2 * ARM VFP floating-point operations
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/helper-proto.h"
23 #include "internals.h"
26 #include "fpu/softfloat.h"
29 /* VFP support. We follow the convention used for VFP instructions:
30 Single precision routines have a "s" suffix, double precision a
35 /* Convert host exception flags to vfp form. */
36 static inline int vfp_exceptbits_from_host(int host_bits
)
40 if (host_bits
& float_flag_invalid
) {
43 if (host_bits
& float_flag_divbyzero
) {
46 if (host_bits
& float_flag_overflow
) {
49 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
)) {
52 if (host_bits
& float_flag_inexact
) {
55 if (host_bits
& float_flag_input_denormal
) {
61 /* Convert vfp exception flags to target form. */
62 static inline int vfp_exceptbits_to_host(int target_bits
)
66 if (target_bits
& 1) {
67 host_bits
|= float_flag_invalid
;
69 if (target_bits
& 2) {
70 host_bits
|= float_flag_divbyzero
;
72 if (target_bits
& 4) {
73 host_bits
|= float_flag_overflow
;
75 if (target_bits
& 8) {
76 host_bits
|= float_flag_underflow
;
78 if (target_bits
& 0x10) {
79 host_bits
|= float_flag_inexact
;
81 if (target_bits
& 0x80) {
82 host_bits
|= float_flag_input_denormal
;
87 static uint32_t vfp_get_fpscr_from_host(CPUARMState
*env
)
91 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
92 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
93 /* FZ16 does not generate an input denormal exception. */
94 i
|= (get_float_exception_flags(&env
->vfp
.fp_status_f16
)
95 & ~float_flag_input_denormal
);
96 return vfp_exceptbits_from_host(i
);
99 static void vfp_set_fpscr_to_host(CPUARMState
*env
, uint32_t val
)
102 uint32_t changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
105 if (changed
& (3 << 22)) {
108 case FPROUNDING_TIEEVEN
:
109 i
= float_round_nearest_even
;
111 case FPROUNDING_POSINF
:
114 case FPROUNDING_NEGINF
:
115 i
= float_round_down
;
117 case FPROUNDING_ZERO
:
118 i
= float_round_to_zero
;
121 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
122 set_float_rounding_mode(i
, &env
->vfp
.fp_status_f16
);
124 if (changed
& FPCR_FZ16
) {
125 bool ftz_enabled
= val
& FPCR_FZ16
;
126 set_flush_to_zero(ftz_enabled
, &env
->vfp
.fp_status_f16
);
127 set_flush_inputs_to_zero(ftz_enabled
, &env
->vfp
.fp_status_f16
);
129 if (changed
& FPCR_FZ
) {
130 bool ftz_enabled
= val
& FPCR_FZ
;
131 set_flush_to_zero(ftz_enabled
, &env
->vfp
.fp_status
);
132 set_flush_inputs_to_zero(ftz_enabled
, &env
->vfp
.fp_status
);
134 if (changed
& FPCR_DN
) {
135 bool dnan_enabled
= val
& FPCR_DN
;
136 set_default_nan_mode(dnan_enabled
, &env
->vfp
.fp_status
);
137 set_default_nan_mode(dnan_enabled
, &env
->vfp
.fp_status_f16
);
141 * The exception flags are ORed together when we read fpscr so we
142 * only need to preserve the current state in one of our
143 * float_status values.
145 i
= vfp_exceptbits_to_host(val
);
146 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
147 set_float_exception_flags(0, &env
->vfp
.fp_status_f16
);
148 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
153 static uint32_t vfp_get_fpscr_from_host(CPUARMState
*env
)
158 static void vfp_set_fpscr_to_host(CPUARMState
*env
, uint32_t val
)
164 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
168 fpscr
= env
->vfp
.xregs
[ARM_VFP_FPSCR
]
169 | (env
->vfp
.vec_len
<< 16)
170 | (env
->vfp
.vec_stride
<< 20);
172 fpscr
|= vfp_get_fpscr_from_host(env
);
174 i
= env
->vfp
.qc
[0] | env
->vfp
.qc
[1] | env
->vfp
.qc
[2] | env
->vfp
.qc
[3];
175 fpscr
|= i
? FPCR_QC
: 0;
180 uint32_t vfp_get_fpscr(CPUARMState
*env
)
182 return HELPER(vfp_get_fpscr
)(env
);
185 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
187 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
188 if (!cpu_isar_feature(aa64_fp16
, env_archcpu(env
))) {
192 if (arm_feature(env
, ARM_FEATURE_M
)) {
194 * M profile FPSCR is RES0 for the QC, STRIDE, FZ16, LEN bits
195 * and also for the trapped-exception-handling bits IxE.
