2 * PowerPC integer and vector emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/helper-proto.h"
26 #include "crypto/aes.h"
27 #include "fpu/softfloat.h"
28 #include "qapi/error.h"
29 #include "qemu/guest-random.h"
31 #include "helper_regs.h"
32 /*****************************************************************************/
33 /* Fixed point operations helpers */
35 static inline void helper_update_ov_legacy(CPUPPCState
*env
, int ov
)
38 env
->so
= env
->ov
= 1;
44 target_ulong
helper_divweu(CPUPPCState
*env
, target_ulong ra
, target_ulong rb
,
50 uint64_t dividend
= (uint64_t)ra
<< 32;
51 uint64_t divisor
= (uint32_t)rb
;
53 if (unlikely(divisor
== 0)) {
56 rt
= dividend
/ divisor
;
57 overflow
= rt
> UINT32_MAX
;
60 if (unlikely(overflow
)) {
61 rt
= 0; /* Undefined */
65 helper_update_ov_legacy(env
, overflow
);
68 return (target_ulong
)rt
;
71 target_ulong
helper_divwe(CPUPPCState
*env
, target_ulong ra
, target_ulong rb
,
77 int64_t dividend
= (int64_t)ra
<< 32;
78 int64_t divisor
= (int64_t)((int32_t)rb
);
80 if (unlikely((divisor
== 0) ||
81 ((divisor
== -1ull) && (dividend
== INT64_MIN
)))) {
84 rt
= dividend
/ divisor
;
85 overflow
= rt
!= (int32_t)rt
;
88 if (unlikely(overflow
)) {
89 rt
= 0; /* Undefined */
93 helper_update_ov_legacy(env
, overflow
);
96 return (target_ulong
)rt
;
99 #if defined(TARGET_PPC64)
101 uint64_t helper_divdeu(CPUPPCState
*env
, uint64_t ra
, uint64_t rb
, uint32_t oe
)
106 overflow
= divu128(&rt
, &ra
, rb
);
108 if (unlikely(overflow
)) {
109 rt
= 0; /* Undefined */
113 helper_update_ov_legacy(env
, overflow
);
119 uint64_t helper_divde(CPUPPCState
*env
, uint64_t rau
, uint64_t rbu
, uint32_t oe
)
122 int64_t ra
= (int64_t)rau
;
123 int64_t rb
= (int64_t)rbu
;
124 int overflow
= divs128(&rt
, &ra
, rb
);
126 if (unlikely(overflow
)) {
127 rt
= 0; /* Undefined */
131 helper_update_ov_legacy(env
, overflow
);
140 #if defined(TARGET_PPC64)
141 /* if x = 0xab, returns 0xababababababababa */
142 #define pattern(x) (((x) & 0xff) * (~(target_ulong)0 / 0xff))
145 * subtract 1 from each byte, and with inverse, check if MSB is set at each
147 * i.e. ((0x00 - 0x01) & ~(0x00)) & 0x80
148 * (0xFF & 0xFF) & 0x80 = 0x80 (zero found)
150 #define haszero(v) (((v) - pattern(0x01)) & ~(v) & pattern(0x80))
152 /* When you XOR the pattern and there is a match, that byte will be zero */
153 #define hasvalue(x, n) (haszero((x) ^ pattern(n)))
155 uint32_t helper_cmpeqb(target_ulong ra
, target_ulong rb
)
157 return hasvalue(rb
, ra
) ? CRF_GT
: 0;
165 * Return a random number.
167 uint64_t helper_darn32(void)
172 if (qemu_guest_getrandom(&ret
, sizeof(ret
), &err
) < 0) {
173 qemu_log_mask(LOG_UNIMP
, "darn: Crypto failure: %s",
174 error_get_pretty(err
));
182 uint64_t helper_darn64(void)
187 if (qemu_guest_getrandom(&ret
, sizeof(ret
), &err
) < 0) {
188 qemu_log_mask(LOG_UNIMP
, "darn: Crypto failure: %s",
189 error_get_pretty(err
));
197 uint64_t helper_bpermd(uint64_t rs
, uint64_t rb
)
202 for (i
= 0; i
< 8; i
++) {
203 int index
= (rs
>> (i
* 8)) & 0xFF;
205 if (rb
& PPC_BIT(index
)) {
215 target_ulong
helper_cmpb(target_ulong rs
, target_ulong rb
)
217 target_ulong mask
= 0xff;
221 for (i
= 0; i
< sizeof(target_ulong
); i
++) {
222 if ((rs
& mask
) == (rb
& mask
)) {
230 /* shift right arithmetic helper */
231 target_ulong
helper_sraw(CPUPPCState
*env
, target_ulong value
,
236 if (likely(!(shift
& 0x20))) {
237 if (likely((uint32_t)shift
!= 0)) {
239 ret
= (int32_t)value
>> shift
;
240 if (likely(ret
>= 0 || (value
& ((1 << shift
) - 1)) == 0)) {
241 env
->ca32
= env
->ca
= 0;
243 env
->ca32
= env
->ca
= 1;
246 ret
= (int32_t)value
;
247 env
->ca32
= env
->ca
= 0;
250 ret
= (int32_t)value
>> 31;
251 env
->ca32
= env
->ca
= (ret
!= 0);
253 return (target_long
)ret
;
256 #if defined(TARGET_PPC64)
257 target_ulong
helper_srad(CPUPPCState
*env
, target_ulong value
,
262 if (likely(!(shift
& 0x40))) {
263 if (likely((uint64_t)shift
!= 0)) {
265 ret
= (int64_t)value
>> shift
;
266 if (likely(ret
>= 0 || (value
& ((1ULL << shift
) - 1)) == 0)) {
267 env
->ca32
= env
->ca
= 0;
269 env
->ca32
= env
->ca
= 1;
272 ret
= (int64_t)value
;
273 env
->ca32
= env
->ca
= 0;
276 ret
= (int64_t)value
>> 63;
277 env
->ca32
= env
->ca
= (ret
!= 0);
283 #if defined(TARGET_PPC64)
284 target_ulong
helper_popcntb(target_ulong val
)
286 /* Note that we don't fold past bytes */
287 val
= (val
& 0x5555555555555555ULL
) + ((val
>> 1) &
288 0x5555555555555555ULL
);
289 val
= (val
& 0x3333333333333333ULL
) + ((val
>> 2) &
290 0x3333333333333333ULL
);
291 val
= (val
& 0x0f0f0f0f0f0f0f0fULL
) + ((val
>> 4) &
292 0x0f0f0f0f0f0f0f0fULL
);
296 target_ulong
helper_popcntw(target_ulong val
)
298 /* Note that we don't fold past words. */
299 val
= (val
& 0x5555555555555555ULL
) + ((val
>> 1) &
300 0x5555555555555555ULL
);
301 val
= (val
& 0x3333333333333333ULL
) + ((val
>> 2) &
302 0x3333333333333333ULL
);
303 val
= (val
& 0x0f0f0f0f0f0f0f0fULL
) + ((val
>> 4) &
304 0x0f0f0f0f0f0f0f0fULL
);
305 val
= (val
& 0x00ff00ff00ff00ffULL
) + ((val
>> 8) &
306 0x00ff00ff00ff00ffULL
);
307 val
= (val
& 0x0000ffff0000ffffULL
) + ((val
>> 16) &
308 0x0000ffff0000ffffULL
);
312 target_ulong
helper_popcntb(target_ulong val
)
314 /* Note that we don't fold past bytes */
315 val
= (val
& 0x55555555) + ((val
>> 1) & 0x55555555);
316 val
= (val
& 0x33333333) + ((val
>> 2) & 0x33333333);
317 val
= (val
& 0x0f0f0f0f) + ((val
>> 4) & 0x0f0f0f0f);
322 /*****************************************************************************/
323 /* PowerPC 601 specific instructions (POWER bridge) */
324 target_ulong
helper_div(CPUPPCState
*env
, target_ulong arg1
, target_ulong arg2
)
326 uint64_t tmp
= (uint64_t)arg1
<< 32 | env
->spr
[SPR_MQ
];
328 if (((int32_t)tmp
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
329 (int32_t)arg2
== 0) {
330 env
->spr
[SPR_MQ
] = 0;
333 env
->spr
[SPR_MQ
] = tmp
% arg2
;
334 return tmp
/ (int32_t)arg2
;
338 target_ulong
helper_divo(CPUPPCState
*env
, target_ulong arg1
,
341 uint64_t tmp
= (uint64_t)arg1
<< 32 | env
->spr
[SPR_MQ
];
343 if (((int32_t)tmp
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
344 (int32_t)arg2
== 0) {
345 env
->so
= env
->ov
= 1;
346 env
->spr
[SPR_MQ
] = 0;
349 env
->spr
[SPR_MQ
] = tmp
% arg2
;
350 tmp
/= (int32_t)arg2
;
351 if ((int32_t)tmp
!= tmp
) {
352 env
->so
= env
->ov
= 1;
360 target_ulong
helper_divs(CPUPPCState
*env
, target_ulong arg1
,
363 if (((int32_t)arg1
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
364 (int32_t)arg2
== 0) {
365 env
->spr
[SPR_MQ
] = 0;
368 env
->spr
[SPR_MQ
] = (int32_t)arg1
% (int32_t)arg2
;
369 return (int32_t)arg1
/ (int32_t)arg2
;
373 target_ulong
helper_divso(CPUPPCState
*env
, target_ulong arg1
,
376 if (((int32_t)arg1
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
377 (int32_t)arg2
== 0) {
378 env
->so
= env
->ov
= 1;
379 env
->spr
[SPR_MQ
] = 0;
383 env
->spr
[SPR_MQ
] = (int32_t)arg1
% (int32_t)arg2
;
384 return (int32_t)arg1
/ (int32_t)arg2
;
388 /*****************************************************************************/
389 /* 602 specific instructions */
390 /* mfrom is the most crazy instruction ever seen, imho ! */
391 /* Real implementation uses a ROM table. Do the same */
393 * Extremely decomposed:
395 * return 256 * log10(10 + 1.0) + 0.5
397 #if !defined(CONFIG_USER_ONLY)
398 target_ulong
helper_602_mfrom(target_ulong arg
)
400 if (likely(arg
< 602)) {
401 #include "mfrom_table.inc.c"
402 return mfrom_ROM_table
[arg
];
409 /*****************************************************************************/
410 /* Altivec extension helpers */
411 #if defined(HOST_WORDS_BIGENDIAN)
412 #define VECTOR_FOR_INORDER_I(index, element) \
413 for (index = 0; index < ARRAY_SIZE(r->element); index++)
415 #define VECTOR_FOR_INORDER_I(index, element) \
416 for (index = ARRAY_SIZE(r->element) - 1; index >= 0; index--)
