 if (wp
->flags
& mask
) {
830 cpu_watchpoint_remove_by_ref(cpu
, wp
);
835 /* Return true if this watchpoint address matches the specified
836 * access (ie the address range covered by the watchpoint overlaps
837 * partially or completely with the address range covered by the
840 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
844 /* We know the lengths are non-zero, but a little caution is
845 * required to avoid errors in the case where the range ends
846 * exactly at the top of the address space and so addr + len
847 * wraps round to zero.
849 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
850 vaddr addrend
= addr
+ len
- 1;
852 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
857 /* Add a breakpoint. */
858 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
859 CPUBreakpoint
**breakpoint
)
863 bp
= g_malloc(sizeof(*bp
));
868 /* keep all GDB-injected breakpoints in front */
869 if (flags
& BP_GDB
) {
870 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
872 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
875 breakpoint_invalidate(cpu
, pc
);
883 /* Remove a specific breakpoint. */
884 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
888 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
889 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
890 cpu_breakpoint_remove_by_ref(cpu
, bp
);
897 /* Remove a specific breakpoint by reference. */
898 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
900 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
902 breakpoint_invalidate(cpu
, breakpoint
->pc
);
907 /* Remove all matching breakpoints. */
908 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
910 CPUBreakpoint
*bp
, *next
;
912 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
913 if (bp
->flags
& mask
) {
914 cpu_breakpoint_remove_by_ref(cpu
, bp
);
919 /* enable or disable single step mode. EXCP_DEBUG is returned by the
920 CPU loop after each instruction */
921 void cpu_single_step(CPUState
*cpu
, int enabled
)
923 if (cpu
->singlestep_enabled
!= enabled
) {
924 cpu
->singlestep_enabled
= enabled
;
926 kvm_update_guest_debug(cpu
, 0);
928 /* must flush all the translated code to avoid inconsistencies */
929 /* XXX: only flush what is necessary */
935 void QEMU_NORETURN
cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
942 fprintf(stderr
, "qemu: fatal: ");
943 vfprintf(stderr
, fmt
, ap
);
944 fprintf(stderr
, "\n");
945 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
946 if (qemu_log_separate()) {
947 qemu_log("qemu: fatal: ");
948 qemu_log_vprintf(fmt
, ap2
);
950 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
957 #if defined(CONFIG_USER_ONLY)
959 struct sigaction act
;
960 sigfillset(&act
.sa_mask
);
961 act
.sa_handler
= SIG_DFL
;
962 sigaction(SIGABRT
, &act
, NULL
);
968 #if !defined(CONFIG_USER_ONLY)
969 /* Called from RCU critical section */
970 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
974 block
= atomic_rcu_read(&ram_list
.mru_block
);
975 if (block
&& addr
- block
->offset
< block
->max_length
) {
978 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
979 if (addr
- block
->offset
< block
->max_length
) {
984 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
988 /* It is safe to write mru_block outside the iothread lock. This
993 * xxx removed from list
997 * call_rcu(reclaim_ramblock, xxx);
1000 * atomic_rcu_set is not needed here. The block was already published
1001 * when it was placed into the list. Here we're just making an extra
1002 * copy of the pointer.
1004 ram_list
.mru_block
= block
;
1008 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1015 end
= TARGET_PAGE_ALIGN(start
+ length
);
1016 start
&= TARGET_PAGE_MASK
;
1019 block
= qemu_get_ram_block(start
);
1020 assert(block
== qemu_get_ram_block(end
- 1));
1021 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1023 tlb_reset_dirty(cpu
, start1
, length
);
1028 /* Note: start and end must be within the same ram block. */
1029 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1033 DirtyMemoryBlocks
*blocks
;
1034 unsigned long end
, page
;
1041 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1042 page
= start
>> TARGET_PAGE_BITS
;
1046 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1048 while (page
< end
) {
1049 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1050 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1051 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1053 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1060 if (dirty
&& tcg_enabled()) {
1061 tlb_reset_dirty_range_all(start
, length
);
1067 /* Called from RCU critical section */
1068 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1069 MemoryRegionSection
*section
,
1071 hwaddr paddr
, hwaddr xlat
,
1073 target_ulong
*address
)
1078 if (memory_region_is_ram(section
->mr
)) {
1080 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1081 if (!section
->readonly
) {
1082 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1084 iotlb
|= PHYS_SECTION_ROM
;
1087 AddressSpaceDispatch
*d
;
1089 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1090 iotlb
= section
- d
->map
.sections
;
1094 /* Make accesses to pages with watchpoints go via the
1095 watchpoint trap routines. */
1096 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1097 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1098 /* Avoid trapping reads of pages with a write breakpoint. */
1099 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1100 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1101 *address
|= TLB_MMIO
;
1109 #endif /* defined(CONFIG_USER_ONLY) */
1111 #if !defined(CONFIG_USER_ONLY)
1113 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1115 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1117 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1118 qemu_anon_ram_alloc
;
1121 * Set a custom physical guest memory alloator.
1122 * Accelerators with unusual needs may need this. Hopefully, we can
1123 * get rid of it eventually.
1125 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1127 phys_mem_alloc
= alloc
;
1130 static uint16_t phys_section_add(PhysPageMap
*map
,
1131 MemoryRegionSection
*section
)
1133 /* The physical section number is ORed with a page-aligned
1134 * pointer to produce the iotlb entries. Thus it should
1135 * never overflow into the page-aligned value.
