Merge remote-tracking branch 'remotes/vivier2/tags/trivial-branch-pull-request' into...
[qemu/ar7.git] / target / ppc / int_helper.c
blob6d238b989d2b864424873be8c63a5c6522098996
1 /*
2 * PowerPC integer and vector emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internal.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/helper-proto.h"
26 #include "crypto/aes.h"
27 #include "fpu/softfloat.h"
28 #include "qapi/error.h"
29 #include "qemu/guest-random.h"
31 #include "helper_regs.h"
32 /*****************************************************************************/
33 /* Fixed point operations helpers */
35 static inline void helper_update_ov_legacy(CPUPPCState *env, int ov)
37 if (unlikely(ov)) {
38 env->so = env->ov = 1;
39 } else {
40 env->ov = 0;
44 target_ulong helper_divweu(CPUPPCState *env, target_ulong ra, target_ulong rb,
45 uint32_t oe)
47 uint64_t rt = 0;
48 int overflow = 0;
50 uint64_t dividend = (uint64_t)ra << 32;
51 uint64_t divisor = (uint32_t)rb;
53 if (unlikely(divisor == 0)) {
54 overflow = 1;
55 } else {
56 rt = dividend / divisor;
57 overflow = rt > UINT32_MAX;
60 if (unlikely(overflow)) {
61 rt = 0; /* Undefined */
64 if (oe) {
65 helper_update_ov_legacy(env, overflow);
68 return (target_ulong)rt;
71 target_ulong helper_divwe(CPUPPCState *env, target_ulong ra, target_ulong rb,
72 uint32_t oe)
74 int64_t rt = 0;
75 int overflow = 0;
77 int64_t dividend = (int64_t)ra << 32;
78 int64_t divisor = (int64_t)((int32_t)rb);
80 if (unlikely((divisor == 0) ||
81 ((divisor == -1ull) && (dividend == INT64_MIN)))) {
82 overflow = 1;
83 } else {
84 rt = dividend / divisor;
85 overflow = rt != (int32_t)rt;
88 if (unlikely(overflow)) {
89 rt = 0; /* Undefined */
92 if (oe) {
93 helper_update_ov_legacy(env, overflow);
96 return (target_ulong)rt;
99 #if defined(TARGET_PPC64)
101 uint64_t helper_divdeu(CPUPPCState *env, uint64_t ra, uint64_t rb, uint32_t oe)
103 uint64_t rt = 0;
104 int overflow = 0;
106 overflow = divu128(&rt, &ra, rb);
108 if (unlikely(overflow)) {
109 rt = 0; /* Undefined */
112 if (oe) {
113 helper_update_ov_legacy(env, overflow);
116 return rt;
119 uint64_t helper_divde(CPUPPCState *env, uint64_t rau, uint64_t rbu, uint32_t oe)
121 int64_t rt = 0;
122 int64_t ra = (int64_t)rau;
123 int64_t rb = (int64_t)rbu;
124 int overflow = divs128(&rt, &ra, rb);
126 if (unlikely(overflow)) {
127 rt = 0; /* Undefined */
130 if (oe) {
131 helper_update_ov_legacy(env, overflow);
134 return rt;
137 #endif
140 #if defined(TARGET_PPC64)
141 /* if x = 0xab, returns 0xababababababababa */
142 #define pattern(x) (((x) & 0xff) * (~(target_ulong)0 / 0xff))
145 * subtract 1 from each byte, and with inverse, check if MSB is set at each
146 * byte.
147 * i.e. ((0x00 - 0x01) & ~(0x00)) & 0x80
148 * (0xFF & 0xFF) & 0x80 = 0x80 (zero found)
150 #define haszero(v) (((v) - pattern(0x01)) & ~(v) & pattern(0x80))
152 /* When you XOR the pattern and there is a match, that byte will be zero */
153 #define hasvalue(x, n) (haszero((x) ^ pattern(n)))
155 uint32_t helper_cmpeqb(target_ulong ra, target_ulong rb)
157 return hasvalue(rb, ra) ? CRF_GT : 0;
160 #undef pattern
161 #undef haszero
162 #undef hasvalue
165 * Return a random number.
167 uint64_t helper_darn32(void)
169 Error *err = NULL;
170 uint32_t ret;
172 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
173 qemu_log_mask(LOG_UNIMP, "darn: Crypto failure: %s",
174 error_get_pretty(err));
175 error_free(err);
176 return -1;
179 return ret;
182 uint64_t helper_darn64(void)
184 Error *err = NULL;
185 uint64_t ret;
187 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
188 qemu_log_mask(LOG_UNIMP, "darn: Crypto failure: %s",
189 error_get_pretty(err));
190 error_free(err);
191 return -1;
194 return ret;
197 uint64_t helper_bpermd(uint64_t rs, uint64_t rb)
199 int i;
200 uint64_t ra = 0;
202 for (i = 0; i < 8; i++) {
203 int index = (rs >> (i * 8)) & 0xFF;
204 if (index < 64) {
205 if (rb & PPC_BIT(index)) {
206 ra |= 1 << i;
210 return ra;
213 #endif
215 target_ulong helper_cmpb(target_ulong rs, target_ulong rb)
217 target_ulong mask = 0xff;
218 target_ulong ra = 0;
219 int i;
221 for (i = 0; i < sizeof(target_ulong); i++) {
222 if ((rs & mask) == (rb & mask)) {
223 ra |= mask;
225 mask <<= 8;
227 return ra;
230 /* shift right arithmetic helper */
231 target_ulong helper_sraw(CPUPPCState *env, target_ulong value,
232 target_ulong shift)
234 int32_t ret;
236 if (likely(!(shift & 0x20))) {
237 if (likely((uint32_t)shift != 0)) {
238 shift &= 0x1f;
239 ret = (int32_t)value >> shift;
240 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
241 env->ca32 = env->ca = 0;
242 } else {
243 env->ca32 = env->ca = 1;
245 } else {
246 ret = (int32_t)value;
247 env->ca32 = env->ca = 0;
249 } else {
250 ret = (int32_t)value >> 31;
251 env->ca32 = env->ca = (ret != 0);
253 return (target_long)ret;
256 #if defined(TARGET_PPC64)
257 target_ulong helper_srad(CPUPPCState *env, target_ulong value,
258 target_ulong shift)
260 int64_t ret;
262 if (likely(!(shift & 0x40))) {
263 if (likely((uint64_t)shift != 0)) {
264 shift &= 0x3f;
265 ret = (int64_t)value >> shift;
266 if (likely(ret >= 0 || (value & ((1ULL << shift) - 1)) == 0)) {
267 env->ca32 = env->ca = 0;
268 } else {
269 env->ca32 = env->ca = 1;
271 } else {
272 ret = (int64_t)value;
273 env->ca32 = env->ca = 0;
275 } else {
276 ret = (int64_t)value >> 63;
277 env->ca32 = env->ca = (ret != 0);
279 return ret;
281 #endif
283 #if defined(TARGET_PPC64)
284 target_ulong helper_popcntb(target_ulong val)
286 /* Note that we don't fold past bytes */
287 val = (val & 0x5555555555555555ULL) + ((val >> 1) &
288 0x5555555555555555ULL);
289 val = (val & 0x3333333333333333ULL) + ((val >> 2) &
290 0x3333333333333333ULL);
291 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
292 0x0f0f0f0f0f0f0f0fULL);
293 return val;
296 target_ulong helper_popcntw(target_ulong val)
298 /* Note that we don't fold past words. */
299 val = (val & 0x5555555555555555ULL) + ((val >> 1) &
300 0x5555555555555555ULL);
301 val = (val & 0x3333333333333333ULL) + ((val >> 2) &
302 0x3333333333333333ULL);
303 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
304 0x0f0f0f0f0f0f0f0fULL);
305 val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) &
306 0x00ff00ff00ff00ffULL);
307 val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) &
308 0x0000ffff0000ffffULL);
309 return val;
311 #else
312 target_ulong helper_popcntb(target_ulong val)
314 /* Note that we don't fold past bytes */
315 val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
316 val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
317 val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
318 return val;
320 #endif
322 /*****************************************************************************/
323 /* PowerPC 601 specific instructions (POWER bridge) */
324 target_ulong helper_div(CPUPPCState *env, target_ulong arg1, target_ulong arg2)
326 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
328 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
329 (int32_t)arg2 == 0) {
330 env->spr[SPR_MQ] = 0;
331 return INT32_MIN;
332 } else {
333 env->spr[SPR_MQ] = tmp % arg2;
334 return tmp / (int32_t)arg2;
338 target_ulong helper_divo(CPUPPCState *env, target_ulong arg1,
339 target_ulong arg2)
341 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
343 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
344 (int32_t)arg2 == 0) {
345 env->so = env->ov = 1;
346 env->spr[SPR_MQ] = 0;
347 return INT32_MIN;
348 } else {
349 env->spr[SPR_MQ] = tmp % arg2;
350 tmp /= (int32_t)arg2;
351 if ((int32_t)tmp != tmp) {
352 env->so = env->ov = 1;
353 } else {
354 env->ov = 0;
356 return tmp;
360 target_ulong helper_divs(CPUPPCState *env, target_ulong arg1,
361 target_ulong arg2)
363 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
364 (int32_t)arg2 == 0) {
365 env->spr[SPR_MQ] = 0;
366 return INT32_MIN;
367 } else {
368 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
369 return (int32_t)arg1 / (int32_t)arg2;
373 target_ulong helper_divso(CPUPPCState *env, target_ulong arg1,
374 target_ulong arg2)
376 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
377 (int32_t)arg2 == 0) {
378 env->so = env->ov = 1;
379 env->spr[SPR_MQ] = 0;
380 return INT32_MIN;
381 } else {
382 env->ov = 0;
383 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
384 return (int32_t)arg1 / (int32_t)arg2;
388 /*****************************************************************************/
389 /* 602 specific instructions */
390 /* mfrom is the most crazy instruction ever seen, imho ! */
391 /* Real implementation uses a ROM table. Do the same */
393 * Extremely decomposed:
394 * -arg / 256
395 * return 256 * log10(10 + 1.0) + 0.5
397 #if !defined(CONFIG_USER_ONLY)
398 target_ulong helper_602_mfrom(target_ulong arg)
400 if (likely(arg < 602)) {
401 #include "mfrom_table.inc.c"
402 return mfrom_ROM_table[arg];
403 } else {
404 return 0;
407 #endif
409 /*****************************************************************************/
410 /* Altivec extension helpers */
411 #if defined(HOST_WORDS_BIGENDIAN)
412 #define VECTOR_FOR_INORDER_I(index, element) \
413 for (index = 0; index < ARRAY_SIZE(r->element); index++)