419 /* Saturating arithmetic helpers. */
420 #define SATCVT(from, to, from_type, to_type, min, max) \
421 static inline to_type cvt##from##to(from_type x, int *sat) \
425 if (x < (from_type)min) { \
428 } else if (x > (from_type)max) { \
436 #define SATCVTU(from, to, from_type, to_type, min, max) \
437 static inline to_type cvt##from##to(from_type x, int *sat) \
441 if (x > (from_type)max) { \
449 SATCVT(sh
, sb
, int16_t, int8_t, INT8_MIN
, INT8_MAX
)
450 SATCVT(sw
, sh
, int32_t, int16_t, INT16_MIN
, INT16_MAX
)
451 SATCVT(sd
, sw
, int64_t, int32_t, INT32_MIN
, INT32_MAX
)
453 SATCVTU(uh
, ub
, uint16_t, uint8_t, 0, UINT8_MAX
)
454 SATCVTU(uw
, uh
, uint32_t, uint16_t, 0, UINT16_MAX
)
455 SATCVTU(ud
, uw
, uint64_t, uint32_t, 0, UINT32_MAX
)
456 SATCVT(sh
, ub
, int16_t, uint8_t, 0, UINT8_MAX
)
457 SATCVT(sw
, uh
, int32_t, uint16_t, 0, UINT16_MAX
)
458 SATCVT(sd
, uw
, int64_t, uint32_t, 0, UINT32_MAX
)
462 void helper_mtvscr(CPUPPCState
*env
, uint32_t vscr
)
464 env
->vscr
= vscr
& ~(1u << VSCR_SAT
);
465 /* Which bit we set is completely arbitrary, but clear the rest. */
466 env
->vscr_sat
.u64
[0] = vscr
& (1u << VSCR_SAT
);
467 env
->vscr_sat
.u64
[1] = 0;
468 set_flush_to_zero((vscr
>> VSCR_NJ
) & 1, &env
->vec_status
);
471 uint32_t helper_mfvscr(CPUPPCState
*env
)
473 uint32_t sat
= (env
->vscr_sat
.u64
[0] | env
->vscr_sat
.u64
[1]) != 0;
474 return env
->vscr
| (sat
<< VSCR_SAT
);
477 static inline void set_vscr_sat(CPUPPCState
*env
)
479 /* The choice of non-zero value is arbitrary. */
480 env
->vscr_sat
.u32
[0] = 1;
483 void helper_vaddcuw(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
487 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
488 r
->u32
[i
] = ~a
->u32
[i
] < b
->u32
[i
];
493 void helper_vprtybw(ppc_avr_t
*r
, ppc_avr_t
*b
)
496 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
497 uint64_t res
= b
->u32
[i
] ^ (b
->u32
[i
] >> 16);
504 void helper_vprtybd(ppc_avr_t
*r
, ppc_avr_t
*b
)
507 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
508 uint64_t res
= b
->u64
[i
] ^ (b
->u64
[i
] >> 32);
516 void helper_vprtybq(ppc_avr_t
*r
, ppc_avr_t
*b
)
518 uint64_t res
= b
->u64
[0] ^ b
->u64
[1];
522 r
->VsrD(1) = res
& 1;
526 #define VARITH_DO(name, op, element) \
527 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
531 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
532 r->element[i] = a->element[i] op b->element[i]; \
535 VARITH_DO(muluwm
, *, u32
)
539 #define VARITHFP(suffix, func) \
540 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
545 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
546 r->f32[i] = func(a->f32[i], b->f32[i], &env->vec_status); \
549 VARITHFP(addfp
, float32_add
)
550 VARITHFP(subfp
, float32_sub
)
551 VARITHFP(minfp
, float32_min
)
552 VARITHFP(maxfp
, float32_max
)
555 #define VARITHFPFMA(suffix, type) \
556 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
557 ppc_avr_t *b, ppc_avr_t *c) \
560 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
561 r->f32[i] = float32_muladd(a->f32[i], c->f32[i], b->f32[i], \
562 type, &env->vec_status); \
565 VARITHFPFMA(maddfp
, 0);
566 VARITHFPFMA(nmsubfp
, float_muladd_negate_result
| float_muladd_negate_c
);
569 #define VARITHSAT_CASE(type, op, cvt, element) \
571 type result = (type)a->element[i] op (type)b->element[i]; \
572 r->element[i] = cvt(result, &sat); \
575 #define VARITHSAT_DO(name, op, optype, cvt, element) \
576 void helper_v##name(ppc_avr_t *r, ppc_avr_t *vscr_sat, \
577 ppc_avr_t *a, ppc_avr_t *b, uint32_t desc) \
582 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
583 VARITHSAT_CASE(optype, op, cvt, element); \
586 vscr_sat->u32[0] = 1; \
589 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
590 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
591 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
592 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
593 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
594 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
595 VARITHSAT_SIGNED(b
, s8
, int16_t, cvtshsb
)
596 VARITHSAT_SIGNED(h
, s16
, int32_t, cvtswsh
)
597 VARITHSAT_SIGNED(w
, s32
, int64_t, cvtsdsw
)
598 VARITHSAT_UNSIGNED(b
, u8
, uint16_t, cvtshub
)
599 VARITHSAT_UNSIGNED(h
, u16
, uint32_t, cvtswuh
)
600 VARITHSAT_UNSIGNED(w
, u32
, uint64_t, cvtsduw
)
601 #undef VARITHSAT_CASE
603 #undef VARITHSAT_SIGNED
604 #undef VARITHSAT_UNSIGNED
606 #define VAVG_DO(name, element, etype) \
607 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
611 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
612 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
613 r->element[i] = x >> 1; \
617 #define VAVG(type, signed_element, signed_type, unsigned_element, \
619 VAVG_DO(avgs##type, signed_element, signed_type) \
620 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
621 VAVG(b
, s8
, int16_t, u8
, uint16_t)
622 VAVG(h
, s16
, int32_t, u16
, uint32_t)
623 VAVG(w
, s32
, int64_t, u32
, uint64_t)
627 #define VABSDU_DO(name, element) \
628 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
632 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
633 r->element[i] = (a->element[i] > b->element[i]) ? \
634 (a->element[i] - b->element[i]) : \
635 (b->element[i] - a->element[i]); \
640 * VABSDU - Vector absolute difference unsigned
641 * name - instruction mnemonic suffix (b: byte, h: halfword, w: word)
642 * element - element type to access from vector
644 #define VABSDU(type, element) \
645 VABSDU_DO(absdu##type, element)
652 #define VCF(suffix, cvt, element) \
653 void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r, \
654 ppc_avr_t *b, uint32_t uim) \
658 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
659 float32 t = cvt(b->element[i], &env->vec_status); \
660 r->f32[i] = float32_scalbn(t, -uim, &env->vec_status); \
663 VCF(ux
, uint32_to_float32
, u32
)
664 VCF(sx
, int32_to_float32
, s32
)
667 #define VCMP_DO(suffix, compare, element, record) \
668 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
669 ppc_avr_t *a, ppc_avr_t *b) \
671 uint64_t ones = (uint64_t)-1; \
672 uint64_t all = ones; \
676 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
677 uint64_t result = (a->element[i] compare b->element[i] ? \
679 switch (sizeof(a->element[0])) { \
681 r->u64[i] = result; \
684 r->u32[i] = result; \
687 r->u16[i] = result; \
697 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
700 #define VCMP(suffix, compare, element) \
701 VCMP_DO(suffix, compare, element, 0) \
702 VCMP_DO(suffix##_dot, compare, element, 1)
718 #define VCMPNE_DO(suffix, element, etype, cmpzero, record) \
719 void helper_vcmpne##suffix(CPUPPCState *env, ppc_avr_t *r, \
720 ppc_avr_t *a, ppc_avr_t *b) \
722 etype ones = (etype)-1; \
724 etype result, none = 0; \
727 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
729 result = ((a->element[i] == 0) \
730 || (b->element[i] == 0) \
731 || (a->element[i] != b->element[i]) ? \
734 result = (a->element[i] != b->element[i]) ? ones : 0x0; \
736 r->element[i] = result; \
741 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
746 * VCMPNEZ - Vector compare not equal to zero
747 * suffix - instruction mnemonic suffix (b: byte, h: halfword, w: word)
748 * element - element type to access from vector
750 #define VCMPNE(suffix, element, etype, cmpzero) \
751 VCMPNE_DO(suffix, element, etype, cmpzero, 0) \
752 VCMPNE_DO(suffix##_dot, element, etype, cmpzero, 1)
753 VCMPNE(zb
, u8
, uint8_t, 1)
754 VCMPNE(zh
, u16
, uint16_t, 1)
755 VCMPNE(zw
, u32
, uint32_t, 1)
756 VCMPNE(b
, u8
, uint8_t, 0)
757 VCMPNE(h
, u16
, uint16_t, 0)
758 VCMPNE(w
, u32
, uint32_t, 0)
762 #define VCMPFP_DO(suffix, compare, order, record) \
763 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
764 ppc_avr_t *a, ppc_avr_t *b) \
766 uint32_t ones = (uint32_t)-1; \
767 uint32_t all = ones; \
771 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
