spapr: Add LMB DR connectors
[qemu/ar7.git] / hw / ppc / spapr.c
blob940a82fc716307719e315a350272108ffddbd29f
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
29 #include "hw/hw.h"
30 #include "hw/fw-path-provider.h"
31 #include "elf.h"
32 #include "net/net.h"
33 #include "sysemu/device_tree.h"
34 #include "sysemu/block-backend.h"
35 #include "sysemu/cpus.h"
36 #include "sysemu/kvm.h"
37 #include "kvm_ppc.h"
38 #include "migration/migration.h"
39 #include "mmu-hash64.h"
40 #include "qom/cpu.h"
42 #include "hw/boards.h"
43 #include "hw/ppc/ppc.h"
44 #include "hw/loader.h"
46 #include "hw/ppc/spapr.h"
47 #include "hw/ppc/spapr_vio.h"
48 #include "hw/pci-host/spapr.h"
49 #include "hw/ppc/xics.h"
50 #include "hw/pci/msi.h"
52 #include "hw/pci/pci.h"
53 #include "hw/scsi/scsi.h"
54 #include "hw/virtio/virtio-scsi.h"
56 #include "exec/address-spaces.h"
57 #include "hw/usb.h"
58 #include "qemu/config-file.h"
59 #include "qemu/error-report.h"
60 #include "trace.h"
61 #include "hw/nmi.h"
63 #include "hw/compat.h"
64 #include "qemu-common.h"
66 #include <libfdt.h>
68 /* SLOF memory layout:
70 * SLOF raw image loaded at 0, copies its romfs right below the flat
71 * device-tree, then position SLOF itself 31M below that
73 * So we set FW_OVERHEAD to 40MB which should account for all of that
74 * and more
76 * We load our kernel at 4M, leaving space for SLOF initial image
78 #define FDT_MAX_SIZE 0x100000
79 #define RTAS_MAX_SIZE 0x10000
80 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
81 #define FW_MAX_SIZE 0x400000
82 #define FW_FILE_NAME "slof.bin"
83 #define FW_OVERHEAD 0x2800000
84 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
86 #define MIN_RMA_SLOF 128UL
88 #define TIMEBASE_FREQ 512000000ULL
90 #define PHANDLE_XICP 0x00001111
92 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
94 static XICSState *try_create_xics(const char *type, int nr_servers,
95 int nr_irqs, Error **errp)
97 Error *err = NULL;
98 DeviceState *dev;
100 dev = qdev_create(NULL, type);
101 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
102 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
103 object_property_set_bool(OBJECT(dev), true, "realized", &err);
104 if (err) {
105 error_propagate(errp, err);
106 object_unparent(OBJECT(dev));
107 return NULL;
109 return XICS_COMMON(dev);
112 static XICSState *xics_system_init(MachineState *machine,
113 int nr_servers, int nr_irqs)
115 XICSState *icp = NULL;
117 if (kvm_enabled()) {
118 Error *err = NULL;
120 if (machine_kernel_irqchip_allowed(machine)) {
121 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
123 if (machine_kernel_irqchip_required(machine) && !icp) {
124 error_report("kernel_irqchip requested but unavailable: %s",
125 error_get_pretty(err));
129 if (!icp) {
130 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
133 return icp;
136 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
137 int smt_threads)
139 int i, ret = 0;
140 uint32_t servers_prop[smt_threads];
141 uint32_t gservers_prop[smt_threads * 2];
142 int index = ppc_get_vcpu_dt_id(cpu);
144 if (cpu->cpu_version) {
145 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
146 if (ret < 0) {
147 return ret;
151 /* Build interrupt servers and gservers properties */
152 for (i = 0; i < smt_threads; i++) {
153 servers_prop[i] = cpu_to_be32(index + i);
154 /* Hack, direct the group queues back to cpu 0 */
155 gservers_prop[i*2] = cpu_to_be32(index + i);
156 gservers_prop[i*2 + 1] = 0;
158 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
159 servers_prop, sizeof(servers_prop));
160 if (ret < 0) {
161 return ret;
163 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
164 gservers_prop, sizeof(gservers_prop));
166 return ret;
169 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
171 int ret = 0;
172 PowerPCCPU *cpu = POWERPC_CPU(cs);
173 int index = ppc_get_vcpu_dt_id(cpu);
174 uint32_t associativity[] = {cpu_to_be32(0x5),
175 cpu_to_be32(0x0),
176 cpu_to_be32(0x0),
177 cpu_to_be32(0x0),
178 cpu_to_be32(cs->numa_node),
179 cpu_to_be32(index)};
181 /* Advertise NUMA via ibm,associativity */
182 if (nb_numa_nodes > 1) {
183 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
184 sizeof(associativity));
187 return ret;
190 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
192 int ret = 0, offset, cpus_offset;
193 CPUState *cs;
194 char cpu_model[32];
195 int smt = kvmppc_smt_threads();
196 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
198 CPU_FOREACH(cs) {
199 PowerPCCPU *cpu = POWERPC_CPU(cs);
200 DeviceClass *dc = DEVICE_GET_CLASS(cs);
201 int index = ppc_get_vcpu_dt_id(cpu);
203 if ((index % smt) != 0) {
204 continue;
207 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
209 cpus_offset = fdt_path_offset(fdt, "/cpus");
210 if (cpus_offset < 0) {
211 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
212 "cpus");
213 if (cpus_offset < 0) {
214 return cpus_offset;
217 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
218 if (offset < 0) {
219 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
220 if (offset < 0) {
221 return offset;
225 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
226 pft_size_prop, sizeof(pft_size_prop));
227 if (ret < 0) {
228 return ret;
231 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
232 if (ret < 0) {
233 return ret;
236 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
237 ppc_get_compat_smt_threads(cpu));
238 if (ret < 0) {
239 return ret;
242 return ret;
246 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
247 size_t maxsize)
249 size_t maxcells = maxsize / sizeof(uint32_t);
250 int i, j, count;
251 uint32_t *p = prop;
253 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
254 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
256 if (!sps->page_shift) {
257 break;
259 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
260 if (sps->enc[count].page_shift == 0) {
261 break;
264 if ((p - prop) >= (maxcells - 3 - count * 2)) {
265 break;
267 *(p++) = cpu_to_be32(sps->page_shift);
268 *(p++) = cpu_to_be32(sps->slb_enc);
269 *(p++) = cpu_to_be32(count);
270 for (j = 0; j < count; j++) {
271 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
272 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
276 return (p - prop) * sizeof(uint32_t);
279 static hwaddr spapr_node0_size(void)
281 MachineState *machine = MACHINE(qdev_get_machine());
283 if (nb_numa_nodes) {
284 int i;
285 for (i = 0; i < nb_numa_nodes; ++i) {
