target/arm/vfp_helper: Move code around
[qemu/ar7.git] / target / arm / vfp_helper.c
blobd54e3253240ac798fcbe94f63669ae81b5a172b4
1 /*
2 * ARM VFP floating-point operations
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/helper-proto.h"
24 #include "fpu/softfloat.h"
25 #include "internals.h"
28 /* VFP support. We follow the convention used for VFP instructions:
29 Single precision routines have a "s" suffix, double precision a
30 "d" suffix. */
32 /* Convert host exception flags to vfp form. */
33 static inline int vfp_exceptbits_from_host(int host_bits)
35 int target_bits = 0;
37 if (host_bits & float_flag_invalid) {
38 target_bits |= 1;
40 if (host_bits & float_flag_divbyzero) {
41 target_bits |= 2;
43 if (host_bits & float_flag_overflow) {
44 target_bits |= 4;
46 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
47 target_bits |= 8;
49 if (host_bits & float_flag_inexact) {
50 target_bits |= 0x10;
52 if (host_bits & float_flag_input_denormal) {
53 target_bits |= 0x80;
55 return target_bits;
58 /* Convert vfp exception flags to target form. */
59 static inline int vfp_exceptbits_to_host(int target_bits)
61 int host_bits = 0;
63 if (target_bits & 1) {
64 host_bits |= float_flag_invalid;
66 if (target_bits & 2) {
67 host_bits |= float_flag_divbyzero;
69 if (target_bits & 4) {
70 host_bits |= float_flag_overflow;
72 if (target_bits & 8) {
73 host_bits |= float_flag_underflow;
75 if (target_bits & 0x10) {
76 host_bits |= float_flag_inexact;
78 if (target_bits & 0x80) {
79 host_bits |= float_flag_input_denormal;
81 return host_bits;
84 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
86 uint32_t i, fpscr;
88 fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
89 | (env->vfp.vec_len << 16)
90 | (env->vfp.vec_stride << 20);
92 i = get_float_exception_flags(&env->vfp.fp_status);
93 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
94 /* FZ16 does not generate an input denormal exception. */
95 i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
96 & ~float_flag_input_denormal);
97 fpscr |= vfp_exceptbits_from_host(i);
99 i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
100 fpscr |= i ? FPCR_QC : 0;
102 return fpscr;
105 uint32_t vfp_get_fpscr(CPUARMState *env)
107 return HELPER(vfp_get_fpscr)(env);
110 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
112 int i;
113 uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
115 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
116 if (!cpu_isar_feature(aa64_fp16, env_archcpu(env))) {
117 val &= ~FPCR_FZ16;
120 if (arm_feature(env, ARM_FEATURE_M)) {
122 * M profile FPSCR is RES0 for the QC, STRIDE, FZ16, LEN bits
123 * and also for the trapped-exception-handling bits IxE.
125 val &= 0xf7c0009f;
129 * We don't implement trapped exception handling, so the
130 * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
132 * If we exclude the exception flags, IOC|DZC|OFC|UFC|IXC|IDC
133 * (which are stored in fp_status), and the other RES0 bits
134 * in between, then we clear all of the low 16 bits.
136 env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
137 env->vfp.vec_len = (val >> 16) & 7;
138 env->vfp.vec_stride = (val >> 20) & 3;
141 * The bit we set within fpscr_q is arbitrary; the register as a
142 * whole being zero/non-zero is what counts.
144 env->vfp.qc[0] = val & FPCR_QC;
145 env->vfp.qc[1] = 0;
146 env->vfp.qc[2] = 0;
147 env->vfp.qc[3] = 0;
149 changed ^= val;
150 if (changed & (3 << 22)) {
151 i = (val >> 22) & 3;
152 switch (i) {
153 case FPROUNDING_TIEEVEN:
154 i = float_round_nearest_even;
155 break;
156 case FPROUNDING_POSINF:
157 i = float_round_up;
158 break;
159 case FPROUNDING_NEGINF:
160 i = float_round_down;
161 break;
162 case FPROUNDING_ZERO:
163 i = float_round_to_zero;
164 break;
166 set_float_rounding_mode(i, &env->vfp.fp_status);
167 set_float_rounding_mode(i, &env->vfp.fp_status_f16);
169 if (changed & FPCR_FZ16) {
170 bool ftz_enabled = val & FPCR_FZ16;
171 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
172 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
174 if (changed & FPCR_FZ) {
175 bool ftz_enabled = val & FPCR_FZ;
176 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
177 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
179 if (changed & FPCR_DN) {
180 bool dnan_enabled = val & FPCR_DN;
181 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
182 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
186 * The exception flags are ORed together when we read fpscr so we
187 * only need to preserve the current state in one of our
188 * float_status values.