773 int rel = float32_compare_quiet(a->f32[i], b->f32[i], \
775 if (rel == float_relation_unordered) { \
777 } else if (rel compare order) { \
782 r->u32[i] = result; \
787 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
790 #define VCMPFP(suffix, compare, order) \
791 VCMPFP_DO(suffix, compare, order, 0) \
792 VCMPFP_DO(suffix##_dot, compare, order, 1)
793 VCMPFP(eqfp
, ==, float_relation_equal
)
794 VCMPFP(gefp
, !=, float_relation_less
)
795 VCMPFP(gtfp
, ==, float_relation_greater
)
799 static inline void vcmpbfp_internal(CPUPPCState
*env
, ppc_avr_t
*r
,
800 ppc_avr_t
*a
, ppc_avr_t
*b
, int record
)
805 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
806 int le_rel
= float32_compare_quiet(a
->f32
[i
], b
->f32
[i
],
808 if (le_rel
== float_relation_unordered
) {
809 r
->u32
[i
] = 0xc0000000;
812 float32 bneg
= float32_chs(b
->f32
[i
]);
813 int ge_rel
= float32_compare_quiet(a
->f32
[i
], bneg
,
815 int le
= le_rel
!= float_relation_greater
;
816 int ge
= ge_rel
!= float_relation_less
;
818 r
->u32
[i
] = ((!le
) << 31) | ((!ge
) << 30);
819 all_in
|= (!le
| !ge
);
823 env
->crf
[6] = (all_in
== 0) << 1;
827 void helper_vcmpbfp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
829 vcmpbfp_internal(env
, r
, a
, b
, 0);
832 void helper_vcmpbfp_dot(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
835 vcmpbfp_internal(env
, r
, a
, b
, 1);
838 #define VCT(suffix, satcvt, element) \
839 void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r, \
840 ppc_avr_t *b, uint32_t uim) \
844 float_status s = env->vec_status; \
846 set_float_rounding_mode(float_round_to_zero, &s); \
847 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
848 if (float32_is_any_nan(b->f32[i])) { \
851 float64 t = float32_to_float64(b->f32[i], &s); \
854 t = float64_scalbn(t, uim, &s); \
855 j = float64_to_int64(t, &s); \
856 r->element[i] = satcvt(j, &sat); \
863 VCT(uxs
, cvtsduw
, u32
)
864 VCT(sxs
, cvtsdsw
, s32
)
867 target_ulong
helper_vclzlsbb(ppc_avr_t
*r
)
869 target_ulong count
= 0;
871 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
872 if (r
->VsrB(i
) & 0x01) {
880 target_ulong
helper_vctzlsbb(ppc_avr_t
*r
)
882 target_ulong count
= 0;
884 for (i
= ARRAY_SIZE(r
->u8
) - 1; i
>= 0; i
--) {
885 if (r
->VsrB(i
) & 0x01) {
893 void helper_vmhaddshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
894 ppc_avr_t
*b
, ppc_avr_t
*c
)
899 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
900 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
901 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
903 r
->s16
[i
] = cvtswsh(t
, &sat
);
911 void helper_vmhraddshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
912 ppc_avr_t
*b
, ppc_avr_t
*c
)
917 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
918 int32_t prod
= a
->s16
[i
] * b
->s16
[i
] + 0x00004000;
919 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
920 r
->s16
[i
] = cvtswsh(t
, &sat
);
928 void helper_vmladduhm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
932 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
933 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
934 r
->s16
[i
] = (int16_t) (prod
+ c
->s16
[i
]);
938 #define VMRG_DO(name, element, access, ofs) \
939 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
942 int i, half = ARRAY_SIZE(r->element) / 2; \
944 for (i = 0; i < half; i++) { \
945 result.access(i * 2 + 0) = a->access(i + ofs); \
946 result.access(i * 2 + 1) = b->access(i + ofs); \
951 #define VMRG(suffix, element, access) \
952 VMRG_DO(mrgl##suffix, element, access, half) \
953 VMRG_DO(mrgh##suffix, element, access, 0)
960 void helper_vmsummbm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
961 ppc_avr_t
*b
, ppc_avr_t
*c
)
966 for (i
= 0; i
< ARRAY_SIZE(r
->s8
); i
++) {
967 prod
[i
] = (int32_t)a
->s8
[i
] * b
->u8
[i
];
970 VECTOR_FOR_INORDER_I(i
, s32
) {
971 r
->s32
[i
] = c
->s32
[i
] + prod
[4 * i
] + prod
[4 * i
+ 1] +
972 prod
[4 * i
+ 2] + prod
[4 * i
+ 3];
976 void helper_vmsumshm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
977 ppc_avr_t
*b
, ppc_avr_t
*c
)
982 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
983 prod
[i
] = a
->s16
[i
] * b
->s16
[i
];
986 VECTOR_FOR_INORDER_I(i
, s32
) {
987 r
->s32
[i
] = c
->s32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
991 void helper_vmsumshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
992 ppc_avr_t
*b
, ppc_avr_t
*c
)
998 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
999 prod
[i
] = (int32_t)a
->s16
[i
] * b
->s16
[i
];
1002 VECTOR_FOR_INORDER_I(i
, s32
) {
1003 int64_t t
= (int64_t)c
->s32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1005 r
->u32
[i
] = cvtsdsw(t
, &sat
);
1013 void helper_vmsumubm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1014 ppc_avr_t
*b
, ppc_avr_t
*c
)
1019 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1020 prod
[i
] = a
->u8
[i
] * b
->u8
[i
];
1023 VECTOR_FOR_INORDER_I(i
, u32
) {
1024 r
->u32
[i
] = c
->u32
[i
] + prod
[4 * i
] + prod
[4 * i
+ 1] +
1025 prod
[4 * i
+ 2] + prod
[4 * i
+ 3];
1029 void helper_vmsumuhm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1030 ppc_avr_t
*b
, ppc_avr_t
*c
)
1035 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
1036 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
1039 VECTOR_FOR_INORDER_I(i
, u32
) {
1040 r
->u32
[i
] = c
->u32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1044 void helper_vmsumuhs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1045 ppc_avr_t
*b
, ppc_avr_t
*c
)
1051 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
1052 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
1055 VECTOR_FOR_INORDER_I(i
, s32
) {
1056 uint64_t t
= (uint64_t)c
->u32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1058 r
->u32
[i
] = cvtuduw(t
, &sat
);
1066 #define VMUL_DO_EVN(name, mul_element, mul_access, prod_access, cast) \
1067 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1071 for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
1072 r->prod_access(i >> 1) = (cast)a->mul_access(i) * \
1073 (cast)b->mul_access(i); \
1077 #define VMUL_DO_ODD(name, mul_element, mul_access, prod_access, cast) \
1078 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1082 for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
1083 r->prod_access(i >> 1) = (cast)a->mul_access(i + 1) * \
1084 (cast)b->mul_access(i + 1); \
1088 #define VMUL(suffix, mul_element, mul_access, prod_access, cast) \
1089 VMUL_DO_EVN(mule##suffix, mul_element, mul_access, prod_access, cast) \
1090 VMUL_DO_ODD(mulo##suffix, mul_element, mul_access, prod_access, cast)
1091 VMUL(sb
, s8
, VsrSB
, VsrSH
, int16_t)
1092 VMUL(sh
, s16
, VsrSH
, VsrSW
, int32_t)
1093 VMUL(sw
, s32
, VsrSW
, VsrSD
, int64_t)
1094 VMUL(ub
, u8
, VsrB
, VsrH
, uint16_t)
1095 VMUL(uh
, u16
, VsrH
, VsrW
, uint32_t)
1096 VMUL(uw
, u32
, VsrW
, VsrD
, uint64_t)
1101 void helper_vperm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1107 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1108 int s
= c
->VsrB(i
) & 0x1f;
1109 int index
= s
& 0xf;
1112 result
.VsrB(i
) = b
->VsrB(index
);
1114 result
.VsrB(i
) = a
->VsrB(index
);
1120 void helper_vpermr(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1126 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1127 int s
= c
->VsrB(i
) & 0x1f;
1128 int index
= 15 - (s
& 0xf);
1131 result
.VsrB(i
) = a
->VsrB(index
);
1133 result
.VsrB(i
) = b
->VsrB(index
);
1139 #if defined(HOST_WORDS_BIGENDIAN)
1140 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)])
1141 #define VBPERMD_INDEX(i) (i)
1142 #define VBPERMQ_DW(index) (((index) & 0x40) != 0)
1143 #define EXTRACT_BIT(avr, i, index) (extract64((avr)->u64[i], index, 1))
1145 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[15 - (i)])
1146 #define VBPERMD_INDEX(i) (1 - i)
1147 #define VBPERMQ_DW(index) (((index) & 0x40) == 0)