414 #else
415 #define VECTOR_FOR_INORDER_I(index, element) \
416 for (index = ARRAY_SIZE(r->element) - 1; index >= 0; index--)
417 #endif
419 /* Saturating arithmetic helpers. */
420 #define SATCVT(from, to, from_type, to_type, min, max) \
421 static inline to_type cvt##from##to(from_type x, int *sat) \
423 to_type r; \
425 if (x < (from_type)min) { \
426 r = min; \
427 *sat = 1; \
428 } else if (x > (from_type)max) { \
429 r = max; \
430 *sat = 1; \
431 } else { \
432 r = x; \
434 return r; \
436 #define SATCVTU(from, to, from_type, to_type, min, max) \
437 static inline to_type cvt##from##to(from_type x, int *sat) \
439 to_type r; \
441 if (x > (from_type)max) { \
442 r = max; \
443 *sat = 1; \
444 } else { \
445 r = x; \
447 return r; \
449 SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX)
450 SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX)
451 SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX)
453 SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX)
454 SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX)
455 SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX)
456 SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX)
457 SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX)
458 SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX)
459 #undef SATCVT
460 #undef SATCVTU
462 void helper_mtvscr(CPUPPCState *env, uint32_t vscr)
464 env->vscr = vscr & ~(1u << VSCR_SAT);
465 /* Which bit we set is completely arbitrary, but clear the rest. */
466 env->vscr_sat.u64[0] = vscr & (1u << VSCR_SAT);
467 env->vscr_sat.u64[1] = 0;
468 set_flush_to_zero((vscr >> VSCR_NJ) & 1, &env->vec_status);
471 uint32_t helper_mfvscr(CPUPPCState *env)
473 uint32_t sat = (env->vscr_sat.u64[0] | env->vscr_sat.u64[1]) != 0;
474 return env->vscr | (sat << VSCR_SAT);
477 static inline void set_vscr_sat(CPUPPCState *env)
479 /* The choice of non-zero value is arbitrary. */
480 env->vscr_sat.u32[0] = 1;
483 void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
485 int i;
487 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
488 r->u32[i] = ~a->u32[i] < b->u32[i];
492 /* vprtybw */
493 void helper_vprtybw(ppc_avr_t *r, ppc_avr_t *b)
495 int i;
496 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
497 uint64_t res = b->u32[i] ^ (b->u32[i] >> 16);
498 res ^= res >> 8;
499 r->u32[i] = res & 1;
503 /* vprtybd */
504 void helper_vprtybd(ppc_avr_t *r, ppc_avr_t *b)
506 int i;
507 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
508 uint64_t res = b->u64[i] ^ (b->u64[i] >> 32);
509 res ^= res >> 16;
510 res ^= res >> 8;
511 r->u64[i] = res & 1;
515 /* vprtybq */
516 void helper_vprtybq(ppc_avr_t *r, ppc_avr_t *b)
518 uint64_t res = b->u64[0] ^ b->u64[1];
519 res ^= res >> 32;
520 res ^= res >> 16;
521 res ^= res >> 8;
522 r->VsrD(1) = res & 1;
523 r->VsrD(0) = 0;
526 #define VARITH_DO(name, op, element) \
527 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
529 int i; \
531 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
532 r->element[i] = a->element[i] op b->element[i]; \
535 VARITH_DO(muluwm, *, u32)
536 #undef VARITH_DO
537 #undef VARITH
539 #define VARITHFP(suffix, func) \
540 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
541 ppc_avr_t *b) \
543 int i; \
545 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
546 r->f32[i] = func(a->f32[i], b->f32[i], &env->vec_status); \
549 VARITHFP(addfp, float32_add)
550 VARITHFP(subfp, float32_sub)
551 VARITHFP(minfp, float32_min)
552 VARITHFP(maxfp, float32_max)
553 #undef VARITHFP
555 #define VARITHFPFMA(suffix, type) \
556 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
557 ppc_avr_t *b, ppc_avr_t *c) \
559 int i; \
560 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
561 r->f32[i] = float32_muladd(a->f32[i], c->f32[i], b->f32[i], \
562 type, &env->vec_status); \
565 VARITHFPFMA(maddfp, 0);
566 VARITHFPFMA(nmsubfp, float_muladd_negate_result | float_muladd_negate_c);
567 #undef VARITHFPFMA
569 #define VARITHSAT_CASE(type, op, cvt, element) \
571 type result = (type)a->element[i] op (type)b->element[i]; \
572 r->element[i] = cvt(result, &sat); \
575 #define VARITHSAT_DO(name, op, optype, cvt, element) \
576 void helper_v##name(ppc_avr_t *r, ppc_avr_t *vscr_sat, \
577 ppc_avr_t *a, ppc_avr_t *b, uint32_t desc) \
579 int sat = 0; \
580 int i; \
582 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
583 VARITHSAT_CASE(optype, op, cvt, element); \
585 if (sat) { \
586 vscr_sat->u32[0] = 1; \
589 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
590 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
591 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
592 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
593 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
594 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
595 VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
596 VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
597 VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
598 VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
599 VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
600 VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
601 #undef VARITHSAT_CASE
602 #undef VARITHSAT_DO
603 #undef VARITHSAT_SIGNED
604 #undef VARITHSAT_UNSIGNED
606 #define VAVG_DO(name, element, etype) \
607 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
609 int i; \
611 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
612 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
613 r->element[i] = x >> 1; \
617 #define VAVG(type, signed_element, signed_type, unsigned_element, \
618 unsigned_type) \
619 VAVG_DO(avgs##type, signed_element, signed_type) \
620 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
621 VAVG(b, s8, int16_t, u8, uint16_t)
622 VAVG(h, s16, int32_t, u16, uint32_t)
623 VAVG(w, s32, int64_t, u32, uint64_t)
624 #undef VAVG_DO
625 #undef VAVG
627 #define VABSDU_DO(name, element) \
628 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
630 int i; \
632 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
633 r->element[i] = (a->element[i] > b->element[i]) ? \
634 (a->element[i] - b->element[i]) : \
635 (b->element[i] - a->element[i]); \
640 * VABSDU - Vector absolute difference unsigned
641 * name - instruction mnemonic suffix (b: byte, h: halfword, w: word)
642 * element - element type to access from vector
644 #define VABSDU(type, element) \
645 VABSDU_DO(absdu##type, element)
646 VABSDU(b, u8)
647 VABSDU(h, u16)
648 VABSDU(w, u32)
649 #undef VABSDU_DO
650 #undef VABSDU
652 #define VCF(suffix, cvt, element) \
653 void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r, \
654 ppc_avr_t *b, uint32_t uim) \
656 int i; \
658 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
659 float32 t = cvt(b->element[i], &env->vec_status); \
660 r->f32[i] = float32_scalbn(t, -uim, &env->vec_status); \
663 VCF(ux, uint32_to_float32, u32)
664 VCF(sx, int32_to_float32, s32)
665 #undef VCF
667 #define VCMP_DO(suffix, compare, element, record) \
668 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
669 ppc_avr_t *a, ppc_avr_t *b) \
671 uint64_t ones = (uint64_t)-1; \
672 uint64_t all = ones; \
673 uint64_t none = 0; \
674 int i; \
676 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
677 uint64_t result = (a->element[i] compare b->element[i] ? \
678 ones : 0x0); \
679 switch (sizeof(a->element[0])) { \
680 case 8: \
681 r->u64[i] = result; \
682 break; \
683 case 4: \
684 r->u32[i] = result; \
685 break; \
686 case 2: \
687 r->u16[i] = result; \
688 break; \
689 case 1: \
690 r->u8[i] = result; \
691 break; \
693 all &= result; \
694 none |= result; \
696 if (record) { \
697 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
700 #define VCMP(suffix, compare, element) \
701 VCMP_DO(suffix, compare, element, 0) \
702 VCMP_DO(suffix##_dot, compare, element, 1)
703 VCMP(equb, ==, u8)
704 VCMP(equh, ==, u16)
705 VCMP(equw, ==, u32)
706 VCMP(equd, ==, u64)
707 VCMP(gtub, >, u8)
708 VCMP(gtuh, >, u16)
709 VCMP(gtuw, >, u32)
710 VCMP(gtud, >, u64)
711 VCMP(gtsb, >, s8)
712 VCMP(gtsh, >, s16)
713 VCMP(gtsw, >, s32)
714 VCMP(gtsd, >, s64)
715 #undef VCMP_DO
716 #undef VCMP
718 #define VCMPNE_DO(suffix, element, etype, cmpzero, record) \
719 void helper_vcmpne##suffix(CPUPPCState *env, ppc_avr_t *r, \
720 ppc_avr_t *a, ppc_avr_t *b) \
722 etype ones = (etype)-1; \
723 etype all = ones; \
724 etype result, none = 0; \
725 int i; \
727 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
728 if (cmpzero) { \
729 result = ((a->element[i] == 0) \
730 || (b->element[i] == 0) \
731 || (a->element[i] != b->element[i]) ? \
732 ones : 0x0); \
733 } else { \
734 result = (a->element[i] != b->element[i]) ? ones : 0x0; \
736 r->element[i] = result; \
737 all &= result; \
738 none |= result; \
740 if (record) { \
741 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
746 * VCMPNEZ - Vector compare not equal to zero
747 * suffix - instruction mnemonic suffix (b: byte, h: halfword, w: word)
748 * element - element type to access from vector
750 #define VCMPNE(suffix, element, etype, cmpzero) \
751 VCMPNE_DO(suffix, element, etype, cmpzero, 0) \