1137 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1139 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1140 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1141 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1142 map
->sections_nb_alloc
);
1144 map
->sections
[map
->sections_nb
] = *section
;
1145 memory_region_ref(section
->mr
);
1146 return map
->sections_nb
++;
1149 static void phys_section_destroy(MemoryRegion
*mr
)
1151 bool have_sub_page
= mr
->subpage
;
1153 memory_region_unref(mr
);
1155 if (have_sub_page
) {
1156 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1157 object_unref(OBJECT(&subpage
->iomem
));
1162 static void phys_sections_free(PhysPageMap
*map
)
1164 while (map
->sections_nb
> 0) {
1165 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1166 phys_section_destroy(section
->mr
);
1168 g_free(map
->sections
);
1172 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1175 hwaddr base
= section
->offset_within_address_space
1177 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1178 d
->map
.nodes
, d
->map
.sections
);
1179 MemoryRegionSection subsection
= {
1180 .offset_within_address_space
= base
,
1181 .size
= int128_make64(TARGET_PAGE_SIZE
),
1185 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1187 if (!(existing
->mr
->subpage
)) {
1188 subpage
= subpage_init(d
->as
, base
);
1189 subsection
.address_space
= d
->as
;
1190 subsection
.mr
= &subpage
->iomem
;
1191 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1192 phys_section_add(&d
->map
, &subsection
));
1194 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1196 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1197 end
= start
+ int128_get64(section
->size
) - 1;
1198 subpage_register(subpage
, start
, end
,
1199 phys_section_add(&d
->map
, section
));
1203 static void register_multipage(AddressSpaceDispatch
*d
,
1204 MemoryRegionSection
*section
)
1206 hwaddr start_addr
= section
->offset_within_address_space
;
1207 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1208 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1212 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1215 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1217 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1218 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1219 MemoryRegionSection now
= *section
, remain
= *section
;
1220 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1222 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1223 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1224 - now
.offset_within_address_space
;
1226 now
.size
= int128_min(int128_make64(left
), now
.size
);
1227 register_subpage(d
, &now
);
1229 now
.size
= int128_zero();
1231 while (int128_ne(remain
.size
, now
.size
)) {
1232 remain
.size
= int128_sub(remain
.size
, now
.size
);
1233 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1234 remain
.offset_within_region
+= int128_get64(now
.size
);
1236 if (int128_lt(remain
.size
, page_size
)) {
1237 register_subpage(d
, &now
);
1238 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1239 now
.size
= page_size
;
1240 register_subpage(d
, &now
);
1242 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1243 register_multipage(d
, &now
);
1248 void qemu_flush_coalesced_mmio_buffer(void)
1251 kvm_flush_coalesced_mmio_buffer();
1254 void qemu_mutex_lock_ramlist(void)
1256 qemu_mutex_lock(&ram_list
.mutex
);
1259 void qemu_mutex_unlock_ramlist(void)
1261 qemu_mutex_unlock(&ram_list
.mutex
);
1265 static void *file_ram_alloc(RAMBlock
*block
,
1270 bool unlink_on_error
= false;
1272 char *sanitized_name
;
1274 void * volatile area
= NULL
;
1278 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1280 "host lacks kvm mmu notifiers, -mem-path unsupported");
1285 fd
= open(path
, O_RDWR
);
1287 /* @path names an existing file, use it */
1290 if (errno
== ENOENT
) {
1291 /* @path names a file that doesn't exist, create it */
1292 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1294 unlink_on_error
= true;
1297 } else if (errno
== EISDIR
) {
1298 /* @path names a directory, create a file there */
1299 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1300 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1301 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1307 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1309 g_free(sanitized_name
);
1311 fd
= mkstemp(filename
);
1319 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1320 error_setg_errno(errp
, errno
,
1321 "can't open backing store %s for guest RAM",
1326 * Try again on EINTR and EEXIST. The latter happens when
1327 * something else creates the file between our two open().
1331 page_size
= qemu_fd_getpagesize(fd
);
1332 block
->mr
->align
= MAX(page_size
, QEMU_VMALLOC_ALIGN
);
1334 if (memory
< page_size
) {
1335 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1336 "or larger than page size 0x%" PRIx64
,
1341 memory
= ROUND_UP(memory
, page_size
);
1344 * ftruncate is not supported by hugetlbfs in older
1345 * hosts, so don't bother bailing out on errors.
1346 * If anything goes wrong with it under other filesystems,
1349 if (ftruncate(fd
, memory
)) {
1350 perror("ftruncate");
1353 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1354 block
->flags
& RAM_SHARED
);
1355 if (area
== MAP_FAILED
) {
1356 error_setg_errno(errp
, errno
,
1357 "unable to map backing store for guest RAM");
1362 os_mem_prealloc(fd
, area
, memory
);
1369 if (unlink_on_error
) {
1379 /* Called with the ramlist lock held. */
1380 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1382 RAMBlock
*block
, *next_block
;
1383 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1385 assert(size
!= 0); /* it would hand out same offset multiple times */
1387 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1391 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1392 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1394 end
= block
->offset
+ block
->max_length
;
1396 QLIST_FOREACH_RCU(next_block
, &ram_list
.blocks
, next
) {
1397 if (next_block
->offset
>= end
) {
1398 next
= MIN(next
, next_block
->offset
);
1401 if (next
- end
>= size
&& next
- end
< mingap
) {
1403 mingap
= next
- end
;
1407 if (offset
== RAM_ADDR_MAX
) {
1408 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1416 ram_addr_t
last_ram_offset(void)
1419 ram_addr_t last
= 0;
1422 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1423 last
= MAX(last
, block
->offset
+ block
->max_length
);
1429 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1433 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1434 if (!machine_dump_guest_core(current_machine
)) {
1435 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1437 perror("qemu_madvise");
1438 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1439 "but dump_guest_core=off specified\n");
1444 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1449 /* Called with iothread lock held. */
1450 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1455 assert(!new_block
->idstr
[0]);
1458 char *id
= qdev_get_dev_path(dev
);
1460 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1464 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1467 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1468 if (block
!= new_block
&&
1469 !strcmp(block
->idstr
, new_block
->idstr
)) {
1470 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1478 /* Called with iothread lock held. */
1479 void qemu_ram_unset_idstr(RAMBlock
*block
)
1481 /* FIXME: arch_init.c assumes that this is not called throughout
1482 * migration. Ignore the problem since hot-unplug during migration
1483 * does not work anyway.
1486 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1490 static int memory_try_enable_merging(void *addr
, size_t len
)
1492 if (!machine_mem_merge(current_machine
)) {
1493 /* disabled by the user */
1497 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1500 /* Only legal before guest might have detected the memory size: e.g. on
1501 * incoming migration, or right after reset.
1503 * As memory core doesn't know how is memory accessed, it is up to
1504 * resize callback to update device state and/or add assertions to detect
1505 * misuse, if necessary.