1148 #define EXTRACT_BIT(avr, i, index) \
1149 (extract64((avr)->u64[1 - i], 63 - index, 1))
1152 void helper_vbpermd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1155 ppc_avr_t result
= { .u64
= { 0, 0 } };
1156 VECTOR_FOR_INORDER_I(i
, u64
) {
1157 for (j
= 0; j
< 8; j
++) {
1158 int index
= VBPERMQ_INDEX(b
, (i
* 8) + j
);
1159 if (index
< 64 && EXTRACT_BIT(a
, i
, index
)) {
1160 result
.u64
[VBPERMD_INDEX(i
)] |= (0x80 >> j
);
1167 void helper_vbpermq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1172 VECTOR_FOR_INORDER_I(i
, u8
) {
1173 int index
= VBPERMQ_INDEX(b
, i
);
1176 uint64_t mask
= (1ull << (63 - (index
& 0x3F)));
1177 if (a
->u64
[VBPERMQ_DW(index
)] & mask
) {
1178 perm
|= (0x8000 >> i
);
1187 #undef VBPERMQ_INDEX
1190 #define PMSUM(name, srcfld, trgfld, trgtyp) \
1191 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1194 trgtyp prod[sizeof(ppc_avr_t) / sizeof(a->srcfld[0])]; \
1196 VECTOR_FOR_INORDER_I(i, srcfld) { \
1198 for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) { \
1199 if (a->srcfld[i] & (1ull << j)) { \
1200 prod[i] ^= ((trgtyp)b->srcfld[i] << j); \
1205 VECTOR_FOR_INORDER_I(i, trgfld) { \
1206 r->trgfld[i] = prod[2 * i] ^ prod[2 * i + 1]; \
1210 PMSUM(vpmsumb
, u8
, u16
, uint16_t)
1211 PMSUM(vpmsumh
, u16
, u32
, uint32_t)
1212 PMSUM(vpmsumw
, u32
, u64
, uint64_t)
1214 void helper_vpmsumd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1217 #ifdef CONFIG_INT128
1219 __uint128_t prod
[2];
1221 VECTOR_FOR_INORDER_I(i
, u64
) {
1223 for (j
= 0; j
< 64; j
++) {
1224 if (a
->u64
[i
] & (1ull << j
)) {
1225 prod
[i
] ^= (((__uint128_t
)b
->u64
[i
]) << j
);
1230 r
->u128
= prod
[0] ^ prod
[1];
1236 VECTOR_FOR_INORDER_I(i
, u64
) {
1237 prod
[i
].VsrD(1) = prod
[i
].VsrD(0) = 0;
1238 for (j
= 0; j
< 64; j
++) {
1239 if (a
->u64
[i
] & (1ull << j
)) {
1243 bshift
.VsrD(1) = b
->u64
[i
];
1245 bshift
.VsrD(0) = b
->u64
[i
] >> (64 - j
);
1246 bshift
.VsrD(1) = b
->u64
[i
] << j
;
1248 prod
[i
].VsrD(1) ^= bshift
.VsrD(1);
1249 prod
[i
].VsrD(0) ^= bshift
.VsrD(0);
1254 r
->VsrD(1) = prod
[0].VsrD(1) ^ prod
[1].VsrD(1);
1255 r
->VsrD(0) = prod
[0].VsrD(0) ^ prod
[1].VsrD(0);
1260 #if defined(HOST_WORDS_BIGENDIAN)
1265 void helper_vpkpx(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1269 #if defined(HOST_WORDS_BIGENDIAN)
1270 const ppc_avr_t
*x
[2] = { a
, b
};
1272 const ppc_avr_t
*x
[2] = { b
, a
};
1275 VECTOR_FOR_INORDER_I(i
, u64
) {
1276 VECTOR_FOR_INORDER_I(j
, u32
) {
1277 uint32_t e
= x
[i
]->u32
[j
];
1279 result
.u16
[4 * i
+ j
] = (((e
>> 9) & 0xfc00) |
1280 ((e
>> 6) & 0x3e0) |
1287 #define VPK(suffix, from, to, cvt, dosat) \
1288 void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r, \
1289 ppc_avr_t *a, ppc_avr_t *b) \
1294 ppc_avr_t *a0 = PKBIG ? a : b; \
1295 ppc_avr_t *a1 = PKBIG ? b : a; \
1297 VECTOR_FOR_INORDER_I(i, from) { \
1298 result.to[i] = cvt(a0->from[i], &sat); \
1299 result.to[i + ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat);\
1302 if (dosat && sat) { \
1303 set_vscr_sat(env); \
1307 VPK(shss
, s16
, s8
, cvtshsb
, 1)
1308 VPK(shus
, s16
, u8
, cvtshub
, 1)
1309 VPK(swss
, s32
, s16
, cvtswsh
, 1)
1310 VPK(swus
, s32
, u16
, cvtswuh
, 1)
1311 VPK(sdss
, s64
, s32
, cvtsdsw
, 1)
1312 VPK(sdus
, s64
, u32
, cvtsduw
, 1)
1313 VPK(uhus
, u16
, u8
, cvtuhub
, 1)
1314 VPK(uwus
, u32
, u16
, cvtuwuh
, 1)
1315 VPK(udus
, u64
, u32
, cvtuduw
, 1)
1316 VPK(uhum
, u16
, u8
, I
, 0)
1317 VPK(uwum
, u32
, u16
, I
, 0)
1318 VPK(udum
, u64
, u32
, I
, 0)
1323 void helper_vrefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1327 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
1328 r
->f32
[i
] = float32_div(float32_one
, b
->f32
[i
], &env
->vec_status
);
1332 #define VRFI(suffix, rounding) \
1333 void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r, \
1337 float_status s = env->vec_status; \
1339 set_float_rounding_mode(rounding, &s); \
1340 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
1341 r->f32[i] = float32_round_to_int (b->f32[i], &s); \
1344 VRFI(n
, float_round_nearest_even
)
1345 VRFI(m
, float_round_down
)
1346 VRFI(p
, float_round_up
)
1347 VRFI(z
, float_round_to_zero
)
1350 #define VROTATE(suffix, element, mask) \
1351 void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1355 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1356 unsigned int shift = b->element[i] & mask; \
1357 r->element[i] = (a->element[i] << shift) | \
1358 (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
1362 VROTATE(h
, u16
, 0xF)
1363 VROTATE(w
, u32
, 0x1F)
1364 VROTATE(d
, u64
, 0x3F)
1367 void helper_vrsqrtefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1371 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
1372 float32 t
= float32_sqrt(b
->f32
[i
], &env
->vec_status
);
1374 r
->f32
[i
] = float32_div(float32_one
, t
, &env
->vec_status
);
1378 #define VRLMI(name, size, element, insert) \
1379 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1382 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1383 uint##size##_t src1 = a->element[i]; \
1384 uint##size##_t src2 = b->element[i]; \
1385 uint##size##_t src3 = r->element[i]; \
1386 uint##size##_t begin, end, shift, mask, rot_val; \
1388 shift = extract##size(src2, 0, 6); \
1389 end = extract##size(src2, 8, 6); \
1390 begin = extract##size(src2, 16, 6); \
1391 rot_val = rol##size(src1, shift); \
1392 mask = mask_u##size(begin, end); \
1394 r->element[i] = (rot_val & mask) | (src3 & ~mask); \
1396 r->element[i] = (rot_val & mask); \
1401 VRLMI(vrldmi
, 64, u64
, 1);
1402 VRLMI(vrlwmi
, 32, u32
, 1);
1403 VRLMI(vrldnm
, 64, u64
, 0);
1404 VRLMI(vrlwnm
, 32, u32
, 0);
1406 void helper_vsel(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1409 r
->u64
[0] = (a
->u64
[0] & ~c
->u64
[0]) | (b
->u64
[0] & c
->u64
[0]);
1410 r
->u64
[1] = (a
->u64
[1] & ~c
->u64
[1]) | (b
->u64
[1] & c
->u64
[1]);
1413 void helper_vexptefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1417 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
1418 r
->f32
[i
] = float32_exp2(b
->f32
[i
], &env
->vec_status
);
1422 void helper_vlogefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1426 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
1427 r
->f32
[i
] = float32_log2(b
->f32
[i
], &env
->vec_status
);
1431 #if defined(HOST_WORDS_BIGENDIAN)
1432 #define VEXTU_X_DO(name, size, left) \
1433 target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b) \
1437 index = (a & 0xf) * 8; \
1439 index = ((15 - (a & 0xf) + 1) * 8) - size; \
1441 return int128_getlo(int128_rshift(b->s128, index)) & \
1442 MAKE_64BIT_MASK(0, size); \
1445 #define VEXTU_X_DO(name, size, left) \
1446 target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b) \
1450 index = ((15 - (a & 0xf) + 1) * 8) - size; \
1452 index = (a & 0xf) * 8; \
1454 return int128_getlo(int128_rshift(b->s128, index)) & \
1455 MAKE_64BIT_MASK(0, size); \
1459 VEXTU_X_DO(vextublx
, 8, 1)
1460 VEXTU_X_DO(vextuhlx
, 16, 1)
1461 VEXTU_X_DO(vextuwlx
, 32, 1)
1462 VEXTU_X_DO(vextubrx
, 8, 0)
1463 VEXTU_X_DO(vextuhrx
, 16, 0)
1464 VEXTU_X_DO(vextuwrx
, 32, 0)
1467 void helper_vslv(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1470 unsigned int shift
, bytes
, size
;
1472 size
= ARRAY_SIZE(r
->u8
);
1473 for (i
= 0; i
< size
; i
++) {
1474 shift
= b
->VsrB(i
) & 0x7; /* extract shift value */
1475 bytes
= (a
->VsrB(i
) << 8) + /* extract adjacent bytes */
1476 (((i
+ 1) < size
) ? a
->VsrB(i
+ 1) : 0);
1477 r
->VsrB(i
) = (bytes
<< shift
) >> 8; /* shift and store result */
1481 void helper_vsrv(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1484 unsigned int shift
, bytes
;
1487 * Use reverse order, as destination and source register can be
1488 * same. Its being modified in place saving temporary, reverse
1489 * order will guarantee that computed result is not fed back.
