2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
21 #include "migration.h"
22 #include "qemu-file.h"
24 #include "qemu/error-report.h"
25 #include "qemu/main-loop.h"
26 #include "qemu/module.h"
28 #include "qemu/sockets.h"
29 #include "qemu/bitmap.h"
30 #include "qemu/coroutine.h"
31 #include "exec/memory.h"
32 #include <sys/socket.h>
34 #include <arpa/inet.h>
35 #include <rdma/rdma_cma.h>
37 #include "qom/object.h"
41 * Print and error on both the Monitor and the Log file.
43 #define ERROR(errp, fmt, ...) \
45 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
46 if (errp && (*(errp) == NULL)) { \
47 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
51 #define RDMA_RESOLVE_TIMEOUT_MS 10000
53 /* Do not merge data if larger than this. */
54 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
55 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
57 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
60 * This is only for non-live state being migrated.
61 * Instead of RDMA_WRITE messages, we use RDMA_SEND
62 * messages for that state, which requires a different
63 * delivery design than main memory.
65 #define RDMA_SEND_INCREMENT 32768
68 * Maximum size infiniband SEND message
70 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
71 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
73 #define RDMA_CONTROL_VERSION_CURRENT 1
75 * Capabilities for negotiation.
77 #define RDMA_CAPABILITY_PIN_ALL 0x01
80 * Add the other flags above to this list of known capabilities
81 * as they are introduced.
83 static uint32_t known_capabilities
= RDMA_CAPABILITY_PIN_ALL
;
85 #define CHECK_ERROR_STATE() \
87 if (rdma->error_state) { \
88 if (!rdma->error_reported) { \
89 error_report("RDMA is in an error state waiting migration" \
91 rdma->error_reported = 1; \
93 return rdma->error_state; \
98 * A work request ID is 64-bits and we split up these bits
101 * bits 0-15 : type of control message, 2^16
102 * bits 16-29: ram block index, 2^14
103 * bits 30-63: ram block chunk number, 2^34
105 * The last two bit ranges are only used for RDMA writes,
106 * in order to track their completion and potentially
107 * also track unregistration status of the message.
109 #define RDMA_WRID_TYPE_SHIFT 0UL
110 #define RDMA_WRID_BLOCK_SHIFT 16UL
111 #define RDMA_WRID_CHUNK_SHIFT 30UL
113 #define RDMA_WRID_TYPE_MASK \
114 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
116 #define RDMA_WRID_BLOCK_MASK \
117 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
119 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
122 * RDMA migration protocol:
123 * 1. RDMA Writes (data messages, i.e. RAM)
124 * 2. IB Send/Recv (control channel messages)
128 RDMA_WRID_RDMA_WRITE
= 1,
129 RDMA_WRID_SEND_CONTROL
= 2000,
130 RDMA_WRID_RECV_CONTROL
= 4000,
133 static const char *wrid_desc
[] = {
134 [RDMA_WRID_NONE
] = "NONE",
135 [RDMA_WRID_RDMA_WRITE
] = "WRITE RDMA",
136 [RDMA_WRID_SEND_CONTROL
] = "CONTROL SEND",
137 [RDMA_WRID_RECV_CONTROL
] = "CONTROL RECV",
141 * Work request IDs for IB SEND messages only (not RDMA writes).
142 * This is used by the migration protocol to transmit
143 * control messages (such as device state and registration commands)
145 * We could use more WRs, but we have enough for now.
155 * SEND/RECV IB Control Messages.
158 RDMA_CONTROL_NONE
= 0,
160 RDMA_CONTROL_READY
, /* ready to receive */
161 RDMA_CONTROL_QEMU_FILE
, /* QEMUFile-transmitted bytes */
162 RDMA_CONTROL_RAM_BLOCKS_REQUEST
, /* RAMBlock synchronization */
163 RDMA_CONTROL_RAM_BLOCKS_RESULT
, /* RAMBlock synchronization */
164 RDMA_CONTROL_COMPRESS
, /* page contains repeat values */
165 RDMA_CONTROL_REGISTER_REQUEST
, /* dynamic page registration */
166 RDMA_CONTROL_REGISTER_RESULT
, /* key to use after registration */
167 RDMA_CONTROL_REGISTER_FINISHED
, /* current iteration finished */
168 RDMA_CONTROL_UNREGISTER_REQUEST
, /* dynamic UN-registration */
169 RDMA_CONTROL_UNREGISTER_FINISHED
, /* unpinning finished */
174 * Memory and MR structures used to represent an IB Send/Recv work request.
