fpu/softfloat: implement float16_squash_input_denormal
[qemu/ar7.git] / include / fpu / softfloat.h
blobd5e99667b611a91d546544249bc2c03b18e62788
1 /*
2 * QEMU float support
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
19 ===============================================================================
20 This C header file is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
44 ===============================================================================
47 /* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
82 #ifndef SOFTFLOAT_H
83 #define SOFTFLOAT_H
85 /* This 'flag' type must be able to hold at least 0 and 1. It should
86 * probably be replaced with 'bool' but the uses would need to be audited
87 * to check that they weren't accidentally relying on it being a larger type.
89 typedef uint8_t flag;
91 #define LIT64( a ) a##LL
93 /*----------------------------------------------------------------------------
94 | Software IEC/IEEE floating-point ordering relations
95 *----------------------------------------------------------------------------*/
96 enum {
97 float_relation_less = -1,
98 float_relation_equal = 0,
99 float_relation_greater = 1,
100 float_relation_unordered = 2
103 /*----------------------------------------------------------------------------
104 | Software IEC/IEEE floating-point types.
105 *----------------------------------------------------------------------------*/
106 /* Use structures for soft-float types. This prevents accidentally mixing
107 them with native int/float types. A sufficiently clever compiler and
108 sane ABI should be able to see though these structs. However
109 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
110 //#define USE_SOFTFLOAT_STRUCT_TYPES
111 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
112 typedef struct {
113 uint16_t v;
114 } float16;
115 #define float16_val(x) (((float16)(x)).v)
116 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
117 #define const_float16(x) { x }
118 typedef struct {
119 uint32_t v;
120 } float32;
121 /* The cast ensures an error if the wrong type is passed. */
122 #define float32_val(x) (((float32)(x)).v)
123 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
124 #define const_float32(x) { x }
125 typedef struct {
126 uint64_t v;
127 } float64;
128 #define float64_val(x) (((float64)(x)).v)
129 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
130 #define const_float64(x) { x }
131 #else
132 typedef uint16_t float16;
133 typedef uint32_t float32;
134 typedef uint64_t float64;
135 #define float16_val(x) (x)
136 #define float32_val(x) (x)
137 #define float64_val(x) (x)
138 #define make_float16(x) (x)
139 #define make_float32(x) (x)
140 #define make_float64(x) (x)
141 #define const_float16(x) (x)
142 #define const_float32(x) (x)
143 #define const_float64(x) (x)
144 #endif
145 typedef struct {
146 uint64_t low;
147 uint16_t high;
148 } floatx80;
149 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
150 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
151 typedef struct {
152 #ifdef HOST_WORDS_BIGENDIAN
153 uint64_t high, low;
154 #else
155 uint64_t low, high;
156 #endif
157 } float128;
158 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
159 #define make_float128_init(high_, low_) { .high = high_, .low = low_ }
161 /*----------------------------------------------------------------------------
162 | Software IEC/IEEE floating-point underflow tininess-detection mode.
163 *----------------------------------------------------------------------------*/
164 enum {
165 float_tininess_after_rounding = 0,
166 float_tininess_before_rounding = 1
169 /*----------------------------------------------------------------------------
170 | Software IEC/IEEE floating-point rounding mode.
171 *----------------------------------------------------------------------------*/
172 enum {
173 float_round_nearest_even = 0,
174 float_round_down = 1,
175 float_round_up = 2,
176 float_round_to_zero = 3,
177 float_round_ties_away = 4,
178 /* Not an IEEE rounding mode: round to the closest odd mantissa value */
179 float_round_to_odd = 5,
182 /*----------------------------------------------------------------------------
183 | Software IEC/IEEE floating-point exception flags.