752 VCMPNE_DO(suffix##_dot, element, etype, cmpzero, 1)
753 VCMPNE(zb, u8, uint8_t, 1)
754 VCMPNE(zh, u16, uint16_t, 1)
755 VCMPNE(zw, u32, uint32_t, 1)
756 VCMPNE(b, u8, uint8_t, 0)
757 VCMPNE(h, u16, uint16_t, 0)
758 VCMPNE(w, u32, uint32_t, 0)
759 #undef VCMPNE_DO
760 #undef VCMPNE
762 #define VCMPFP_DO(suffix, compare, order, record) \
763 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
764 ppc_avr_t *a, ppc_avr_t *b) \
766 uint32_t ones = (uint32_t)-1; \
767 uint32_t all = ones; \
768 uint32_t none = 0; \
769 int i; \
771 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
772 uint32_t result; \
773 int rel = float32_compare_quiet(a->f32[i], b->f32[i], \
774 &env->vec_status); \
775 if (rel == float_relation_unordered) { \
776 result = 0; \
777 } else if (rel compare order) { \
778 result = ones; \
779 } else { \
780 result = 0; \
782 r->u32[i] = result; \
783 all &= result; \
784 none |= result; \
786 if (record) { \
787 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
790 #define VCMPFP(suffix, compare, order) \
791 VCMPFP_DO(suffix, compare, order, 0) \
792 VCMPFP_DO(suffix##_dot, compare, order, 1)
793 VCMPFP(eqfp, ==, float_relation_equal)
794 VCMPFP(gefp, !=, float_relation_less)
795 VCMPFP(gtfp, ==, float_relation_greater)
796 #undef VCMPFP_DO
797 #undef VCMPFP
799 static inline void vcmpbfp_internal(CPUPPCState *env, ppc_avr_t *r,
800 ppc_avr_t *a, ppc_avr_t *b, int record)
802 int i;
803 int all_in = 0;
805 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
806 int le_rel = float32_compare_quiet(a->f32[i], b->f32[i],
807 &env->vec_status);
808 if (le_rel == float_relation_unordered) {
809 r->u32[i] = 0xc0000000;
810 all_in = 1;
811 } else {
812 float32 bneg = float32_chs(b->f32[i]);
813 int ge_rel = float32_compare_quiet(a->f32[i], bneg,
814 &env->vec_status);
815 int le = le_rel != float_relation_greater;
816 int ge = ge_rel != float_relation_less;
818 r->u32[i] = ((!le) << 31) | ((!ge) << 30);
819 all_in |= (!le | !ge);
822 if (record) {
823 env->crf[6] = (all_in == 0) << 1;
827 void helper_vcmpbfp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
829 vcmpbfp_internal(env, r, a, b, 0);
832 void helper_vcmpbfp_dot(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
833 ppc_avr_t *b)
835 vcmpbfp_internal(env, r, a, b, 1);
838 #define VCT(suffix, satcvt, element) \
839 void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r, \
840 ppc_avr_t *b, uint32_t uim) \
842 int i; \
843 int sat = 0; \
844 float_status s = env->vec_status; \
846 set_float_rounding_mode(float_round_to_zero, &s); \
847 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
848 if (float32_is_any_nan(b->f32[i])) { \
849 r->element[i] = 0; \
850 } else { \
851 float64 t = float32_to_float64(b->f32[i], &s); \
852 int64_t j; \
854 t = float64_scalbn(t, uim, &s); \
855 j = float64_to_int64(t, &s); \
856 r->element[i] = satcvt(j, &sat); \
859 if (sat) { \
860 set_vscr_sat(env); \
863 VCT(uxs, cvtsduw, u32)
864 VCT(sxs, cvtsdsw, s32)
865 #undef VCT
867 target_ulong helper_vclzlsbb(ppc_avr_t *r)
869 target_ulong count = 0;
870 int i;
871 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
872 if (r->VsrB(i) & 0x01) {
873 break;
875 count++;
877 return count;
880 target_ulong helper_vctzlsbb(ppc_avr_t *r)
882 target_ulong count = 0;
883 int i;
884 for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) {
885 if (r->VsrB(i) & 0x01) {
886 break;
888 count++;
890 return count;
893 void helper_vmhaddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
894 ppc_avr_t *b, ppc_avr_t *c)
896 int sat = 0;
897 int i;
899 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
900 int32_t prod = a->s16[i] * b->s16[i];
901 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
903 r->s16[i] = cvtswsh(t, &sat);
906 if (sat) {
907 set_vscr_sat(env);
911 void helper_vmhraddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
912 ppc_avr_t *b, ppc_avr_t *c)
914 int sat = 0;
915 int i;
917 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
918 int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
919 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
920 r->s16[i] = cvtswsh(t, &sat);
923 if (sat) {
924 set_vscr_sat(env);
928 void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
930 int i;
932 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
933 int32_t prod = a->s16[i] * b->s16[i];
934 r->s16[i] = (int16_t) (prod + c->s16[i]);
938 #define VMRG_DO(name, element, access, ofs) \
939 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
941 ppc_avr_t result; \
942 int i, half = ARRAY_SIZE(r->element) / 2; \
944 for (i = 0; i < half; i++) { \
945 result.access(i * 2 + 0) = a->access(i + ofs); \
946 result.access(i * 2 + 1) = b->access(i + ofs); \
948 *r = result; \
951 #define VMRG(suffix, element, access) \
952 VMRG_DO(mrgl##suffix, element, access, half) \
953 VMRG_DO(mrgh##suffix, element, access, 0)
954 VMRG(b, u8, VsrB)
955 VMRG(h, u16, VsrH)
956 VMRG(w, u32, VsrW)
957 #undef VMRG_DO
958 #undef VMRG
960 void helper_vmsummbm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
961 ppc_avr_t *b, ppc_avr_t *c)
963 int32_t prod[16];
964 int i;
966 for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
967 prod[i] = (int32_t)a->s8[i] * b->u8[i];
970 VECTOR_FOR_INORDER_I(i, s32) {
971 r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] +
972 prod[4 * i + 2] + prod[4 * i + 3];
976 void helper_vmsumshm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
977 ppc_avr_t *b, ppc_avr_t *c)
979 int32_t prod[8];
980 int i;
982 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
983 prod[i] = a->s16[i] * b->s16[i];
986 VECTOR_FOR_INORDER_I(i, s32) {
987 r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1];
991 void helper_vmsumshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
992 ppc_avr_t *b, ppc_avr_t *c)
994 int32_t prod[8];
995 int i;
996 int sat = 0;
998 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
999 prod[i] = (int32_t)a->s16[i] * b->s16[i];
1002 VECTOR_FOR_INORDER_I(i, s32) {
1003 int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1];
1005 r->u32[i] = cvtsdsw(t, &sat);
1008 if (sat) {
1009 set_vscr_sat(env);
1013 void helper_vmsumubm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1014 ppc_avr_t *b, ppc_avr_t *c)
1016 uint16_t prod[16];
1017 int i;
1019 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1020 prod[i] = a->u8[i] * b->u8[i];
1023 VECTOR_FOR_INORDER_I(i, u32) {
1024 r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] +
1025 prod[4 * i + 2] + prod[4 * i + 3];
1029 void helper_vmsumuhm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1030 ppc_avr_t *b, ppc_avr_t *c)
1032 uint32_t prod[8];
1033 int i;
1035 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
1036 prod[i] = a->u16[i] * b->u16[i];
1039 VECTOR_FOR_INORDER_I(i, u32) {
1040 r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1];
1044 void helper_vmsumuhs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1045 ppc_avr_t *b, ppc_avr_t *c)
1047 uint32_t prod[8];
1048 int i;
1049 int sat = 0;
1051 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
1052 prod[i] = a->u16[i] * b->u16[i];
1055 VECTOR_FOR_INORDER_I(i, s32) {
1056 uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1];
1058 r->u32[i] = cvtuduw(t, &sat);
1061 if (sat) {
1062 set_vscr_sat(env);
1066 #define VMUL_DO_EVN(name, mul_element, mul_access, prod_access, cast) \
1067 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1069 int i; \
1071 for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
1072 r->prod_access(i >> 1) = (cast)a->mul_access(i) * \
1073 (cast)b->mul_access(i); \
1077 #define VMUL_DO_ODD(name, mul_element, mul_access, prod_access, cast) \
1078 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1080 int i; \
1082 for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
1083 r->prod_access(i >> 1) = (cast)a->mul_access(i + 1) * \
1084 (cast)b->mul_access(i + 1); \
1088 #define VMUL(suffix, mul_element, mul_access, prod_access, cast) \
1089 VMUL_DO_EVN(mule##suffix, mul_element, mul_access, prod_access, cast) \
1090 VMUL_DO_ODD(mulo##suffix, mul_element, mul_access, prod_access, cast)
1091 VMUL(sb, s8, VsrSB, VsrSH, int16_t)
1092 VMUL(sh, s16, VsrSH, VsrSW, int32_t)
1093 VMUL(sw, s32, VsrSW, VsrSD, int64_t)
1094 VMUL(ub, u8, VsrB, VsrH, uint16_t)
1095 VMUL(uh, u16, VsrH, VsrW, uint32_t)
1096 VMUL(uw, u32, VsrW, VsrD, uint64_t)
1097 #undef VMUL_DO_EVN
1098 #undef VMUL_DO_ODD
1099 #undef VMUL
1101 void helper_vperm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
1102 ppc_avr_t *c)
1104 ppc_avr_t result;
1105 int i;
1107 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1108 int s = c->VsrB(i) & 0x1f;
1109 int index = s & 0xf;
1111 if (s & 0x10) {
1112 result.VsrB(i) = b->VsrB(index);
1113 } else {
1114 result.VsrB(i) = a->VsrB(index);
1117 *r = result;
1120 void helper_vpermr(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
1121 ppc_avr_t *c)
1123 ppc_avr_t result;
1124 int i;
1126 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1127 int s = c->VsrB(i) & 0x1f;
1128 int index = 15 - (s & 0xf);
1130 if (s & 0x10) {
1131 result.VsrB(i) = a->VsrB(index);
1132 } else {