200 vfp_set_fpscr_to_host(env
, val
);
203 * We don't implement trapped exception handling, so the
204 * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
206 * If we exclude the exception flags, IOC|DZC|OFC|UFC|IXC|IDC
207 * (which are stored in fp_status), and the other RES0 bits
208 * in between, then we clear all of the low 16 bits.
210 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = val
& 0xf7c80000;
211 env
->vfp
.vec_len
= (val
>> 16) & 7;
212 env
->vfp
.vec_stride
= (val
>> 20) & 3;
215 * The bit we set within fpscr_q is arbitrary; the register as a
216 * whole being zero/non-zero is what counts.
218 env
->vfp
.qc
[0] = val
& FPCR_QC
;
224 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
226 HELPER(vfp_set_fpscr
)(env
, val
);
231 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
233 #define VFP_BINOP(name) \
234 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
236 float_status *fpst = fpstp; \
237 return float32_ ## name(a, b, fpst); \
239 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
241 float_status *fpst = fpstp; \
242 return float64_ ## name(a, b, fpst); \
254 float32
VFP_HELPER(neg
, s
)(float32 a
)
256 return float32_chs(a
);
259 float64
VFP_HELPER(neg
, d
)(float64 a
)
261 return float64_chs(a
);
264 float32
VFP_HELPER(abs
, s
)(float32 a
)
266 return float32_abs(a
);
269 float64
VFP_HELPER(abs
, d
)(float64 a
)
271 return float64_abs(a
);
274 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
276 return float32_sqrt(a
, &env
->vfp
.fp_status
);
279 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
281 return float64_sqrt(a
, &env
->vfp
.fp_status
);
284 static void softfloat_to_vfp_compare(CPUARMState
*env
, int cmp
)
288 case float_relation_equal
:
291 case float_relation_less
:
294 case float_relation_greater
:
297 case float_relation_unordered
:
301 g_assert_not_reached();
303 env
->vfp
.xregs
[ARM_VFP_FPSCR
] =
304 deposit32(env
->vfp
.xregs
[ARM_VFP_FPSCR
], 28, 4, flags
);
307 /* XXX: check quiet/signaling case */
308 #define DO_VFP_cmp(p, type) \
309 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
311 softfloat_to_vfp_compare(env, \
312 type ## _compare_quiet(a, b, &env->vfp.fp_status)); \
314 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
316 softfloat_to_vfp_compare(env, \
317 type ## _compare(a, b, &env->vfp.fp_status)); \
319 DO_VFP_cmp(s
, float32
)
320 DO_VFP_cmp(d
, float64
)
323 /* Integer to float and float to integer conversions */
325 #define CONV_ITOF(name, ftype, fsz, sign) \
326 ftype HELPER(name)(uint32_t x, void *fpstp) \
328 float_status *fpst = fpstp; \
329 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
332 #define CONV_FTOI(name, ftype, fsz, sign, round) \
333 sign##int32_t HELPER(name)(ftype x, void *fpstp) \
335 float_status *fpst = fpstp; \
336 if (float##fsz##_is_any_nan(x)) { \
337 float_raise(float_flag_invalid, fpst); \
340 return float##fsz##_to_##sign##int32##round(x, fpst); \
343 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
344 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
345 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
346 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
348 FLOAT_CONVS(si
, h
, uint32_t, 16, )
349 FLOAT_CONVS(si
, s
, float32
, 32, )
350 FLOAT_CONVS(si
, d
, float64
, 64, )
351 FLOAT_CONVS(ui
, h
, uint32_t, 16, u
)
352 FLOAT_CONVS(ui
, s
, float32
, 32, u
)
353 FLOAT_CONVS(ui
, d
, float64
, 64, u
)
359 /* floating point conversion */
360 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
362 return float32_to_float64(x
, &env
->vfp
.fp_status
);
365 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
367 return float64_to_float32(x
, &env
->vfp
.fp_status
);
370 /* VFP3 fixed point conversion. */
371 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
372 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
374 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
376 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \
377 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
380 if (unlikely(float##fsz##_is_any_nan(x))) { \
381 float_raise(float_flag_invalid, fpst); \
384 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
387 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
388 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
389 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
390 float_round_to_zero, _round_to_zero) \
391 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
392 get_float_rounding_mode(fpst), )
394 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
395 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
396 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
397 get_float_rounding_mode(fpst), )