1507 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1511 newsize
= HOST_PAGE_ALIGN(newsize
);
1513 if (block
->used_length
== newsize
) {
1517 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1518 error_setg_errno(errp
, EINVAL
,
1519 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1520 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1521 newsize
, block
->used_length
);
1525 if (block
->max_length
< newsize
) {
1526 error_setg_errno(errp
, EINVAL
,
1527 "Length too large: %s: 0x" RAM_ADDR_FMT
1528 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1529 newsize
, block
->max_length
);
1533 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1534 block
->used_length
= newsize
;
1535 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1537 memory_region_set_size(block
->mr
, newsize
);
1538 if (block
->resized
) {
1539 block
->resized(block
->idstr
, newsize
, block
->host
);
1544 /* Called with ram_list.mutex held */
1545 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1546 ram_addr_t new_ram_size
)
1548 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1549 DIRTY_MEMORY_BLOCK_SIZE
);
1550 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1551 DIRTY_MEMORY_BLOCK_SIZE
);
1554 /* Only need to extend if block count increased */
1555 if (new_num_blocks
<= old_num_blocks
) {
1559 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1560 DirtyMemoryBlocks
*old_blocks
;
1561 DirtyMemoryBlocks
*new_blocks
;
1564 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1565 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1566 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1568 if (old_num_blocks
) {
1569 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1570 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1573 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1574 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1577 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1580 g_free_rcu(old_blocks
, rcu
);
1585 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1588 RAMBlock
*last_block
= NULL
;
1589 ram_addr_t old_ram_size
, new_ram_size
;
1592 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1594 qemu_mutex_lock_ramlist();
1595 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1597 if (!new_block
->host
) {
1598 if (xen_enabled()) {
1599 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1600 new_block
->mr
, &err
);
1602 error_propagate(errp
, err
);
1603 qemu_mutex_unlock_ramlist();
1607 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1608 &new_block
->mr
->align
);
1609 if (!new_block
->host
) {
1610 error_setg_errno(errp
, errno
,
1611 "cannot set up guest memory '%s'",
1612 memory_region_name(new_block
->mr
));
1613 qemu_mutex_unlock_ramlist();
1616 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1620 new_ram_size
= MAX(old_ram_size
,
1621 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1622 if (new_ram_size
> old_ram_size
) {
1623 migration_bitmap_extend(old_ram_size
, new_ram_size
);
1624 dirty_memory_extend(old_ram_size
, new_ram_size
);
1626 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1627 * QLIST (which has an RCU-friendly variant) does not have insertion at
1628 * tail, so save the last element in last_block.
1630 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1632 if (block
->max_length
< new_block
->max_length
) {
1637 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1638 } else if (last_block
) {
1639 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1640 } else { /* list is empty */
1641 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1643 ram_list
.mru_block
= NULL
;
1645 /* Write list before version */
1648 qemu_mutex_unlock_ramlist();
1650 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1651 new_block
->used_length
,
1654 if (new_block
->host
) {
1655 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1656 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1657 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1658 if (kvm_enabled()) {
1659 kvm_setup_guest_memory(new_block
->host
, new_block
->max_length
);
1665 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1666 bool share
, const char *mem_path
,
1669 RAMBlock
*new_block
;
1670 Error
*local_err
= NULL
;
1672 if (xen_enabled()) {
1673 error_setg(errp
, "-mem-path not supported with Xen");
1677 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1679 * file_ram_alloc() needs to allocate just like
1680 * phys_mem_alloc, but we haven't bothered to provide
1684 "-mem-path not supported with this accelerator");
1688 size
= HOST_PAGE_ALIGN(size
);
1689 new_block
= g_malloc0(sizeof(*new_block
));
1691 new_block
->used_length
= size
;
1692 new_block
->max_length
= size
;
1693 new_block
->flags
= share
? RAM_SHARED
: 0;
1694 new_block
->host
= file_ram_alloc(new_block
, size
,
1696 if (!new_block
->host
) {
1701 ram_block_add(new_block
, &local_err
);
1704 error_propagate(errp
, local_err
);
1712 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1713 void (*resized
)(const char*,
1716 void *host
, bool resizeable
,
1717 MemoryRegion
*mr
, Error
**errp
)
1719 RAMBlock
*new_block
;
1720 Error
*local_err
= NULL
;
1722 size
= HOST_PAGE_ALIGN(size
);
1723 max_size
= HOST_PAGE_ALIGN(max_size
);
1724 new_block
= g_malloc0(sizeof(*new_block
));
1726 new_block
->resized
= resized
;
1727 new_block
->used_length
= size
;
1728 new_block
->max_length
= max_size
;
1729 assert(max_size
>= size
);
1731 new_block
->host
= host
;
1733 new_block
->flags
|= RAM_PREALLOC
;
1736 new_block
->flags
|= RAM_RESIZEABLE
;
1738 ram_block_add(new_block
, &local_err
);
1741 error_propagate(errp
, local_err
);
1747 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1748 MemoryRegion
*mr
, Error
**errp
)
1750 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
1753 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1755 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
1758 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
1759 void (*resized
)(const char*,
1762 MemoryRegion
*mr
, Error
**errp
)
1764 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
1767 static void reclaim_ramblock(RAMBlock
*block
)
1769 if (block
->flags
& RAM_PREALLOC
) {
1771 } else if (xen_enabled()) {
1772 xen_invalidate_map_cache_entry(block
->host
);
1774 } else if (block
->fd
>= 0) {
1775 qemu_ram_munmap(block
->host
, block
->max_length
);
1779 qemu_anon_ram_free(block
->host
, block
->max_length
);
1784 void qemu_ram_free(RAMBlock
*block
)
1790 qemu_mutex_lock_ramlist();
1791 QLIST_REMOVE_RCU(block
, next
);
1792 ram_list
.mru_block
= NULL
;
1793 /* Write list before version */
1796 call_rcu(block
, reclaim_ramblock
, rcu
);
1797 qemu_mutex_unlock_ramlist();
1801 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1808 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1809 offset
= addr
- block
->offset
;
1810 if (offset
< block
->max_length
) {
1811 vaddr
= ramblock_ptr(block
, offset
);
1812 if (block
->flags
& RAM_PREALLOC
) {
1814 } else if (xen_enabled()) {
1818 if (block
->fd
>= 0) {
1819 flags
|= (block
->flags
& RAM_SHARED
?