1133 result.VsrB(i) = b->VsrB(index);
1136 *r = result;
1139 #if defined(HOST_WORDS_BIGENDIAN)
1140 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)])
1141 #define VBPERMD_INDEX(i) (i)
1142 #define VBPERMQ_DW(index) (((index) & 0x40) != 0)
1143 #define EXTRACT_BIT(avr, i, index) (extract64((avr)->u64[i], index, 1))
1144 #else
1145 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[15 - (i)])
1146 #define VBPERMD_INDEX(i) (1 - i)
1147 #define VBPERMQ_DW(index) (((index) & 0x40) == 0)
1148 #define EXTRACT_BIT(avr, i, index) \
1149 (extract64((avr)->u64[1 - i], 63 - index, 1))
1150 #endif
1152 void helper_vbpermd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1154 int i, j;
1155 ppc_avr_t result = { .u64 = { 0, 0 } };
1156 VECTOR_FOR_INORDER_I(i, u64) {
1157 for (j = 0; j < 8; j++) {
1158 int index = VBPERMQ_INDEX(b, (i * 8) + j);
1159 if (index < 64 && EXTRACT_BIT(a, i, index)) {
1160 result.u64[VBPERMD_INDEX(i)] |= (0x80 >> j);
1164 *r = result;
1167 void helper_vbpermq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1169 int i;
1170 uint64_t perm = 0;
1172 VECTOR_FOR_INORDER_I(i, u8) {
1173 int index = VBPERMQ_INDEX(b, i);
1175 if (index < 128) {
1176 uint64_t mask = (1ull << (63 - (index & 0x3F)));
1177 if (a->u64[VBPERMQ_DW(index)] & mask) {
1178 perm |= (0x8000 >> i);
1183 r->VsrD(0) = perm;
1184 r->VsrD(1) = 0;
1187 #undef VBPERMQ_INDEX
1188 #undef VBPERMQ_DW
1190 #define PMSUM(name, srcfld, trgfld, trgtyp) \
1191 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1193 int i, j; \
1194 trgtyp prod[sizeof(ppc_avr_t) / sizeof(a->srcfld[0])]; \
1196 VECTOR_FOR_INORDER_I(i, srcfld) { \
1197 prod[i] = 0; \
1198 for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) { \
1199 if (a->srcfld[i] & (1ull << j)) { \
1200 prod[i] ^= ((trgtyp)b->srcfld[i] << j); \
1205 VECTOR_FOR_INORDER_I(i, trgfld) { \
1206 r->trgfld[i] = prod[2 * i] ^ prod[2 * i + 1]; \
1210 PMSUM(vpmsumb, u8, u16, uint16_t)
1211 PMSUM(vpmsumh, u16, u32, uint32_t)
1212 PMSUM(vpmsumw, u32, u64, uint64_t)
1214 void helper_vpmsumd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1217 #ifdef CONFIG_INT128
1218 int i, j;
1219 __uint128_t prod[2];
1221 VECTOR_FOR_INORDER_I(i, u64) {
1222 prod[i] = 0;
1223 for (j = 0; j < 64; j++) {
1224 if (a->u64[i] & (1ull << j)) {
1225 prod[i] ^= (((__uint128_t)b->u64[i]) << j);
1230 r->u128 = prod[0] ^ prod[1];
1232 #else
1233 int i, j;
1234 ppc_avr_t prod[2];
1236 VECTOR_FOR_INORDER_I(i, u64) {
1237 prod[i].VsrD(1) = prod[i].VsrD(0) = 0;
1238 for (j = 0; j < 64; j++) {
1239 if (a->u64[i] & (1ull << j)) {
1240 ppc_avr_t bshift;
1241 if (j == 0) {
1242 bshift.VsrD(0) = 0;
1243 bshift.VsrD(1) = b->u64[i];
1244 } else {
1245 bshift.VsrD(0) = b->u64[i] >> (64 - j);
1246 bshift.VsrD(1) = b->u64[i] << j;
1248 prod[i].VsrD(1) ^= bshift.VsrD(1);
1249 prod[i].VsrD(0) ^= bshift.VsrD(0);
1254 r->VsrD(1) = prod[0].VsrD(1) ^ prod[1].VsrD(1);
1255 r->VsrD(0) = prod[0].VsrD(0) ^ prod[1].VsrD(0);
1256 #endif
1260 #if defined(HOST_WORDS_BIGENDIAN)
1261 #define PKBIG 1
1262 #else
1263 #define PKBIG 0
1264 #endif
1265 void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1267 int i, j;
1268 ppc_avr_t result;
1269 #if defined(HOST_WORDS_BIGENDIAN)
1270 const ppc_avr_t *x[2] = { a, b };
1271 #else
1272 const ppc_avr_t *x[2] = { b, a };
1273 #endif
1275 VECTOR_FOR_INORDER_I(i, u64) {
1276 VECTOR_FOR_INORDER_I(j, u32) {
1277 uint32_t e = x[i]->u32[j];
1279 result.u16[4 * i + j] = (((e >> 9) & 0xfc00) |
1280 ((e >> 6) & 0x3e0) |
1281 ((e >> 3) & 0x1f));
1284 *r = result;
1287 #define VPK(suffix, from, to, cvt, dosat) \
1288 void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r, \
1289 ppc_avr_t *a, ppc_avr_t *b) \
1291 int i; \
1292 int sat = 0; \
1293 ppc_avr_t result; \
1294 ppc_avr_t *a0 = PKBIG ? a : b; \
1295 ppc_avr_t *a1 = PKBIG ? b : a; \
1297 VECTOR_FOR_INORDER_I(i, from) { \
1298 result.to[i] = cvt(a0->from[i], &sat); \
1299 result.to[i + ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat);\
1301 *r = result; \
1302 if (dosat && sat) { \
1303 set_vscr_sat(env); \
1306 #define I(x, y) (x)
1307 VPK(shss, s16, s8, cvtshsb, 1)
1308 VPK(shus, s16, u8, cvtshub, 1)
1309 VPK(swss, s32, s16, cvtswsh, 1)
1310 VPK(swus, s32, u16, cvtswuh, 1)
1311 VPK(sdss, s64, s32, cvtsdsw, 1)
1312 VPK(sdus, s64, u32, cvtsduw, 1)
1313 VPK(uhus, u16, u8, cvtuhub, 1)
1314 VPK(uwus, u32, u16, cvtuwuh, 1)
1315 VPK(udus, u64, u32, cvtuduw, 1)
1316 VPK(uhum, u16, u8, I, 0)
1317 VPK(uwum, u32, u16, I, 0)
1318 VPK(udum, u64, u32, I, 0)
1319 #undef I
1320 #undef VPK
1321 #undef PKBIG
1323 void helper_vrefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1325 int i;
1327 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
1328 r->f32[i] = float32_div(float32_one, b->f32[i], &env->vec_status);
1332 #define VRFI(suffix, rounding) \
1333 void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r, \
1334 ppc_avr_t *b) \
1336 int i; \
1337 float_status s = env->vec_status; \
1339 set_float_rounding_mode(rounding, &s); \
1340 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
1341 r->f32[i] = float32_round_to_int (b->f32[i], &s); \
1344 VRFI(n, float_round_nearest_even)
1345 VRFI(m, float_round_down)
1346 VRFI(p, float_round_up)
1347 VRFI(z, float_round_to_zero)
1348 #undef VRFI
1350 #define VROTATE(suffix, element, mask) \
1351 void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1353 int i; \
1355 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1356 unsigned int shift = b->element[i] & mask; \
1357 r->element[i] = (a->element[i] << shift) | \
1358 (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
1361 VROTATE(b, u8, 0x7)
1362 VROTATE(h, u16, 0xF)
1363 VROTATE(w, u32, 0x1F)
1364 VROTATE(d, u64, 0x3F)
1365 #undef VROTATE
1367 void helper_vrsqrtefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1369 int i;
1371 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
1372 float32 t = float32_sqrt(b->f32[i], &env->vec_status);
1374 r->f32[i] = float32_div(float32_one, t, &env->vec_status);
1378 #define VRLMI(name, size, element, insert) \
1379 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1381 int i; \
1382 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1383 uint##size##_t src1 = a->element[i]; \
1384 uint##size##_t src2 = b->element[i]; \
1385 uint##size##_t src3 = r->element[i]; \
1386 uint##size##_t begin, end, shift, mask, rot_val; \
1388 shift = extract##size(src2, 0, 6); \
1389 end = extract##size(src2, 8, 6); \
1390 begin = extract##size(src2, 16, 6); \
1391 rot_val = rol##size(src1, shift); \
1392 mask = mask_u##size(begin, end); \
1393 if (insert) { \
1394 r->element[i] = (rot_val & mask) | (src3 & ~mask); \
1395 } else { \
1396 r->element[i] = (rot_val & mask); \
1401 VRLMI(vrldmi, 64, u64, 1);
1402 VRLMI(vrlwmi, 32, u32, 1);
1403 VRLMI(vrldnm, 64, u64, 0);
1404 VRLMI(vrlwnm, 32, u32, 0);
1406 void helper_vsel(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
1407 ppc_avr_t *c)
1409 r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
1410 r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
1413 void helper_vexptefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1415 int i;
1417 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
1418 r->f32[i] = float32_exp2(b->f32[i], &env->vec_status);
1422 void helper_vlogefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1424 int i;
1426 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
1427 r->f32[i] = float32_log2(b->f32[i], &env->vec_status);
1431 #if defined(HOST_WORDS_BIGENDIAN)
1432 #define VEXTU_X_DO(name, size, left) \
1433 target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b) \
1435 int index; \
1436 if (left) { \
1437 index = (a & 0xf) * 8; \
1438 } else { \
1439 index = ((15 - (a & 0xf) + 1) * 8) - size; \
1441 return int128_getlo(int128_rshift(b->s128, index)) & \
1442 MAKE_64BIT_MASK(0, size); \
1444 #else
1445 #define VEXTU_X_DO(name, size, left) \
1446 target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b) \
1448 int index; \
1449 if (left) { \
1450 index = ((15 - (a & 0xf) + 1) * 8) - size; \
1451 } else { \
1452 index = (a & 0xf) * 8; \
1454 return int128_getlo(int128_rshift(b->s128, index)) & \
1455 MAKE_64BIT_MASK(0, size); \
1457 #endif
1459 VEXTU_X_DO(vextublx, 8, 1)
1460 VEXTU_X_DO(vextuhlx, 16, 1)
1461 VEXTU_X_DO(vextuwlx, 32, 1)
1462 VEXTU_X_DO(vextubrx, 8, 0)
1463 VEXTU_X_DO(vextuhrx, 16, 0)
1464 VEXTU_X_DO(vextuwrx, 32, 0)
1465 #undef VEXTU_X_DO
1467 void helper_vslv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1469 int i;
1470 unsigned int shift, bytes, size;
1472 size = ARRAY_SIZE(r->u8);
1473 for (i = 0; i < size; i++) {
1474 shift = b->VsrB(i) & 0x7; /* extract shift value */
1475 bytes = (a->VsrB(i) << 8) + /* extract adjacent bytes */
1476 (((i + 1) < size) ? a->VsrB(i + 1) : 0);
1477 r->VsrB(i) = (bytes << shift) >> 8; /* shift and store result */
1481 void helper_vsrv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1483 int i;
1484 unsigned int shift, bytes;
1487 * Use reverse order, as destination and source register can be
1488 * same. Its being modified in place saving temporary, reverse
1489 * order will guarantee that computed result is not fed back.