399 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
400 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
401 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
402 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
403 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
404 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
405 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
406 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
407 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
408 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
409 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
410 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
413 #undef VFP_CONV_FIX_FLOAT
414 #undef VFP_CONV_FLOAT_FIX_ROUND
415 #undef VFP_CONV_FIX_A64
417 uint32_t HELPER(vfp_sltoh
)(uint32_t x
, uint32_t shift
, void *fpst
)
419 return int32_to_float16_scalbn(x
, -shift
, fpst
);
422 uint32_t HELPER(vfp_ultoh
)(uint32_t x
, uint32_t shift
, void *fpst
)
424 return uint32_to_float16_scalbn(x
, -shift
, fpst
);
427 uint32_t HELPER(vfp_sqtoh
)(uint64_t x
, uint32_t shift
, void *fpst
)
429 return int64_to_float16_scalbn(x
, -shift
, fpst
);
432 uint32_t HELPER(vfp_uqtoh
)(uint64_t x
, uint32_t shift
, void *fpst
)
434 return uint64_to_float16_scalbn(x
, -shift
, fpst
);
437 uint32_t HELPER(vfp_toshh
)(uint32_t x
, uint32_t shift
, void *fpst
)
439 if (unlikely(float16_is_any_nan(x
))) {
440 float_raise(float_flag_invalid
, fpst
);
443 return float16_to_int16_scalbn(x
, get_float_rounding_mode(fpst
),
447 uint32_t HELPER(vfp_touhh
)(uint32_t x
, uint32_t shift
, void *fpst
)
449 if (unlikely(float16_is_any_nan(x
))) {
450 float_raise(float_flag_invalid
, fpst
);
453 return float16_to_uint16_scalbn(x
, get_float_rounding_mode(fpst
),
457 uint32_t HELPER(vfp_toslh
)(uint32_t x
, uint32_t shift
, void *fpst
)
459 if (unlikely(float16_is_any_nan(x
))) {
460 float_raise(float_flag_invalid
, fpst
);
463 return float16_to_int32_scalbn(x
, get_float_rounding_mode(fpst
),
467 uint32_t HELPER(vfp_toulh
)(uint32_t x
, uint32_t shift
, void *fpst
)
469 if (unlikely(float16_is_any_nan(x
))) {
470 float_raise(float_flag_invalid
, fpst
);
473 return float16_to_uint32_scalbn(x
, get_float_rounding_mode(fpst
),
477 uint64_t HELPER(vfp_tosqh
)(uint32_t x
, uint32_t shift
, void *fpst
)
479 if (unlikely(float16_is_any_nan(x
))) {
480 float_raise(float_flag_invalid
, fpst
);
483 return float16_to_int64_scalbn(x
, get_float_rounding_mode(fpst
),
487 uint64_t HELPER(vfp_touqh
)(uint32_t x
, uint32_t shift
, void *fpst
)
489 if (unlikely(float16_is_any_nan(x
))) {
490 float_raise(float_flag_invalid
, fpst
);
493 return float16_to_uint64_scalbn(x
, get_float_rounding_mode(fpst
),
497 /* Set the current fp rounding mode and return the old one.
498 * The argument is a softfloat float_round_ value.
500 uint32_t HELPER(set_rmode
)(uint32_t rmode
, void *fpstp
)
502 float_status
*fp_status
= fpstp
;
504 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
505 set_float_rounding_mode(rmode
, fp_status
);
510 /* Set the current fp rounding mode in the standard fp status and return
511 * the old one. This is for NEON instructions that need to change the
512 * rounding mode but wish to use the standard FPSCR values for everything
513 * else. Always set the rounding mode back to the correct value after
515 * The argument is a softfloat float_round_ value.
517 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
519 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
521 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
522 set_float_rounding_mode(rmode
, fp_status
);
527 /* Half precision conversions. */
528 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, void *fpstp
, uint32_t ahp_mode
)
530 /* Squash FZ16 to 0 for the duration of conversion. In this case,
531 * it would affect flushing input denormals.
533 float_status
*fpst
= fpstp
;
534 flag save
= get_flush_inputs_to_zero(fpst
);
535 set_flush_inputs_to_zero(false, fpst
);
536 float32 r
= float16_to_float32(a
, !ahp_mode
, fpst
);
537 set_flush_inputs_to_zero(save
, fpst
);
541 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, void *fpstp
, uint32_t ahp_mode
)
543 /* Squash FZ16 to 0 for the duration of conversion. In this case,
544 * it would affect flushing output denormals.
546 float_status
*fpst
= fpstp
;
547 flag save
= get_flush_to_zero(fpst
);
548 set_flush_to_zero(false, fpst
);
549 float16 r
= float32_to_float16(a
, !ahp_mode
, fpst
);
550 set_flush_to_zero(save
, fpst
);
554 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, void *fpstp
, uint32_t ahp_mode
)
556 /* Squash FZ16 to 0 for the duration of conversion. In this case,
557 * it would affect flushing input denormals.