1491 for (i
= ARRAY_SIZE(r
->u8
) - 1; i
>= 0; i
--) {
1492 shift
= b
->VsrB(i
) & 0x7; /* extract shift value */
1493 bytes
= ((i
? a
->VsrB(i
- 1) : 0) << 8) + a
->VsrB(i
);
1494 /* extract adjacent bytes */
1495 r
->VsrB(i
) = (bytes
>> shift
) & 0xFF; /* shift and store result */
1499 void helper_vsldoi(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t shift
)
1501 int sh
= shift
& 0xf;
1505 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1508 result
.VsrB(i
) = b
->VsrB(index
- 0x10);
1510 result
.VsrB(i
) = a
->VsrB(index
);
1516 void helper_vslo(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1518 int sh
= (b
->VsrB(0xf) >> 3) & 0xf;
1520 #if defined(HOST_WORDS_BIGENDIAN)
1521 memmove(&r
->u8
[0], &a
->u8
[sh
], 16 - sh
);
1522 memset(&r
->u8
[16 - sh
], 0, sh
);
1524 memmove(&r
->u8
[sh
], &a
->u8
[0], 16 - sh
);
1525 memset(&r
->u8
[0], 0, sh
);
1529 #if defined(HOST_WORDS_BIGENDIAN)
1530 #define VINSERT(suffix, element) \
1531 void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1533 memmove(&r->u8[index], &b->u8[8 - sizeof(r->element[0])], \
1534 sizeof(r->element[0])); \
1537 #define VINSERT(suffix, element) \
1538 void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1540 uint32_t d = (16 - index) - sizeof(r->element[0]); \
1541 memmove(&r->u8[d], &b->u8[8], sizeof(r->element[0])); \
1549 #if defined(HOST_WORDS_BIGENDIAN)
1550 #define VEXTRACT(suffix, element) \
1551 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1553 uint32_t es = sizeof(r->element[0]); \
1554 memmove(&r->u8[8 - es], &b->u8[index], es); \
1555 memset(&r->u8[8], 0, 8); \
1556 memset(&r->u8[0], 0, 8 - es); \
1559 #define VEXTRACT(suffix, element) \
1560 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1562 uint32_t es = sizeof(r->element[0]); \
1563 uint32_t s = (16 - index) - es; \
1564 memmove(&r->u8[8], &b->u8[s], es); \
1565 memset(&r->u8[0], 0, 8); \
1566 memset(&r->u8[8 + es], 0, 8 - es); \
1575 void helper_xxextractuw(CPUPPCState
*env
, ppc_vsr_t
*xt
,
1576 ppc_vsr_t
*xb
, uint32_t index
)
1579 size_t es
= sizeof(uint32_t);
1584 for (i
= 0; i
< es
; i
++, ext_index
++) {
1585 t
.VsrB(8 - es
+ i
) = xb
->VsrB(ext_index
% 16);
1591 void helper_xxinsertw(CPUPPCState
*env
, ppc_vsr_t
*xt
,
1592 ppc_vsr_t
*xb
, uint32_t index
)
1595 size_t es
= sizeof(uint32_t);
1596 int ins_index
, i
= 0;
1599 for (i
= 0; i
< es
&& ins_index
< 16; i
++, ins_index
++) {
1600 t
.VsrB(ins_index
) = xb
->VsrB(8 - es
+ i
);
1606 #define VEXT_SIGNED(name, element, cast) \
1607 void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
1610 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1611 r->element[i] = (cast)b->element[i]; \
1614 VEXT_SIGNED(vextsb2w
, s32
, int8_t)
1615 VEXT_SIGNED(vextsb2d
, s64
, int8_t)
1616 VEXT_SIGNED(vextsh2w
, s32
, int16_t)
1617 VEXT_SIGNED(vextsh2d
, s64
, int16_t)
1618 VEXT_SIGNED(vextsw2d
, s64
, int32_t)
1621 #define VNEG(name, element) \
1622 void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
1625 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1626 r->element[i] = -b->element[i]; \
1633 void helper_vsro(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1635 int sh
= (b
->VsrB(0xf) >> 3) & 0xf;
1637 #if defined(HOST_WORDS_BIGENDIAN)
1638 memmove(&r
->u8
[sh
], &a
->u8
[0], 16 - sh
);
1639 memset(&r
->u8
[0], 0, sh
);
1641 memmove(&r
->u8
[0], &a
->u8
[sh
], 16 - sh
);
1642 memset(&r
->u8
[16 - sh
], 0, sh
);
1646 void helper_vsubcuw(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1650 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
1651 r
->u32
[i
] = a
->u32
[i
] >= b
->u32
[i
];
1655 void helper_vsumsws(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1662 upper
= ARRAY_SIZE(r
->s32
) - 1;
1663 t
= (int64_t)b
->VsrSW(upper
);
1664 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
1666 result
.VsrSW(i
) = 0;
1668 result
.VsrSW(upper
) = cvtsdsw(t
, &sat
);
1676 void helper_vsum2sws(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1683 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
1684 int64_t t
= (int64_t)b
->VsrSW(upper
+ i
* 2);
1687 for (j
= 0; j
< ARRAY_SIZE(r
->u64
); j
++) {
1688 t
+= a
->VsrSW(2 * i
+ j
);
1690 result
.VsrSW(upper
+ i
* 2) = cvtsdsw(t
, &sat
);
1699 void helper_vsum4sbs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1704 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
1705 int64_t t
= (int64_t)b
->s32
[i
];
1707 for (j
= 0; j
< ARRAY_SIZE(r
->s32
); j
++) {
1708 t
+= a
->s8
[4 * i
+ j
];
1710 r
->s32
[i
] = cvtsdsw(t
, &sat
);
1718 void helper_vsum4shs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1723 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
1724 int64_t t
= (int64_t)b
->s32
[i
];
1726 t
+= a
->s16
[2 * i
] + a
->s16
[2 * i
+ 1];
1727 r
->s32
[i
] = cvtsdsw(t
, &sat
);
1735 void helper_vsum4ubs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1740 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
1741 uint64_t t
= (uint64_t)b
->u32
[i
];
1743 for (j
= 0; j
< ARRAY_SIZE(r
->u32
); j
++) {
1744 t
+= a
->u8
[4 * i
+ j
];
1746 r
->u32
[i
] = cvtuduw(t
, &sat
);
1754 #if defined(HOST_WORDS_BIGENDIAN)
1761 #define VUPKPX(suffix, hi) \
1762 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
1767 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
1768 uint16_t e = b->u16[hi ? i : i + 4]; \
1769 uint8_t a = (e >> 15) ? 0xff : 0; \
1770 uint8_t r = (e >> 10) & 0x1f; \
1771 uint8_t g = (e >> 5) & 0x1f; \
1772 uint8_t b = e & 0x1f; \
1774 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
1782 #define VUPK(suffix, unpacked, packee, hi) \
1783 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
1789 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
1790 result.unpacked[i] = b->packee[i]; \
1793 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
1795 result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
1800 VUPK(hsb
, s16
, s8
, UPKHI
)
1801 VUPK(hsh
, s32
, s16
, UPKHI
)
1802 VUPK(hsw
, s64
, s32
, UPKHI
)
1803 VUPK(lsb
, s16
, s8
, UPKLO
)
1804 VUPK(lsh
, s32
, s16
, UPKLO
)
1805 VUPK(lsw
, s64
, s32
, UPKLO
)
1810 #define VGENERIC_DO(name, element) \
1811 void helper_v##name(ppc_avr_t *r, ppc_avr_t *b) \
1815 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1816 r->element[i] = name(b->element[i]); \
1820 #define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8)
1821 #define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16)
1823 VGENERIC_DO(clzb
, u8
)
1824 VGENERIC_DO(clzh
, u16
)
1829 #define ctzb(v) ((v) ? ctz32(v) : 8)
1830 #define ctzh(v) ((v) ? ctz32(v) : 16)
1831 #define ctzw(v) ctz32((v))
1832 #define ctzd(v) ctz64((v))
1834 VGENERIC_DO(ctzb
, u8
)
1835 VGENERIC_DO(ctzh
, u16
)