1491 for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) {
1492 shift = b->VsrB(i) & 0x7; /* extract shift value */
1493 bytes = ((i ? a->VsrB(i - 1) : 0) << 8) + a->VsrB(i);
1494 /* extract adjacent bytes */
1495 r->VsrB(i) = (bytes >> shift) & 0xFF; /* shift and store result */
1499 void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
1501 int sh = shift & 0xf;
1502 int i;
1503 ppc_avr_t result;
1505 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1506 int index = sh + i;
1507 if (index > 0xf) {
1508 result.VsrB(i) = b->VsrB(index - 0x10);
1509 } else {
1510 result.VsrB(i) = a->VsrB(index);
1513 *r = result;
1516 void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1518 int sh = (b->VsrB(0xf) >> 3) & 0xf;
1520 #if defined(HOST_WORDS_BIGENDIAN)
1521 memmove(&r->u8[0], &a->u8[sh], 16 - sh);
1522 memset(&r->u8[16 - sh], 0, sh);
1523 #else
1524 memmove(&r->u8[sh], &a->u8[0], 16 - sh);
1525 memset(&r->u8[0], 0, sh);
1526 #endif
1529 #if defined(HOST_WORDS_BIGENDIAN)
1530 #define VINSERT(suffix, element) \
1531 void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1533 memmove(&r->u8[index], &b->u8[8 - sizeof(r->element[0])], \
1534 sizeof(r->element[0])); \
1536 #else
1537 #define VINSERT(suffix, element) \
1538 void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1540 uint32_t d = (16 - index) - sizeof(r->element[0]); \
1541 memmove(&r->u8[d], &b->u8[8], sizeof(r->element[0])); \
1543 #endif
1544 VINSERT(b, u8)
1545 VINSERT(h, u16)
1546 VINSERT(w, u32)
1547 VINSERT(d, u64)
1548 #undef VINSERT
1549 #if defined(HOST_WORDS_BIGENDIAN)
1550 #define VEXTRACT(suffix, element) \
1551 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1553 uint32_t es = sizeof(r->element[0]); \
1554 memmove(&r->u8[8 - es], &b->u8[index], es); \
1555 memset(&r->u8[8], 0, 8); \
1556 memset(&r->u8[0], 0, 8 - es); \
1558 #else
1559 #define VEXTRACT(suffix, element) \
1560 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1562 uint32_t es = sizeof(r->element[0]); \
1563 uint32_t s = (16 - index) - es; \
1564 memmove(&r->u8[8], &b->u8[s], es); \
1565 memset(&r->u8[0], 0, 8); \
1566 memset(&r->u8[8 + es], 0, 8 - es); \
1568 #endif
1569 VEXTRACT(ub, u8)
1570 VEXTRACT(uh, u16)
1571 VEXTRACT(uw, u32)
1572 VEXTRACT(d, u64)
1573 #undef VEXTRACT
1575 void helper_xxextractuw(CPUPPCState *env, ppc_vsr_t *xt,
1576 ppc_vsr_t *xb, uint32_t index)
1578 ppc_vsr_t t = { };
1579 size_t es = sizeof(uint32_t);
1580 uint32_t ext_index;
1581 int i;
1583 ext_index = index;
1584 for (i = 0; i < es; i++, ext_index++) {
1585 t.VsrB(8 - es + i) = xb->VsrB(ext_index % 16);
1588 *xt = t;
1591 void helper_xxinsertw(CPUPPCState *env, ppc_vsr_t *xt,
1592 ppc_vsr_t *xb, uint32_t index)
1594 ppc_vsr_t t = *xt;
1595 size_t es = sizeof(uint32_t);
1596 int ins_index, i = 0;
1598 ins_index = index;
1599 for (i = 0; i < es && ins_index < 16; i++, ins_index++) {
1600 t.VsrB(ins_index) = xb->VsrB(8 - es + i);
1603 *xt = t;
1606 #define VEXT_SIGNED(name, element, cast) \
1607 void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
1609 int i; \
1610 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1611 r->element[i] = (cast)b->element[i]; \
1614 VEXT_SIGNED(vextsb2w, s32, int8_t)
1615 VEXT_SIGNED(vextsb2d, s64, int8_t)
1616 VEXT_SIGNED(vextsh2w, s32, int16_t)
1617 VEXT_SIGNED(vextsh2d, s64, int16_t)
1618 VEXT_SIGNED(vextsw2d, s64, int32_t)
1619 #undef VEXT_SIGNED
1621 #define VNEG(name, element) \
1622 void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
1624 int i; \
1625 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1626 r->element[i] = -b->element[i]; \
1629 VNEG(vnegw, s32)
1630 VNEG(vnegd, s64)
1631 #undef VNEG
1633 void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1635 int sh = (b->VsrB(0xf) >> 3) & 0xf;
1637 #if defined(HOST_WORDS_BIGENDIAN)
1638 memmove(&r->u8[sh], &a->u8[0], 16 - sh);
1639 memset(&r->u8[0], 0, sh);
1640 #else
1641 memmove(&r->u8[0], &a->u8[sh], 16 - sh);
1642 memset(&r->u8[16 - sh], 0, sh);
1643 #endif
1646 void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1648 int i;
1650 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
1651 r->u32[i] = a->u32[i] >= b->u32[i];
1655 void helper_vsumsws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1657 int64_t t;
1658 int i, upper;
1659 ppc_avr_t result;
1660 int sat = 0;
1662 upper = ARRAY_SIZE(r->s32) - 1;
1663 t = (int64_t)b->VsrSW(upper);
1664 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
1665 t += a->VsrSW(i);
1666 result.VsrSW(i) = 0;
1668 result.VsrSW(upper) = cvtsdsw(t, &sat);
1669 *r = result;
1671 if (sat) {
1672 set_vscr_sat(env);
1676 void helper_vsum2sws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1678 int i, j, upper;
1679 ppc_avr_t result;
1680 int sat = 0;
1682 upper = 1;
1683 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
1684 int64_t t = (int64_t)b->VsrSW(upper + i * 2);
1686 result.VsrD(i) = 0;
1687 for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
1688 t += a->VsrSW(2 * i + j);
1690 result.VsrSW(upper + i * 2) = cvtsdsw(t, &sat);
1693 *r = result;
1694 if (sat) {
1695 set_vscr_sat(env);
1699 void helper_vsum4sbs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1701 int i, j;
1702 int sat = 0;
1704 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
1705 int64_t t = (int64_t)b->s32[i];
1707 for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
1708 t += a->s8[4 * i + j];
1710 r->s32[i] = cvtsdsw(t, &sat);
1713 if (sat) {
1714 set_vscr_sat(env);
1718 void helper_vsum4shs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1720 int sat = 0;
1721 int i;
1723 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
1724 int64_t t = (int64_t)b->s32[i];
1726 t += a->s16[2 * i] + a->s16[2 * i + 1];
1727 r->s32[i] = cvtsdsw(t, &sat);
1730 if (sat) {
1731 set_vscr_sat(env);
1735 void helper_vsum4ubs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1737 int i, j;
1738 int sat = 0;
1740 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
1741 uint64_t t = (uint64_t)b->u32[i];
1743 for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
1744 t += a->u8[4 * i + j];
1746 r->u32[i] = cvtuduw(t, &sat);
1749 if (sat) {
1750 set_vscr_sat(env);
1754 #if defined(HOST_WORDS_BIGENDIAN)
1755 #define UPKHI 1
1756 #define UPKLO 0
1757 #else
1758 #define UPKHI 0
1759 #define UPKLO 1
1760 #endif
1761 #define VUPKPX(suffix, hi) \
1762 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
1764 int i; \
1765 ppc_avr_t result; \
1767 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
1768 uint16_t e = b->u16[hi ? i : i + 4]; \
1769 uint8_t a = (e >> 15) ? 0xff : 0; \
1770 uint8_t r = (e >> 10) & 0x1f; \
1771 uint8_t g = (e >> 5) & 0x1f; \
1772 uint8_t b = e & 0x1f; \
1774 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
1776 *r = result; \
1778 VUPKPX(lpx, UPKLO)
1779 VUPKPX(hpx, UPKHI)
1780 #undef VUPKPX
1782 #define VUPK(suffix, unpacked, packee, hi) \
1783 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
1785 int i; \
1786 ppc_avr_t result; \
1788 if (hi) { \
1789 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
1790 result.unpacked[i] = b->packee[i]; \
1792 } else { \
1793 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
1794 i++) { \
1795 result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
1798 *r = result; \
1800 VUPK(hsb, s16, s8, UPKHI)
1801 VUPK(hsh, s32, s16, UPKHI)
1802 VUPK(hsw, s64, s32, UPKHI)
1803 VUPK(lsb, s16, s8, UPKLO)
1804 VUPK(lsh, s32, s16, UPKLO)
1805 VUPK(lsw, s64, s32, UPKLO)
1806 #undef VUPK
1807 #undef UPKHI
1808 #undef UPKLO
1810 #define VGENERIC_DO(name, element) \
1811 void helper_v##name(ppc_avr_t *r, ppc_avr_t *b) \
1813 int i; \
1815 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1816 r->element[i] = name(b->element[i]); \
1820 #define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8)
1821 #define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16)
1823 VGENERIC_DO(clzb, u8)
1824 VGENERIC_DO(clzh, u16)
1826 #undef clzb
1827 #undef clzh
1829 #define ctzb(v) ((v) ? ctz32(v) : 8)
1830 #define ctzh(v) ((v) ? ctz32(v) : 16)
1831 #define ctzw(v) ctz32((v))
1832 #define ctzd(v) ctz64((v))