286 if (numa_info[i].node_mem) {
287 return MIN(pow2floor(numa_info[i].node_mem),
288 machine->ram_size);
292 return machine->ram_size;
295 #define _FDT(exp) \
296 do { \
297 int ret = (exp); \
298 if (ret < 0) { \
299 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
300 #exp, fdt_strerror(ret)); \
301 exit(1); \
303 } while (0)
305 static void add_str(GString *s, const gchar *s1)
307 g_string_append_len(s, s1, strlen(s1) + 1);
310 static void *spapr_create_fdt_skel(hwaddr initrd_base,
311 hwaddr initrd_size,
312 hwaddr kernel_size,
313 bool little_endian,
314 const char *kernel_cmdline,
315 uint32_t epow_irq)
317 void *fdt;
318 uint32_t start_prop = cpu_to_be32(initrd_base);
319 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
320 GString *hypertas = g_string_sized_new(256);
321 GString *qemu_hypertas = g_string_sized_new(256);
322 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
323 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
324 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
325 char *buf;
327 add_str(hypertas, "hcall-pft");
328 add_str(hypertas, "hcall-term");
329 add_str(hypertas, "hcall-dabr");
330 add_str(hypertas, "hcall-interrupt");
331 add_str(hypertas, "hcall-tce");
332 add_str(hypertas, "hcall-vio");
333 add_str(hypertas, "hcall-splpar");
334 add_str(hypertas, "hcall-bulk");
335 add_str(hypertas, "hcall-set-mode");
336 add_str(qemu_hypertas, "hcall-memop1");
338 fdt = g_malloc0(FDT_MAX_SIZE);
339 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
341 if (kernel_size) {
342 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
344 if (initrd_size) {
345 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
347 _FDT((fdt_finish_reservemap(fdt)));
349 /* Root node */
350 _FDT((fdt_begin_node(fdt, "")));
351 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
352 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
353 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
356 * Add info to guest to indentify which host is it being run on
357 * and what is the uuid of the guest
359 if (kvmppc_get_host_model(&buf)) {
360 _FDT((fdt_property_string(fdt, "host-model", buf)));
361 g_free(buf);
363 if (kvmppc_get_host_serial(&buf)) {
364 _FDT((fdt_property_string(fdt, "host-serial", buf)));
365 g_free(buf);
368 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
369 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
370 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
371 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
372 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
373 qemu_uuid[14], qemu_uuid[15]);
375 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
376 g_free(buf);
378 if (qemu_get_vm_name()) {
379 _FDT((fdt_property_string(fdt, "ibm,partition-name",
380 qemu_get_vm_name())));
383 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
384 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
386 /* /chosen */
387 _FDT((fdt_begin_node(fdt, "chosen")));
389 /* Set Form1_affinity */
390 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
392 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
393 _FDT((fdt_property(fdt, "linux,initrd-start",
394 &start_prop, sizeof(start_prop))));
395 _FDT((fdt_property(fdt, "linux,initrd-end",
396 &end_prop, sizeof(end_prop))));
397 if (kernel_size) {
398 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
399 cpu_to_be64(kernel_size) };
401 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
402 if (little_endian) {
403 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
406 if (boot_menu) {
407 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
409 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
410 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
411 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
413 _FDT((fdt_end_node(fdt)));
415 /* RTAS */
416 _FDT((fdt_begin_node(fdt, "rtas")));
418 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
419 add_str(hypertas, "hcall-multi-tce");
421 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
422 hypertas->len)));
423 g_string_free(hypertas, TRUE);
424 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
425 qemu_hypertas->len)));
426 g_string_free(qemu_hypertas, TRUE);
428 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
429 refpoints, sizeof(refpoints))));
431 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
432 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
433 RTAS_EVENT_SCAN_RATE)));
435 if (msi_supported) {
436 _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
440 * According to PAPR, rtas ibm,os-term does not guarantee a return
441 * back to the guest cpu.
443 * While an additional ibm,extended-os-term property indicates that
444 * rtas call return will always occur. Set this property.
446 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
448 _FDT((fdt_end_node(fdt)));
450 /* interrupt controller */
451 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
453 _FDT((fdt_property_string(fdt, "device_type",
454 "PowerPC-External-Interrupt-Presentation")));
455 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
456 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
457 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
458 interrupt_server_ranges_prop,
459 sizeof(interrupt_server_ranges_prop))));
460 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
461 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
462 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
464 _FDT((fdt_end_node(fdt)));
466 /* vdevice */
467 _FDT((fdt_begin_node(fdt, "vdevice")));
469 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
470 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
471 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
472 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
473 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
474 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
476 _FDT((fdt_end_node(fdt)));
478 /* event-sources */
479 spapr_events_fdt_skel(fdt, epow_irq);
481 /* /hypervisor node */
482 if (kvm_enabled()) {
483 uint8_t hypercall[16];
485 /* indicate KVM hypercall interface */
486 _FDT((fdt_begin_node(fdt, "hypervisor")));
487 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
488 if (kvmppc_has_cap_fixup_hcalls()) {
490 * Older KVM versions with older guest kernels were broken with the
491 * magic page, don't allow the guest to map it.