190 i = vfp_exceptbits_to_host(val);
191 set_float_exception_flags(i, &env->vfp.fp_status);
192 set_float_exception_flags(0, &env->vfp.fp_status_f16);
193 set_float_exception_flags(0, &env->vfp.standard_fp_status);
196 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
198 HELPER(vfp_set_fpscr)(env, val);
201 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
203 #define VFP_BINOP(name) \
204 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
206 float_status *fpst = fpstp; \
207 return float32_ ## name(a, b, fpst); \
209 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
211 float_status *fpst = fpstp; \
212 return float64_ ## name(a, b, fpst); \
214 VFP_BINOP(add)
215 VFP_BINOP(sub)
216 VFP_BINOP(mul)
217 VFP_BINOP(div)
218 VFP_BINOP(min)
219 VFP_BINOP(max)
220 VFP_BINOP(minnum)
221 VFP_BINOP(maxnum)
222 #undef VFP_BINOP
224 float32 VFP_HELPER(neg, s)(float32 a)
226 return float32_chs(a);
229 float64 VFP_HELPER(neg, d)(float64 a)
231 return float64_chs(a);
234 float32 VFP_HELPER(abs, s)(float32 a)
236 return float32_abs(a);
239 float64 VFP_HELPER(abs, d)(float64 a)
241 return float64_abs(a);
244 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
246 return float32_sqrt(a, &env->vfp.fp_status);
249 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
251 return float64_sqrt(a, &env->vfp.fp_status);
254 static void softfloat_to_vfp_compare(CPUARMState *env, int cmp)
256 uint32_t flags;
257 switch (cmp) {
258 case float_relation_equal:
259 flags = 0x6;
260 break;
261 case float_relation_less:
262 flags = 0x8;
263 break;
264 case float_relation_greater:
265 flags = 0x2;
266 break;
267 case float_relation_unordered:
268 flags = 0x3;
269 break;
270 default:
271 g_assert_not_reached();
273 env->vfp.xregs[ARM_VFP_FPSCR] =
274 deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
277 /* XXX: check quiet/signaling case */
278 #define DO_VFP_cmp(p, type) \
279 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
281 softfloat_to_vfp_compare(env, \
282 type ## _compare_quiet(a, b, &env->vfp.fp_status)); \
284 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
286 softfloat_to_vfp_compare(env, \
287 type ## _compare(a, b, &env->vfp.fp_status)); \
289 DO_VFP_cmp(s, float32)
290 DO_VFP_cmp(d, float64)
291 #undef DO_VFP_cmp
293 /* Integer to float and float to integer conversions */
295 #define CONV_ITOF(name, ftype, fsz, sign) \
296 ftype HELPER(name)(uint32_t x, void *fpstp) \
298 float_status *fpst = fpstp; \
299 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
302 #define CONV_FTOI(name, ftype, fsz, sign, round) \
303 sign##int32_t HELPER(name)(ftype x, void *fpstp) \
305 float_status *fpst = fpstp; \
306 if (float##fsz##_is_any_nan(x)) { \
307 float_raise(float_flag_invalid, fpst); \
308 return 0; \
310 return float##fsz##_to_##sign##int32##round(x, fpst); \
313 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
314 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
315 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
316 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
318 FLOAT_CONVS(si, h, uint32_t, 16, )
319 FLOAT_CONVS(si, s, float32, 32, )
320 FLOAT_CONVS(si, d, float64, 64, )
321 FLOAT_CONVS(ui, h, uint32_t, 16, u)
322 FLOAT_CONVS(ui, s, float32, 32, u)
323 FLOAT_CONVS(ui, d, float64, 64, u)
325 #undef CONV_ITOF
326 #undef CONV_FTOI
327 #undef FLOAT_CONVS
329 /* floating point conversion */
330 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
332 return float32_to_float64(x, &env->vfp.fp_status);
335 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
337 return float64_to_float32(x, &env->vfp.fp_status);
340 /* VFP3 fixed point conversion. */
341 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
342 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
343 void *fpstp) \
344 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
346 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \
347 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
348 void *fpst) \
350 if (unlikely(float##fsz##_is_any_nan(x))) { \
351 float_raise(float_flag_invalid, fpst); \
352 return 0; \
354 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
357 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
358 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
359 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
360 float_round_to_zero, _round_to_zero) \
361 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
362 get_float_rounding_mode(fpst), )
364 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
365 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
366 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
367 get_float_rounding_mode(fpst), )
369 VFP_CONV_FIX(sh, d, 64, 64, int16)
370 VFP_CONV_FIX(sl, d, 64, 64, int32)
371 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