559 float_status
*fpst
= fpstp
;
560 flag save
= get_flush_inputs_to_zero(fpst
);
561 set_flush_inputs_to_zero(false, fpst
);
562 float64 r
= float16_to_float64(a
, !ahp_mode
, fpst
);
563 set_flush_inputs_to_zero(save
, fpst
);
567 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, void *fpstp
, uint32_t ahp_mode
)
569 /* Squash FZ16 to 0 for the duration of conversion. In this case,
570 * it would affect flushing output denormals.
572 float_status
*fpst
= fpstp
;
573 flag save
= get_flush_to_zero(fpst
);
574 set_flush_to_zero(false, fpst
);
575 float16 r
= float64_to_float16(a
, !ahp_mode
, fpst
);
576 set_flush_to_zero(save
, fpst
);
580 #define float32_two make_float32(0x40000000)
581 #define float32_three make_float32(0x40400000)
582 #define float32_one_point_five make_float32(0x3fc00000)
584 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
586 float_status
*s
= &env
->vfp
.standard_fp_status
;
587 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
588 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
589 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
590 float_raise(float_flag_input_denormal
, s
);
594 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
597 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
599 float_status
*s
= &env
->vfp
.standard_fp_status
;
601 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
602 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
603 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
604 float_raise(float_flag_input_denormal
, s
);
606 return float32_one_point_five
;
608 product
= float32_mul(a
, b
, s
);
609 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
614 /* Constants 256 and 512 are used in some helpers; we avoid relying on
615 * int->float conversions at run-time. */
616 #define float64_256 make_float64(0x4070000000000000LL)
617 #define float64_512 make_float64(0x4080000000000000LL)
618 #define float16_maxnorm make_float16(0x7bff)
619 #define float32_maxnorm make_float32(0x7f7fffff)
620 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
622 /* Reciprocal functions
624 * The algorithm that must be used to calculate the estimate
625 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
628 /* See RecipEstimate()
630 * input is a 9 bit fixed point number
631 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
632 * result range 256 .. 511 for a number from 1.0 to 511/256.
635 static int recip_estimate(int input
)
638 assert(256 <= input
&& input
< 512);
642 assert(256 <= r
&& r
< 512);
647 * Common wrapper to call recip_estimate
649 * The parameters are exponent and 64 bit fraction (without implicit
650 * bit) where the binary point is nominally at bit 52. Returns a
651 * float64 which can then be rounded to the appropriate size by the
655 static uint64_t call_recip_estimate(int *exp
, int exp_off
, uint64_t frac
)
657 uint32_t scaled
, estimate
;
658 uint64_t result_frac
;
661 /* Handle sub-normals */
663 if (extract64(frac
, 51, 1) == 0) {
671 /* scaled = UInt('1':fraction<51:44>) */
672 scaled
= deposit32(1 << 8, 0, 8, extract64(frac
, 44, 8));
673 estimate
= recip_estimate(scaled
);
675 result_exp
= exp_off
- *exp
;
676 result_frac
= deposit64(0, 44, 8, estimate
);
677 if (result_exp
== 0) {
678 result_frac
= deposit64(result_frac
>> 1, 51, 1, 1);
679 } else if (result_exp
== -1) {
680 result_frac
= deposit64(result_frac
>> 2, 50, 2, 1);
689 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
691 switch (fpst
->float_rounding_mode
) {
692 case float_round_nearest_even
: /* Round to Nearest */
694 case float_round_up
: /* Round to +Inf */
696 case float_round_down
: /* Round to -Inf */
698 case float_round_to_zero
: /* Round to Zero */
702 g_assert_not_reached();
705 uint32_t HELPER(recpe_f16
)(uint32_t input
, void *fpstp
)
707 float_status
*fpst
= fpstp
;
708 float16 f16
= float16_squash_input_denormal(input
, fpst
);
709 uint32_t f16_val
= float16_val(f16
);
710 uint32_t f16_sign
= float16_is_neg(f16
);
711 int f16_exp
= extract32(f16_val
, 10, 5);
712 uint32_t f16_frac
= extract32(f16_val
, 0, 10);
715 if (float16_is_any_nan(f16
)) {
717 if (float16_is_signaling_nan(f16
, fpst
)) {
718 float_raise(float_flag_invalid
, fpst
);
719 nan
= float16_silence_nan(f16
, fpst
);
721 if (fpst
->default_nan_mode
) {
722 nan
= float16_default_nan(fpst
);
725 } else if (float16_is_infinity(f16
)) {
726 return float16_set_sign(float16_zero