1834 VGENERIC_DO(ctzb, u8)
1835 VGENERIC_DO(ctzh, u16)
1836 VGENERIC_DO(ctzw, u32)
1837 VGENERIC_DO(ctzd, u64)
1839 #undef ctzb
1840 #undef ctzh
1841 #undef ctzw
1842 #undef ctzd
1844 #define popcntb(v) ctpop8(v)
1845 #define popcnth(v) ctpop16(v)
1846 #define popcntw(v) ctpop32(v)
1847 #define popcntd(v) ctpop64(v)
1849 VGENERIC_DO(popcntb, u8)
1850 VGENERIC_DO(popcnth, u16)
1851 VGENERIC_DO(popcntw, u32)
1852 VGENERIC_DO(popcntd, u64)
1854 #undef popcntb
1855 #undef popcnth
1856 #undef popcntw
1857 #undef popcntd
1859 #undef VGENERIC_DO
1861 #if defined(HOST_WORDS_BIGENDIAN)
1862 #define QW_ONE { .u64 = { 0, 1 } }
1863 #else
1864 #define QW_ONE { .u64 = { 1, 0 } }
1865 #endif
1867 #ifndef CONFIG_INT128
1869 static inline void avr_qw_not(ppc_avr_t *t, ppc_avr_t a)
1871 t->u64[0] = ~a.u64[0];
1872 t->u64[1] = ~a.u64[1];
1875 static int avr_qw_cmpu(ppc_avr_t a, ppc_avr_t b)
1877 if (a.VsrD(0) < b.VsrD(0)) {
1878 return -1;
1879 } else if (a.VsrD(0) > b.VsrD(0)) {
1880 return 1;
1881 } else if (a.VsrD(1) < b.VsrD(1)) {
1882 return -1;
1883 } else if (a.VsrD(1) > b.VsrD(1)) {
1884 return 1;
1885 } else {
1886 return 0;
1890 static void avr_qw_add(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
1892 t->VsrD(1) = a.VsrD(1) + b.VsrD(1);
1893 t->VsrD(0) = a.VsrD(0) + b.VsrD(0) +
1894 (~a.VsrD(1) < b.VsrD(1));
1897 static int avr_qw_addc(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
1899 ppc_avr_t not_a;
1900 t->VsrD(1) = a.VsrD(1) + b.VsrD(1);
1901 t->VsrD(0) = a.VsrD(0) + b.VsrD(0) +
1902 (~a.VsrD(1) < b.VsrD(1));
1903 avr_qw_not(&not_a, a);
1904 return avr_qw_cmpu(not_a, b) < 0;
1907 #endif
1909 void helper_vadduqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1911 #ifdef CONFIG_INT128
1912 r->u128 = a->u128 + b->u128;
1913 #else
1914 avr_qw_add(r, *a, *b);
1915 #endif
1918 void helper_vaddeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
1920 #ifdef CONFIG_INT128
1921 r->u128 = a->u128 + b->u128 + (c->u128 & 1);
1922 #else
1924 if (c->VsrD(1) & 1) {
1925 ppc_avr_t tmp;
1927 tmp.VsrD(0) = 0;
1928 tmp.VsrD(1) = c->VsrD(1) & 1;
1929 avr_qw_add(&tmp, *a, tmp);
1930 avr_qw_add(r, tmp, *b);
1931 } else {
1932 avr_qw_add(r, *a, *b);
1934 #endif
1937 void helper_vaddcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1939 #ifdef CONFIG_INT128
1940 r->u128 = (~a->u128 < b->u128);
1941 #else
1942 ppc_avr_t not_a;
1944 avr_qw_not(&not_a, *a);
1946 r->VsrD(0) = 0;
1947 r->VsrD(1) = (avr_qw_cmpu(not_a, *b) < 0);
1948 #endif
1951 void helper_vaddecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
1953 #ifdef CONFIG_INT128
1954 int carry_out = (~a->u128 < b->u128);
1955 if (!carry_out && (c->u128 & 1)) {
1956 carry_out = ((a->u128 + b->u128 + 1) == 0) &&
1957 ((a->u128 != 0) || (b->u128 != 0));
1959 r->u128 = carry_out;
1960 #else
1962 int carry_in = c->VsrD(1) & 1;
1963 int carry_out = 0;
1964 ppc_avr_t tmp;
1966 carry_out = avr_qw_addc(&tmp, *a, *b);
1968 if (!carry_out && carry_in) {
1969 ppc_avr_t one = QW_ONE;
1970 carry_out = avr_qw_addc(&tmp, tmp, one);
1972 r->VsrD(0) = 0;
1973 r->VsrD(1) = carry_out;
1974 #endif
1977 void helper_vsubuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1979 #ifdef CONFIG_INT128
1980 r->u128 = a->u128 - b->u128;
1981 #else
1982 ppc_avr_t tmp;
1983 ppc_avr_t one = QW_ONE;
1985 avr_qw_not(&tmp, *b);
1986 avr_qw_add(&tmp, *a, tmp);
1987 avr_qw_add(r, tmp, one);
1988 #endif
1991 void helper_vsubeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
1993 #ifdef CONFIG_INT128
1994 r->u128 = a->u128 + ~b->u128 + (c->u128 & 1);
1995 #else
1996 ppc_avr_t tmp, sum;
1998 avr_qw_not(&tmp, *b);
1999 avr_qw_add(&sum, *a, tmp);
2001 tmp.VsrD(0) = 0;
2002 tmp.VsrD(1) = c->VsrD(1) & 1;
2003 avr_qw_add(r, sum, tmp);
2004 #endif
2007 void helper_vsubcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2009 #ifdef CONFIG_INT128
2010 r->u128 = (~a->u128 < ~b->u128) ||
2011 (a->u128 + ~b->u128 == (__uint128_t)-1);
2012 #else
2013 int carry = (avr_qw_cmpu(*a, *b) > 0);
2014 if (!carry) {
2015 ppc_avr_t tmp;
2016 avr_qw_not(&tmp, *b);
2017 avr_qw_add(&tmp, *a, tmp);
2018 carry = ((tmp.VsrSD(0) == -1ull) && (tmp.VsrSD(1) == -1ull));
2020 r->VsrD(0) = 0;
2021 r->VsrD(1) = carry;
2022 #endif
2025 void helper_vsubecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2027 #ifdef CONFIG_INT128
2028 r->u128 =
2029 (~a->u128 < ~b->u128) ||
2030 ((c->u128 & 1) && (a->u128 + ~b->u128 == (__uint128_t)-1));
2031 #else
2032 int carry_in = c->VsrD(1) & 1;
2033 int carry_out = (avr_qw_cmpu(*a, *b) > 0);
2034 if (!carry_out && carry_in) {
2035 ppc_avr_t tmp;
2036 avr_qw_not(&tmp, *b);
2037 avr_qw_add(&tmp, *a, tmp);
2038 carry_out = ((tmp.VsrD(0) == -1ull) && (tmp.VsrD(1) == -1ull));
2041 r->VsrD(0) = 0;
2042 r->VsrD(1) = carry_out;
2043 #endif
2046 #define BCD_PLUS_PREF_1 0xC
2047 #define BCD_PLUS_PREF_2 0xF
2048 #define BCD_PLUS_ALT_1 0xA
2049 #define BCD_NEG_PREF 0xD
2050 #define BCD_NEG_ALT 0xB
2051 #define BCD_PLUS_ALT_2 0xE
2052 #define NATIONAL_PLUS 0x2B
2053 #define NATIONAL_NEG 0x2D
2055 #define BCD_DIG_BYTE(n) (15 - ((n) / 2))
2057 static int bcd_get_sgn(ppc_avr_t *bcd)
2059 switch (bcd->VsrB(BCD_DIG_BYTE(0)) & 0xF) {
2060 case BCD_PLUS_PREF_1:
2061 case BCD_PLUS_PREF_2:
2062 case BCD_PLUS_ALT_1:
2063 case BCD_PLUS_ALT_2:
2065 return 1;
2068 case BCD_NEG_PREF:
2069 case BCD_NEG_ALT:
2071 return -1;
2074 default:
2076 return 0;
2081 static int bcd_preferred_sgn(int sgn, int ps)
2083 if (sgn >= 0) {
2084 return (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2;
2085 } else {
2086 return BCD_NEG_PREF;
2090 static uint8_t bcd_get_digit(ppc_avr_t *bcd, int n, int *invalid)
2092 uint8_t result;
2093 if (n & 1) {
2094 result = bcd->VsrB(BCD_DIG_BYTE(n)) >> 4;
2095 } else {
2096 result = bcd->VsrB(BCD_DIG_BYTE(n)) & 0xF;
2099 if (unlikely(result > 9)) {
2100 *invalid = true;
2102 return result;
2105 static void bcd_put_digit(ppc_avr_t *bcd, uint8_t digit, int n)
2107 if (n & 1) {
2108 bcd->VsrB(BCD_DIG_BYTE(n)) &= 0x0F;
2109 bcd->VsrB(BCD_DIG_BYTE(n)) |= (digit << 4);
2110 } else {
2111 bcd->VsrB(BCD_DIG_BYTE(n)) &= 0xF0;
2112 bcd->VsrB(BCD_DIG_BYTE(n)) |= digit;
2116 static bool bcd_is_valid(ppc_avr_t *bcd)
2118 int i;
2119 int invalid = 0;
2121 if (bcd_get_sgn(bcd) == 0) {
2122 return false;
2125 for (i = 1; i < 32; i++) {
2126 bcd_get_digit(bcd, i, &invalid);
2127 if (unlikely(invalid)) {
2128 return false;
2131 return true;
2134 static int bcd_cmp_zero(ppc_avr_t *bcd)
2136 if (bcd->VsrD(0) == 0 && (bcd->VsrD(1) >> 4) == 0) {
2137 return CRF_EQ;
2138 } else {
2139 return (bcd_get_sgn(bcd) == 1) ? CRF_GT : CRF_LT;
2143 static uint16_t get_national_digit(ppc_avr_t *reg, int n)
2145 return reg->VsrH(7 - n);
2148 static void set_national_digit(ppc_avr_t *reg, uint8_t val, int n)
2150 reg->VsrH(7 - n) = val;
2153 static int bcd_cmp_mag(ppc_avr_t *a, ppc_avr_t *b)
2155 int i;
2156 int invalid = 0;
2157 for (i = 31; i > 0; i--) {
2158 uint8_t dig_a = bcd_get_digit(a, i, &invalid);
2159 uint8_t dig_b = bcd_get_digit(b, i, &invalid);
2160 if (unlikely(invalid)) {
2161 return 0; /* doesn't matter */
2162 } else if (dig_a > dig_b) {
2163 return 1;
2164 } else if (dig_a < dig_b) {
2165 return -1;
2169 return 0;
2172 static void bcd_add_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
2173 int *overflow)
2175 int carry = 0;
2176 int i;
2177 for (i = 1; i <= 31; i++) {
2178 uint8_t digit = bcd_get_digit(a, i, invalid) +
2179 bcd_get_digit(b, i, invalid) + carry;
2180 if (digit > 9) {
2181 carry = 1;
2182 digit -= 10;
2183 } else {
2184 carry = 0;
2187 bcd_put_digit(t, digit, i);
2190 *overflow = carry;
2193 static void bcd_sub_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
2194 int *overflow)
2196 int carry = 0;
2197 int i;
2199 for (i = 1; i <= 31; i++) {
2200 uint8_t digit = bcd_get_digit(a, i, invalid) -
2201 bcd_get_digit(b, i, invalid) + carry;
2202 if (digit & 0x80) {
2203 carry = -1;
2204 digit += 10;
2205 } else {
2206 carry = 0;
2209 bcd_put_digit(t, digit, i);
2212 *overflow = carry;
2215 uint32_t helper_bcdadd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2218 int sgna = bcd_get_sgn(a);
2219 int sgnb = bcd_get_sgn(b);