372 VFP_CONV_FIX(uh, d, 64, 64, uint16)
373 VFP_CONV_FIX(ul, d, 64, 64, uint32)
374 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
375 VFP_CONV_FIX(sh, s, 32, 32, int16)
376 VFP_CONV_FIX(sl, s, 32, 32, int32)
377 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
378 VFP_CONV_FIX(uh, s, 32, 32, uint16)
379 VFP_CONV_FIX(ul, s, 32, 32, uint32)
380 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
382 #undef VFP_CONV_FIX
383 #undef VFP_CONV_FIX_FLOAT
384 #undef VFP_CONV_FLOAT_FIX_ROUND
385 #undef VFP_CONV_FIX_A64
387 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
389 return int32_to_float16_scalbn(x, -shift, fpst);
392 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
394 return uint32_to_float16_scalbn(x, -shift, fpst);
397 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
399 return int64_to_float16_scalbn(x, -shift, fpst);
402 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
404 return uint64_to_float16_scalbn(x, -shift, fpst);
407 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
409 if (unlikely(float16_is_any_nan(x))) {
410 float_raise(float_flag_invalid, fpst);
411 return 0;
413 return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
414 shift, fpst);
417 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
419 if (unlikely(float16_is_any_nan(x))) {
420 float_raise(float_flag_invalid, fpst);
421 return 0;
423 return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
424 shift, fpst);
427 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
429 if (unlikely(float16_is_any_nan(x))) {
430 float_raise(float_flag_invalid, fpst);
431 return 0;
433 return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
434 shift, fpst);
437 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
439 if (unlikely(float16_is_any_nan(x))) {
440 float_raise(float_flag_invalid, fpst);
441 return 0;
443 return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
444 shift, fpst);
447 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
449 if (unlikely(float16_is_any_nan(x))) {
450 float_raise(float_flag_invalid, fpst);
451 return 0;
453 return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
454 shift, fpst);
457 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
459 if (unlikely(float16_is_any_nan(x))) {
460 float_raise(float_flag_invalid, fpst);
461 return 0;
463 return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
464 shift, fpst);
467 /* Set the current fp rounding mode and return the old one.
468 * The argument is a softfloat float_round_ value.
470 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
472 float_status *fp_status = fpstp;
474 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
475 set_float_rounding_mode(rmode, fp_status);
477 return prev_rmode;
480 /* Set the current fp rounding mode in the standard fp status and return
481 * the old one. This is for NEON instructions that need to change the
482 * rounding mode but wish to use the standard FPSCR values for everything
483 * else. Always set the rounding mode back to the correct value after
484 * modifying it.
485 * The argument is a softfloat float_round_ value.
487 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
489 float_status *fp_status = &env->vfp.standard_fp_status;
491 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
492 set_float_rounding_mode(rmode, fp_status);
494 return prev_rmode;
497 /* Half precision conversions. */
498 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
500 /* Squash FZ16 to 0 for the duration of conversion. In this case,
501 * it would affect flushing input denormals.
503 float_status *fpst = fpstp;
504 flag save = get_flush_inputs_to_zero(fpst);
505 set_flush_inputs_to_zero(false, fpst);
506 float32 r = float16_to_float32(a, !ahp_mode, fpst);
507 set_flush_inputs_to_zero(save, fpst);
508 return r;
511 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
513 /* Squash FZ16 to 0 for the duration of conversion. In this case,
514 * it would affect flushing output denormals.
516 float_status *fpst = fpstp;
517 flag save = get_flush_to_zero(fpst);
518 set_flush_to_zero(false, fpst);
519 float16 r = float32_to_float16(a, !ahp_mode, fpst);
520 set_flush_to_zero(save, fpst);
521 return r;
524 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
526 /* Squash FZ16 to 0 for the duration of conversion. In this case,
527 * it would affect flushing input denormals.
529 float_status *fpst = fpstp;
530 flag save = get_flush_inputs_to_zero(fpst);
531 set_flush_inputs_to_zero(false, fpst);
532 float64 r = float16_to_float64(a, !ahp_mode, fpst);
533 set_flush_inputs_to_zero(save, fpst);
534 return r;
537 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
539 /* Squash FZ16 to 0 for the duration of conversion. In this case,
540 * it would affect flushing output denormals.