, float16_is_neg(f16
));
727 } else if (float16_is_zero(f16
)) {
728 float_raise(float_flag_divbyzero
, fpst
);
729 return float16_set_sign(float16_infinity
, float16_is_neg(f16
));
730 } else if (float16_abs(f16
) < (1 << 8)) {
731 /* Abs(value) < 2.0^-16 */
732 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
733 if (round_to_inf(fpst
, f16_sign
)) {
734 return float16_set_sign(float16_infinity
, f16_sign
);
736 return float16_set_sign(float16_maxnorm
, f16_sign
);
738 } else if (f16_exp
>= 29 && fpst
->flush_to_zero
) {
739 float_raise(float_flag_underflow
, fpst
);
740 return float16_set_sign(float16_zero
, float16_is_neg(f16
));
743 f64_frac
= call_recip_estimate(&f16_exp
, 29,
744 ((uint64_t) f16_frac
) << (52 - 10));
746 /* result = sign : result_exp<4:0> : fraction<51:42> */
747 f16_val
= deposit32(0, 15, 1, f16_sign
);
748 f16_val
= deposit32(f16_val
, 10, 5, f16_exp
);
749 f16_val
= deposit32(f16_val
, 0, 10, extract64(f64_frac
, 52 - 10, 10));
750 return make_float16(f16_val
);
753 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
755 float_status
*fpst
= fpstp
;
756 float32 f32
= float32_squash_input_denormal(input
, fpst
);
757 uint32_t f32_val
= float32_val(f32
);
758 bool f32_sign
= float32_is_neg(f32
);
759 int f32_exp
= extract32(f32_val
, 23, 8);
760 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
763 if (float32_is_any_nan(f32
)) {
765 if (float32_is_signaling_nan(f32
, fpst
)) {
766 float_raise(float_flag_invalid
, fpst
);
767 nan
= float32_silence_nan(f32
, fpst
);
769 if (fpst
->default_nan_mode
) {
770 nan
= float32_default_nan(fpst
);
773 } else if (float32_is_infinity(f32
)) {
774 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
775 } else if (float32_is_zero(f32
)) {
776 float_raise(float_flag_divbyzero
, fpst
);
777 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
778 } else if (float32_abs(f32
) < (1ULL << 21)) {
779 /* Abs(value) < 2.0^-128 */
780 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
781 if (round_to_inf(fpst
, f32_sign
)) {
782 return float32_set_sign(float32_infinity
, f32_sign
);
784 return float32_set_sign(float32_maxnorm
, f32_sign
);
786 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
787 float_raise(float_flag_underflow
, fpst
);
788 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
791 f64_frac
= call_recip_estimate(&f32_exp
, 253,
792 ((uint64_t) f32_frac
) << (52 - 23));
794 /* result = sign : result_exp<7:0> : fraction<51:29> */
795 f32_val
= deposit32(0, 31, 1, f32_sign
);
796 f32_val
= deposit32(f32_val
, 23, 8, f32_exp
);
797 f32_val
= deposit32(f32_val
, 0, 23, extract64(f64_frac
, 52 - 23, 23));
798 return make_float32(f32_val
);
801 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
803 float_status
*fpst
= fpstp
;
804 float64 f64
= float64_squash_input_denormal(input
, fpst
);
805 uint64_t f64_val
= float64_val(f64
);
806 bool f64_sign
= float64_is_neg(f64
);
807 int f64_exp
= extract64(f64_val
, 52, 11);
808 uint64_t f64_frac
= extract64(f64_val
, 0, 52);
810 /* Deal with any special cases */
811 if (float64_is_any_nan(f64
)) {
813 if (float64_is_signaling_nan(f64
, fpst
)) {
814 float_raise(float_flag_invalid
, fpst
);
815 nan
= float64_silence_nan(f64
, fpst
);
817 if (fpst
->default_nan_mode
) {
818 nan
= float64_default_nan(fpst
);
821 } else if (float64_is_infinity(f64
)) {
822 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
823 } else if (float64_is_zero(f64
)) {
824 float_raise(float_flag_divbyzero
, fpst
);
825 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
826 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
827 /* Abs(value) < 2.0^-1024 */
828 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
829 if (round_to_inf(fpst
, f64_sign
)) {
830 return float64_set_sign(float64_infinity
, f64_sign
);
832 return float64_set_sign(float64_maxnorm
, f64_sign
);
834 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
835 float_raise(float_flag_underflow
, fpst
);
836 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
839 f64_frac
= call_recip_estimate(&f64_exp
, 2045, f64_frac
);
841 /* result = sign : result_exp<10:0> : fraction<51:0>; */
842 f64_val
= deposit64(0, 63, 1, f64_sign
);
843 f64_val
= deposit64(f64_val
, 52, 11, f64_exp
);
844 f64_val
= deposit64(f64_val
, 0, 52, f64_frac
);
845 return make_float64(f64_val
);
848 /* The algorithm that must be used to calculate the estimate
849 * is specified by the ARM ARM.