184 *----------------------------------------------------------------------------*/
185 enum {
186 float_flag_invalid = 1,
187 float_flag_divbyzero = 4,
188 float_flag_overflow = 8,
189 float_flag_underflow = 16,
190 float_flag_inexact = 32,
191 float_flag_input_denormal = 64,
192 float_flag_output_denormal = 128
195 typedef struct float_status {
196 signed char float_detect_tininess;
197 signed char float_rounding_mode;
198 uint8_t float_exception_flags;
199 signed char floatx80_rounding_precision;
200 /* should denormalised results go to zero and set the inexact flag? */
201 flag flush_to_zero;
202 /* should denormalised inputs go to zero and set the input_denormal flag? */
203 flag flush_inputs_to_zero;
204 flag default_nan_mode;
205 flag snan_bit_is_one;
206 } float_status;
208 static inline void set_float_detect_tininess(int val, float_status *status)
210 status->float_detect_tininess = val;
212 static inline void set_float_rounding_mode(int val, float_status *status)
214 status->float_rounding_mode = val;
216 static inline void set_float_exception_flags(int val, float_status *status)
218 status->float_exception_flags = val;
220 static inline void set_floatx80_rounding_precision(int val,
221 float_status *status)
223 status->floatx80_rounding_precision = val;
225 static inline void set_flush_to_zero(flag val, float_status *status)
227 status->flush_to_zero = val;
229 static inline void set_flush_inputs_to_zero(flag val, float_status *status)
231 status->flush_inputs_to_zero = val;
233 static inline void set_default_nan_mode(flag val, float_status *status)
235 status->default_nan_mode = val;
237 static inline void set_snan_bit_is_one(flag val, float_status *status)
239 status->snan_bit_is_one = val;
241 static inline int get_float_detect_tininess(float_status *status)
243 return status->float_detect_tininess;
245 static inline int get_float_rounding_mode(float_status *status)
247 return status->float_rounding_mode;
249 static inline int get_float_exception_flags(float_status *status)
251 return status->float_exception_flags;
253 static inline int get_floatx80_rounding_precision(float_status *status)
255 return status->floatx80_rounding_precision;
257 static inline flag get_flush_to_zero(float_status *status)
259 return status->flush_to_zero;
261 static inline flag get_flush_inputs_to_zero(float_status *status)
263 return status->flush_inputs_to_zero;
265 static inline flag get_default_nan_mode(float_status *status)
267 return status->default_nan_mode;
270 /*----------------------------------------------------------------------------
271 | Routine to raise any or all of the software IEC/IEEE floating-point
272 | exception flags.
273 *----------------------------------------------------------------------------*/
274 void float_raise(uint8_t flags, float_status *status);
276 /*----------------------------------------------------------------------------
277 | If `a' is denormal and we are in flush-to-zero mode then set the
278 | input-denormal exception and return zero. Otherwise just return the value.
279 *----------------------------------------------------------------------------*/
280 float16 float16_squash_input_denormal(float16 a, float_status *status);
281 float32 float32_squash_input_denormal(float32 a, float_status *status);
282 float64 float64_squash_input_denormal(float64 a, float_status *status);
284 /*----------------------------------------------------------------------------
285 | Options to indicate which negations to perform in float*_muladd()
286 | Using these differs from negating an input or output before calling
287 | the muladd function in that this means that a NaN doesn't have its
288 | sign bit inverted before it is propagated.
289 | We also support halving the result before rounding, as a special
290 | case to support the ARM fused-sqrt-step instruction FRSQRTS.
291 *----------------------------------------------------------------------------*/
292 enum {
293 float_muladd_negate_c = 1,
294 float_muladd_negate_product = 2,
295 float_muladd_negate_result = 4,
296 float_muladd_halve_result = 8,
299 /*----------------------------------------------------------------------------
300 | Software IEC/IEEE integer-to-floating-point conversion routines.
301 *----------------------------------------------------------------------------*/
302 float32 int32_to_float32(int32_t, float_status *status);
303 float64 int32_to_float64(int32_t, float_status *status);
304 float32 uint32_to_float32(uint32_t, float_status *status);
305 float64 uint32_to_float64(uint32_t, float_status *status);
306 floatx80 int32_to_floatx80(int32_t, float_status *status);
307 float128 int32_to_float128(int32_t, float_status *status);
308 float32 int64_to_float32(int64_t, float_status *status);
309 float64 int64_to_float64(int64_t, float_status *status);
310 floatx80 int64_to_floatx80(int64_t, float_status *status);
311 float128 int64_to_float128(int64_t, float_status *status);
312 float32 uint64_to_float32(uint64_t, float_status *status);
313 float64 uint64_to_float64(uint64_t, float_status *status);
314 float128 uint64_to_float128(uint64_t, float_status *status);
316 /* We provide the int16 versions for symmetry of API with float-to-int */
317 static inline float32 int16_to_float32(int16_t v, float_status *status)
319 return int32_to_float32(v, status);
322 static inline float32 uint16_to_float32(uint16_t v, float_status *status)
324 return uint32_to_float32(v, status);
327 static inline float64 int16_to_float64(int16_t v, float_status *status)
329 return int32_to_float64(v, status);
332 static inline float64 uint16_to_float64(uint16_t v, float_status *status)
334 return uint32_to_float64(v, status);
337 /*----------------------------------------------------------------------------
338 | Software half-precision conversion routines.