2220 int invalid = (sgna == 0) || (sgnb == 0);
2221 int overflow = 0;
2222 uint32_t cr = 0;
2223 ppc_avr_t result = { .u64 = { 0, 0 } };
2225 if (!invalid) {
2226 if (sgna == sgnb) {
2227 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna, ps);
2228 bcd_add_mag(&result, a, b, &invalid, &overflow);
2229 cr = bcd_cmp_zero(&result);
2230 } else {
2231 int magnitude = bcd_cmp_mag(a, b);
2232 if (magnitude > 0) {
2233 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna, ps);
2234 bcd_sub_mag(&result, a, b, &invalid, &overflow);
2235 cr = (sgna > 0) ? CRF_GT : CRF_LT;
2236 } else if (magnitude < 0) {
2237 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgnb, ps);
2238 bcd_sub_mag(&result, b, a, &invalid, &overflow);
2239 cr = (sgnb > 0) ? CRF_GT : CRF_LT;
2240 } else {
2241 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(0, ps);
2242 cr = CRF_EQ;
2247 if (unlikely(invalid)) {
2248 result.VsrD(0) = result.VsrD(1) = -1;
2249 cr = CRF_SO;
2250 } else if (overflow) {
2251 cr |= CRF_SO;
2254 *r = result;
2256 return cr;
2259 uint32_t helper_bcdsub(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2261 ppc_avr_t bcopy = *b;
2262 int sgnb = bcd_get_sgn(b);
2263 if (sgnb < 0) {
2264 bcd_put_digit(&bcopy, BCD_PLUS_PREF_1, 0);
2265 } else if (sgnb > 0) {
2266 bcd_put_digit(&bcopy, BCD_NEG_PREF, 0);
2268 /* else invalid ... defer to bcdadd code for proper handling */
2270 return helper_bcdadd(r, a, &bcopy, ps);
2273 uint32_t helper_bcdcfn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2275 int i;
2276 int cr = 0;
2277 uint16_t national = 0;
2278 uint16_t sgnb = get_national_digit(b, 0);
2279 ppc_avr_t ret = { .u64 = { 0, 0 } };
2280 int invalid = (sgnb != NATIONAL_PLUS && sgnb != NATIONAL_NEG);
2282 for (i = 1; i < 8; i++) {
2283 national = get_national_digit(b, i);
2284 if (unlikely(national < 0x30 || national > 0x39)) {
2285 invalid = 1;
2286 break;
2289 bcd_put_digit(&ret, national & 0xf, i);
2292 if (sgnb == NATIONAL_PLUS) {
2293 bcd_put_digit(&ret, (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2, 0);
2294 } else {
2295 bcd_put_digit(&ret, BCD_NEG_PREF, 0);
2298 cr = bcd_cmp_zero(&ret);
2300 if (unlikely(invalid)) {
2301 cr = CRF_SO;
2304 *r = ret;
2306 return cr;
2309 uint32_t helper_bcdctn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2311 int i;
2312 int cr = 0;
2313 int sgnb = bcd_get_sgn(b);
2314 int invalid = (sgnb == 0);
2315 ppc_avr_t ret = { .u64 = { 0, 0 } };
2317 int ox_flag = (b->VsrD(0) != 0) || ((b->VsrD(1) >> 32) != 0);
2319 for (i = 1; i < 8; i++) {
2320 set_national_digit(&ret, 0x30 + bcd_get_digit(b, i, &invalid), i);
2322 if (unlikely(invalid)) {
2323 break;
2326 set_national_digit(&ret, (sgnb == -1) ? NATIONAL_NEG : NATIONAL_PLUS, 0);
2328 cr = bcd_cmp_zero(b);
2330 if (ox_flag) {
2331 cr |= CRF_SO;
2334 if (unlikely(invalid)) {
2335 cr = CRF_SO;
2338 *r = ret;
2340 return cr;
2343 uint32_t helper_bcdcfz(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2345 int i;
2346 int cr = 0;
2347 int invalid = 0;
2348 int zone_digit = 0;
2349 int zone_lead = ps ? 0xF : 0x3;
2350 int digit = 0;
2351 ppc_avr_t ret = { .u64 = { 0, 0 } };
2352 int sgnb = b->VsrB(BCD_DIG_BYTE(0)) >> 4;
2354 if (unlikely((sgnb < 0xA) && ps)) {
2355 invalid = 1;
2358 for (i = 0; i < 16; i++) {
2359 zone_digit = i ? b->VsrB(BCD_DIG_BYTE(i * 2)) >> 4 : zone_lead;
2360 digit = b->VsrB(BCD_DIG_BYTE(i * 2)) & 0xF;
2361 if (unlikely(zone_digit != zone_lead || digit > 0x9)) {
2362 invalid = 1;
2363 break;
2366 bcd_put_digit(&ret, digit, i + 1);
2369 if ((ps && (sgnb == 0xB || sgnb == 0xD)) ||
2370 (!ps && (sgnb & 0x4))) {
2371 bcd_put_digit(&ret, BCD_NEG_PREF, 0);
2372 } else {
2373 bcd_put_digit(&ret, BCD_PLUS_PREF_1, 0);
2376 cr = bcd_cmp_zero(&ret);
2378 if (unlikely(invalid)) {
2379 cr = CRF_SO;
2382 *r = ret;
2384 return cr;
2387 uint32_t helper_bcdctz(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2389 int i;
2390 int cr = 0;
2391 uint8_t digit = 0;
2392 int sgnb = bcd_get_sgn(b);
2393 int zone_lead = (ps) ? 0xF0 : 0x30;
2394 int invalid = (sgnb == 0);
2395 ppc_avr_t ret = { .u64 = { 0, 0 } };
2397 int ox_flag = ((b->VsrD(0) >> 4) != 0);
2399 for (i = 0; i < 16; i++) {
2400 digit = bcd_get_digit(b, i + 1, &invalid);
2402 if (unlikely(invalid)) {
2403 break;
2406 ret.VsrB(BCD_DIG_BYTE(i * 2)) = zone_lead + digit;
2409 if (ps) {
2410 bcd_put_digit(&ret, (sgnb == 1) ? 0xC : 0xD, 1);
2411 } else {
2412 bcd_put_digit(&ret, (sgnb == 1) ? 0x3 : 0x7, 1);
2415 cr = bcd_cmp_zero(b);
2417 if (ox_flag) {
2418 cr |= CRF_SO;
2421 if (unlikely(invalid)) {
2422 cr = CRF_SO;
2425 *r = ret;
2427 return cr;
2430 uint32_t helper_bcdcfsq(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2432 int i;
2433 int cr = 0;
2434 uint64_t lo_value;
2435 uint64_t hi_value;
2436 ppc_avr_t ret = { .u64 = { 0, 0 } };
2438 if (b->VsrSD(0) < 0) {
2439 lo_value = -b->VsrSD(1);
2440 hi_value = ~b->VsrD(0) + !lo_value;
2441 bcd_put_digit(&ret, 0xD, 0);
2442 } else {
2443 lo_value = b->VsrD(1);
2444 hi_value = b->VsrD(0);
2445 bcd_put_digit(&ret, bcd_preferred_sgn(0, ps), 0);
2448 if (divu128(&lo_value, &hi_value, 1000000000000000ULL) ||
2449 lo_value > 9999999999999999ULL) {
2450 cr = CRF_SO;
2453 for (i = 1; i < 16; hi_value /= 10, i++) {
2454 bcd_put_digit(&ret, hi_value % 10, i);
2457 for (; i < 32; lo_value /= 10, i++) {
2458 bcd_put_digit(&ret, lo_value % 10, i);
2461 cr |= bcd_cmp_zero(&ret);
2463 *r = ret;
2465 return cr;
2468 uint32_t helper_bcdctsq(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2470 uint8_t i;
2471 int cr;
2472 uint64_t carry;
2473 uint64_t unused;
2474 uint64_t lo_value;
2475 uint64_t hi_value = 0;
2476 int sgnb = bcd_get_sgn(b);
2477 int invalid = (sgnb == 0);
2479 lo_value = bcd_get_digit(b, 31, &invalid);
2480 for (i = 30; i > 0; i--) {
2481 mulu64(&lo_value, &carry, lo_value, 10ULL);
2482 mulu64(&hi_value, &unused, hi_value, 10ULL);
2483 lo_value += bcd_get_digit(b, i, &invalid);
2484 hi_value += carry;
2486 if (unlikely(invalid)) {
2487 break;
2491 if (sgnb == -1) {
2492 r->VsrSD(1) = -lo_value;
2493 r->VsrSD(0) = ~hi_value + !r->VsrSD(1);
2494 } else {
2495 r->VsrSD(1) = lo_value;
2496 r->VsrSD(0) = hi_value;
2499 cr = bcd_cmp_zero(b);
2501 if (unlikely(invalid)) {
2502 cr = CRF_SO;
2505 return cr;
2508 uint32_t helper_bcdcpsgn(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2510 int i;
2511 int invalid = 0;
2513 if (bcd_get_sgn(a) == 0 || bcd_get_sgn(b) == 0) {
2514 return CRF_SO;
2517 *r = *a;
2518 bcd_put_digit(r, b->VsrB(BCD_DIG_BYTE(0)) & 0xF, 0);
2520 for (i = 1; i < 32; i++) {
2521 bcd_get_digit(a, i, &invalid);
2522 bcd_get_digit(b, i, &invalid);
2523 if (unlikely(invalid)) {
2524 return CRF_SO;
2528 return bcd_cmp_zero(r);
2531 uint32_t helper_bcdsetsgn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2533 int sgnb = bcd_get_sgn(b);
2535 *r = *b;
2536 bcd_put_digit(r, bcd_preferred_sgn(sgnb, ps), 0);
2538 if (bcd_is_valid(b) == false) {
2539 return CRF_SO;
2542 return bcd_cmp_zero(r);
2545 uint32_t helper_bcds(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2547 int cr;
2548 int i = a->VsrSB(7);
2549 bool ox_flag = false;
2550 int sgnb = bcd_get_sgn(b);
2551 ppc_avr_t ret = *b;
2552 ret.VsrD(1) &= ~0xf;
2554 if (bcd_is_valid(b) == false) {
2555 return CRF_SO;
2558 if (unlikely(i > 31)) {
2559 i = 31;
2560 } else if (unlikely(i < -31)) {
2561 i = -31;
2564 if (i > 0) {
2565 ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
2566 } else {
2567 urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
2569 bcd_put_digit(&ret, bcd_preferred_sgn(sgnb, ps), 0);
2571 *r = ret;
2573 cr = bcd_cmp_zero(r);
2574 if (ox_flag) {
2575 cr |= CRF_SO;
2578 return cr;
2581 uint32_t helper_bcdus(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2583 int cr;
2584 int i;
2585 int invalid = 0;
2586 bool ox_flag = false;
2587 ppc_avr_t ret = *b;
2589 for (i = 0; i < 32; i++) {
2590 bcd_get_digit(b, i, &invalid);
2592 if (unlikely(invalid)) {
2593 return CRF_SO;
2597 i = a->VsrSB(7);
2598 if (i >= 32) {
2599 ox_flag = true;
2600 ret.VsrD(1) = ret.VsrD(0) = 0;
2601 } else if (i <= -32) {
2602 ret.VsrD(1) = ret.VsrD(0) = 0;
2603 } else if (i > 0) {