542 float_status *fpst = fpstp;
543 flag save = get_flush_to_zero(fpst);
544 set_flush_to_zero(false, fpst);
545 float16 r = float64_to_float16(a, !ahp_mode, fpst);
546 set_flush_to_zero(save, fpst);
547 return r;
550 #define float32_two make_float32(0x40000000)
551 #define float32_three make_float32(0x40400000)
552 #define float32_one_point_five make_float32(0x3fc00000)
554 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
556 float_status *s = &env->vfp.standard_fp_status;
557 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
558 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
559 if (!(float32_is_zero(a) || float32_is_zero(b))) {
560 float_raise(float_flag_input_denormal, s);
562 return float32_two;
564 return float32_sub(float32_two, float32_mul(a, b, s), s);
567 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
569 float_status *s = &env->vfp.standard_fp_status;
570 float32 product;
571 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
572 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
573 if (!(float32_is_zero(a) || float32_is_zero(b))) {
574 float_raise(float_flag_input_denormal, s);
576 return float32_one_point_five;
578 product = float32_mul(a, b, s);
579 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
582 /* NEON helpers. */
584 /* Constants 256 and 512 are used in some helpers; we avoid relying on
585 * int->float conversions at run-time. */
586 #define float64_256 make_float64(0x4070000000000000LL)
587 #define float64_512 make_float64(0x4080000000000000LL)
588 #define float16_maxnorm make_float16(0x7bff)
589 #define float32_maxnorm make_float32(0x7f7fffff)
590 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
592 /* Reciprocal functions
594 * The algorithm that must be used to calculate the estimate
595 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
598 /* See RecipEstimate()
600 * input is a 9 bit fixed point number
601 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
602 * result range 256 .. 511 for a number from 1.0 to 511/256.
605 static int recip_estimate(int input)
607 int a, b, r;
608 assert(256 <= input && input < 512);
609 a = (input * 2) + 1;
610 b = (1 << 19) / a;
611 r = (b + 1) >> 1;
612 assert(256 <= r && r < 512);
613 return r;
617 * Common wrapper to call recip_estimate
619 * The parameters are exponent and 64 bit fraction (without implicit
620 * bit) where the binary point is nominally at bit 52. Returns a
621 * float64 which can then be rounded to the appropriate size by the
622 * callee.
625 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
627 uint32_t scaled, estimate;
628 uint64_t result_frac;
629 int result_exp;
631 /* Handle sub-normals */
632 if (*exp == 0) {
633 if (extract64(frac, 51, 1) == 0) {
634 *exp = -1;
635 frac <<= 2;
636 } else {
637 frac <<= 1;
641 /* scaled = UInt('1':fraction<51:44>) */
642 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
643 estimate = recip_estimate(scaled);
645 result_exp = exp_off - *exp;
646 result_frac = deposit64(0, 44, 8, estimate);
647 if (result_exp == 0) {
648 result_frac = deposit64(result_frac >> 1, 51, 1, 1);
649 } else if (result_exp == -1) {
650 result_frac = deposit64(result_frac >> 2, 50, 2, 1);
651 result_exp = 0;
654 *exp = result_exp;
656 return result_frac;
659 static bool round_to_inf(float_status *fpst, bool sign_bit)
661 switch (fpst->float_rounding_mode) {
662 case float_round_nearest_even: /* Round to Nearest */
663 return true;
664 case float_round_up: /* Round to +Inf */
665 return !sign_bit;
666 case float_round_down: /* Round to -Inf */
667 return sign_bit;
668 case float_round_to_zero: /* Round to Zero */
669 return false;
672 g_assert_not_reached();
675 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
677 float_status *fpst = fpstp;
678 float16 f16 = float16_squash_input_denormal(input, fpst);
679 uint32_t f16_val = float16_val(f16);
680 uint32_t f16_sign = float16_is_neg(f16);
681 int f16_exp = extract32(f16_val, 10, 5);
682 uint32_t f16_frac = extract32(f16_val, 0, 10);
683 uint64_t f64_frac;
685 if (float16_is_any_nan(f16)) {
686 float16 nan = f16;
687 if (float16_is_signaling_nan(f16, fpst)) {
688 float_raise(float_flag_invalid, fpst);
689 nan = float16_silence_nan(f16, fpst);
691 if (fpst->default_nan_mode) {
692 nan = float16_default_nan(fpst);
694 return nan;
695 } else if (float16_is_infinity(f16)) {
696 return float16_set_sign(float16_zero, float16_is_neg(f16));
697 } else if (float16_is_zero(f16)) {