339 *----------------------------------------------------------------------------*/
340 float16 float32_to_float16(float32, flag, float_status *status);
341 float32 float16_to_float32(float16, flag, float_status *status);
342 float16 float64_to_float16(float64 a, flag ieee, float_status *status);
343 float64 float16_to_float64(float16 a, flag ieee, float_status *status);
345 /*----------------------------------------------------------------------------
346 | Software half-precision operations.
347 *----------------------------------------------------------------------------*/
348 int float16_is_quiet_nan(float16, float_status *status);
349 int float16_is_signaling_nan(float16, float_status *status);
350 float16 float16_maybe_silence_nan(float16, float_status *status);
352 static inline int float16_is_any_nan(float16 a)
354 return ((float16_val(a) & ~0x8000) > 0x7c00);
357 static inline int float16_is_neg(float16 a)
359 return float16_val(a) >> 15;
362 static inline int float16_is_infinity(float16 a)
364 return (float16_val(a) & 0x7fff) == 0x7c00;
367 static inline int float16_is_zero(float16 a)
369 return (float16_val(a) & 0x7fff) == 0;
372 static inline int float16_is_zero_or_denormal(float16 a)
374 return (float16_val(a) & 0x7c00) == 0;
377 /*----------------------------------------------------------------------------
378 | The pattern for a default generated half-precision NaN.
379 *----------------------------------------------------------------------------*/
380 float16 float16_default_nan(float_status *status);
382 /*----------------------------------------------------------------------------
383 | Software IEC/IEEE single-precision conversion routines.
384 *----------------------------------------------------------------------------*/
385 int16_t float32_to_int16(float32, float_status *status);
386 uint16_t float32_to_uint16(float32, float_status *status);
387 int16_t float32_to_int16_round_to_zero(float32, float_status *status);
388 uint16_t float32_to_uint16_round_to_zero(float32, float_status *status);
389 int32_t float32_to_int32(float32, float_status *status);
390 int32_t float32_to_int32_round_to_zero(float32, float_status *status);
391 uint32_t float32_to_uint32(float32, float_status *status);
392 uint32_t float32_to_uint32_round_to_zero(float32, float_status *status);
393 int64_t float32_to_int64(float32, float_status *status);
394 uint64_t float32_to_uint64(float32, float_status *status);
395 uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);
396 int64_t float32_to_int64_round_to_zero(float32, float_status *status);
397 float64 float32_to_float64(float32, float_status *status);
398 floatx80 float32_to_floatx80(float32, float_status *status);
399 float128 float32_to_float128(float32, float_status *status);
401 /*----------------------------------------------------------------------------
402 | Software IEC/IEEE single-precision operations.
403 *----------------------------------------------------------------------------*/
404 float32 float32_round_to_int(float32, float_status *status);
405 float32 float32_add(float32, float32, float_status *status);
406 float32 float32_sub(float32, float32, float_status *status);
407 float32 float32_mul(float32, float32, float_status *status);
408 float32 float32_div(float32, float32, float_status *status);
409 float32 float32_rem(float32, float32, float_status *status);
410 float32 float32_muladd(float32, float32, float32, int, float_status *status);
411 float32 float32_sqrt(float32, float_status *status);
412 float32 float32_exp2(float32, float_status *status);
413 float32 float32_log2(float32, float_status *status);
414 int float32_eq(float32, float32, float_status *status);
415 int float32_le(float32, float32, float_status *status);
416 int float32_lt(float32, float32, float_status *status);
417 int float32_unordered(float32, float32, float_status *status);
418 int float32_eq_quiet(float32, float32, float_status *status);
419 int float32_le_quiet(float32, float32, float_status *status);
420 int float32_lt_quiet(float32, float32, float_status *status);
421 int float32_unordered_quiet(float32, float32, float_status *status);
422 int float32_compare(float32, float32, float_status *status);
423 int float32_compare_quiet(float32, float32, float_status *status);
424 float32 float32_min(float32, float32, float_status *status);
425 float32 float32_max(float32, float32, float_status *status);
426 float32 float32_minnum(float32, float32, float_status *status);
427 float32 float32_maxnum(float32, float32, float_status *status);
428 float32 float32_minnummag(float32, float32, float_status *status);
429 float32 float32_maxnummag(float32, float32, float_status *status);
430 int float32_is_quiet_nan(float32, float_status *status);
431 int float32_is_signaling_nan(float32, float_status *status);
432 float32 float32_maybe_silence_nan(float32, float_status *status);
433 float32 float32_scalbn(float32, int, float_status *status);
435 static inline float32 float32_abs(float32 a)
437 /* Note that abs does *not* handle NaN specially, nor does
438 * it flush denormal inputs to zero.