1836 VGENERIC_DO(ctzw
, u32
)
1837 VGENERIC_DO(ctzd
, u64
)
1844 #define popcntb(v) ctpop8(v)
1845 #define popcnth(v) ctpop16(v)
1846 #define popcntw(v) ctpop32(v)
1847 #define popcntd(v) ctpop64(v)
1849 VGENERIC_DO(popcntb
, u8
)
1850 VGENERIC_DO(popcnth
, u16
)
1851 VGENERIC_DO(popcntw
, u32
)
1852 VGENERIC_DO(popcntd
, u64
)
1861 #if defined(HOST_WORDS_BIGENDIAN)
1862 #define QW_ONE { .u64 = { 0, 1 } }
1864 #define QW_ONE { .u64 = { 1, 0 } }
1867 #ifndef CONFIG_INT128
1869 static inline void avr_qw_not(ppc_avr_t
*t
, ppc_avr_t a
)
1871 t
->u64
[0] = ~a
.u64
[0];
1872 t
->u64
[1] = ~a
.u64
[1];
1875 static int avr_qw_cmpu(ppc_avr_t a
, ppc_avr_t b
)
1877 if (a
.VsrD(0) < b
.VsrD(0)) {
1879 } else if (a
.VsrD(0) > b
.VsrD(0)) {
1881 } else if (a
.VsrD(1) < b
.VsrD(1)) {
1883 } else if (a
.VsrD(1) > b
.VsrD(1)) {
1890 static void avr_qw_add(ppc_avr_t
*t
, ppc_avr_t a
, ppc_avr_t b
)
1892 t
->VsrD(1) = a
.VsrD(1) + b
.VsrD(1);
1893 t
->VsrD(0) = a
.VsrD(0) + b
.VsrD(0) +
1894 (~a
.VsrD(1) < b
.VsrD(1));
1897 static int avr_qw_addc(ppc_avr_t
*t
, ppc_avr_t a
, ppc_avr_t b
)
1900 t
->VsrD(1) = a
.VsrD(1) + b
.VsrD(1);
1901 t
->VsrD(0) = a
.VsrD(0) + b
.VsrD(0) +
1902 (~a
.VsrD(1) < b
.VsrD(1));
1903 avr_qw_not(¬_a
, a
);
1904 return avr_qw_cmpu(not_a
, b
) < 0;
1909 void helper_vadduqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1911 #ifdef CONFIG_INT128
1912 r
->u128
= a
->u128
+ b
->u128
;
1914 avr_qw_add(r
, *a
, *b
);
1918 void helper_vaddeuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
1920 #ifdef CONFIG_INT128
1921 r
->u128
= a
->u128
+ b
->u128
+ (c
->u128
& 1);
1924 if (c
->VsrD(1) & 1) {
1928 tmp
.VsrD(1) = c
->VsrD(1) & 1;
1929 avr_qw_add(&tmp
, *a
, tmp
);
1930 avr_qw_add(r
, tmp
, *b
);
1932 avr_qw_add(r
, *a
, *b
);
1937 void helper_vaddcuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1939 #ifdef CONFIG_INT128
1940 r
->u128
= (~a
->u128
< b
->u128
);
1944 avr_qw_not(¬_a
, *a
);
1947 r
->VsrD(1) = (avr_qw_cmpu(not_a
, *b
) < 0);
1951 void helper_vaddecuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
1953 #ifdef CONFIG_INT128
1954 int carry_out
= (~a
->u128
< b
->u128
);
1955 if (!carry_out
&& (c
->u128
& 1)) {
1956 carry_out
= ((a
->u128
+ b
->u128
+ 1) == 0) &&
1957 ((a
->u128
!= 0) || (b
->u128
!= 0));
1959 r
->u128
= carry_out
;
1962 int carry_in
= c
->VsrD(1) & 1;
1966 carry_out
= avr_qw_addc(&tmp
, *a
, *b
);
1968 if (!carry_out
&& carry_in
) {
1969 ppc_avr_t one
= QW_ONE
;
1970 carry_out
= avr_qw_addc(&tmp
, tmp
, one
);
1973 r
->VsrD(1) = carry_out
;
1977 void helper_vsubuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1979 #ifdef CONFIG_INT128
1980 r
->u128
= a
->u128
- b
->u128
;
1983 ppc_avr_t one
= QW_ONE
;
1985 avr_qw_not(&tmp
, *b
);
1986 avr_qw_add(&tmp
, *a
, tmp
);
1987 avr_qw_add(r
, tmp
, one
);
1991 void helper_vsubeuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
1993 #ifdef CONFIG_INT128
1994 r
->u128
= a
->u128
+ ~b
->u128
+ (c
->u128
& 1);
1998 avr_qw_not(&tmp
, *b
);
1999 avr_qw_add(&sum
, *a
, tmp
);
2002 tmp
.VsrD(1) = c
->VsrD(1) & 1;
2003 avr_qw_add(r
, sum
, tmp
);
2007 void helper_vsubcuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2009 #ifdef CONFIG_INT128
2010 r
->u128
= (~a
->u128
< ~b
->u128
) ||
2011 (a
->u128
+ ~b
->u128
== (__uint128_t
)-1);
2013 int carry
= (avr_qw_cmpu(*a
, *b
) > 0);
2016 avr_qw_not(&tmp
, *b
);
2017 avr_qw_add(&tmp
, *a
, tmp
);
2018 carry
= ((tmp
.VsrSD(0) == -1ull) && (tmp
.VsrSD(1) == -1ull));
2025 void helper_vsubecuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2027 #ifdef CONFIG_INT128
2029 (~a
->u128
< ~b
->u128
) ||
2030 ((c
->u128
& 1) && (a
->u128
+ ~b
->u128
== (__uint128_t
)-1));
2032 int carry_in
= c
->VsrD(1) & 1;
2033 int carry_out
= (avr_qw_cmpu(*a
, *b
) > 0);
2034 if (!carry_out
&& carry_in
) {
2036 avr_qw_not(&tmp
, *b
);
2037 avr_qw_add(&tmp
, *a
, tmp
);
2038 carry_out
= ((tmp
.VsrD(0) == -1ull) && (tmp
.VsrD(1) == -1ull));
2042 r
->VsrD(1) = carry_out
;
2046 #define BCD_PLUS_PREF_1 0xC
2047 #define BCD_PLUS_PREF_2 0xF
2048 #define BCD_PLUS_ALT_1 0xA
2049 #define BCD_NEG_PREF 0xD
2050 #define BCD_NEG_ALT 0xB
2051 #define BCD_PLUS_ALT_2 0xE
2052 #define NATIONAL_PLUS 0x2B
2053 #define NATIONAL_NEG 0x2D
2055 #define BCD_DIG_BYTE(n) (15 - ((n) / 2))
2057 static int bcd_get_sgn(ppc_avr_t
*bcd
)
2059 switch (bcd
->VsrB(BCD_DIG_BYTE(0)) & 0xF) {
2060 case BCD_PLUS_PREF_1
:
2061 case BCD_PLUS_PREF_2
:
2062 case BCD_PLUS_ALT_1
:
2063 case BCD_PLUS_ALT_2
:
2081 static int bcd_preferred_sgn(int sgn
, int ps
)
2084 return (ps
== 0) ? BCD_PLUS_PREF_1
: BCD_PLUS_PREF_2
;
2086 return BCD_NEG_PREF
;
2090 static uint8_t bcd_get_digit(ppc_avr_t
*bcd
, int n
, int *invalid
)
2094 result
= bcd
->VsrB(BCD_DIG_BYTE(n
)) >> 4;
2096 result
= bcd
->VsrB(BCD_DIG_BYTE(n
)) & 0xF;
2099 if (unlikely(result
> 9)) {
2105 static void bcd_put_digit(ppc_avr_t
*bcd
, uint8_t digit
, int n
)
2108 bcd
->VsrB(BCD_DIG_BYTE(n
)) &= 0x0F;
2109 bcd
->VsrB(BCD_DIG_BYTE(n
)) |= (digit
<< 4);
2111 bcd
->VsrB(BCD_DIG_BYTE(n
)) &= 0xF0;
2112 bcd
->VsrB(BCD_DIG_BYTE(n
)) |= digit
;
2116 static bool bcd_is_valid(ppc_avr_t
*bcd
)
2121 if (bcd_get_sgn(bcd
) == 0) {
2125 for (i
= 1; i
< 32; i
++) {
2126 bcd_get_digit(bcd
, i
, &invalid
);
2127 if (unlikely(invalid
)) {
2134 static int bcd_cmp_zero(ppc_avr_t
*bcd
)
2136 if (bcd
->VsrD(0) == 0 && (bcd
->VsrD(1) >> 4) == 0) {
2139 return (bcd_get_sgn(bcd
) == 1) ? CRF_GT
: CRF_LT
;
2143 static uint16_t get_national_digit(ppc_avr_t
*reg
, int n
)
2145 return reg
->VsrH(7 - n
);
2148 static void set_national_digit(ppc_avr_t
*reg
, uint8_t val
, int n
)
2150 reg
->VsrH(7 - n
) = val
;
2153 static int bcd_cmp_mag(ppc_avr_t
*a
, ppc_avr_t
*b
)
2157 for (i
= 31; i
> 0; i
--) {
2158 uint8_t dig_a
= bcd_get_digit(a
, i
, &invalid
);
2159 uint8_t dig_b
= bcd_get_digit(b
, i
, &invalid
);
2160 if (unlikely(invalid
)) {
2161 return 0; /* doesn't matter */
2162 } else if (dig_a
> dig_b
) {
2164 } else if (dig_a
< dig_b
) {
2172 static void bcd_add_mag(ppc_avr_t
*t
, ppc_avr_t
*a
, ppc_avr_t
*b
, int *invalid
,
2177 for (i
= 1; i
<= 31; i
++) {
2178 uint8_t digit
= bcd_get_digit(a
, i
, invalid
) +
2179 bcd_get_digit(b
, i
, invalid
) + carry
;
2187 bcd_put_digit(t
, digit
, i
);
2193 static void bcd_sub_mag(ppc_avr_t
*t
, ppc_avr_t
*a
, ppc_avr_t
*b
, int *invalid
,
2199 for (i
= 1; i
<= 31; i
++) {
2200 uint8_t digit
= bcd_get_digit(a
, i
, invalid
) -
2201 bcd_get_digit(b
, i
, invalid
) + carry
;
2209 bcd_put_digit(t
, digit
, i
);
2215 uint32_t helper_bcdadd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2218 int sgna
= bcd_get_sgn(a
);
2219 int sgnb
= bcd_get_sgn(b
);
2220 int invalid
= (sgna
== 0) || (sgnb
== 0);
2223 ppc_avr_t result
= { .u64