698 float_raise(float_flag_divbyzero, fpst);
699 return float16_set_sign(float16_infinity, float16_is_neg(f16));
700 } else if (float16_abs(f16) < (1 << 8)) {
701 /* Abs(value) < 2.0^-16 */
702 float_raise(float_flag_overflow | float_flag_inexact, fpst);
703 if (round_to_inf(fpst, f16_sign)) {
704 return float16_set_sign(float16_infinity, f16_sign);
705 } else {
706 return float16_set_sign(float16_maxnorm, f16_sign);
708 } else if (f16_exp >= 29 && fpst->flush_to_zero) {
709 float_raise(float_flag_underflow, fpst);
710 return float16_set_sign(float16_zero, float16_is_neg(f16));
713 f64_frac = call_recip_estimate(&f16_exp, 29,
714 ((uint64_t) f16_frac) << (52 - 10));
716 /* result = sign : result_exp<4:0> : fraction<51:42> */
717 f16_val = deposit32(0, 15, 1, f16_sign);
718 f16_val = deposit32(f16_val, 10, 5, f16_exp);
719 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
720 return make_float16(f16_val);
723 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
725 float_status *fpst = fpstp;
726 float32 f32 = float32_squash_input_denormal(input, fpst);
727 uint32_t f32_val = float32_val(f32);
728 bool f32_sign = float32_is_neg(f32);
729 int f32_exp = extract32(f32_val, 23, 8);
730 uint32_t f32_frac = extract32(f32_val, 0, 23);
731 uint64_t f64_frac;
733 if (float32_is_any_nan(f32)) {
734 float32 nan = f32;
735 if (float32_is_signaling_nan(f32, fpst)) {
736 float_raise(float_flag_invalid, fpst);
737 nan = float32_silence_nan(f32, fpst);
739 if (fpst->default_nan_mode) {
740 nan = float32_default_nan(fpst);
742 return nan;
743 } else if (float32_is_infinity(f32)) {
744 return float32_set_sign(float32_zero, float32_is_neg(f32));
745 } else if (float32_is_zero(f32)) {
746 float_raise(float_flag_divbyzero, fpst);
747 return float32_set_sign(float32_infinity, float32_is_neg(f32));
748 } else if (float32_abs(f32) < (1ULL << 21)) {
749 /* Abs(value) < 2.0^-128 */
750 float_raise(float_flag_overflow | float_flag_inexact, fpst);
751 if (round_to_inf(fpst, f32_sign)) {
752 return float32_set_sign(float32_infinity, f32_sign);
753 } else {
754 return float32_set_sign(float32_maxnorm, f32_sign);
756 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
757 float_raise(float_flag_underflow, fpst);
758 return float32_set_sign(float32_zero, float32_is_neg(f32));
761 f64_frac = call_recip_estimate(&f32_exp, 253,
762 ((uint64_t) f32_frac) << (52 - 23));
764 /* result = sign : result_exp<7:0> : fraction<51:29> */
765 f32_val = deposit32(0, 31, 1, f32_sign);
766 f32_val = deposit32(f32_val, 23, 8, f32_exp);
767 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
768 return make_float32(f32_val);
771 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
773 float_status *fpst = fpstp;
774 float64 f64 = float64_squash_input_denormal(input, fpst);
775 uint64_t f64_val = float64_val(f64);
776 bool f64_sign = float64_is_neg(f64);
777 int f64_exp = extract64(f64_val, 52, 11);
778 uint64_t f64_frac = extract64(f64_val, 0, 52);
780 /* Deal with any special cases */
781 if (float64_is_any_nan(f64)) {
782 float64 nan = f64;
783 if (float64_is_signaling_nan(f64, fpst)) {
784 float_raise(float_flag_invalid, fpst);
785 nan = float64_silence_nan(f64, fpst);
787 if (fpst->default_nan_mode) {
788 nan = float64_default_nan(fpst);
790 return nan;
791 } else if (float64_is_infinity(f64)) {
792 return float64_set_sign(float64_zero, float64_is_neg(f64));
793 } else if (float64_is_zero(f64)) {
794 float_raise(float_flag_divbyzero, fpst);
795 return float64_set_sign(float64_infinity, float64_is_neg(f64));
796 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
797 /* Abs(value) < 2.0^-1024 */
798 float_raise(float_flag_overflow | float_flag_inexact, fpst);
799 if (round_to_inf(fpst, f64_sign)) {
800 return float64_set_sign(float64_infinity, f64_sign);
801 } else {
802 return float64_set_sign(float64_maxnorm, f64_sign);
804 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
805 float_raise(float_flag_underflow, fpst);
806 return float64_set_sign(float64_zero, float64_is_neg(f64));
809 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
811 /* result = sign : result_exp<10:0> : fraction<51:0>; */
812 f64_val = deposit64(0, 63, 1, f64_sign);
813 f64_val = deposit64(f64_val, 52, 11, f64_exp);
814 f64_val = deposit64(f64_val, 0, 52, f64_frac);
815 return make_float64(f64_val);
818 /* The algorithm that must be used to calculate the estimate
819 * is specified by the ARM ARM.