440 return make_float32(float32_val(a) & 0x7fffffff);
443 static inline float32 float32_chs(float32 a)
445 /* Note that chs does *not* handle NaN specially, nor does
446 * it flush denormal inputs to zero.
448 return make_float32(float32_val(a) ^ 0x80000000);
451 static inline int float32_is_infinity(float32 a)
453 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
456 static inline int float32_is_neg(float32 a)
458 return float32_val(a) >> 31;
461 static inline int float32_is_zero(float32 a)
463 return (float32_val(a) & 0x7fffffff) == 0;
466 static inline int float32_is_any_nan(float32 a)
468 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
471 static inline int float32_is_zero_or_denormal(float32 a)
473 return (float32_val(a) & 0x7f800000) == 0;
476 static inline float32 float32_set_sign(float32 a, int sign)
478 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
481 #define float32_zero make_float32(0)
482 #define float32_one make_float32(0x3f800000)
483 #define float32_ln2 make_float32(0x3f317218)
484 #define float32_pi make_float32(0x40490fdb)
485 #define float32_half make_float32(0x3f000000)
486 #define float32_infinity make_float32(0x7f800000)
489 /*----------------------------------------------------------------------------
490 | The pattern for a default generated single-precision NaN.
491 *----------------------------------------------------------------------------*/
492 float32 float32_default_nan(float_status *status);
494 /*----------------------------------------------------------------------------
495 | Software IEC/IEEE double-precision conversion routines.
496 *----------------------------------------------------------------------------*/
497 int16_t float64_to_int16(float64, float_status *status);
498 uint16_t float64_to_uint16(float64, float_status *status);
499 int16_t float64_to_int16_round_to_zero(float64, float_status *status);
500 uint16_t float64_to_uint16_round_to_zero(float64, float_status *status);
501 int32_t float64_to_int32(float64, float_status *status);
502 int32_t float64_to_int32_round_to_zero(float64, float_status *status);
503 uint32_t float64_to_uint32(float64, float_status *status);
504 uint32_t float64_to_uint32_round_to_zero(float64, float_status *status);
505 int64_t float64_to_int64(float64, float_status *status);
506 int64_t float64_to_int64_round_to_zero(float64, float_status *status);
507 uint64_t float64_to_uint64(float64 a, float_status *status);
508 uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status);
509 float32 float64_to_float32(float64, float_status *status);
510 floatx80 float64_to_floatx80(float64, float_status *status);
511 float128 float64_to_float128(float64, float_status *status);
513 /*----------------------------------------------------------------------------
514 | Software IEC/IEEE double-precision operations.
515 *----------------------------------------------------------------------------*/
516 float64 float64_round_to_int(float64, float_status *status);
517 float64 float64_trunc_to_int(float64, float_status *status);
518 float64 float64_add(float64, float64, float_status *status);
519 float64 float64_sub(float64, float64, float_status *status);
520 float64 float64_mul(float64, float64, float_status *status);
521 float64 float64_div(float64, float64, float_status *status);
522 float64 float64_rem(float64, float64, float_status *status);
523 float64 float64_muladd(float64, float64, float64, int, float_status *status);
524 float64 float64_sqrt(float64, float_status *status);
525 float64 float64_log2(float64, float_status *status);
526 int float64_eq(float64, float64, float_status *status);
527 int float64_le(float64, float64, float_status *status);
528 int float64_lt(float64, float64, float_status *status);
529 int float64_unordered(float64, float64, float_status *status);
530 int float64_eq_quiet(float64, float64, float_status *status);
531 int float64_le_quiet(float64, float64, float_status *status);
532 int float64_lt_quiet(float64, float64, float_status *status);
533 int float64_unordered_quiet(float64, float64, float_status *status);
534 int float64_compare(float64, float64, float_status *status);
535 int float64_compare_quiet(float64, float64, float_status *status);
536 float64 float64_min(float64, float64, float_status *status);
537 float64 float64_max(float64, float64, float_status *status);
538 float64 float64_minnum(float64, float64, float_status *status);
539 float64 float64_maxnum(float64, float64, float_status *status);
540 float64 float64_minnummag(float64, float64, float_status *status);
541 float64 float64_maxnummag(float64, float64, float_status *status);
542 int float64_is_quiet_nan(float64 a, float_status *status);
543 int float64_is_signaling_nan(float64, float_status *status);
544 float64 float64_maybe_silence_nan(float64, float_status *status);
545 float64 float64_scalbn(float64, int, float_status *status);
547 static inline float64 float64_abs(float64 a)
549 /* Note that abs does *not* handle NaN specially, nor does
550 * it flush denormal inputs to zero.