1820 MAP_SHARED
: MAP_PRIVATE
);
1821 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1822 flags
, block
->fd
, offset
);
1825 * Remap needs to match alloc. Accelerators that
1826 * set phys_mem_alloc never remap. If they did,
1827 * we'd need a remap hook here.
1829 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1831 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1832 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1835 if (area
!= vaddr
) {
1836 fprintf(stderr
, "Could not remap addr: "
1837 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1841 memory_try_enable_merging(vaddr
, length
);
1842 qemu_ram_setup_dump(vaddr
, length
);
1847 #endif /* !_WIN32 */
1849 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1850 * This should not be used for general purpose DMA. Use address_space_map
1851 * or address_space_rw instead. For local memory (e.g. video ram) that the
1852 * device owns, use memory_region_get_ram_ptr.
1854 * Called within RCU critical section.
1856 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
1858 RAMBlock
*block
= ram_block
;
1860 if (block
== NULL
) {
1861 block
= qemu_get_ram_block(addr
);
1862 addr
-= block
->offset
;
1865 if (xen_enabled() && block
->host
== NULL
) {
1866 /* We need to check if the requested address is in the RAM
1867 * because we don't want to map the entire memory in QEMU.
1868 * In that case just map until the end of the page.
1870 if (block
->offset
== 0) {
1871 return xen_map_cache(addr
, 0, 0);
1874 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1876 return ramblock_ptr(block
, addr
);
1879 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
1880 * but takes a size argument.
1882 * Called within RCU critical section.
1884 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
1887 RAMBlock
*block
= ram_block
;
1892 if (block
== NULL
) {
1893 block
= qemu_get_ram_block(addr
);
1894 addr
-= block
->offset
;
1896 *size
= MIN(*size
, block
->max_length
- addr
);
1898 if (xen_enabled() && block
->host
== NULL
) {
1899 /* We need to check if the requested address is in the RAM
1900 * because we don't want to map the entire memory in QEMU.
1901 * In that case just map the requested area.
1903 if (block
->offset
== 0) {
1904 return xen_map_cache(addr
, *size
, 1);
1907 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1910 return ramblock_ptr(block
, addr
);
1914 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1917 * ptr: Host pointer to look up
1918 * round_offset: If true round the result offset down to a page boundary
1919 * *ram_addr: set to result ram_addr
1920 * *offset: set to result offset within the RAMBlock
1922 * Returns: RAMBlock (or NULL if not found)
1924 * By the time this function returns, the returned pointer is not protected
1925 * by RCU anymore. If the caller is not within an RCU critical section and
1926 * does not hold the iothread lock, it must have other means of protecting the
1927 * pointer, such as a reference to the region that includes the incoming
1930 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
1934 uint8_t *host
= ptr
;
1936 if (xen_enabled()) {
1937 ram_addr_t ram_addr
;
1939 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1940 block
= qemu_get_ram_block(ram_addr
);
1942 *offset
= ram_addr
- block
->offset
;
1949 block
= atomic_rcu_read(&ram_list
.mru_block
);
1950 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
1954 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1955 /* This case append when the block is not mapped. */
1956 if (block
->host
== NULL
) {
1959 if (host
- block
->host
< block
->max_length
) {
1968 *offset
= (host
- block
->host
);
1970 *offset
&= TARGET_PAGE_MASK
;
1977 * Finds the named RAMBlock
1979 * name: The name of RAMBlock to find
1981 * Returns: RAMBlock (or NULL if not found)
1983 RAMBlock
*qemu_ram_block_by_name(const char *name
)
1987 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1988 if (!strcmp(name
, block
->idstr
)) {
1996 /* Some of the softmmu routines need to translate from a host pointer
1997 (typically a TLB entry) back to a ram offset. */
1998 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2003 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2005 return RAM_ADDR_INVALID
;
2008 return block
->offset
+ offset
;
2011 /* Called within RCU critical section. */
2012 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2013 uint64_t val
, unsigned size
)
2015 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2016 tb_invalidate_phys_page_fast(ram_addr
, size
);
2020 stb_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2023 stw_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2026 stl_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2031 /* Set both VGA and migration bits for simplicity and to remove
2032 * the notdirty callback faster.
2034 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2035 DIRTY_CLIENTS_NOCODE
);
2036 /* we remove the notdirty callback only if the code has been
2038 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2039 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2043 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2044 unsigned size
, bool is_write
)
2049 static const MemoryRegionOps notdirty_mem_ops
= {
2050 .write
= notdirty_mem_write
,
2051 .valid
.accepts
= notdirty_mem_accepts
,
2052 .endianness
= DEVICE_NATIVE_ENDIAN
,
2055 /* Generate a debug exception if a watchpoint has been hit. */
2056 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2058 CPUState
*cpu
= current_cpu
;
2059 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2060 CPUArchState
*env
= cpu
->env_ptr
;
2061 target_ulong pc
, cs_base
;
2066 if (cpu
->watchpoint_hit
) {
2067 /* We re-entered the check after replacing the TB. Now raise
2068 * the debug interrupt so that is will trigger after the
2069 * current instruction. */
2070 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2073 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2074 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2075 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2076 && (wp
->flags
& flags
)) {
2077 if (flags
== BP_MEM_READ
) {
2078 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2080 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2082 wp
->hitaddr
= vaddr
;
2083 wp
->hitattrs
= attrs
;
2084 if (!cpu
->watchpoint_hit
) {
2085 if (wp
->flags
& BP_CPU
&&
2086 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2087 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2090 cpu
->watchpoint_hit
= wp
;
2091 tb_check_watchpoint(cpu
);
2092 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2093 cpu
->exception_index
= EXCP_DEBUG
;
2096 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2097 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2098 cpu_loop_exit_noexc(cpu
);
2102 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2107 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2108 so these check for a hit then pass through to the normal out-of-line
2110 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2111 unsigned size
, MemTxAttrs attrs
)
2115 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2116 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2118 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2121 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2124 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2127 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2135 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2136 uint64_t val
, unsigned size
,