493 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
494 sizeof(hypercall));
495 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
496 sizeof(hypercall))));
498 _FDT((fdt_end_node(fdt)));
501 _FDT((fdt_end_node(fdt))); /* close root node */
502 _FDT((fdt_finish(fdt)));
504 return fdt;
507 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
508 target_ulong addr, target_ulong size)
510 void *fdt, *fdt_skel;
511 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
513 size -= sizeof(hdr);
515 /* Create sceleton */
516 fdt_skel = g_malloc0(size);
517 _FDT((fdt_create(fdt_skel, size)));
518 _FDT((fdt_begin_node(fdt_skel, "")));
519 _FDT((fdt_end_node(fdt_skel)));
520 _FDT((fdt_finish(fdt_skel)));
521 fdt = g_malloc0(size);
522 _FDT((fdt_open_into(fdt_skel, fdt, size)));
523 g_free(fdt_skel);
525 /* Fix skeleton up */
526 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
528 /* Pack resulting tree */
529 _FDT((fdt_pack(fdt)));
531 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
532 trace_spapr_cas_failed(size);
533 return -1;
536 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
537 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
538 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
539 g_free(fdt);
541 return 0;
544 static void spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
545 hwaddr size)
547 uint32_t associativity[] = {
548 cpu_to_be32(0x4), /* length */
549 cpu_to_be32(0x0), cpu_to_be32(0x0),
550 cpu_to_be32(0x0), cpu_to_be32(nodeid)
552 char mem_name[32];
553 uint64_t mem_reg_property[2];
554 int off;
556 mem_reg_property[0] = cpu_to_be64(start);
557 mem_reg_property[1] = cpu_to_be64(size);
559 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
560 off = fdt_add_subnode(fdt, 0, mem_name);
561 _FDT(off);
562 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
563 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
564 sizeof(mem_reg_property))));
565 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
566 sizeof(associativity))));
569 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
571 MachineState *machine = MACHINE(spapr);
572 hwaddr mem_start, node_size;
573 int i, nb_nodes = nb_numa_nodes;
574 NodeInfo *nodes = numa_info;
575 NodeInfo ramnode;
577 /* No NUMA nodes, assume there is just one node with whole RAM */
578 if (!nb_numa_nodes) {
579 nb_nodes = 1;
580 ramnode.node_mem = machine->ram_size;
581 nodes = &ramnode;
584 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
585 if (!nodes[i].node_mem) {
586 continue;
588 if (mem_start >= machine->ram_size) {
589 node_size = 0;
590 } else {
591 node_size = nodes[i].node_mem;
592 if (node_size > machine->ram_size - mem_start) {
593 node_size = machine->ram_size - mem_start;
596 if (!mem_start) {
597 /* ppc_spapr_init() checks for rma_size <= node0_size already */
598 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
599 mem_start += spapr->rma_size;
600 node_size -= spapr->rma_size;
602 for ( ; node_size; ) {
603 hwaddr sizetmp = pow2floor(node_size);
605 /* mem_start != 0 here */
606 if (ctzl(mem_start) < ctzl(sizetmp)) {
607 sizetmp = 1ULL << ctzl(mem_start);
610 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
611 node_size -= sizetmp;
612 mem_start += sizetmp;
616 return 0;
619 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
620 sPAPRMachineState *spapr)
622 PowerPCCPU *cpu = POWERPC_CPU(cs);
623 CPUPPCState *env = &cpu->env;
624 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
625 int index = ppc_get_vcpu_dt_id(cpu);
626 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
627 0xffffffff, 0xffffffff};
628 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
629 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
630 uint32_t page_sizes_prop[64];
631 size_t page_sizes_prop_size;
632 uint32_t vcpus_per_socket = smp_threads * smp_cores;
633 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
635 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
636 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
638 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
639 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
640 env->dcache_line_size)));
641 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
642 env->dcache_line_size)));
643 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
644 env->icache_line_size)));
645 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
646 env->icache_line_size)));
648 if (pcc->l1_dcache_size) {
649 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
650 pcc->l1_dcache_size)));
651 } else {
652 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
654 if (pcc->l1_icache_size) {
655 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
656 pcc->l1_icache_size)));
657 } else {
658 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
661 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
662 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
663 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
664 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
665 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
667 if (env->spr_cb[SPR_PURR].oea_read) {
668 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
671 if (env->mmu_model & POWERPC_MMU_1TSEG) {
672 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
673 segs, sizeof(segs))));
676 /* Advertise VMX/VSX (vector extensions) if available
677 * 0 / no property == no vector extensions
678 * 1 == VMX / Altivec available
679 * 2 == VSX available */
680 if (env->insns_flags & PPC_ALTIVEC) {
681 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
683 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
686 /* Advertise DFP (Decimal Floating Point) if available
687 * 0 / no property == no DFP
688 * 1 == DFP available */
689 if (env->insns_flags2 & PPC2_DFP) {
690 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
693 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
694 sizeof(page_sizes_prop));
695 if (page_sizes_prop_size) {
696 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
697 page_sizes_prop, page_sizes_prop_size)));
700 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
701 cs->cpu_index / vcpus_per_socket)));
703 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
704 pft_size_prop, sizeof(pft_size_prop))));
706 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
708 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
709 ppc_get_compat_smt_threads(cpu)));
712 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
714 CPUState *cs;
715 int cpus_offset;
716 char *nodename;
717 int smt = kvmppc_smt_threads();
719 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
720 _FDT(cpus_offset);
721 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
722 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
725 * We walk the CPUs in reverse order to ensure that CPU DT nodes
726 * created by fdt_add_subnode() end up in the right order in FDT
727 * for the guest kernel the enumerate the CPUs correctly.
729 CPU_FOREACH_REVERSE(cs) {
730 PowerPCCPU *cpu = POWERPC_CPU(cs);
731 int index = ppc_get_vcpu_dt_id(cpu);
732 DeviceClass *dc = DEVICE_GET_CLASS(cs);
733 int offset;
735 if ((index % smt) != 0) {
736 continue;
739 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
740 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
741 g_free(nodename);
742 _FDT(offset);
743 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
748 static void spapr_finalize_fdt(sPAPRMachineState *spapr,
749 hwaddr fdt_addr,
750 hwaddr rtas_addr,
751 hwaddr rtas_size)
753 MachineState *machine = MACHINE(qdev_get_machine());
754 const char *boot_device = machine->boot_order;
755 int ret, i;
756 size_t cb = 0;
757 char *bootlist;
758 void *fdt;
759 sPAPRPHBState *phb;
761 fdt = g_malloc(FDT_MAX_SIZE);
763 /* open out the base tree into a temp buffer for the final tweaks */
764 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
766 ret = spapr_populate_memory(spapr, fdt);
767 if (ret < 0) {
768 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
769 exit(1);
772 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
773 if (ret < 0) {
774 fprintf(stderr, "couldn't setup vio devices in fdt\n");
775 exit(1);
778 QLIST_FOREACH(phb, &spapr->phbs, list) {
779 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
782 if (ret < 0) {
783 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
784 exit(1);
787 /* RTAS */
788 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
789 if (ret < 0) {
790 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
793 /* cpus */
794 spapr_populate_cpus_dt_node(fdt, spapr);
796 bootlist = get_boot_devices_list(&cb, true);
797 if (cb && bootlist) {
798 int offset = fdt_path_offset(fdt, "/chosen");
799 if (offset < 0) {
800 exit(1);
802 for (i = 0; i < cb; i++) {
803 if (bootlist[i] == '\n') {
804 bootlist[i] = ' ';
808 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
811 if (boot_device && strlen(boot_device)) {
812 int offset = fdt_path_offset(fdt, "/chosen");
814 if (offset < 0) {
815 exit(1);
817 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
820 if (!spapr->has_graphics) {
821 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
824 _FDT((fdt_pack(fdt)));
826 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
827 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
828 fdt_totalsize(fdt), FDT_MAX_SIZE);
829 exit(1);
832 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
833 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
835 g_free(bootlist);
836 g_free(fdt);
839 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
841 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
844 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
846 CPUPPCState *env = &cpu->env;
848 if (msr_pr) {
849 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
850 env->gpr[3] = H_PRIVILEGE;
851 } else {
852 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
856 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
857 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
858 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
859 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
860 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
862 static void spapr_reset_htab(sPAPRMachineState *spapr)
864 long shift;
865 int index;
867 /* allocate hash page table. For now we always make this 16mb,
868 * later we should probably make it scale to the size of guest
869 * RAM */
871 shift = kvmppc_reset_htab(spapr->htab_shift);
873 if (shift > 0) {
874 /* Kernel handles htab, we don't need to allocate one */
875 spapr->htab_shift = shift;
876 kvmppc_kern_htab = true;
878 /* Tell readers to update their file descriptor */
879 if (spapr->htab_fd >= 0) {
880 spapr->htab_fd_stale = true;
882 } else {
883 if (!spapr->htab) {
884 /* Allocate an htab if we don't yet have one */
885 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
888 /* And clear it */
889 memset(spapr->htab, 0, HTAB_SIZE(spapr));
891 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
892 DIRTY_HPTE(HPTE(spapr->htab, index));
896 /* Update the RMA size if necessary */
897 if (spapr->vrma_adjust) {
898 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
899 spapr->htab_shift);
903 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
905 bool matched = false;
907 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
908 matched = true;
911 if (!matched) {
912 error_report("Device %s is not supported by this machine yet.",
913 qdev_fw_name(DEVICE(sbdev)));
914 exit(1);
917 return 0;
921 * A guest reset will cause spapr->htab_fd to become stale if being used.