552 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
555 static inline float64 float64_chs(float64 a)
557 /* Note that chs does *not* handle NaN specially, nor does
558 * it flush denormal inputs to zero.
560 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
563 static inline int float64_is_infinity(float64 a)
565 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
568 static inline int float64_is_neg(float64 a)
570 return float64_val(a) >> 63;
573 static inline int float64_is_zero(float64 a)
575 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
578 static inline int float64_is_any_nan(float64 a)
580 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
583 static inline int float64_is_zero_or_denormal(float64 a)
585 return (float64_val(a) & 0x7ff0000000000000LL) == 0;
588 static inline float64 float64_set_sign(float64 a, int sign)
590 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
591 | ((int64_t)sign << 63));
594 #define float64_zero make_float64(0)
595 #define float64_one make_float64(0x3ff0000000000000LL)
596 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
597 #define float64_pi make_float64(0x400921fb54442d18LL)
598 #define float64_half make_float64(0x3fe0000000000000LL)
599 #define float64_infinity make_float64(0x7ff0000000000000LL)
601 /*----------------------------------------------------------------------------
602 | The pattern for a default generated double-precision NaN.
603 *----------------------------------------------------------------------------*/
604 float64 float64_default_nan(float_status *status);
606 /*----------------------------------------------------------------------------
607 | Software IEC/IEEE extended double-precision conversion routines.
608 *----------------------------------------------------------------------------*/
609 int32_t floatx80_to_int32(floatx80, float_status *status);
610 int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status);
611 int64_t floatx80_to_int64(floatx80, float_status *status);
612 int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status);
613 float32 floatx80_to_float32(floatx80, float_status *status);
614 float64 floatx80_to_float64(floatx80, float_status *status);
615 float128 floatx80_to_float128(floatx80, float_status *status);
617 /*----------------------------------------------------------------------------
618 | Software IEC/IEEE extended double-precision operations.
619 *----------------------------------------------------------------------------*/
620 floatx80 floatx80_round(floatx80 a, float_status *status);
621 floatx80 floatx80_round_to_int(floatx80, float_status *status);
622 floatx80 floatx80_add(floatx80, floatx80, float_status *status);
623 floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
624 floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
625 floatx80 floatx80_div(floatx80, floatx80, float_status *status);
626 floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
627 floatx80 floatx80_sqrt(floatx80, float_status *status);
628 int floatx80_eq(floatx80, floatx80, float_status *status);
629 int floatx80_le(floatx80, floatx80, float_status *status);
630 int floatx80_lt(floatx80, floatx80, float_status *status);
631 int floatx80_unordered(floatx80, floatx80, float_status *status);
632 int floatx80_eq_quiet(floatx80, floatx80, float_status *status);
633 int floatx80_le_quiet(floatx80, floatx80, float_status *status);
634 int floatx80_lt_quiet(floatx80, floatx80, float_status *status);
635 int floatx80_unordered_quiet(floatx80, floatx80, float_status *status);
636 int floatx80_compare(floatx80, floatx80, float_status *status);
637 int floatx80_compare_quiet(floatx80, floatx80, float_status *status);
638 int floatx80_is_quiet_nan(floatx80, float_status *status);
639 int floatx80_is_signaling_nan(floatx80, float_status *status);
640 floatx80 floatx80_maybe_silence_nan(floatx80, float_status *status);
641 floatx80 floatx80_scalbn(floatx80, int, float_status *status);
643 static inline floatx80 floatx80_abs(floatx80 a)
645 a.high &= 0x7fff;
646 return a;
649 static inline floatx80 floatx80_chs(floatx80 a)
651 a.high ^= 0x8000;
652 return a;
655 static inline int floatx80_is_infinity(floatx80 a)
657 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
660 static inline int floatx80_is_neg(floatx80 a)
662 return a.high >> 15;
665 static inline int floatx80_is_zero(floatx80 a)
667 return (a.high & 0x7fff) == 0 && a.low == 0;
670 static inline int floatx80_is_zero_or_denormal(floatx80 a)
672 return (a.high & 0x7fff) == 0;
675 static inline int floatx80_is_any_nan(floatx80 a)
677 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
680 /*----------------------------------------------------------------------------
681 | Return whether the given value is an invalid floatx80 encoding.