852 static int do_recip_sqrt_estimate(int a
)
856 assert(128 <= a
&& a
< 512);
864 while (a
* (b
+ 1) * (b
+ 1) < (1 << 28)) {
867 estimate
= (b
+ 1) / 2;
868 assert(256 <= estimate
&& estimate
< 512);
874 static uint64_t recip_sqrt_estimate(int *exp
, int exp_off
, uint64_t frac
)
880 while (extract64(frac
, 51, 1) == 0) {
884 frac
= extract64(frac
, 0, 51) << 1;
888 /* scaled = UInt('01':fraction<51:45>) */
889 scaled
= deposit32(1 << 7, 0, 7, extract64(frac
, 45, 7));
891 /* scaled = UInt('1':fraction<51:44>) */
892 scaled
= deposit32(1 << 8, 0, 8, extract64(frac
, 44, 8));
894 estimate
= do_recip_sqrt_estimate(scaled
);
896 *exp
= (exp_off
- *exp
) / 2;
897 return extract64(estimate
, 0, 8) << 44;
900 uint32_t HELPER(rsqrte_f16
)(uint32_t input
, void *fpstp
)
902 float_status
*s
= fpstp
;
903 float16 f16
= float16_squash_input_denormal(input
, s
);
904 uint16_t val
= float16_val(f16
);
905 bool f16_sign
= float16_is_neg(f16
);
906 int f16_exp
= extract32(val
, 10, 5);
907 uint16_t f16_frac
= extract32(val
, 0, 10);
910 if (float16_is_any_nan(f16
)) {
912 if (float16_is_signaling_nan(f16
, s
)) {
913 float_raise(float_flag_invalid
, s
);
914 nan
= float16_silence_nan(f16
, s
);
916 if (s
->default_nan_mode
) {
917 nan
= float16_default_nan(s
);
920 } else if (float16_is_zero(f16
)) {
921 float_raise(float_flag_divbyzero
, s
);
922 return float16_set_sign(float16_infinity
, f16_sign
);
923 } else if (f16_sign
) {
924 float_raise(float_flag_invalid
, s
);
925 return float16_default_nan(s
);
926 } else if (float16_is_infinity(f16
)) {
930 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
931 * preserving the parity of the exponent. */
933 f64_frac
= ((uint64_t) f16_frac
) << (52 - 10);
935 f64_frac
= recip_sqrt_estimate(&f16_exp
, 44, f64_frac
);
937 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
938 val
= deposit32(0, 15, 1, f16_sign
);
939 val
= deposit32(val
, 10, 5, f16_exp
);
940 val
= deposit32(val
, 2, 8, extract64(f64_frac
, 52 - 8, 8));
941 return make_float16(val
);
944 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
946 float_status
*s
= fpstp
;
947 float32 f32
= float32_squash_input_denormal(input
, s
);
948 uint32_t val
= float32_val(f32
);
949 uint32_t f32_sign
= float32_is_neg(f32
);
950 int f32_exp
= extract32(val
, 23, 8);
951 uint32_t f32_frac
= extract32(val
, 0, 23);
954 if (float32_is_any_nan(f32
)) {
956 if (float32_is_signaling_nan(f32
, s
)) {
957 float_raise(float_flag_invalid
, s
);
958 nan
= float32_silence_nan(f32
, s
);
960 if (s
->default_nan_mode
) {
961 nan
= float32_default_nan(s
);
964 } else if (float32_is_zero(f32
)) {
965 float_raise(float_flag_divbyzero
, s
);
966 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
967 } else if (float32_is_neg(f32
)) {
968 float_raise(float_flag_invalid
, s
);
969 return float32_default_nan(s
);
970 } else if (float32_is_infinity(f32
)) {
974 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
975 * preserving the parity of the exponent. */
977 f64_frac
= ((uint64_t) f32_frac
) << 29;
979 f64_frac
= recip_sqrt_estimate(&f32_exp
, 380, f64_frac
);
981 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
982 val
= deposit32(0, 31, 1, f32_sign
);
983 val
= deposit32(val
, 23, 8, f32_exp
);
984 val
= deposit32(val
, 15, 8, extract64(f64_frac
, 52 - 8, 8));
985 return make_float32(val
);
988 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
990 float_status
*s
= fpstp
;
991 float64 f64
= float64_squash_input_denormal(input
, s
);
992 uint64_t val
= float64_val(f64
);
993 bool f64_sign
= float64_is_neg(f64
);