175 * This is *not* used for RDMA writes, only IB Send/Recv.
178 uint8_t control
[RDMA_CONTROL_MAX_BUFFER
]; /* actual buffer to register */
179 struct ibv_mr
*control_mr
; /* registration metadata */
180 size_t control_len
; /* length of the message */
181 uint8_t *control_curr
; /* start of unconsumed bytes */
182 } RDMAWorkRequestData
;
185 * Negotiate RDMA capabilities during connection-setup time.
192 static void caps_to_network(RDMACapabilities
*cap
)
194 cap
->version
= htonl(cap
->version
);
195 cap
->flags
= htonl(cap
->flags
);
198 static void network_to_caps(RDMACapabilities
*cap
)
200 cap
->version
= ntohl(cap
->version
);
201 cap
->flags
= ntohl(cap
->flags
);
205 * Representation of a RAMBlock from an RDMA perspective.
206 * This is not transmitted, only local.
207 * This and subsequent structures cannot be linked lists
208 * because we're using a single IB message to transmit
209 * the information. It's small anyway, so a list is overkill.
211 typedef struct RDMALocalBlock
{
213 uint8_t *local_host_addr
; /* local virtual address */
214 uint64_t remote_host_addr
; /* remote virtual address */
217 struct ibv_mr
**pmr
; /* MRs for chunk-level registration */
218 struct ibv_mr
*mr
; /* MR for non-chunk-level registration */
219 uint32_t *remote_keys
; /* rkeys for chunk-level registration */
220 uint32_t remote_rkey
; /* rkeys for non-chunk-level registration */
221 int index
; /* which block are we */
222 unsigned int src_index
; /* (Only used on dest) */
225 unsigned long *transit_bitmap
;
226 unsigned long *unregister_bitmap
;
230 * Also represents a RAMblock, but only on the dest.
231 * This gets transmitted by the dest during connection-time
232 * to the source VM and then is used to populate the
233 * corresponding RDMALocalBlock with
234 * the information needed to perform the actual RDMA.
236 typedef struct QEMU_PACKED RDMADestBlock
{
237 uint64_t remote_host_addr
;
240 uint32_t remote_rkey
;
244 static const char *control_desc(unsigned int rdma_control
)
246 static const char *strs
[] = {
247 [RDMA_CONTROL_NONE
] = "NONE",
248 [RDMA_CONTROL_ERROR
] = "ERROR",
249 [RDMA_CONTROL_READY
] = "READY",
250 [RDMA_CONTROL_QEMU_FILE
] = "QEMU FILE",
251 [RDMA_CONTROL_RAM_BLOCKS_REQUEST
] = "RAM BLOCKS REQUEST",
252 [RDMA_CONTROL_RAM_BLOCKS_RESULT
] = "RAM BLOCKS RESULT",
253 [RDMA_CONTROL_COMPRESS
] = "COMPRESS",
254 [RDMA_CONTROL_REGISTER_REQUEST
] = "REGISTER REQUEST",
255 [RDMA_CONTROL_REGISTER_RESULT
] = "REGISTER RESULT",
256 [RDMA_CONTROL_REGISTER_FINISHED
] = "REGISTER FINISHED",
257 [RDMA_CONTROL_UNREGISTER_REQUEST
] = "UNREGISTER REQUEST",
258 [RDMA_CONTROL_UNREGISTER_FINISHED
] = "UNREGISTER FINISHED",
261 if (rdma_control
> RDMA_CONTROL_UNREGISTER_FINISHED
) {
262 return "??BAD CONTROL VALUE??";
265 return strs
[rdma_control
];
268 static uint64_t htonll(uint64_t v
)
270 union { uint32_t lv
[2]; uint64_t llv
; } u
;
271 u
.lv
[0] = htonl(v
>> 32);
272 u
.lv
[1] = htonl(v
& 0xFFFFFFFFULL
);
276 static uint64_t ntohll(uint64_t v
)
278 union { uint32_t lv
[2]; uint64_t llv
; } u
;
280 return ((uint64_t)ntohl(u
.lv
[0]) << 32) | (uint64_t) ntohl(u
.lv
[1]);
283 static void dest_block_to_network(RDMADestBlock
*db
)
285 db
->remote_host_addr
= htonll(db
->remote_host_addr
);
286 db
->offset
= htonll(db
->offset
);
287 db
->length
= htonll(db
->length
);
288 db
->remote_rkey
= htonl(db
->remote_rkey
);