822 static int do_recip_sqrt_estimate(int a)
824 int b, estimate;
826 assert(128 <= a && a < 512);
827 if (a < 256) {
828 a = a * 2 + 1;
829 } else {
830 a = (a >> 1) << 1;
831 a = (a + 1) * 2;
833 b = 512;
834 while (a * (b + 1) * (b + 1) < (1 << 28)) {
835 b += 1;
837 estimate = (b + 1) / 2;
838 assert(256 <= estimate && estimate < 512);
840 return estimate;
844 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
846 int estimate;
847 uint32_t scaled;
849 if (*exp == 0) {
850 while (extract64(frac, 51, 1) == 0) {
851 frac = frac << 1;
852 *exp -= 1;
854 frac = extract64(frac, 0, 51) << 1;
857 if (*exp & 1) {
858 /* scaled = UInt('01':fraction<51:45>) */
859 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
860 } else {
861 /* scaled = UInt('1':fraction<51:44>) */
862 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
864 estimate = do_recip_sqrt_estimate(scaled);
866 *exp = (exp_off - *exp) / 2;
867 return extract64(estimate, 0, 8) << 44;
870 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
872 float_status *s = fpstp;
873 float16 f16 = float16_squash_input_denormal(input, s);
874 uint16_t val = float16_val(f16);
875 bool f16_sign = float16_is_neg(f16);
876 int f16_exp = extract32(val, 10, 5);
877 uint16_t f16_frac = extract32(val, 0, 10);
878 uint64_t f64_frac;
880 if (float16_is_any_nan(f16)) {
881 float16 nan = f16;
882 if (float16_is_signaling_nan(f16, s)) {
883 float_raise(float_flag_invalid, s);
884 nan = float16_silence_nan(f16, s);
886 if (s->default_nan_mode) {
887 nan = float16_default_nan(s);
889 return nan;
890 } else if (float16_is_zero(f16)) {
891 float_raise(float_flag_divbyzero, s);
892 return float16_set_sign(float16_infinity, f16_sign);
893 } else if (f16_sign) {
894 float_raise(float_flag_invalid, s);
895 return float16_default_nan(s);
896 } else if (float16_is_infinity(f16)) {
897 return float16_zero;
900 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
901 * preserving the parity of the exponent. */
903 f64_frac = ((uint64_t) f16_frac) << (52 - 10);
905 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
907 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
908 val = deposit32(0, 15, 1, f16_sign);
909 val = deposit32(val, 10, 5, f16_exp);
910 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
911 return make_float16(val);
914 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
916 float_status *s = fpstp;
917 float32 f32 = float32_squash_input_denormal(input, s);
918 uint32_t val = float32_val(f32);
919 uint32_t f32_sign = float32_is_neg(f32);
920 int f32_exp = extract32(val, 23, 8);
921 uint32_t f32_frac = extract32(val, 0, 23);
922 uint64_t f64_frac;
924 if (float32_is_any_nan(f32)) {
925 float32 nan = f32;
926 if (float32_is_signaling_nan(f32, s)) {
927 float_raise(float_flag_invalid, s);
928 nan = float32_silence_nan(f32, s);
930 if (s->default_nan_mode) {
931 nan = float32_default_nan(s);
933 return nan;
934 } else if (float32_is_zero(f32)) {
935 float_raise(float_flag_divbyzero, s);
936 return float32_set_sign(float32_infinity, float32_is_neg(f32));
937 } else if (float32_is_neg(f32)) {
938 float_raise(float_flag_invalid, s);
939 return float32_default_nan(s);
940 } else if (float32_is_infinity(f32)) {
941 return float32_zero;
944 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
945 * preserving the parity of the exponent. */
947 f64_frac = ((uint64_t) f32_frac) << 29;
949 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
951 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
952 val = deposit32(0, 31, 1, f32_sign);
953 val = deposit32(val, 23, 8, f32_exp);
954 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
955 return make_float32(val);
958 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
960 float_status *s = fpstp;
961 float64 f64 = float64_squash_input_denormal(input, s);
962 uint64_t val = float64_val(f64);