682 | Invalid floatx80 encodings arise when the integer bit is not set, but
683 | the exponent is not zero. The only times the integer bit is permitted to
684 | be zero is in subnormal numbers and the value zero.
685 | This includes what the Intel software developer's manual calls pseudo-NaNs,
686 | pseudo-infinities and un-normal numbers. It does not include
687 | pseudo-denormals, which must still be correctly handled as inputs even
688 | if they are never generated as outputs.
689 *----------------------------------------------------------------------------*/
690 static inline bool floatx80_invalid_encoding(floatx80 a)
692 return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0;
695 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
696 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
697 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
698 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
699 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
700 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
702 /*----------------------------------------------------------------------------
703 | The pattern for a default generated extended double-precision NaN.
704 *----------------------------------------------------------------------------*/
705 floatx80 floatx80_default_nan(float_status *status);
707 /*----------------------------------------------------------------------------
708 | Software IEC/IEEE quadruple-precision conversion routines.
709 *----------------------------------------------------------------------------*/
710 int32_t float128_to_int32(float128, float_status *status);
711 int32_t float128_to_int32_round_to_zero(float128, float_status *status);
712 int64_t float128_to_int64(float128, float_status *status);
713 int64_t float128_to_int64_round_to_zero(float128, float_status *status);
714 uint64_t float128_to_uint64(float128, float_status *status);
715 uint64_t float128_to_uint64_round_to_zero(float128, float_status *status);
716 uint32_t float128_to_uint32_round_to_zero(float128, float_status *status);
717 float32 float128_to_float32(float128, float_status *status);
718 float64 float128_to_float64(float128, float_status *status);
719 floatx80 float128_to_floatx80(float128, float_status *status);
721 /*----------------------------------------------------------------------------
722 | Software IEC/IEEE quadruple-precision operations.
723 *----------------------------------------------------------------------------*/
724 float128 float128_round_to_int(float128, float_status *status);
725 float128 float128_add(float128, float128, float_status *status);
726 float128 float128_sub(float128, float128, float_status *status);
727 float128 float128_mul(float128, float128, float_status *status);
728 float128 float128_div(float128, float128, float_status *status);
729 float128 float128_rem(float128, float128, float_status *status);
730 float128 float128_sqrt(float128, float_status *status);
731 int float128_eq(float128, float128, float_status *status);
732 int float128_le(float128, float128, float_status *status);
733 int float128_lt(float128, float128, float_status *status);
734 int float128_unordered(float128, float128, float_status *status);
735 int float128_eq_quiet(float128, float128, float_status *status);
736 int float128_le_quiet(float128, float128, float_status *status);
737 int float128_lt_quiet(float128, float128, float_status *status);
738 int float128_unordered_quiet(float128, float128, float_status *status);
739 int float128_compare(float128, float128, float_status *status);
740 int float128_compare_quiet(float128, float128, float_status *status);
741 int float128_is_quiet_nan(float128, float_status *status);
742 int float128_is_signaling_nan(float128, float_status *status);
743 float128 float128_maybe_silence_nan(float128, float_status *status);
744 float128 float128_scalbn(float128, int, float_status *status);
746 static inline float128 float128_abs(float128 a)
748 a.high &= 0x7fffffffffffffffLL;
749 return a;
752 static inline float128 float128_chs(float128 a)
754 a.high ^= 0x8000000000000000LL;
755 return a;
758 static inline int float128_is_infinity(float128 a)
760 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
763 static inline int float128_is_neg(float128 a)
765 return a.high >> 63;
768 static inline int float128_is_zero(float128 a)
770 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
773 static inline int float128_is_zero_or_denormal(float128 a)
775 return (a.high & 0x7fff000000000000LL) == 0;
778 static inline int float128_is_any_nan(float128 a)
780 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
781 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
784 #define float128_zero make_float128(0, 0)
786 /*----------------------------------------------------------------------------
787 | The pattern for a default generated quadruple-precision NaN.
788 *----------------------------------------------------------------------------*/
789 float128 float128_default_nan(float_status *status);
791 #endif /* SOFTFLOAT_H */