291 static void network_to_dest_block(RDMADestBlock
*db
)
293 db
->remote_host_addr
= ntohll(db
->remote_host_addr
);
294 db
->offset
= ntohll(db
->offset
);
295 db
->length
= ntohll(db
->length
);
296 db
->remote_rkey
= ntohl(db
->remote_rkey
);
300 * Virtual address of the above structures used for transmitting
301 * the RAMBlock descriptions at connection-time.
302 * This structure is *not* transmitted.
304 typedef struct RDMALocalBlocks
{
306 bool init
; /* main memory init complete */
307 RDMALocalBlock
*block
;
311 * Main data structure for RDMA state.
312 * While there is only one copy of this structure being allocated right now,
313 * this is the place where one would start if you wanted to consider
314 * having more than one RDMA connection open at the same time.
316 typedef struct RDMAContext
{
321 RDMAWorkRequestData wr_data
[RDMA_WRID_MAX
];
324 * This is used by *_exchange_send() to figure out whether or not
325 * the initial "READY" message has already been received or not.
326 * This is because other functions may potentially poll() and detect
327 * the READY message before send() does, in which case we need to
328 * know if it completed.
330 int control_ready_expected
;
332 /* number of outstanding writes */
335 /* store info about current buffer so that we can
336 merge it with future sends */
337 uint64_t current_addr
;
338 uint64_t current_length
;
339 /* index of ram block the current buffer belongs to */
341 /* index of the chunk in the current ram block */
347 * infiniband-specific variables for opening the device
348 * and maintaining connection state and so forth.
350 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
351 * cm_id->verbs, cm_id->channel, and cm_id->qp.
353 struct rdma_cm_id
*cm_id
; /* connection manager ID */
354 struct rdma_cm_id
*listen_id
;
357 struct ibv_context
*verbs
;
358 struct rdma_event_channel
*channel
;
359 struct ibv_qp
*qp
; /* queue pair */
360 struct ibv_comp_channel
*recv_comp_channel
; /* recv completion channel */
361 struct ibv_comp_channel
*send_comp_channel
; /* send completion channel */
362 struct ibv_pd
*pd
; /* protection domain */
363 struct ibv_cq
*recv_cq
; /* recvieve completion queue */
364 struct ibv_cq
*send_cq
; /* send completion queue */
367 * If a previous write failed (perhaps because of a failed
368 * memory registration, then do not attempt any future work
369 * and remember the error state.
376 * Description of ram blocks used throughout the code.
378 RDMALocalBlocks local_ram_blocks
;
379 RDMADestBlock
*dest_blocks
;
381 /* Index of the next RAMBlock received during block registration */
382 unsigned int next_src_index
;
385 * Migration on *destination* started.
386 * Then use coroutine yield function.
387 * Source runs in a thread, so we don't care.
389 int migration_started_on_destination
;
391 int total_registrations
;
394 int unregister_current
, unregister_next
;
395 uint64_t unregistrations
[RDMA_SIGNALED_SEND_MAX
];
397 GHashTable
*blockmap
;
399 /* the RDMAContext for return path */
400 struct RDMAContext
*return_path
;
404 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
405 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA
, QIO_CHANNEL_RDMA
)
409 struct QIOChannelRDMA
{
412 RDMAContext
*rdmaout
;
414 bool blocking
; /* XXX we don't actually honour this yet */
418 * Main structure for IB Send/Recv control messages.