2140 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2141 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2143 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2146 address_space_stb(as
, addr
, val
, attrs
, &res
);
2149 address_space_stw(as
, addr
, val
, attrs
, &res
);
2152 address_space_stl(as
, addr
, val
, attrs
, &res
);
2159 static const MemoryRegionOps watch_mem_ops
= {
2160 .read_with_attrs
= watch_mem_read
,
2161 .write_with_attrs
= watch_mem_write
,
2162 .endianness
= DEVICE_NATIVE_ENDIAN
,
2165 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2166 unsigned len
, MemTxAttrs attrs
)
2168 subpage_t
*subpage
= opaque
;
2172 #if defined(DEBUG_SUBPAGE)
2173 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2174 subpage
, len
, addr
);
2176 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2183 *data
= ldub_p(buf
);
2186 *data
= lduw_p(buf
);
2199 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2200 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2202 subpage_t
*subpage
= opaque
;
2205 #if defined(DEBUG_SUBPAGE)
2206 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2207 " value %"PRIx64
"\n",
2208 __func__
, subpage
, len
, addr
, value
);
2226 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2230 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2231 unsigned len
, bool is_write
)
2233 subpage_t
*subpage
= opaque
;
2234 #if defined(DEBUG_SUBPAGE)
2235 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2236 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2239 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2243 static const MemoryRegionOps subpage_ops
= {
2244 .read_with_attrs
= subpage_read
,
2245 .write_with_attrs
= subpage_write
,
2246 .impl
.min_access_size
= 1,
2247 .impl
.max_access_size
= 8,
2248 .valid
.min_access_size
= 1,
2249 .valid
.max_access_size
= 8,
2250 .valid
.accepts
= subpage_accepts
,
2251 .endianness
= DEVICE_NATIVE_ENDIAN
,
2254 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2259 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2261 idx
= SUBPAGE_IDX(start
);
2262 eidx
= SUBPAGE_IDX(end
);
2263 #if defined(DEBUG_SUBPAGE)
2264 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2265 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2267 for (; idx
<= eidx
; idx
++) {
2268 mmio
->sub_section
[idx
] = section
;
2274 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2278 mmio
= g_malloc0(sizeof(subpage_t
));
2282 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2283 NULL
, TARGET_PAGE_SIZE
);
2284 mmio
->iomem
.subpage
= true;
2285 #if defined(DEBUG_SUBPAGE)
2286 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2287 mmio
, base
, TARGET_PAGE_SIZE
);
2289 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2294 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2298 MemoryRegionSection section
= {
2299 .address_space
= as
,
2301 .offset_within_address_space
= 0,
2302 .offset_within_region
= 0,
2303 .size
= int128_2_64(),
2306 return phys_section_add(map
, §ion
);
2309 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2311 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2312 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2313 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2314 MemoryRegionSection
*sections
= d
->map
.sections
;
2316 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2319 static void io_mem_init(void)
2321 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2322 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2324 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2326 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2330 static void mem_begin(MemoryListener
*listener
)
2332 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2333 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2336 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2337 assert(n
== PHYS_SECTION_UNASSIGNED
);
2338 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2339 assert(n
== PHYS_SECTION_NOTDIRTY
);
2340 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2341 assert(n
== PHYS_SECTION_ROM
);
2342 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2343 assert(n
== PHYS_SECTION_WATCH
);
2345 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2347 as
->next_dispatch
= d
;
2350 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2352 phys_sections_free(&d
->map
);
2356 static void mem_commit(MemoryListener
*listener
)
2358 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2359 AddressSpaceDispatch
*cur
= as
->dispatch
;
2360 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2362 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2364 atomic_rcu_set(&as
->dispatch
, next
);
2366 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2370 static void tcg_commit(MemoryListener
*listener
)
2372 CPUAddressSpace
*cpuas
;
2373 AddressSpaceDispatch
*d
;
2375 /* since each CPU stores ram addresses in its TLB cache, we must
2376 reset the modified entries */
2377 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2378 cpu_reloading_memory_map();
2379 /* The CPU and TLB are protected by the iothread lock.
2380 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2381 * may have split the RCU critical section.
2383 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2384 cpuas
->memory_dispatch
= d
;
2385 tlb_flush(cpuas
->cpu
, 1);
2388 void address_space_init_dispatch(AddressSpace
*as
)
2390 as
->dispatch
= NULL
;
2391 as
->dispatch_listener
= (MemoryListener
) {
2393 .commit
= mem_commit
,
2394 .region_add
= mem_add
,
2395 .region_nop
= mem_add
,
2398 memory_listener_register(&as
->dispatch_listener
, as
);
2401 void address_space_unregister(AddressSpace
*as
)
2403 memory_listener_unregister(&as
->dispatch_listener
);
2406 void address_space_destroy_dispatch(AddressSpace
*as
)
2408 AddressSpaceDispatch
*d
= as
->dispatch
;
2410 atomic_rcu_set(&as
->dispatch
, NULL
);
2412 call_rcu(d
, address_space_dispatch_free
, rcu
);
2416 static void memory_map_init(void)
2418 system_memory
= g_malloc(sizeof(*system_memory
));
2420 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2421 address_space_init(&address_space_memory
, system_memory
, "memory");
2423 system_io
= g_malloc(sizeof(*system_io
));
2424 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2426 address_space_init(&address_space_io
, system_io
, "I/O");
2429 MemoryRegion
*get_system_memory(void)
2431 return system_memory
;
2434 MemoryRegion
*get_system_io(void)
2439 #endif /* !defined(CONFIG_USER_ONLY) */
2441 /* physical memory access (slow version, mainly for debug) */
2442 #if defined(CONFIG_USER_ONLY)
2443 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2444 uint8_t *buf
, int len
, int is_write
)
2451 page
= addr
& TARGET_PAGE_MASK
;
2452 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2455 flags
= page_get_flags(page
);
2456 if (!(flags
& PAGE_VALID
))
2459 if (!(flags
& PAGE_WRITE
))
2461 /* XXX: this code should not depend on lock_user */
2462 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2465 unlock_user(p
, addr
, l
);
2467 if (!(flags
& PAGE_READ
))
2469 /* XXX: this code should not depend on lock_user */
2470 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2473 unlock_user(p
, addr
, 0);
2484 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2487 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2488 addr
+= memory_region_get_ram_addr(mr
);
2490 /* No early return if dirty_log_mask is or becomes 0, because
2491 * cpu_physical_memory_set_dirty_range will still call
2492 * xen_modified_memory.