963 bool f64_sign = float64_is_neg(f64);
964 int f64_exp = extract64(val, 52, 11);
965 uint64_t f64_frac = extract64(val, 0, 52);
967 if (float64_is_any_nan(f64)) {
968 float64 nan = f64;
969 if (float64_is_signaling_nan(f64, s)) {
970 float_raise(float_flag_invalid, s);
971 nan = float64_silence_nan(f64, s);
973 if (s->default_nan_mode) {
974 nan = float64_default_nan(s);
976 return nan;
977 } else if (float64_is_zero(f64)) {
978 float_raise(float_flag_divbyzero, s);
979 return float64_set_sign(float64_infinity, float64_is_neg(f64));
980 } else if (float64_is_neg(f64)) {
981 float_raise(float_flag_invalid, s);
982 return float64_default_nan(s);
983 } else if (float64_is_infinity(f64)) {
984 return float64_zero;
987 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
989 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
990 val = deposit64(0, 61, 1, f64_sign);
991 val = deposit64(val, 52, 11, f64_exp);
992 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
993 return make_float64(val);
996 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
998 /* float_status *s = fpstp; */
999 int input, estimate;
1001 if ((a & 0x80000000) == 0) {
1002 return 0xffffffff;
1005 input = extract32(a, 23, 9);
1006 estimate = recip_estimate(input);
1008 return deposit32(0, (32 - 9), 9, estimate);
1011 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
1013 int estimate;
1015 if ((a & 0xc0000000) == 0) {
1016 return 0xffffffff;
1019 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
1021 return deposit32(0, 23, 9, estimate);
1024 /* VFPv4 fused multiply-accumulate */
1025 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
1027 float_status *fpst = fpstp;
1028 return float32_muladd(a, b, c, 0, fpst);
1031 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
1033 float_status *fpst = fpstp;
1034 return float64_muladd(a, b, c, 0, fpst);
1037 /* ARMv8 round to integral */
1038 float32 HELPER(rints_exact)(float32 x, void *fp_status)
1040 return float32_round_to_int(x, fp_status);
1043 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
1045 return float64_round_to_int(x, fp_status);
1048 float32 HELPER(rints)(float32 x, void *fp_status)
1050 int old_flags = get_float_exception_flags(fp_status), new_flags;
1051 float32 ret;
1053 ret = float32_round_to_int(x, fp_status);
1055 /* Suppress any inexact exceptions the conversion produced */
1056 if (!(old_flags & float_flag_inexact)) {
1057 new_flags = get_float_exception_flags(fp_status);
1058 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1061 return ret;
1064 float64 HELPER(rintd)(float64 x, void *fp_status)
1066 int old_flags = get_float_exception_flags(fp_status), new_flags;
1067 float64 ret;
1069 ret = float64_round_to_int(x, fp_status);
1071 new_flags = get_float_exception_flags(fp_status);
1073 /* Suppress any inexact exceptions the conversion produced */
1074 if (!(old_flags & float_flag_inexact)) {
1075 new_flags = get_float_exception_flags(fp_status);
1076 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1079 return ret;
1082 /* Convert ARM rounding mode to softfloat */
1083 int arm_rmode_to_sf(int rmode)
1085 switch (rmode) {
1086 case FPROUNDING_TIEAWAY:
1087 rmode = float_round_ties_away;
1088 break;
1089 case FPROUNDING_ODD:
1090 /* FIXME: add support for TIEAWAY and ODD */
1091 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
1092 rmode);
1093 /* fall through for now */
1094 case FPROUNDING_TIEEVEN:
1095 default:
1096 rmode = float_round_nearest_even;
1097 break;
1098 case FPROUNDING_POSINF:
1099 rmode = float_round_up;
1100 break;
1101 case FPROUNDING_NEGINF:
1102 rmode = float_round_down;
1103 break;
1104 case FPROUNDING_ZERO:
1105 rmode = float_round_to_zero;
1106 break;
1108 return rmode;
1112 * Implement float64 to int32_t conversion without saturation;
1113 * the result is supplied modulo 2^32.