922 * Reopen the file descriptor to make sure the whole HTAB is properly read.
924 static int spapr_check_htab_fd(sPAPRMachineState *spapr)
926 int rc = 0;
928 if (spapr->htab_fd_stale) {
929 close(spapr->htab_fd);
930 spapr->htab_fd = kvmppc_get_htab_fd(false);
931 if (spapr->htab_fd < 0) {
932 error_report("Unable to open fd for reading hash table from KVM: "
933 "%s", strerror(errno));
934 rc = -1;
936 spapr->htab_fd_stale = false;
939 return rc;
942 static void ppc_spapr_reset(void)
944 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
945 PowerPCCPU *first_ppc_cpu;
946 uint32_t rtas_limit;
948 /* Check for unknown sysbus devices */
949 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
951 /* Reset the hash table & recalc the RMA */
952 spapr_reset_htab(spapr);
954 qemu_devices_reset();
957 * We place the device tree and RTAS just below either the top of the RMA,
958 * or just below 2GB, whichever is lowere, so that it can be
959 * processed with 32-bit real mode code if necessary
961 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
962 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
963 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
965 /* Load the fdt */
966 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
967 spapr->rtas_size);
969 /* Copy RTAS over */
970 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
971 spapr->rtas_size);
973 /* Set up the entry state */
974 first_ppc_cpu = POWERPC_CPU(first_cpu);
975 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
976 first_ppc_cpu->env.gpr[5] = 0;
977 first_cpu->halted = 0;
978 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
982 static void spapr_cpu_reset(void *opaque)
984 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
985 PowerPCCPU *cpu = opaque;
986 CPUState *cs = CPU(cpu);
987 CPUPPCState *env = &cpu->env;
989 cpu_reset(cs);
991 /* All CPUs start halted. CPU0 is unhalted from the machine level
992 * reset code and the rest are explicitly started up by the guest
993 * using an RTAS call */
994 cs->halted = 1;
996 env->spr[SPR_HIOR] = 0;
998 env->external_htab = (uint8_t *)spapr->htab;
999 if (kvm_enabled() && !env->external_htab) {
1001 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
1002 * functions do the right thing.
1004 env->external_htab = (void *)1;
1006 env->htab_base = -1;
1008 * htab_mask is the mask used to normalize hash value to PTEG index.
1009 * htab_shift is log2 of hash table size.
1010 * We have 8 hpte per group, and each hpte is 16 bytes.
1011 * ie have 128 bytes per hpte entry.
1013 env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
1014 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
1015 (spapr->htab_shift - 18);
1018 static void spapr_create_nvram(sPAPRMachineState *spapr)
1020 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1021 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1023 if (dinfo) {
1024 qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
1027 qdev_init_nofail(dev);
1029 spapr->nvram = (struct sPAPRNVRAM *)dev;
1032 static void spapr_rtc_create(sPAPRMachineState *spapr)
1034 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1036 qdev_init_nofail(dev);
1037 spapr->rtc = dev;
1039 object_property_add_alias(qdev_get_machine(), "rtc-time",
1040 OBJECT(spapr->rtc), "date", NULL);
1043 /* Returns whether we want to use VGA or not */
1044 static int spapr_vga_init(PCIBus *pci_bus)
1046 switch (vga_interface_type) {
1047 case VGA_NONE:
1048 return false;
1049 case VGA_DEVICE:
1050 return true;
1051 case VGA_STD:
1052 return pci_vga_init(pci_bus) != NULL;
1053 default:
1054 fprintf(stderr, "This vga model is not supported,"
1055 "currently it only supports -vga std\n");
1056 exit(0);
1060 static int spapr_post_load(void *opaque, int version_id)
1062 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1063 int err = 0;
1065 /* In earlier versions, there was no separate qdev for the PAPR
1066 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1067 * So when migrating from those versions, poke the incoming offset
1068 * value into the RTC device */
1069 if (version_id < 3) {
1070 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1073 return err;
1076 static bool version_before_3(void *opaque, int version_id)
1078 return version_id < 3;
1081 static const VMStateDescription vmstate_spapr = {
1082 .name = "spapr",
1083 .version_id = 3,
1084 .minimum_version_id = 1,
1085 .post_load = spapr_post_load,
1086 .fields = (VMStateField[]) {
1087 /* used to be @next_irq */
1088 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1090 /* RTC offset */
1091 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1093 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1094 VMSTATE_END_OF_LIST()
1098 static int htab_save_setup(QEMUFile *f, void *opaque)
1100 sPAPRMachineState *spapr = opaque;
1102 /* "Iteration" header */
1103 qemu_put_be32(f, spapr->htab_shift);
1105 if (spapr->htab) {
1106 spapr->htab_save_index = 0;
1107 spapr->htab_first_pass = true;
1108 } else {
1109 assert(kvm_enabled());
1111 spapr->htab_fd = kvmppc_get_htab_fd(false);
1112 spapr->htab_fd_stale = false;
1113 if (spapr->htab_fd < 0) {
1114 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
1115 strerror(errno));
1116 return -1;
1121 return 0;
1124 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1125 int64_t max_ns)
1127 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1128 int index = spapr->htab_save_index;
1129 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1131 assert(spapr->htab_first_pass);
1133 do {
1134 int chunkstart;
1136 /* Consume invalid HPTEs */
1137 while ((index < htabslots)
1138 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1139 index++;
1140 CLEAN_HPTE(HPTE(spapr->htab, index));
1143 /* Consume valid HPTEs */
1144 chunkstart = index;
1145 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1146 && HPTE_VALID(HPTE(spapr->htab, index))) {
1147 index++;
1148 CLEAN_HPTE(HPTE(spapr->htab, index));
1151 if (index > chunkstart) {
1152 int n_valid = index - chunkstart;
1154 qemu_put_be32(f, chunkstart);
1155 qemu_put_be16(f, n_valid);
1156 qemu_put_be16(f, 0);