419 * This gets prepended at the beginning of every Send/Recv.
421 typedef struct QEMU_PACKED
{
422 uint32_t len
; /* Total length of data portion */
423 uint32_t type
; /* which control command to perform */
424 uint32_t repeat
; /* number of commands in data portion of same type */
428 static void control_to_network(RDMAControlHeader
*control
)
430 control
->type
= htonl(control
->type
);
431 control
->len
= htonl(control
->len
);
432 control
->repeat
= htonl(control
->repeat
);
435 static void network_to_control(RDMAControlHeader
*control
)
437 control
->type
= ntohl(control
->type
);
438 control
->len
= ntohl(control
->len
);
439 control
->repeat
= ntohl(control
->repeat
);
443 * Register a single Chunk.
444 * Information sent by the source VM to inform the dest
445 * to register an single chunk of memory before we can perform
446 * the actual RDMA operation.
448 typedef struct QEMU_PACKED
{
450 uint64_t current_addr
; /* offset into the ram_addr_t space */
451 uint64_t chunk
; /* chunk to lookup if unregistering */
453 uint32_t current_index
; /* which ramblock the chunk belongs to */
455 uint64_t chunks
; /* how many sequential chunks to register */
458 static void register_to_network(RDMAContext
*rdma
, RDMARegister
*reg
)
460 RDMALocalBlock
*local_block
;
461 local_block
= &rdma
->local_ram_blocks
.block
[reg
->current_index
];
463 if (local_block
->is_ram_block
) {
465 * current_addr as passed in is an address in the local ram_addr_t
466 * space, we need to translate this for the destination
468 reg
->key
.current_addr
-= local_block
->offset
;
469 reg
->key
.current_addr
+= rdma
->dest_blocks
[reg
->current_index
].offset
;
471 reg
->key
.current_addr
= htonll(reg
->key
.current_addr
);
472 reg
->current_index
= htonl(reg
->current_index
);
473 reg
->chunks
= htonll(reg
->chunks
);
476 static void network_to_register(RDMARegister
*reg
)
478 reg
->key
.current_addr
= ntohll(reg
->key
.current_addr
);
479 reg
->current_index
= ntohl(reg
->current_index
);
480 reg
->chunks
= ntohll(reg
->chunks
);
483 typedef struct QEMU_PACKED
{
484 uint32_t value
; /* if zero, we will madvise() */
485 uint32_t block_idx
; /* which ram block index */
486 uint64_t offset
; /* Address in remote ram_addr_t space */
487 uint64_t length
; /* length of the chunk */
490 static void compress_to_network(RDMAContext
*rdma
, RDMACompress
*comp
)
492 comp
->value
= htonl(comp
->value
);
494 * comp->offset as passed in is an address in the local ram_addr_t
495 * space, we need to translate this for the destination
497 comp
->offset
-= rdma
->local_ram_blocks
.block
[comp
->block_idx
].offset
;
498 comp
->offset
+= rdma
->dest_blocks
[comp
->block_idx
].offset
;
499 comp
->block_idx
= htonl(comp
->block_idx
);
500 comp
->offset
= htonll(comp
->offset
);
501 comp
->length
= htonll(comp
->length
);
504 static void network_to_compress(RDMACompress
*comp
)
506 comp
->value
= ntohl(comp
->value
);
507 comp
->block_idx
= ntohl(comp
->block_idx
);
508 comp
->offset
= ntohll(comp
->offset
);
509 comp
->length
= ntohll(comp
->length
);
513 * The result of the dest's memory registration produces an "rkey"
514 * which the source VM must reference in order to perform
515 * the RDMA operation.