1115 uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
1117 float_status *status = vstatus;
1118 uint32_t exp, sign;
1119 uint64_t frac;
1120 uint32_t inexact = 1; /* !Z */
1122 sign = extract64(value, 63, 1);
1123 exp = extract64(value, 52, 11);
1124 frac = extract64(value, 0, 52);
1126 if (exp == 0) {
1127 /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */
1128 inexact = sign;
1129 if (frac != 0) {
1130 if (status->flush_inputs_to_zero) {
1131 float_raise(float_flag_input_denormal, status);
1132 } else {
1133 float_raise(float_flag_inexact, status);
1134 inexact = 1;
1137 frac = 0;
1138 } else if (exp == 0x7ff) {
1139 /* This operation raises Invalid for both NaN and overflow (Inf). */
1140 float_raise(float_flag_invalid, status);
1141 frac = 0;
1142 } else {
1143 int true_exp = exp - 1023;
1144 int shift = true_exp - 52;
1146 /* Restore implicit bit. */
1147 frac |= 1ull << 52;
1149 /* Shift the fraction into place. */
1150 if (shift >= 0) {
1151 /* The number is so large we must shift the fraction left. */
1152 if (shift >= 64) {
1153 /* The fraction is shifted out entirely. */
1154 frac = 0;
1155 } else {
1156 frac <<= shift;
1158 } else if (shift > -64) {
1159 /* Normal case -- shift right and notice if bits shift out. */
1160 inexact = (frac << (64 + shift)) != 0;
1161 frac >>= -shift;
1162 } else {
1163 /* The fraction is shifted out entirely. */
1164 frac = 0;
1167 /* Notice overflow or inexact exceptions. */
1168 if (true_exp > 31 || frac > (sign ? 0x80000000ull : 0x7fffffff)) {
1169 /* Overflow, for which this operation raises invalid. */
1170 float_raise(float_flag_invalid, status);
1171 inexact = 1;
1172 } else if (inexact) {
1173 float_raise(float_flag_inexact, status);
1176 /* Honor the sign. */
1177 if (sign) {
1178 frac = -frac;
1182 /* Pack the result and the env->ZF representation of Z together. */
1183 return deposit64(frac, 32, 32, inexact);
1186 uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1188 uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
1189 uint32_t result = pair;
1190 uint32_t z = (pair >> 32) == 0;
1192 /* Store Z, clear NCV, in FPSCR.NZCV. */
1193 env->vfp.xregs[ARM_VFP_FPSCR]
1194 = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z);
1196 return result;
1199 /* Round a float32 to an integer that fits in int32_t or int64_t. */
1200 static float32 frint_s(float32 f, float_status *fpst, int intsize)
1202 int old_flags = get_float_exception_flags(fpst);
1203 uint32_t exp = extract32(f, 23, 8);
1205 if (unlikely(exp == 0xff)) {
1206 /* NaN or Inf. */
1207 goto overflow;
1210 /* Round and re-extract the exponent. */
1211 f = float32_round_to_int(f, fpst);
1212 exp = extract32(f, 23, 8);
1214 /* Validate the range of the result. */
1215 if (exp < 126 + intsize) {
1216 /* abs(F) <= INT{N}_MAX */
1217 return f;
1219 if (exp == 126 + intsize) {
1220 uint32_t sign = extract32(f, 31, 1);
1221 uint32_t frac = extract32(f, 0, 23);
1222 if (sign && frac == 0) {
1223 /* F == INT{N}_MIN */
1224 return f;
1228 overflow:
1230 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1231 * inexact exception float32_round_to_int may have raised.
1233 set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1234 return (0x100u + 126u + intsize) << 23;
1237 float32 HELPER(frint32_s)(float32 f, void *fpst)
1239 return frint_s(f, fpst, 32);
1242 float32 HELPER(frint64_s)(float32 f, void *fpst)
1244 return frint_s(f, fpst, 64);
1247 /* Round a float64 to an integer that fits in int32_t or int64_t. */
1248 static float64 frint_d(float64 f, float_status *fpst, int intsize)
1250 int old_flags = get_float_exception_flags(fpst);
1251 uint32_t exp = extract64(f, 52, 11);
1253 if (unlikely(exp == 0x7ff)) {
1254 /* NaN or Inf. */
1255 goto overflow;
1258 /* Round and re-extract the exponent. */
1259 f = float64_round_to_int(f, fpst);
1260 exp = extract64(f, 52, 11);
1262 /* Validate the range of the result. */
1263 if (exp < 1022 + intsize) {
1264 /* abs(F) <= INT{N}_MAX */
1265 return f;
1267 if (exp == 1022 + intsize) {
1268 uint64_t sign = extract64(f, 63, 1);
1269 uint64_t frac = extract64(f, 0, 52);
1270 if (sign && frac == 0) {
1271 /* F == INT{N}_MIN */
1272 return f;
1276 overflow:
1278 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1279 * inexact exception float64_round_to_int may have raised.
1281 set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1282 return (uint64_t)(0x800 + 1022 + intsize) << 52;
1285 float64 HELPER(frint32_d)(float64 f, void *fpst)
1287 return frint_d(f, fpst, 32);
1290 float64 HELPER(frint64_d)(float64 f, void *fpst)
1292 return frint_d(f, fpst, 64);