1157 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1158 HASH_PTE_SIZE_64 * n_valid);
1160 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1161 break;
1164 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1166 if (index >= htabslots) {
1167 assert(index == htabslots);
1168 index = 0;
1169 spapr->htab_first_pass = false;
1171 spapr->htab_save_index = index;
1174 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1175 int64_t max_ns)
1177 bool final = max_ns < 0;
1178 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1179 int examined = 0, sent = 0;
1180 int index = spapr->htab_save_index;
1181 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1183 assert(!spapr->htab_first_pass);
1185 do {
1186 int chunkstart, invalidstart;
1188 /* Consume non-dirty HPTEs */
1189 while ((index < htabslots)
1190 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1191 index++;
1192 examined++;
1195 chunkstart = index;
1196 /* Consume valid dirty HPTEs */
1197 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1198 && HPTE_DIRTY(HPTE(spapr->htab, index))
1199 && HPTE_VALID(HPTE(spapr->htab, index))) {
1200 CLEAN_HPTE(HPTE(spapr->htab, index));
1201 index++;
1202 examined++;
1205 invalidstart = index;
1206 /* Consume invalid dirty HPTEs */
1207 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1208 && HPTE_DIRTY(HPTE(spapr->htab, index))
1209 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1210 CLEAN_HPTE(HPTE(spapr->htab, index));
1211 index++;
1212 examined++;
1215 if (index > chunkstart) {
1216 int n_valid = invalidstart - chunkstart;
1217 int n_invalid = index - invalidstart;
1219 qemu_put_be32(f, chunkstart);
1220 qemu_put_be16(f, n_valid);
1221 qemu_put_be16(f, n_invalid);
1222 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1223 HASH_PTE_SIZE_64 * n_valid);
1224 sent += index - chunkstart;
1226 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1227 break;
1231 if (examined >= htabslots) {
1232 break;
1235 if (index >= htabslots) {
1236 assert(index == htabslots);
1237 index = 0;
1239 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1241 if (index >= htabslots) {
1242 assert(index == htabslots);
1243 index = 0;
1246 spapr->htab_save_index = index;
1248 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1251 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1252 #define MAX_KVM_BUF_SIZE 2048
1254 static int htab_save_iterate(QEMUFile *f, void *opaque)
1256 sPAPRMachineState *spapr = opaque;
1257 int rc = 0;
1259 /* Iteration header */
1260 qemu_put_be32(f, 0);
1262 if (!spapr->htab) {
1263 assert(kvm_enabled());
1265 rc = spapr_check_htab_fd(spapr);
1266 if (rc < 0) {
1267 return rc;
1270 rc = kvmppc_save_htab(f, spapr->htab_fd,
1271 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1272 if (rc < 0) {
1273 return rc;
1275 } else if (spapr->htab_first_pass) {
1276 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1277 } else {
1278 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1281 /* End marker */
1282 qemu_put_be32(f, 0);
1283 qemu_put_be16(f, 0);
1284 qemu_put_be16(f, 0);
1286 return rc;
1289 static int htab_save_complete(QEMUFile *f, void *opaque)
1291 sPAPRMachineState *spapr = opaque;
1293 /* Iteration header */
1294 qemu_put_be32(f, 0);
1296 if (!spapr->htab) {
1297 int rc;
1299 assert(kvm_enabled());
1301 rc = spapr_check_htab_fd(spapr);
1302 if (rc < 0) {
1303 return rc;
1306 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1307 if (rc < 0) {
1308 return rc;
1310 close(spapr->htab_fd);
1311 spapr->htab_fd = -1;
1312 } else {
1313 htab_save_later_pass(f, spapr, -1);
1316 /* End marker */
1317 qemu_put_be32(f, 0);
1318 qemu_put_be16(f, 0);
1319 qemu_put_be16(f, 0);
1321 return 0;
1324 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1326 sPAPRMachineState *spapr = opaque;
1327 uint32_t section_hdr;
1328 int fd = -1;
1330 if (version_id < 1 || version_id > 1) {
1331 fprintf(stderr, "htab_load() bad version\n");
1332 return -EINVAL;
1335 section_hdr = qemu_get_be32(f);
1337 if (section_hdr) {
1338 /* First section, just the hash shift */
1339 if (spapr->htab_shift != section_hdr) {
1340 error_report("htab_shift mismatch: source %d target %d",
1341 section_hdr, spapr->htab_shift);
1342 return -EINVAL;
1344 return 0;
1347 if (!spapr->htab) {
1348 assert(kvm_enabled());
1350 fd = kvmppc_get_htab_fd(true);
1351 if (fd < 0) {
1352 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1353 strerror(errno));
1357 while (true) {
1358 uint32_t index;
1359 uint16_t n_valid, n_invalid;
1361 index = qemu_get_be32(f);
1362 n_valid = qemu_get_be16(f);
1363 n_invalid = qemu_get_be16(f);
1365 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1366 /* End of Stream */
1367 break;
1370 if ((index + n_valid + n_invalid) >
1371 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1372 /* Bad index in stream */
1373 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1374 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1375 spapr->htab_shift);
1376 return -EINVAL;
1379 if (spapr->htab) {
1380 if (n_valid) {
1381 qemu_get_buffer(f, HPTE(spapr->htab, index),
1382 HASH_PTE_SIZE_64 * n_valid);
1384 if (n_invalid) {
1385 memset(HPTE(spapr->htab, index + n_valid), 0,
1386 HASH_PTE_SIZE_64 * n_invalid);
1388 } else {
1389 int rc;
1391 assert(fd >= 0);
1393 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1394 if (rc < 0) {
1395 return rc;
1400 if (!spapr->htab) {
1401 assert(fd >= 0);
1402 close(fd);
1405 return 0;
1408 static SaveVMHandlers savevm_htab_handlers = {
1409 .save_live_setup = htab_save_setup,
1410 .save_live_iterate = htab_save_iterate,
1411 .save_live_complete = htab_save_complete,
1412 .load_state = htab_load,
1415 static void spapr_boot_set(void *opaque, const char *boot_device,
1416 Error **errp)
1418 MachineState *machine = MACHINE(qdev_get_machine());
1419 machine->boot_order = g_strdup(boot_device);
1422 static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu)
1424 CPUPPCState *env = &cpu->env;
1426 /* Set time-base frequency to 512 MHz */
1427 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1429 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1430 * MSR[IP] should never be set.