994 int f64_exp
= extract64(val
, 52, 11);
995 uint64_t f64_frac
= extract64(val
, 0, 52);
997 if (float64_is_any_nan(f64
)) {
999 if (float64_is_signaling_nan(f64
, s
)) {
1000 float_raise(float_flag_invalid
, s
);
1001 nan
= float64_silence_nan(f64
, s
);
1003 if (s
->default_nan_mode
) {
1004 nan
= float64_default_nan(s
);
1007 } else if (float64_is_zero(f64
)) {
1008 float_raise(float_flag_divbyzero
, s
);
1009 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
1010 } else if (float64_is_neg(f64
)) {
1011 float_raise(float_flag_invalid
, s
);
1012 return float64_default_nan(s
);
1013 } else if (float64_is_infinity(f64
)) {
1014 return float64_zero
;
1017 f64_frac
= recip_sqrt_estimate(&f64_exp
, 3068, f64_frac
);
1019 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
1020 val
= deposit64(0, 61, 1, f64_sign
);
1021 val
= deposit64(val
, 52, 11, f64_exp
);
1022 val
= deposit64(val
, 44, 8, extract64(f64_frac
, 52 - 8, 8));
1023 return make_float64(val
);
1026 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
1028 /* float_status *s = fpstp; */
1029 int input
, estimate
;
1031 if ((a
& 0x80000000) == 0) {
1035 input
= extract32(a
, 23, 9);
1036 estimate
= recip_estimate(input
);
1038 return deposit32(0, (32 - 9), 9, estimate
);
1041 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
1045 if ((a
& 0xc0000000) == 0) {
1049 estimate
= do_recip_sqrt_estimate(extract32(a
, 23, 9));
1051 return deposit32(0, 23, 9, estimate
);
1054 /* VFPv4 fused multiply-accumulate */
1055 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
1057 float_status
*fpst
= fpstp
;
1058 return float32_muladd(a
, b
, c
, 0, fpst
);
1061 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
1063 float_status
*fpst
= fpstp
;
1064 return float64_muladd(a
, b
, c
, 0, fpst
);
1067 /* ARMv8 round to integral */
1068 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
1070 return float32_round_to_int(x
, fp_status
);
1073 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
1075 return float64_round_to_int(x
, fp_status
);
1078 float32
HELPER(rints
)(float32 x
, void *fp_status
)
1080 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
1083 ret
= float32_round_to_int(x
, fp_status
);
1085 /* Suppress any inexact exceptions the conversion produced */
1086 if (!(old_flags
& float_flag_inexact
)) {
1087 new_flags
= get_float_exception_flags(fp_status
);
1088 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
1094 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
1096 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
1099 ret
= float64_round_to_int(x
, fp_status
);
1101 new_flags
= get_float_exception_flags(fp_status
);
1103 /* Suppress any inexact exceptions the conversion produced */
1104 if (!(old_flags
& float_flag_inexact
)) {
1105 new_flags
= get_float_exception_flags(fp_status
);
1106 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
1112 /* Convert ARM rounding mode to softfloat */
1113 int arm_rmode_to_sf(int rmode
)
1116 case FPROUNDING_TIEAWAY
:
1117 rmode
= float_round_ties_away
;
1119 case FPROUNDING_ODD
:
1120 /* FIXME: add support for TIEAWAY and ODD */
1121 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
1123 /* fall through for now */
1124 case FPROUNDING_TIEEVEN
:
1126 rmode
= float_round_nearest_even
;
1128 case FPROUNDING_POSINF
:
1129 rmode
= float_round_up
;
1131 case FPROUNDING_NEGINF
:
1132 rmode
= float_round_down
;
1134 case FPROUNDING_ZERO
:
1135 rmode
= float_round_to_zero
;
1142 * Implement float64 to int32_t conversion without saturation;
1143 * the result is supplied modulo 2^32.