= { 0, 0 } };
2227 result
.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna
, ps
);
2228 bcd_add_mag(&result
, a
, b
, &invalid
, &overflow
);
2229 cr
= bcd_cmp_zero(&result
);
2231 int magnitude
= bcd_cmp_mag(a
, b
);
2232 if (magnitude
> 0) {
2233 result
.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna
, ps
);
2234 bcd_sub_mag(&result
, a
, b
, &invalid
, &overflow
);
2235 cr
= (sgna
> 0) ? CRF_GT
: CRF_LT
;
2236 } else if (magnitude
< 0) {
2237 result
.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgnb
, ps
);
2238 bcd_sub_mag(&result
, b
, a
, &invalid
, &overflow
);
2239 cr
= (sgnb
> 0) ? CRF_GT
: CRF_LT
;
2241 result
.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(0, ps
);
2247 if (unlikely(invalid
)) {
2248 result
.VsrD(0) = result
.VsrD(1) = -1;
2250 } else if (overflow
) {
2259 uint32_t helper_bcdsub(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2261 ppc_avr_t bcopy
= *b
;
2262 int sgnb
= bcd_get_sgn(b
);
2264 bcd_put_digit(&bcopy
, BCD_PLUS_PREF_1
, 0);
2265 } else if (sgnb
> 0) {
2266 bcd_put_digit(&bcopy
, BCD_NEG_PREF
, 0);
2268 /* else invalid ... defer to bcdadd code for proper handling */
2270 return helper_bcdadd(r
, a
, &bcopy
, ps
);
2273 uint32_t helper_bcdcfn(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2277 uint16_t national
= 0;
2278 uint16_t sgnb
= get_national_digit(b
, 0);
2279 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2280 int invalid
= (sgnb
!= NATIONAL_PLUS
&& sgnb
!= NATIONAL_NEG
);
2282 for (i
= 1; i
< 8; i
++) {
2283 national
= get_national_digit(b
, i
);
2284 if (unlikely(national
< 0x30 || national
> 0x39)) {
2289 bcd_put_digit(&ret
, national
& 0xf, i
);
2292 if (sgnb
== NATIONAL_PLUS
) {
2293 bcd_put_digit(&ret
, (ps
== 0) ? BCD_PLUS_PREF_1
: BCD_PLUS_PREF_2
, 0);
2295 bcd_put_digit(&ret
, BCD_NEG_PREF
, 0);
2298 cr
= bcd_cmp_zero(&ret
);
2300 if (unlikely(invalid
)) {
2309 uint32_t helper_bcdctn(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2313 int sgnb
= bcd_get_sgn(b
);
2314 int invalid
= (sgnb
== 0);
2315 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2317 int ox_flag
= (b
->VsrD(0) != 0) || ((b
->VsrD(1) >> 32) != 0);
2319 for (i
= 1; i
< 8; i
++) {
2320 set_national_digit(&ret
, 0x30 + bcd_get_digit(b
, i
, &invalid
), i
);
2322 if (unlikely(invalid
)) {
2326 set_national_digit(&ret
, (sgnb
== -1) ? NATIONAL_NEG
: NATIONAL_PLUS
, 0);
2328 cr
= bcd_cmp_zero(b
);
2334 if (unlikely(invalid
)) {
2343 uint32_t helper_bcdcfz(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2349 int zone_lead
= ps
? 0xF : 0x3;
2351 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2352 int sgnb
= b
->VsrB(BCD_DIG_BYTE(0)) >> 4;
2354 if (unlikely((sgnb
< 0xA) && ps
)) {
2358 for (i
= 0; i
< 16; i
++) {
2359 zone_digit
= i
? b
->VsrB(BCD_DIG_BYTE(i
* 2)) >> 4 : zone_lead
;
2360 digit
= b
->VsrB(BCD_DIG_BYTE(i
* 2)) & 0xF;
2361 if (unlikely(zone_digit
!= zone_lead
|| digit
> 0x9)) {
2366 bcd_put_digit(&ret
, digit
, i
+ 1);
2369 if ((ps
&& (sgnb
== 0xB || sgnb
== 0xD)) ||
2370 (!ps
&& (sgnb
& 0x4))) {
2371 bcd_put_digit(&ret
, BCD_NEG_PREF
, 0);
2373 bcd_put_digit(&ret
, BCD_PLUS_PREF_1
, 0);
2376 cr
= bcd_cmp_zero(&ret
);
2378 if (unlikely(invalid
)) {
2387 uint32_t helper_bcdctz(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2392 int sgnb
= bcd_get_sgn(b
);
2393 int zone_lead
= (ps
) ? 0xF0 : 0x30;
2394 int invalid
= (sgnb
== 0);
2395 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2397 int ox_flag
= ((b
->VsrD(0) >> 4) != 0);
2399 for (i
= 0; i
< 16; i
++) {
2400 digit
= bcd_get_digit(b
, i
+ 1, &invalid
);
2402 if (unlikely(invalid
)) {
2406 ret
.VsrB(BCD_DIG_BYTE(i
* 2)) = zone_lead
+ digit
;
2410 bcd_put_digit(&ret
, (sgnb
== 1) ? 0xC : 0xD, 1);
2412 bcd_put_digit(&ret
, (sgnb
== 1) ? 0x3 : 0x7, 1);
2415 cr
= bcd_cmp_zero(b
);
2421 if (unlikely(invalid
)) {
2430 uint32_t helper_bcdcfsq(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2436 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2438 if (b
->VsrSD(0) < 0) {
2439 lo_value
= -b
->VsrSD(1);
2440 hi_value
= ~b
->VsrD(0) + !lo_value
;
2441 bcd_put_digit(&ret
, 0xD, 0);
2443 lo_value
= b
->VsrD(1);
2444 hi_value
= b
->VsrD(0);
2445 bcd_put_digit(&ret
, bcd_preferred_sgn(0, ps
), 0);
2448 if (divu128(&lo_value
, &hi_value
, 1000000000000000ULL) ||
2449 lo_value
> 9999999999999999ULL) {
2453 for (i
= 1; i
< 16; hi_value
/= 10, i
++) {
2454 bcd_put_digit(&ret
, hi_value
% 10, i
);
2457 for (; i
< 32; lo_value
/= 10, i
++) {
2458 bcd_put_digit(&ret
, lo_value
% 10, i
);
2461 cr
|= bcd_cmp_zero(&ret
);
2468 uint32_t helper_bcdctsq(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2475 uint64_t hi_value
= 0;
2476 int sgnb
= bcd_get_sgn(b
);
2477 int invalid
= (sgnb
== 0);
2479 lo_value
= bcd_get_digit(b
, 31, &invalid
);
2480 for (i
= 30; i
> 0; i
--) {
2481 mulu64(&lo_value
, &carry
, lo_value
, 10ULL);
2482 mulu64(&hi_value
, &unused
, hi_value
, 10ULL);
2483 lo_value
+= bcd_get_digit(b
, i
, &invalid
);
2486 if (unlikely(invalid
)) {
2492 r
->VsrSD(1) = -lo_value
;
2493 r
->VsrSD(0) = ~hi_value
+ !r
->VsrSD(1);
2495 r
->VsrSD(1) = lo_value
;
2496 r
->VsrSD(0) = hi_value
;
2499 cr
= bcd_cmp_zero(b
);
2501 if (unlikely(invalid
)) {
2508 uint32_t helper_bcdcpsgn(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2513 if (bcd_get_sgn(a
) == 0 || bcd_get_sgn(b
) == 0) {
2518 bcd_put_digit(r
, b
->VsrB(BCD_DIG_BYTE(0)) & 0xF, 0);
2520 for (i
= 1; i
< 32; i
++) {
2521 bcd_get_digit(a
, i
, &invalid
);
2522 bcd_get_digit(b
, i
, &invalid
);
2523 if (unlikely(invalid
)) {
2528 return bcd_cmp_zero(r
);
2531 uint32_t helper_bcdsetsgn(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2533 int sgnb
= bcd_get_sgn(b
);
2536 bcd_put_digit(r
, bcd_preferred_sgn(sgnb
, ps
), 0);
2538 if (bcd_is_valid(b
) == false) {
2542 return bcd_cmp_zero(r
);
2545 uint32_t helper_bcds(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2548 int i
= a
->VsrSB(7);
2549 bool ox_flag
= false;
2550 int sgnb
= bcd_get_sgn(b
);
2552 ret
.VsrD(1) &= ~0xf;
2554 if (bcd_is_valid(b
) == false) {
2558 if (unlikely(i
> 31)) {
2560 } else if (unlikely(i
< -31)) {
2565 ulshift(&ret
.VsrD(1), &ret
.VsrD(0), i
* 4, &ox_flag
);
2567 urshift(&ret
.VsrD(1), &ret
.VsrD(0), -i
* 4);
2569 bcd_put_digit(&ret
, bcd_preferred_sgn(sgnb
, ps
), 0);
2573 cr
= bcd_cmp_zero(r
);
2581 uint32_t helper_bcdus(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2586 bool ox_flag
= false;
2589 for (i
= 0; i
< 32; i
++) {
2590 bcd_get_digit(b
, i
, &invalid
);
2592 if (unlikely(invalid
)) {
2600 ret
.VsrD(1) = ret
.VsrD(0) = 0;
2601 } else if (i
<= -32) {
2602 ret
.VsrD(1) = ret
.VsrD(0) = 0;
2604 ulshift(&ret
.VsrD(1), &ret
.VsrD(0), i
* 4, &ox_flag
);