1432 env->msr_mask &= ~(1 << 6);
1434 /* Tell KVM that we're in PAPR mode */
1435 if (kvm_enabled()) {
1436 kvmppc_set_papr(cpu);
1439 if (cpu->max_compat) {
1440 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1441 exit(1);
1445 xics_cpu_setup(spapr->icp, cpu);
1447 qemu_register_reset(spapr_cpu_reset, cpu);
1451 * Reset routine for LMB DR devices.
1453 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1454 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1455 * when it walks all its children devices. LMB devices reset occurs
1456 * as part of spapr_ppc_reset().
1458 static void spapr_drc_reset(void *opaque)
1460 sPAPRDRConnector *drc = opaque;
1461 DeviceState *d = DEVICE(drc);
1463 if (d) {
1464 device_reset(d);
1468 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1470 MachineState *machine = MACHINE(spapr);
1471 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1472 uint32_t nr_rma_lmbs = spapr->rma_size/lmb_size;
1473 uint32_t nr_lmbs = machine->maxram_size/lmb_size - nr_rma_lmbs;
1474 uint32_t nr_assigned_lmbs = machine->ram_size/lmb_size - nr_rma_lmbs;
1475 int i;
1477 for (i = 0; i < nr_lmbs; i++) {
1478 sPAPRDRConnector *drc;
1479 uint64_t addr;
1481 if (i < nr_assigned_lmbs) {
1482 addr = (i + nr_rma_lmbs) * lmb_size;
1483 } else {
1484 addr = (i - nr_assigned_lmbs) * lmb_size +
1485 spapr->hotplug_memory.base;
1487 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1488 addr/lmb_size);
1489 qemu_register_reset(spapr_drc_reset, drc);
1494 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1495 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1496 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1498 static void spapr_validate_node_memory(MachineState *machine)
1500 int i;
1502 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE ||
1503 machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1504 error_report("Can't support memory configuration where RAM size "
1505 "0x" RAM_ADDR_FMT " or maxmem size "
1506 "0x" RAM_ADDR_FMT " isn't aligned to %llu MB",
1507 machine->ram_size, machine->maxram_size,
1508 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1509 exit(EXIT_FAILURE);
1512 for (i = 0; i < nb_numa_nodes; i++) {
1513 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1514 error_report("Can't support memory configuration where memory size"
1515 " %" PRIx64 " of node %d isn't aligned to %llu MB",
1516 numa_info[i].node_mem, i,
1517 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1518 exit(EXIT_FAILURE);
1523 /* pSeries LPAR / sPAPR hardware init */
1524 static void ppc_spapr_init(MachineState *machine)
1526 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1527 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1528 const char *kernel_filename = machine->kernel_filename;
1529 const char *kernel_cmdline = machine->kernel_cmdline;
1530 const char *initrd_filename = machine->initrd_filename;
1531 PowerPCCPU *cpu;
1532 PCIHostState *phb;
1533 int i;
1534 MemoryRegion *sysmem = get_system_memory();
1535 MemoryRegion *ram = g_new(MemoryRegion, 1);
1536 MemoryRegion *rma_region;
1537 void *rma = NULL;
1538 hwaddr rma_alloc_size;
1539 hwaddr node0_size = spapr_node0_size();
1540 uint32_t initrd_base = 0;
1541 long kernel_size = 0, initrd_size = 0;
1542 long load_limit, fw_size;
1543 bool kernel_le = false;
1544 char *filename;
1546 msi_supported = true;
1548 QLIST_INIT(&spapr->phbs);
1550 cpu_ppc_hypercall = emulate_spapr_hypercall;
1552 /* Allocate RMA if necessary */
1553 rma_alloc_size = kvmppc_alloc_rma(&rma);
1555 if (rma_alloc_size == -1) {
1556 error_report("Unable to create RMA");
1557 exit(1);
1560 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1561 spapr->rma_size = rma_alloc_size;
1562 } else {
1563 spapr->rma_size = node0_size;
1565 /* With KVM, we don't actually know whether KVM supports an
1566 * unbounded RMA (PR KVM) or is limited by the hash table size
1567 * (HV KVM using VRMA), so we always assume the latter
1569 * In that case, we also limit the initial allocations for RTAS
1570 * etc... to 256M since we have no way to know what the VRMA size
1571 * is going to be as it depends on the size of the hash table
1572 * isn't determined yet.