2494 if (dirty_log_mask
) {
2496 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2498 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2499 tb_invalidate_phys_range(addr
, addr
+ length
);
2500 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2502 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2505 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2507 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2509 /* Regions are assumed to support 1-4 byte accesses unless
2510 otherwise specified. */
2511 if (access_size_max
== 0) {
2512 access_size_max
= 4;
2515 /* Bound the maximum access by the alignment of the address. */
2516 if (!mr
->ops
->impl
.unaligned
) {
2517 unsigned align_size_max
= addr
& -addr
;
2518 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2519 access_size_max
= align_size_max
;
2523 /* Don't attempt accesses larger than the maximum. */
2524 if (l
> access_size_max
) {
2525 l
= access_size_max
;
2532 static bool prepare_mmio_access(MemoryRegion
*mr
)
2534 bool unlocked
= !qemu_mutex_iothread_locked();
2535 bool release_lock
= false;
2537 if (unlocked
&& mr
->global_locking
) {
2538 qemu_mutex_lock_iothread();
2540 release_lock
= true;
2542 if (mr
->flush_coalesced_mmio
) {
2544 qemu_mutex_lock_iothread();
2546 qemu_flush_coalesced_mmio_buffer();
2548 qemu_mutex_unlock_iothread();
2552 return release_lock
;
2555 /* Called within RCU critical section. */
2556 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2559 int len
, hwaddr addr1
,
2560 hwaddr l
, MemoryRegion
*mr
)
2564 MemTxResult result
= MEMTX_OK
;
2565 bool release_lock
= false;
2568 if (!memory_access_is_direct(mr
, true)) {
2569 release_lock
|= prepare_mmio_access(mr
);
2570 l
= memory_access_size(mr
, l
, addr1
);
2571 /* XXX: could force current_cpu to NULL to avoid
2575 /* 64 bit write access */
2577 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2581 /* 32 bit write access */
2583 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2587 /* 16 bit write access */
2589 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2593 /* 8 bit write access */
2595 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2603 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2604 memcpy(ptr
, buf
, l
);
2605 invalidate_and_set_dirty(mr
, addr1
, l
);
2609 qemu_mutex_unlock_iothread();
2610 release_lock
= false;
2622 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2628 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2629 const uint8_t *buf
, int len
)
2634 MemTxResult result
= MEMTX_OK
;
2639 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2640 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2648 /* Called within RCU critical section. */
2649 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2650 MemTxAttrs attrs
, uint8_t *buf
,
2651 int len
, hwaddr addr1
, hwaddr l
,
2656 MemTxResult result
= MEMTX_OK
;
2657 bool release_lock
= false;
2660 if (!memory_access_is_direct(mr
, false)) {
2662 release_lock
|= prepare_mmio_access(mr
);
2663 l
= memory_access_size(mr
, l
, addr1
);
2666 /* 64 bit read access */
2667 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2672 /* 32 bit read access */
2673 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2678 /* 16 bit read access */
2679 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2684 /* 8 bit read access */
2685 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2694 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2695 memcpy(buf
, ptr
, l
);
2699 qemu_mutex_unlock_iothread();
2700 release_lock
= false;
2712 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2718 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
2719 MemTxAttrs attrs
, uint8_t *buf
, int len
)
2724 MemTxResult result
= MEMTX_OK
;
2729 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2730 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
2738 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2739 uint8_t *buf
, int len
, bool is_write
)
2742 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2744 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2748 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2749 int len
, int is_write
)
2751 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2752 buf
, len
, is_write
);
2755 enum write_rom_type
{
2760 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2761 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2771 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2773 if (!(memory_region_is_ram(mr
) ||
2774 memory_region_is_romd(mr
))) {
2775 l
= memory_access_size(mr
, l
, addr1
);
2778 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2781 memcpy(ptr
, buf
, l
);
2782 invalidate_and_set_dirty(mr
, addr1
, l
);
2785 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2796 /* used for ROM loading : can write in RAM and ROM */
2797 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2798 const uint8_t *buf
, int len
)
2800 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2803 void cpu_flush_icache_range(hwaddr start
, int len
)
2806 * This function should do the same thing as an icache flush that was
2807 * triggered from within the guest. For TCG we are always cache coherent,
2808 * so there is no need to flush anything. For KVM / Xen we need to flush
2809 * the host's instruction cache at least.
2811 if (tcg_enabled()) {
2815 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2816 start
, NULL
, len
, FLUSH_CACHE
);
2827 static BounceBuffer bounce
;
2829 typedef struct MapClient
{
2831 QLIST_ENTRY(MapClient
) link
;
2834 QemuMutex map_client_list_lock
;
2835 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2836 = QLIST_HEAD_INITIALIZER(map_client_list
);
2838 static void cpu_unregister_map_client_do(MapClient
*client
)
2840 QLIST_REMOVE(client
, link
);
2844 static void cpu_notify_map_clients_locked(void)
2848 while (!QLIST_EMPTY(&map_client_list
)) {
2849 client
= QLIST_FIRST(&map_client_list
);
2850 qemu_bh_schedule(client
->bh
);
2851 cpu_unregister_map_client_do(client
);
2855 void cpu_register_map_client(QEMUBH
*bh
)
2857 MapClient
*client
= g_malloc(sizeof(*client
));
2859 qemu_mutex_lock(&map_client_list_lock
);
2861 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2862 if (!atomic_read(&bounce
.in_use
)) {
2863 cpu_notify_map_clients_locked();
2865 qemu_mutex_unlock(&map_client_list_lock
);
2868 void cpu_exec_init_all(void)
2870 qemu_mutex_init(&ram_list
.mutex
);
2873 qemu_mutex_init(&map_client_list_lock
);
2876 void cpu_unregister_map_client(QEMUBH
*bh
)
2880 qemu_mutex_lock(&map_client_list_lock
);
2881 QLIST_FOREACH(client
, &map_client_list
, link
) {
2882 if (client
->bh
== bh
) {
2883 cpu_unregister_map_client_do(client
);
2887 qemu_mutex_unlock(&map_client_list_lock
);
2890 static void cpu_notify_map_clients(void)
2892 qemu_mutex_lock(&map_client_list_lock
);
2893 cpu_notify_map_clients_locked();
2894 qemu_mutex_unlock(&map_client_list_lock
);
2897 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2905 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2906 if (!memory_access_is_direct(mr
, is_write
)) {
2907 l
= memory_access_size(mr
, l
, addr
);
2908 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2920 /* Map a physical memory region into a host virtual address.