2606 urshift(&ret
.VsrD(1), &ret
.VsrD(0), -i
* 4);
2610 cr
= bcd_cmp_zero(r
);
2618 uint32_t helper_bcdsr(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2623 bool ox_flag
= false;
2624 int sgnb
= bcd_get_sgn(b
);
2626 ret
.VsrD(1) &= ~0xf;
2628 int i
= a
->VsrSB(7);
2631 bcd_one
.VsrD(0) = 0;
2632 bcd_one
.VsrD(1) = 0x10;
2634 if (bcd_is_valid(b
) == false) {
2638 if (unlikely(i
> 31)) {
2640 } else if (unlikely(i
< -31)) {
2645 ulshift(&ret
.VsrD(1), &ret
.VsrD(0), i
* 4, &ox_flag
);
2647 urshift(&ret
.VsrD(1), &ret
.VsrD(0), -i
* 4);
2649 if (bcd_get_digit(&ret
, 0, &invalid
) >= 5) {
2650 bcd_add_mag(&ret
, &ret
, &bcd_one
, &invalid
, &unused
);
2653 bcd_put_digit(&ret
, bcd_preferred_sgn(sgnb
, ps
), 0);
2655 cr
= bcd_cmp_zero(&ret
);
2664 uint32_t helper_bcdtrunc(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2667 uint32_t ox_flag
= 0;
2668 int i
= a
->VsrSH(3) + 1;
2671 if (bcd_is_valid(b
) == false) {
2675 if (i
> 16 && i
< 32) {
2676 mask
= (uint64_t)-1 >> (128 - i
* 4);
2677 if (ret
.VsrD(0) & ~mask
) {
2681 ret
.VsrD(0) &= mask
;
2682 } else if (i
>= 0 && i
<= 16) {
2683 mask
= (uint64_t)-1 >> (64 - i
* 4);
2684 if (ret
.VsrD(0) || (ret
.VsrD(1) & ~mask
)) {
2688 ret
.VsrD(1) &= mask
;
2691 bcd_put_digit(&ret
, bcd_preferred_sgn(bcd_get_sgn(b
), ps
), 0);
2694 return bcd_cmp_zero(&ret
) | ox_flag
;
2697 uint32_t helper_bcdutrunc(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2701 uint32_t ox_flag
= 0;
2705 for (i
= 0; i
< 32; i
++) {
2706 bcd_get_digit(b
, i
, &invalid
);
2708 if (unlikely(invalid
)) {
2714 if (i
> 16 && i
< 33) {
2715 mask
= (uint64_t)-1 >> (128 - i
* 4);
2716 if (ret
.VsrD(0) & ~mask
) {
2720 ret
.VsrD(0) &= mask
;
2721 } else if (i
> 0 && i
<= 16) {
2722 mask
= (uint64_t)-1 >> (64 - i
* 4);
2723 if (ret
.VsrD(0) || (ret
.VsrD(1) & ~mask
)) {
2727 ret
.VsrD(1) &= mask
;
2729 } else if (i
== 0) {
2730 if (ret
.VsrD(0) || ret
.VsrD(1)) {
2733 ret
.VsrD(0) = ret
.VsrD(1) = 0;
2737 if (r
->VsrD(0) == 0 && r
->VsrD(1) == 0) {
2738 return ox_flag
| CRF_EQ
;
2741 return ox_flag
| CRF_GT
;
2744 void helper_vsbox(ppc_avr_t
*r
, ppc_avr_t
*a
)
2747 VECTOR_FOR_INORDER_I(i
, u8
) {
2748 r
->u8
[i
] = AES_sbox
[a
->u8
[i
]];
2752 void helper_vcipher(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2757 VECTOR_FOR_INORDER_I(i
, u32
) {
2758 result
.VsrW(i
) = b
->VsrW(i
) ^
2759 (AES_Te0
[a
->VsrB(AES_shifts
[4 * i
+ 0])] ^
2760 AES_Te1
[a
->VsrB(AES_shifts
[4 * i
+ 1])] ^
2761 AES_Te2
[a
->VsrB(AES_shifts
[4 * i
+ 2])] ^
2762 AES_Te3
[a
->VsrB(AES_shifts
[4 * i
+ 3])]);
2767 void helper_vcipherlast(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2772 VECTOR_FOR_INORDER_I(i
, u8
) {
2773 result
.VsrB(i
) = b
->VsrB(i
) ^ (AES_sbox
[a
->VsrB(AES_shifts
[i
])]);
2778 void helper_vncipher(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2780 /* This differs from what is written in ISA V2.07. The RTL is */
2781 /* incorrect and will be fixed in V2.07B. */
2785 VECTOR_FOR_INORDER_I(i
, u8
) {
2786 tmp
.VsrB(i
) = b
->VsrB(i
) ^ AES_isbox
[a
->VsrB(AES_ishifts
[i
])];
2789 VECTOR_FOR_INORDER_I(i
, u32
) {
2791 AES_imc
[tmp
.VsrB(4 * i
+ 0)][0] ^
2792 AES_imc
[tmp
.VsrB(4 * i
+ 1)][1] ^
2793 AES_imc
[tmp
.VsrB(4 * i
+ 2)][2] ^
2794 AES_imc
[tmp
.VsrB(4 * i
+ 3)][3];
2798 void helper_vncipherlast(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2803 VECTOR_FOR_INORDER_I(i
, u8
) {
2804 result
.VsrB(i
) = b
->VsrB(i
) ^ (AES_isbox
[a
->VsrB(AES_ishifts
[i
])]);
2809 void helper_vshasigmaw(ppc_avr_t
*r
, ppc_avr_t
*a
, uint32_t st_six
)
2811 int st
= (st_six
& 0x10) != 0;
2812 int six
= st_six
& 0xF;
2815 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
2817 if ((six
& (0x8 >> i
)) == 0) {
2818 r
->VsrW(i
) = ror32(a
->VsrW(i
), 7) ^
2819 ror32(a
->VsrW(i
), 18) ^
2821 } else { /* six.bit[i] == 1 */
2822 r
->VsrW(i
) = ror32(a
->VsrW(i
), 17) ^
2823 ror32(a
->VsrW(i
), 19) ^
2826 } else { /* st == 1 */
2827 if ((six
& (0x8 >> i
)) == 0) {
2828 r
->VsrW(i
) = ror32(a
->VsrW(i
), 2) ^
2829 ror32(a
->VsrW(i
), 13) ^
2830 ror32(a
->VsrW(i
), 22);
2831 } else { /* six.bit[i] == 1 */
2832 r
->VsrW(i
) = ror32(a
->VsrW(i
), 6) ^
2833 ror32(a
->VsrW(i
), 11) ^
2834 ror32(a
->VsrW(i
), 25);
2840 void helper_vshasigmad(ppc_avr_t
*r
, ppc_avr_t
*a
, uint32_t st_six
)
2842 int st
= (st_six
& 0x10) != 0;
2843 int six
= st_six
& 0xF;
2846 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
2848 if ((six
& (0x8 >> (2 * i
))) == 0) {
2849 r
->VsrD(i
) = ror64(a
->VsrD(i
), 1) ^
2850 ror64(a
->VsrD(i
), 8) ^
2852 } else { /* six.bit[2*i] == 1 */
2853 r
->VsrD(i
) = ror64(a
->VsrD(i
), 19) ^
2854 ror64(a
->VsrD(i
), 61) ^
2857 } else { /* st == 1 */
2858 if ((six
& (0x8 >> (2 * i
))) == 0) {
2859 r
->VsrD(i
) = ror64(a
->VsrD(i
), 28) ^
2860 ror64(a
->VsrD(i
), 34) ^
2861 ror64(a
->VsrD(i
), 39);
2862 } else { /* six.bit[2*i] == 1 */
2863 r
->VsrD(i
) = ror64(a
->VsrD(i
), 14) ^
2864 ror64(a
->VsrD(i
), 18) ^
2865 ror64(a
->VsrD(i
), 41);
2871 void helper_vpermxor(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2876 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
2877 int indexA
= c
->VsrB(i
) >> 4;
2878 int indexB
= c
->VsrB(i
) & 0xF;
2880 result
.VsrB(i
) = a
->VsrB(indexA
) ^ b
->VsrB(indexB
);
2885 #undef VECTOR_FOR_INORDER_I
2887 /*****************************************************************************/
2888 /* SPE extension helpers */
2889 /* Use a table to make this quicker */
2890 static const uint8_t hbrev
[16] = {
2891 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
2892 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
2895 static inline uint8_t byte_reverse(uint8_t val
)
2897 return hbrev
[val
>> 4] | (hbrev
[val
& 0xF] << 4);
2900 static inline uint32_t word_reverse(uint32_t val
)
2902 return byte_reverse(val
>> 24) | (byte_reverse(val
>> 16) << 8) |
2903 (byte_reverse(val
>> 8) << 16) | (byte_reverse(val
) << 24);
2906 #define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
2907 target_ulong
helper_brinc(target_ulong arg1
, target_ulong arg2
)
2909 uint32_t a
, b
, d
, mask
;
2911 mask
= UINT32_MAX
>> (32 - MASKBITS
);
2914 d
= word_reverse(1 + word_reverse(a
| ~b
));
2915 return (arg1
& ~mask
) | (d
& b
);
2918 uint32_t helper_cntlsw32(uint32_t val
)
2920 if (val
& 0x80000000) {
2927 uint32_t helper_cntlzw32(uint32_t val
)
2933 target_ulong
helper_dlmzb(CPUPPCState
*env
, target_ulong high
,
2934 target_ulong low
, uint32_t update_Rc
)
2940 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
2941 if ((high
& mask
) == 0) {
2949 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
2950 if ((low
& mask
) == 0) {
2963 env
->xer
= (env
->xer
& ~0x7F) | i
;
2965 env
->crf
[0] |= xer_so
;