517 typedef struct QEMU_PACKED
{
521 } RDMARegisterResult
;
523 static void result_to_network(RDMARegisterResult
*result
)
525 result
->rkey
= htonl(result
->rkey
);
526 result
->host_addr
= htonll(result
->host_addr
);
529 static void network_to_result(RDMARegisterResult
*result
)
531 result
->rkey
= ntohl(result
->rkey
);
532 result
->host_addr
= ntohll(result
->host_addr
);
535 const char *print_wrid(int wrid
);
536 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
537 uint8_t *data
, RDMAControlHeader
*resp
,
539 int (*callback
)(RDMAContext
*rdma
));
541 static inline uint64_t ram_chunk_index(const uint8_t *start
,
544 return ((uintptr_t) host
- (uintptr_t) start
) >> RDMA_REG_CHUNK_SHIFT
;
547 static inline uint8_t *ram_chunk_start(const RDMALocalBlock
*rdma_ram_block
,
550 return (uint8_t *)(uintptr_t)(rdma_ram_block
->local_host_addr
+
551 (i
<< RDMA_REG_CHUNK_SHIFT
));
554 static inline uint8_t *ram_chunk_end(const RDMALocalBlock
*rdma_ram_block
,
557 uint8_t *result
= ram_chunk_start(rdma_ram_block
, i
) +
558 (1UL << RDMA_REG_CHUNK_SHIFT
);
560 if (result
> (rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
)) {
561 result
= rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
;
567 static int rdma_add_block(RDMAContext
*rdma
, const char *block_name
,
569 ram_addr_t block_offset
, uint64_t length
)
571 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
572 RDMALocalBlock
*block
;
573 RDMALocalBlock
*old
= local
->block
;
575 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
+ 1);
577 if (local
->nb_blocks
) {
580 if (rdma
->blockmap
) {
581 for (x
= 0; x
< local
->nb_blocks
; x
++) {
582 g_hash_table_remove(rdma
->blockmap
,
583 (void *)(uintptr_t)old
[x
].offset
);
584 g_hash_table_insert(rdma
->blockmap
,
585 (void *)(uintptr_t)old
[x
].offset
,
589 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * local
->nb_blocks
);
593 block
= &local
->block
[local
->nb_blocks
];
595 block
->block_name
= g_strdup(block_name
);
596 block
->local_host_addr
= host_addr
;
597 block
->offset
= block_offset
;
598 block
->length
= length
;
599 block
->index
= local
->nb_blocks
;
600 block
->src_index
= ~0U; /* Filled in by the receipt of the block list */
601 block
->nb_chunks
= ram_chunk_index(host_addr
, host_addr
+ length
) + 1UL;
602 block
->transit_bitmap
= bitmap_new(block
->nb_chunks
);
603 bitmap_clear(block
->transit_bitmap
, 0, block
->nb_chunks
);
604 block
->unregister_bitmap
= bitmap_new(block
->nb_chunks
);
605 bitmap_clear(block
->unregister_bitmap
, 0, block
->nb_chunks
);
606 block
->remote_keys
= g_new0(uint32_t, block
->nb_chunks
);
608 block
->is_ram_block
= local
->init
? false : true;
610 if (rdma
->blockmap
) {
611 g_hash_table_insert(rdma
->blockmap
, (void *)(uintptr_t)block_offset
, block
);
614 trace_rdma_add_block(block_name
, local
->nb_blocks
,
615 (uintptr_t) block
->local_host_addr
,
616 block
->offset
, block
->length
,
617 (uintptr_t) (block
->local_host_addr
+ block
->length
),
618 BITS_TO_LONGS(block
->nb_chunks
) *
619 sizeof(unsigned long) * 8,
628 * Memory regions need to be registered with the device and queue pairs setup
629 * in advanced before the migration starts. This tells us where the RAM blocks
630 * are so that we can register them individually.
632 static int qemu_rdma_init_one_block(RAMBlock
*rb
, void *opaque
)
634 const char *block_name
= qemu_ram_get_idstr(rb
);
635 void *host_addr
= qemu_ram_get_host_addr(rb
);
636 ram_addr_t block_offset
= qemu_ram_get_offset(rb
);
637 ram_addr_t length
= qemu_ram_get_used_length(rb
);
638 return rdma_add_block(opaque
, block_name
, host_addr
, block_offset
, length
);
642 * Identify the RAMBlocks and their quantity. They will be references to
643 * identify chunk boundaries inside each RAMBlock and also be referenced
644 * during dynamic page registration.