2921 * May map a subset of the requested range, given by and returned in *plen.
2922 * May return NULL if resources needed to perform the mapping are exhausted.
2923 * Use only for reads OR writes - not for read-modify-write operations.
2924 * Use cpu_register_map_client() to know when retrying the map operation is
2925 * likely to succeed.
2927 void *address_space_map(AddressSpace
*as
,
2934 hwaddr l
, xlat
, base
;
2935 MemoryRegion
*mr
, *this_mr
;
2944 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2946 if (!memory_access_is_direct(mr
, is_write
)) {
2947 if (atomic_xchg(&bounce
.in_use
, true)) {
2951 /* Avoid unbounded allocations */
2952 l
= MIN(l
, TARGET_PAGE_SIZE
);
2953 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2957 memory_region_ref(mr
);
2960 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
2966 return bounce
.buffer
;
2980 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2981 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2986 memory_region_ref(mr
);
2988 ptr
= qemu_ram_ptr_length(mr
->ram_block
, base
, plen
);
2994 /* Unmaps a memory region previously mapped by address_space_map().
2995 * Will also mark the memory as dirty if is_write == 1. access_len gives
2996 * the amount of memory that was actually read or written by the caller.
2998 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2999 int is_write
, hwaddr access_len
)
3001 if (buffer
!= bounce
.buffer
) {
3005 mr
= memory_region_from_host(buffer
, &addr1
);
3008 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3010 if (xen_enabled()) {
3011 xen_invalidate_map_cache_entry(buffer
);
3013 memory_region_unref(mr
);
3017 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3018 bounce
.buffer
, access_len
);
3020 qemu_vfree(bounce
.buffer
);
3021 bounce
.buffer
= NULL
;
3022 memory_region_unref(bounce
.mr
);
3023 atomic_mb_set(&bounce
.in_use
, false);
3024 cpu_notify_map_clients();
3027 void *cpu_physical_memory_map(hwaddr addr
,
3031 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3034 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3035 int is_write
, hwaddr access_len
)
3037 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3040 /* warning: addr must be aligned */
3041 static inline uint32_t address_space_ldl_internal(AddressSpace
*as
, hwaddr addr
,
3043 MemTxResult
*result
,
3044 enum device_endian endian
)
3052 bool release_lock
= false;
3055 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3056 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
3057 release_lock
|= prepare_mmio_access(mr
);
3060 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 4, attrs
);
3061 #if defined(TARGET_WORDS_BIGENDIAN)
3062 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3066 if (endian
== DEVICE_BIG_ENDIAN
) {
3072 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3074 case DEVICE_LITTLE_ENDIAN
:
3075 val
= ldl_le_p(ptr
);
3077 case DEVICE_BIG_ENDIAN
:
3078 val
= ldl_be_p(ptr
);
3090 qemu_mutex_unlock_iothread();
3096 uint32_t address_space_ldl(AddressSpace
*as
, hwaddr addr
,
3097 MemTxAttrs attrs
, MemTxResult
*result
)
3099 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3100 DEVICE_NATIVE_ENDIAN
);
3103 uint32_t address_space_ldl_le(AddressSpace
*as
, hwaddr addr
,
3104 MemTxAttrs attrs
, MemTxResult
*result
)
3106 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3107 DEVICE_LITTLE_ENDIAN
);
3110 uint32_t address_space_ldl_be(AddressSpace
*as
, hwaddr addr
,
3111 MemTxAttrs attrs
, MemTxResult
*result
)
3113 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3117 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
3119 return address_space_ldl(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3122 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
3124 return address_space_ldl_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3127 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
3129 return address_space_ldl_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3132 /* warning: addr must be aligned */
3133 static inline uint64_t address_space_ldq_internal(AddressSpace
*as
, hwaddr addr
,
3135 MemTxResult
*result
,
3136 enum device_endian endian
)
3144 bool release_lock
= false;
3147 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3149 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
3150 release_lock
|= prepare_mmio_access(mr
);
3153 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 8, attrs
);
3154 #if defined(TARGET_WORDS_BIGENDIAN)
3155 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3159 if (endian
== DEVICE_BIG_ENDIAN
) {
3165 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3167 case DEVICE_LITTLE_ENDIAN
:
3168 val
= ldq_le_p(ptr
);
3170 case DEVICE_BIG_ENDIAN
:
3171 val
= ldq_be_p(ptr
);
3183 qemu_mutex_unlock_iothread();
3189 uint64_t address_space_ldq(AddressSpace
*as
, hwaddr addr
,
3190 MemTxAttrs attrs
, MemTxResult
*result
)
3192 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3193 DEVICE_NATIVE_ENDIAN
);
3196 uint64_t address_space_ldq_le(AddressSpace
*as
, hwaddr addr
,
3197 MemTxAttrs attrs
, MemTxResult
*result
)
3199 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3200 DEVICE_LITTLE_ENDIAN
);
3203 uint64_t address_space_ldq_be(AddressSpace
*as
, hwaddr addr
,
3204 MemTxAttrs attrs
, MemTxResult
*result
)
3206 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3210 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
3212 return address_space_ldq(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3215 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
3217 return address_space_ldq_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3220 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
3222 return address_space_ldq_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3226 uint32_t address_space_ldub(AddressSpace
*as
, hwaddr addr
,
3227 MemTxAttrs attrs
, MemTxResult
*result
)
3232 r
= address_space_rw(as
, addr
, attrs
, &val
, 1, 0);
3239 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
3241 return address_space_ldub(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3244 /* warning: addr must be aligned */
3245 static inline uint32_t address_space_lduw_internal(AddressSpace
*as
,
3248 MemTxResult
*result
,
3249 enum device_endian endian
)
3257 bool release_lock
= false;
3260 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3262 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
3263 release_lock
|= prepare_mmio_access(mr
);
3266 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 2, attrs
);
3267 #if defined(TARGET_WORDS_BIGENDIAN)
3268 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3272 if (endian
== DEVICE_BIG_ENDIAN
) {
3278 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3280 case DEVICE_LITTLE_ENDIAN
:
3281 val
= lduw_le_p(ptr
);
3283 case DEVICE_BIG_ENDIAN
:
3284 val
= lduw_be_p(ptr
);
3296 qemu_mutex_unlock_iothread();
3302 uint32_t address_space_lduw(AddressSpace
*as
, hwaddr addr
,
3303 MemTxAttrs attrs
, MemTxResult
*result
)
3305 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3306 DEVICE_NATIVE_ENDIAN
);
3309 uint32_t address_space_lduw_le(AddressSpace
*as
, hwaddr addr
,
3310 MemTxAttrs attrs
, MemTxResult
*result
)
3312 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3313 DEVICE_LITTLE_ENDIAN
);
3316 uint32_t address_space_lduw_be(AddressSpace
*as
, hwaddr addr
,
3317 MemTxAttrs attrs
, MemTxResult
*result
)
3319 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3323 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
3325 return address_space_lduw(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3328 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