1145 uint64_t HELPER(fjcvtzs
)(float64 value
, void *vstatus
)
1147 float_status
*status
= vstatus
;
1150 uint32_t inexact
= 1; /* !Z */
1152 sign
= extract64(value
, 63, 1);
1153 exp
= extract64(value
, 52, 11);
1154 frac
= extract64(value
, 0, 52);
1157 /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */
1160 if (status
->flush_inputs_to_zero
) {
1161 float_raise(float_flag_input_denormal
, status
);
1163 float_raise(float_flag_inexact
, status
);
1168 } else if (exp
== 0x7ff) {
1169 /* This operation raises Invalid for both NaN and overflow (Inf). */
1170 float_raise(float_flag_invalid
, status
);
1173 int true_exp
= exp
- 1023;
1174 int shift
= true_exp
- 52;
1176 /* Restore implicit bit. */
1179 /* Shift the fraction into place. */
1181 /* The number is so large we must shift the fraction left. */
1183 /* The fraction is shifted out entirely. */
1188 } else if (shift
> -64) {
1189 /* Normal case -- shift right and notice if bits shift out. */
1190 inexact
= (frac
<< (64 + shift
)) != 0;
1193 /* The fraction is shifted out entirely. */
1197 /* Notice overflow or inexact exceptions. */
1198 if (true_exp
> 31 || frac
> (sign
? 0x80000000ull
: 0x7fffffff)) {
1199 /* Overflow, for which this operation raises invalid. */
1200 float_raise(float_flag_invalid
, status
);
1202 } else if (inexact
) {
1203 float_raise(float_flag_inexact
, status
);
1206 /* Honor the sign. */
1212 /* Pack the result and the env->ZF representation of Z together. */
1213 return deposit64(frac
, 32, 32, inexact
);
1216 uint32_t HELPER(vjcvt
)(float64 value
, CPUARMState
*env
)
1218 uint64_t pair
= HELPER(fjcvtzs
)(value
, &env
->vfp
.fp_status
);
1219 uint32_t result
= pair
;
1220 uint32_t z
= (pair
>> 32) == 0;
1222 /* Store Z, clear NCV, in FPSCR.NZCV. */
1223 env
->vfp
.xregs
[ARM_VFP_FPSCR
]
1224 = (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & ~CPSR_NZCV
) | (z
* CPSR_Z
);
1229 /* Round a float32 to an integer that fits in int32_t or int64_t. */
1230 static float32
frint_s(float32 f
, float_status
*fpst
, int intsize
)
1232 int old_flags
= get_float_exception_flags(fpst
);
1233 uint32_t exp
= extract32(f
, 23, 8);
1235 if (unlikely(exp
== 0xff)) {
1240 /* Round and re-extract the exponent. */
1241 f
= float32_round_to_int(f
, fpst
);
1242 exp
= extract32(f
, 23, 8);
1244 /* Validate the range of the result. */
1245 if (exp
< 126 + intsize
) {
1246 /* abs(F) <= INT{N}_MAX */
1249 if (exp
== 126 + intsize
) {
1250 uint32_t sign
= extract32(f
, 31, 1);
1251 uint32_t frac
= extract32(f
, 0, 23);
1252 if (sign
&& frac
== 0) {
1253 /* F == INT{N}_MIN */
1260 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1261 * inexact exception float32_round_to_int may have raised.
1263 set_float_exception_flags(old_flags
| float_flag_invalid
, fpst
);
1264 return (0x100u
+ 126u + intsize
) << 23;
1267 float32
HELPER(frint32_s
)(float32 f
, void *fpst
)
1269 return frint_s(f
, fpst
, 32);
1272 float32
HELPER(frint64_s
)(float32 f
, void *fpst
)
1274 return frint_s(f
, fpst
, 64);
1277 /* Round a float64 to an integer that fits in int32_t or int64_t. */
1278 static float64
frint_d(float64 f
, float_status
*fpst
, int intsize
)
1280 int old_flags
= get_float_exception_flags(fpst
);
1281 uint32_t exp
= extract64(f
, 52, 11);
1283 if (unlikely(exp
== 0x7ff)) {
1288 /* Round and re-extract the exponent. */
1289 f
= float64_round_to_int(f
, fpst
);
1290 exp
= extract64(f
, 52, 11);
1292 /* Validate the range of the result. */
1293 if (exp
< 1022 + intsize
) {
1294 /* abs(F) <= INT{N}_MAX */
1297 if (exp
== 1022 + intsize
) {
1298 uint64_t sign
= extract64(f
, 63, 1);
1299 uint64_t frac
= extract64(f
, 0, 52);
1300 if (sign
&& frac
== 0) {
1301 /* F == INT{N}_MIN */
1308 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1309 * inexact exception float64_round_to_int may have raised.
1311 set_float_exception_flags(old_flags
| float_flag_invalid
, fpst
);
1312 return (uint64_t)(0x800 + 1022 + intsize
) << 52;
1315 float64
HELPER(frint32_d
)(float64 f
, void *fpst
)
1317 return frint_d(f
, fpst
, 32);
1320 float64
HELPER(frint64_d
)(float64 f
, void *fpst
)
1322 return frint_d(f
, fpst
, 64);