1574 if (kvm_enabled()) {
1575 spapr->vrma_adjust = 1;
1576 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1580 if (spapr->rma_size > node0_size) {
1581 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1582 spapr->rma_size);
1583 exit(1);
1586 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1587 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1589 /* We aim for a hash table of size 1/128 the size of RAM. The
1590 * normal rule of thumb is 1/64 the size of RAM, but that's much
1591 * more than needed for the Linux guests we support. */
1592 spapr->htab_shift = 18; /* Minimum architected size */
1593 while (spapr->htab_shift <= 46) {
1594 if ((1ULL << (spapr->htab_shift + 7)) >= machine->ram_size) {
1595 break;
1597 spapr->htab_shift++;
1600 /* Set up Interrupt Controller before we create the VCPUs */
1601 spapr->icp = xics_system_init(machine,
1602 DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1603 smp_threads),
1604 XICS_IRQS);
1606 if (smc->dr_lmb_enabled) {
1607 spapr_validate_node_memory(machine);
1610 /* init CPUs */
1611 if (machine->cpu_model == NULL) {
1612 machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1614 for (i = 0; i < smp_cpus; i++) {
1615 cpu = cpu_ppc_init(machine->cpu_model);
1616 if (cpu == NULL) {
1617 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1618 exit(1);
1620 spapr_cpu_init(spapr, cpu);
1623 if (kvm_enabled()) {
1624 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1625 kvmppc_enable_logical_ci_hcalls();
1626 kvmppc_enable_set_mode_hcall();
1629 /* allocate RAM */
1630 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1631 machine->ram_size);
1632 memory_region_add_subregion(sysmem, 0, ram);
1634 if (rma_alloc_size && rma) {
1635 rma_region = g_new(MemoryRegion, 1);
1636 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1637 rma_alloc_size, rma);
1638 vmstate_register_ram_global(rma_region);
1639 memory_region_add_subregion(sysmem, 0, rma_region);
1642 /* initialize hotplug memory address space */
1643 if (machine->ram_size < machine->maxram_size) {
1644 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1646 if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
1647 error_report("unsupported amount of memory slots: %"PRIu64,
1648 machine->ram_slots);
1649 exit(EXIT_FAILURE);
1652 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1653 SPAPR_HOTPLUG_MEM_ALIGN);
1654 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1655 "hotplug-memory", hotplug_mem_size);
1656 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1657 &spapr->hotplug_memory.mr);
1660 if (smc->dr_lmb_enabled) {
1661 spapr_create_lmb_dr_connectors(spapr);
1664 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1665 if (!filename) {
1666 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1667 exit(1);
1669 spapr->rtas_size = get_image_size(filename);
1670 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1671 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1672 error_report("Could not load LPAR rtas '%s'", filename);
1673 exit(1);
1675 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1676 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1677 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1678 exit(1);
1680 g_free(filename);
1682 /* Set up EPOW events infrastructure */
1683 spapr_events_init(spapr);
1685 /* Set up the RTC RTAS interfaces */
1686 spapr_rtc_create(spapr);
1688 /* Set up VIO bus */
1689 spapr->vio_bus = spapr_vio_bus_init();
1691 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1692 if (serial_hds[i]) {
1693 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1697 /* We always have at least the nvram device on VIO */
1698 spapr_create_nvram(spapr);
1700 /* Set up PCI */
1701 spapr_pci_rtas_init();
1703 phb = spapr_create_phb(spapr, 0);
1705 for (i = 0; i < nb_nics; i++) {
1706 NICInfo *nd = &nd_table[i];
1708 if (!nd->model) {
1709 nd->model = g_strdup("ibmveth");
1712 if (strcmp(nd->model, "ibmveth") == 0) {
1713 spapr_vlan_create(spapr->vio_bus, nd);
1714 } else {
1715 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1719 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1720 spapr_vscsi_create(spapr->vio_bus);
1723 /* Graphics */
1724 if (spapr_vga_init(phb->bus)) {
1725 spapr->has_graphics = true;
1726 machine->usb |= defaults_enabled() && !machine->usb_disabled;
1729 if (machine->usb) {
1730 pci_create_simple(phb->bus, -1, "pci-ohci");
1732 if (spapr->has_graphics) {
1733 USBBus *usb_bus = usb_bus_find(-1);
1735 usb_create_simple(usb_bus, "usb-kbd");
1736 usb_create_simple(usb_bus, "usb-mouse");
1740 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1741 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1742 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1743 exit(1);
1746 if (kernel_filename) {
1747 uint64_t lowaddr = 0;
1749 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1750 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1751 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1752 kernel_size = load_elf(kernel_filename,
1753 translate_kernel_address, NULL,
1754 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1755 kernel_le = kernel_size > 0;
1757 if (kernel_size < 0) {
1758 fprintf(stderr, "qemu: error loading %s: %s\n",
1759 kernel_filename, load_elf_strerror(kernel_size));
1760 exit(1);
1763 /* load initrd */
1764 if (initrd_filename) {
1765 /* Try to locate the initrd in the gap between the kernel
1766 * and the firmware. Add a bit of space just in case
1768 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1769 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1770 load_limit - initrd_base);
1771 if (initrd_size < 0) {
1772 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1773 initrd_filename);
1774 exit(1);
1776 } else {
1777 initrd_base = 0;
1778 initrd_size = 0;
1782 if (bios_name == NULL) {
1783 bios_name = FW_FILE_NAME;
1785 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1786 if (!filename) {
1787 error_report("Could not find LPAR firmware '%s'", bios_name);
1788 exit(1);
1790 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1791 if (fw_size <= 0) {
1792 error_report("Could not load LPAR firmware '%s'", filename);
1793 exit(1);
1795 g_free(filename);
1797 /* FIXME: Should register things through the MachineState's qdev
1798 * interface, this is a legacy from the sPAPREnvironment structure
1799 * which predated MachineState but had a similar function */
1800 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1801 register_savevm_live(NULL, "spapr/htab", -1, 1,
1802 &savevm_htab_handlers, spapr);
1804 /* Prepare the device tree */
1805 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1806 kernel_size, kernel_le,
1807 kernel_cmdline,
1808 spapr->check_exception_irq);
1809 assert(spapr->fdt_skel != NULL);
1811 /* used by RTAS */
1812 QTAILQ_INIT(&spapr->ccs_list);
1813 qemu_register_reset(spapr_ccs_reset_hook, spapr);
1815 qemu_register_boot_set(spapr_boot_set, spapr);
1818 static int spapr_kvm_type(const char *vm_type)
1820 if (!vm_type) {
1821 return 0;
1824 if (!strcmp(vm_type, "HV")) {
1825 return 1;
1828 if (!strcmp(vm_type, "PR")) {
1829 return 2;
1832 error_report("Unknown kvm-type specified '%s'", vm_type);
1833 exit(1);
1837 * Implementation of an interface to adjust firmware path
1838 * for the bootindex property handling.