3330 return address_space_lduw_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3333 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
3335 return address_space_lduw_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3338 /* warning: addr must be aligned. The ram page is not masked as dirty
3339 and the code inside is not invalidated. It is useful if the dirty
3340 bits are used to track modified PTEs */
3341 void address_space_stl_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3342 MemTxAttrs attrs
, MemTxResult
*result
)
3349 uint8_t dirty_log_mask
;
3350 bool release_lock
= false;
3353 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3355 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3356 release_lock
|= prepare_mmio_access(mr
);
3358 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3360 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3363 dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3364 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3365 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
3373 qemu_mutex_unlock_iothread();
3378 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3380 address_space_stl_notdirty(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3383 /* warning: addr must be aligned */
3384 static inline void address_space_stl_internal(AddressSpace
*as
,
3385 hwaddr addr
, uint32_t val
,
3387 MemTxResult
*result
,
3388 enum device_endian endian
)
3395 bool release_lock
= false;
3398 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3400 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3401 release_lock
|= prepare_mmio_access(mr
);
3403 #if defined(TARGET_WORDS_BIGENDIAN)
3404 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3408 if (endian
== DEVICE_BIG_ENDIAN
) {
3412 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3415 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3417 case DEVICE_LITTLE_ENDIAN
:
3420 case DEVICE_BIG_ENDIAN
:
3427 invalidate_and_set_dirty(mr
, addr1
, 4);
3434 qemu_mutex_unlock_iothread();
3439 void address_space_stl(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3440 MemTxAttrs attrs
, MemTxResult
*result
)
3442 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3443 DEVICE_NATIVE_ENDIAN
);
3446 void address_space_stl_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3447 MemTxAttrs attrs
, MemTxResult
*result
)
3449 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3450 DEVICE_LITTLE_ENDIAN
);
3453 void address_space_stl_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3454 MemTxAttrs attrs
, MemTxResult
*result
)
3456 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3460 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3462 address_space_stl(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3465 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3467 address_space_stl_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3470 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3472 address_space_stl_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3476 void address_space_stb(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3477 MemTxAttrs attrs
, MemTxResult
*result
)
3482 r
= address_space_rw(as
, addr
, attrs
, &v
, 1, 1);
3488 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3490 address_space_stb(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3493 /* warning: addr must be aligned */
3494 static inline void address_space_stw_internal(AddressSpace
*as
,
3495 hwaddr addr
, uint32_t val
,
3497 MemTxResult
*result
,
3498 enum device_endian endian
)
3505 bool release_lock
= false;
3508 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3509 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
3510 release_lock
|= prepare_mmio_access(mr
);
3512 #if defined(TARGET_WORDS_BIGENDIAN)
3513 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3517 if (endian
== DEVICE_BIG_ENDIAN
) {
3521 r
= memory_region_dispatch_write(mr
, addr1
, val
, 2, attrs
);
3524 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3526 case DEVICE_LITTLE_ENDIAN
:
3529 case DEVICE_BIG_ENDIAN
:
3536 invalidate_and_set_dirty(mr
, addr1
, 2);
3543 qemu_mutex_unlock_iothread();
3548 void address_space_stw(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3549 MemTxAttrs attrs
, MemTxResult
*result
)
3551 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3552 DEVICE_NATIVE_ENDIAN
);
3555 void address_space_stw_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3556 MemTxAttrs attrs
, MemTxResult
*result
)
3558 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3559 DEVICE_LITTLE_ENDIAN
);
3562 void address_space_stw_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3563 MemTxAttrs attrs
, MemTxResult
*result
)
3565 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3569 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3571 address_space_stw(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3574 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3576 address_space_stw_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3579 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3581 address_space_stw_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3585 void address_space_stq(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3586 MemTxAttrs attrs
, MemTxResult
*result
)
3590 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3596 void address_space_stq_le(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3597 MemTxAttrs attrs
, MemTxResult
*result
)
3600 val
= cpu_to_le64(val
);
3601 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3606 void address_space_stq_be(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3607 MemTxAttrs attrs
, MemTxResult
*result
)
3610 val
= cpu_to_be64(val
);
3611 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3617 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3619 address_space_stq(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3622 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3624 address_space_stq_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3627 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3629 address_space_stq_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3632 /* virtual memory access for debug (includes writing to ROM) */
3633 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3634 uint8_t *buf
, int len
, int is_write
)
3644 page
= addr
& TARGET_PAGE_MASK
;
3645 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3646 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3647 /* if no physical page mapped, return an error */
3648 if (phys_addr
== -1)
3650 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3653 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3655 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3658 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3659 MEMTXATTRS_UNSPECIFIED
,
3670 * Allows code that needs to deal with migration bitmaps etc to still be built
3671 * target independent.
3673 size_t qemu_target_page_bits(void)
3675 return TARGET_PAGE_BITS
;
3681 * A helper function for the _utterly broken_ virtio device model to find out if
3682 * it's running on a big endian machine. Don't do this at home kids!
3684 bool target_words_bigendian(void);
3685 bool target_words_bigendian(void)
3687 #if defined(TARGET_WORDS_BIGENDIAN)
3694 #ifndef CONFIG_USER_ONLY
3695 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3702 mr
= address_space_translate(&address_space_memory
,
3703 phys_addr
, &phys_addr
, &l
, false);
3705 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3710 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3716 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
3717 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3718 block
->used_length
, opaque
);