2604 ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
2605 } else {
2606 urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
2608 *r = ret;
2610 cr = bcd_cmp_zero(r);
2611 if (ox_flag) {
2612 cr |= CRF_SO;
2615 return cr;
2618 uint32_t helper_bcdsr(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2620 int cr;
2621 int unused = 0;
2622 int invalid = 0;
2623 bool ox_flag = false;
2624 int sgnb = bcd_get_sgn(b);
2625 ppc_avr_t ret = *b;
2626 ret.VsrD(1) &= ~0xf;
2628 int i = a->VsrSB(7);
2629 ppc_avr_t bcd_one;
2631 bcd_one.VsrD(0) = 0;
2632 bcd_one.VsrD(1) = 0x10;
2634 if (bcd_is_valid(b) == false) {
2635 return CRF_SO;
2638 if (unlikely(i > 31)) {
2639 i = 31;
2640 } else if (unlikely(i < -31)) {
2641 i = -31;
2644 if (i > 0) {
2645 ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
2646 } else {
2647 urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
2649 if (bcd_get_digit(&ret, 0, &invalid) >= 5) {
2650 bcd_add_mag(&ret, &ret, &bcd_one, &invalid, &unused);
2653 bcd_put_digit(&ret, bcd_preferred_sgn(sgnb, ps), 0);
2655 cr = bcd_cmp_zero(&ret);
2656 if (ox_flag) {
2657 cr |= CRF_SO;
2659 *r = ret;
2661 return cr;
2664 uint32_t helper_bcdtrunc(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2666 uint64_t mask;
2667 uint32_t ox_flag = 0;
2668 int i = a->VsrSH(3) + 1;
2669 ppc_avr_t ret = *b;
2671 if (bcd_is_valid(b) == false) {
2672 return CRF_SO;
2675 if (i > 16 && i < 32) {
2676 mask = (uint64_t)-1 >> (128 - i * 4);
2677 if (ret.VsrD(0) & ~mask) {
2678 ox_flag = CRF_SO;
2681 ret.VsrD(0) &= mask;
2682 } else if (i >= 0 && i <= 16) {
2683 mask = (uint64_t)-1 >> (64 - i * 4);
2684 if (ret.VsrD(0) || (ret.VsrD(1) & ~mask)) {
2685 ox_flag = CRF_SO;
2688 ret.VsrD(1) &= mask;
2689 ret.VsrD(0) = 0;
2691 bcd_put_digit(&ret, bcd_preferred_sgn(bcd_get_sgn(b), ps), 0);
2692 *r = ret;
2694 return bcd_cmp_zero(&ret) | ox_flag;
2697 uint32_t helper_bcdutrunc(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2699 int i;
2700 uint64_t mask;
2701 uint32_t ox_flag = 0;
2702 int invalid = 0;
2703 ppc_avr_t ret = *b;
2705 for (i = 0; i < 32; i++) {
2706 bcd_get_digit(b, i, &invalid);
2708 if (unlikely(invalid)) {
2709 return CRF_SO;
2713 i = a->VsrSH(3);
2714 if (i > 16 && i < 33) {
2715 mask = (uint64_t)-1 >> (128 - i * 4);
2716 if (ret.VsrD(0) & ~mask) {
2717 ox_flag = CRF_SO;
2720 ret.VsrD(0) &= mask;
2721 } else if (i > 0 && i <= 16) {
2722 mask = (uint64_t)-1 >> (64 - i * 4);
2723 if (ret.VsrD(0) || (ret.VsrD(1) & ~mask)) {
2724 ox_flag = CRF_SO;
2727 ret.VsrD(1) &= mask;
2728 ret.VsrD(0) = 0;
2729 } else if (i == 0) {
2730 if (ret.VsrD(0) || ret.VsrD(1)) {
2731 ox_flag = CRF_SO;
2733 ret.VsrD(0) = ret.VsrD(1) = 0;
2736 *r = ret;
2737 if (r->VsrD(0) == 0 && r->VsrD(1) == 0) {
2738 return ox_flag | CRF_EQ;
2741 return ox_flag | CRF_GT;
2744 void helper_vsbox(ppc_avr_t *r, ppc_avr_t *a)
2746 int i;
2747 VECTOR_FOR_INORDER_I(i, u8) {
2748 r->u8[i] = AES_sbox[a->u8[i]];
2752 void helper_vcipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2754 ppc_avr_t result;
2755 int i;
2757 VECTOR_FOR_INORDER_I(i, u32) {
2758 result.VsrW(i) = b->VsrW(i) ^
2759 (AES_Te0[a->VsrB(AES_shifts[4 * i + 0])] ^
2760 AES_Te1[a->VsrB(AES_shifts[4 * i + 1])] ^
2761 AES_Te2[a->VsrB(AES_shifts[4 * i + 2])] ^
2762 AES_Te3[a->VsrB(AES_shifts[4 * i + 3])]);
2764 *r = result;
2767 void helper_vcipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2769 ppc_avr_t result;
2770 int i;
2772 VECTOR_FOR_INORDER_I(i, u8) {
2773 result.VsrB(i) = b->VsrB(i) ^ (AES_sbox[a->VsrB(AES_shifts[i])]);
2775 *r = result;
2778 void helper_vncipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2780 /* This differs from what is written in ISA V2.07. The RTL is */
2781 /* incorrect and will be fixed in V2.07B. */
2782 int i;
2783 ppc_avr_t tmp;
2785 VECTOR_FOR_INORDER_I(i, u8) {
2786 tmp.VsrB(i) = b->VsrB(i) ^ AES_isbox[a->VsrB(AES_ishifts[i])];
2789 VECTOR_FOR_INORDER_I(i, u32) {
2790 r->VsrW(i) =
2791 AES_imc[tmp.VsrB(4 * i + 0)][0] ^
2792 AES_imc[tmp.VsrB(4 * i + 1)][1] ^
2793 AES_imc[tmp.VsrB(4 * i + 2)][2] ^
2794 AES_imc[tmp.VsrB(4 * i + 3)][3];
2798 void helper_vncipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2800 ppc_avr_t result;
2801 int i;
2803 VECTOR_FOR_INORDER_I(i, u8) {
2804 result.VsrB(i) = b->VsrB(i) ^ (AES_isbox[a->VsrB(AES_ishifts[i])]);
2806 *r = result;
2809 void helper_vshasigmaw(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six)
2811 int st = (st_six & 0x10) != 0;
2812 int six = st_six & 0xF;
2813 int i;
2815 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2816 if (st == 0) {
2817 if ((six & (0x8 >> i)) == 0) {
2818 r->VsrW(i) = ror32(a->VsrW(i), 7) ^
2819 ror32(a->VsrW(i), 18) ^
2820 (a->VsrW(i) >> 3);
2821 } else { /* six.bit[i] == 1 */
2822 r->VsrW(i) = ror32(a->VsrW(i), 17) ^
2823 ror32(a->VsrW(i), 19) ^
2824 (a->VsrW(i) >> 10);
2826 } else { /* st == 1 */
2827 if ((six & (0x8 >> i)) == 0) {
2828 r->VsrW(i) = ror32(a->VsrW(i), 2) ^
2829 ror32(a->VsrW(i), 13) ^
2830 ror32(a->VsrW(i), 22);
2831 } else { /* six.bit[i] == 1 */
2832 r->VsrW(i) = ror32(a->VsrW(i), 6) ^
2833 ror32(a->VsrW(i), 11) ^
2834 ror32(a->VsrW(i), 25);
2840 void helper_vshasigmad(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six)
2842 int st = (st_six & 0x10) != 0;
2843 int six = st_six & 0xF;
2844 int i;
2846 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
2847 if (st == 0) {
2848 if ((six & (0x8 >> (2 * i))) == 0) {
2849 r->VsrD(i) = ror64(a->VsrD(i), 1) ^
2850 ror64(a->VsrD(i), 8) ^
2851 (a->VsrD(i) >> 7);
2852 } else { /* six.bit[2*i] == 1 */
2853 r->VsrD(i) = ror64(a->VsrD(i), 19) ^
2854 ror64(a->VsrD(i), 61) ^
2855 (a->VsrD(i) >> 6);
2857 } else { /* st == 1 */
2858 if ((six & (0x8 >> (2 * i))) == 0) {
2859 r->VsrD(i) = ror64(a->VsrD(i), 28) ^
2860 ror64(a->VsrD(i), 34) ^
2861 ror64(a->VsrD(i), 39);
2862 } else { /* six.bit[2*i] == 1 */
2863 r->VsrD(i) = ror64(a->VsrD(i), 14) ^
2864 ror64(a->VsrD(i), 18) ^
2865 ror64(a->VsrD(i), 41);
2871 void helper_vpermxor(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2873 ppc_avr_t result;
2874 int i;
2876 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2877 int indexA = c->VsrB(i) >> 4;
2878 int indexB = c->VsrB(i) & 0xF;
2880 result.VsrB(i) = a->VsrB(indexA) ^ b->VsrB(indexB);
2882 *r = result;
2885 #undef VECTOR_FOR_INORDER_I
2887 /*****************************************************************************/
2888 /* SPE extension helpers */
2889 /* Use a table to make this quicker */
2890 static const uint8_t hbrev[16] = {
2891 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
2892 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
2895 static inline uint8_t byte_reverse(uint8_t val)
2897 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
2900 static inline uint32_t word_reverse(uint32_t val)
2902 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
2903 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
2906 #define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
2907 target_ulong helper_brinc(target_ulong arg1, target_ulong arg2)
2909 uint32_t a, b, d, mask;
2911 mask = UINT32_MAX >> (32 - MASKBITS);
2912 a = arg1 & mask;
2913 b = arg2 & mask;
2914 d = word_reverse(1 + word_reverse(a | ~b));
2915 return (arg1 & ~mask) | (d & b);
2918 uint32_t helper_cntlsw32(uint32_t val)
2920 if (val & 0x80000000) {
2921 return clz32(~val);
2922 } else {
2923 return clz32(val);
2927 uint32_t helper_cntlzw32(uint32_t val)
2929 return clz32(val);
2932 /* 440 specific */
2933 target_ulong helper_dlmzb(CPUPPCState *env, target_ulong high,
2934 target_ulong low, uint32_t update_Rc)
2936 target_ulong mask;
2937 int i;
2939 i = 1;
2940 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
2941 if ((high & mask) == 0) {
2942 if (update_Rc) {
2943 env->crf[0] = 0x4;
2945 goto done;
2947 i++;
2949 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
2950 if ((low & mask) == 0) {
2951 if (update_Rc) {
2952 env->crf[0] = 0x8;
2954 goto done;
2956 i++;
2958 i = 8;
2959 if (update_Rc) {
2960 env->crf[0] = 0x2;
2962 done:
2963 env->xer = (env->xer & ~0x7F) | i;
2964 if (update_Rc) {
2965 env->crf[0] |= xer_so;
2967 return i;