1840 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1841 DeviceState *dev)
1843 #define CAST(type, obj, name) \
1844 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1845 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
1846 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1848 if (d) {
1849 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1850 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1851 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1853 if (spapr) {
1855 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1856 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1857 * in the top 16 bits of the 64-bit LUN
1859 unsigned id = 0x8000 | (d->id << 8) | d->lun;
1860 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1861 (uint64_t)id << 48);
1862 } else if (virtio) {
1864 * We use SRP luns of the form 01000000 | (target << 8) | lun
1865 * in the top 32 bits of the 64-bit LUN
1866 * Note: the quote above is from SLOF and it is wrong,
1867 * the actual binding is:
1868 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1870 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1871 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1872 (uint64_t)id << 32);
1873 } else if (usb) {
1875 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1876 * in the top 32 bits of the 64-bit LUN
1878 unsigned usb_port = atoi(usb->port->path);
1879 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1880 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1881 (uint64_t)id << 32);
1885 if (phb) {
1886 /* Replace "pci" with "pci@800000020000000" */
1887 return g_strdup_printf("pci@%"PRIX64, phb->buid);
1890 return NULL;
1893 static char *spapr_get_kvm_type(Object *obj, Error **errp)
1895 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
1897 return g_strdup(spapr->kvm_type);
1900 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
1902 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
1904 g_free(spapr->kvm_type);
1905 spapr->kvm_type = g_strdup(value);
1908 static void spapr_machine_initfn(Object *obj)
1910 object_property_add_str(obj, "kvm-type",
1911 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1912 object_property_set_description(obj, "kvm-type",
1913 "Specifies the KVM virtualization mode (HV, PR)",
1914 NULL);
1917 static void ppc_cpu_do_nmi_on_cpu(void *arg)
1919 CPUState *cs = arg;
1921 cpu_synchronize_state(cs);
1922 ppc_cpu_do_system_reset(cs);
1925 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
1927 CPUState *cs;
1929 CPU_FOREACH(cs) {
1930 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
1934 static void spapr_machine_class_init(ObjectClass *oc, void *data)
1936 MachineClass *mc = MACHINE_CLASS(oc);
1937 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
1938 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1939 NMIClass *nc = NMI_CLASS(oc);
1941 mc->init = ppc_spapr_init;
1942 mc->reset = ppc_spapr_reset;
1943 mc->block_default_type = IF_SCSI;
1944 mc->max_cpus = MAX_CPUMASK_BITS;
1945 mc->no_parallel = 1;
1946 mc->default_boot_order = "";
1947 mc->default_ram_size = 512 * M_BYTE;
1948 mc->kvm_type = spapr_kvm_type;
1949 mc->has_dynamic_sysbus = true;
1950 mc->pci_allow_0_address = true;
1952 smc->dr_lmb_enabled = false;
1953 fwc->get_dev_path = spapr_get_fw_dev_path;
1954 nc->nmi_monitor_handler = spapr_nmi;
1957 static const TypeInfo spapr_machine_info = {
1958 .name = TYPE_SPAPR_MACHINE,
1959 .parent = TYPE_MACHINE,
1960 .abstract = true,
1961 .instance_size = sizeof(sPAPRMachineState),
1962 .instance_init = spapr_machine_initfn,
1963 .class_size = sizeof(sPAPRMachineClass),
1964 .class_init = spapr_machine_class_init,
1965 .interfaces = (InterfaceInfo[]) {
1966 { TYPE_FW_PATH_PROVIDER },
1967 { TYPE_NMI },
1972 #define SPAPR_COMPAT_2_3 \
1973 HW_COMPAT_2_3 \
1975 .driver = "spapr-pci-host-bridge",\
1976 .property = "dynamic-reconfiguration",\
1977 .value = "off",\
1980 #define SPAPR_COMPAT_2_2 \
1981 SPAPR_COMPAT_2_3 \
1982 HW_COMPAT_2_2 \
1984 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
1985 .property = "mem_win_size",\
1986 .value = "0x20000000",\
1989 #define SPAPR_COMPAT_2_1 \
1990 SPAPR_COMPAT_2_2 \
1991 HW_COMPAT_2_1
1993 static void spapr_compat_2_3(Object *obj)
1995 savevm_skip_section_footers();
1996 global_state_set_optional();
1999 static void spapr_compat_2_2(Object *obj)
2001 spapr_compat_2_3(obj);
2004 static void spapr_compat_2_1(Object *obj)
2006 spapr_compat_2_2(obj);
2009 static void spapr_machine_2_3_instance_init(Object *obj)
2011 spapr_compat_2_3(obj);
2012 spapr_machine_initfn(obj);
2015 static void spapr_machine_2_2_instance_init(Object *obj)
2017 spapr_compat_2_2(obj);
2018 spapr_machine_initfn(obj);
2021 static void spapr_machine_2_1_instance_init(Object *obj)
2023 spapr_compat_2_1(obj);
2024 spapr_machine_initfn(obj);
2027 static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
2029 MachineClass *mc = MACHINE_CLASS(oc);
2030 static GlobalProperty compat_props[] = {
2031 SPAPR_COMPAT_2_1
2032 { /* end of list */ }
2035 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
2036 mc->compat_props = compat_props;
2039 static const TypeInfo spapr_machine_2_1_info = {
2040 .name = MACHINE_TYPE_NAME("pseries-2.1"),
2041 .parent = TYPE_SPAPR_MACHINE,
2042 .class_init = spapr_machine_2_1_class_init,
2043 .instance_init = spapr_machine_2_1_instance_init,
2046 static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
2048 static GlobalProperty compat_props[] = {
2049 SPAPR_COMPAT_2_2
2050 { /* end of list */ }
2052 MachineClass *mc = MACHINE_CLASS(oc);
2054 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
2055 mc->compat_props = compat_props;
2058 static const TypeInfo spapr_machine_2_2_info = {
2059 .name = MACHINE_TYPE_NAME("pseries-2.2"),
2060 .parent = TYPE_SPAPR_MACHINE,
2061 .class_init = spapr_machine_2_2_class_init,
2062 .instance_init = spapr_machine_2_2_instance_init,
2065 static void spapr_machine_2_3_class_init(ObjectClass *oc, void *data)
2067 static GlobalProperty compat_props[] = {
2068 SPAPR_COMPAT_2_3
2069 { /* end of list */ }
2071 MachineClass *mc = MACHINE_CLASS(oc);
2073 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.3";
2074 mc->compat_props = compat_props;
2077 static const TypeInfo spapr_machine_2_3_info = {
2078 .name = MACHINE_TYPE_NAME("pseries-2.3"),
2079 .parent = TYPE_SPAPR_MACHINE,
2080 .class_init = spapr_machine_2_3_class_init,
2081 .instance_init = spapr_machine_2_3_instance_init,
2084 static void spapr_machine_2_4_class_init(ObjectClass *oc, void *data)
2086 MachineClass *mc = MACHINE_CLASS(oc);
2088 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.4";
2089 mc->alias = "pseries";
2090 mc->is_default = 0;
2093 static const TypeInfo spapr_machine_2_4_info = {
2094 .name = MACHINE_TYPE_NAME("pseries-2.4"),
2095 .parent = TYPE_SPAPR_MACHINE,
2096 .class_init = spapr_machine_2_4_class_init,
2099 static void spapr_machine_2_5_class_init(ObjectClass *oc, void *data)
2101 MachineClass *mc = MACHINE_CLASS(oc);
2102 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2104 mc->name = "pseries-2.5";
2105 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.5";
2106 mc->alias = "pseries";
2107 mc->is_default = 1;
2108 smc->dr_lmb_enabled = true;
2111 static const TypeInfo spapr_machine_2_5_info = {
2112 .name = MACHINE_TYPE_NAME("pseries-2.5"),
2113 .parent = TYPE_SPAPR_MACHINE,
2114 .class_init = spapr_machine_2_5_class_init,
2117 static void spapr_machine_register_types(void)
2119 type_register_static(&spapr_machine_info);
2120 type_register_static(&spapr_machine_2_1_info);
2121 type_register_static(&spapr_machine_2_2_info);
2122 type_register_static(&spapr_machine_2_3_info);
2123 type_register_static(&spapr_machine_2_4_info);
2124 type_register_static(&spapr_machine_2_5_info);
2127 type_init(spapr_machine_register_types)