646 static int qemu_rdma_init_ram_blocks(RDMAContext
*rdma
)
648 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
651 assert(rdma
->blockmap
== NULL
);
652 memset(local
, 0, sizeof *local
);
653 ret
= foreach_not_ignored_block(qemu_rdma_init_one_block
, rdma
);
657 trace_qemu_rdma_init_ram_blocks(local
->nb_blocks
);
658 rdma
->dest_blocks
= g_new0(RDMADestBlock
,
659 rdma
->local_ram_blocks
.nb_blocks
);
665 * Note: If used outside of cleanup, the caller must ensure that the destination
666 * block structures are also updated
668 static int rdma_delete_block(RDMAContext
*rdma
, RDMALocalBlock
*block
)
670 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
671 RDMALocalBlock
*old
= local
->block
;
674 if (rdma
->blockmap
) {
675 g_hash_table_remove(rdma
->blockmap
, (void *)(uintptr_t)block
->offset
);
680 for (j
= 0; j
< block
->nb_chunks
; j
++) {
681 if (!block
->pmr
[j
]) {
684 ibv_dereg_mr(block
->pmr
[j
]);
685 rdma
->total_registrations
--;
692 ibv_dereg_mr(block
->mr
);
693 rdma
->total_registrations
--;
697 g_free(block
->transit_bitmap
);
698 block
->transit_bitmap
= NULL
;
700 g_free(block
->unregister_bitmap
);
701 block
->unregister_bitmap
= NULL
;
703 g_free(block
->remote_keys
);
704 block
->remote_keys
= NULL
;
706 g_free(block
->block_name
);
707 block
->block_name
= NULL
;
709 if (rdma
->blockmap
) {
710 for (x
= 0; x
< local
->nb_blocks
; x
++) {
711 g_hash_table_remove(rdma
->blockmap
,
712 (void *)(uintptr_t)old
[x
].offset
);
716 if (local
->nb_blocks
> 1) {
718 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
- 1);
721 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * block
->index
);
724 if (block
->index
< (local
->nb_blocks
- 1)) {
725 memcpy(local
->block
+ block
->index
, old
+ (block
->index
+ 1),
726 sizeof(RDMALocalBlock
) *
727 (local
->nb_blocks
- (block
->index
+ 1)));
728 for (x
= block
->index
; x
< local
->nb_blocks
- 1; x
++) {
729 local
->block
[x
].index
--;
733 assert(block
== local
->block
);
737 trace_rdma_delete_block(block
, (uintptr_t)block
->local_host_addr
,
738 block
->offset
, block
->length
,
739 (uintptr_t)(block
->local_host_addr
+ block
->length
),
740 BITS_TO_LONGS(block
->nb_chunks
) *
741 sizeof(unsigned long) * 8, block
->nb_chunks
);
747 if (local
->nb_blocks
&& rdma
->blockmap
) {
748 for (x
= 0; x
< local
->nb_blocks
; x
++) {
749 g_hash_table_insert(rdma
->blockmap
,
750 (void *)(uintptr_t)local
->block
[x
].offset
,
759 * Put in the log file which RDMA device was opened and the details
760 * associated with that device.
762 static void qemu_rdma_dump_id(const char *who
, struct ibv_context
*verbs
)
764 struct ibv_port_attr port
;
766 if (ibv_query_port(verbs
, 1, &port
)) {
767 error_report("Failed to query port information");
771 printf("%s RDMA Device opened: kernel name %s "
772 "uverbs device name %s, "
773 "infiniband_verbs class device path %s, "
774 "infiniband class device path %s, "
775 "transport: (%d) %s\n",
778 verbs
->device
->dev_name
,
779 verbs
->device
->dev_path
,
780 verbs
->device
->ibdev_path
,
782 (port
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) ? "Infiniband" :
783 ((port
.link_layer
== IBV_LINK_LAYER_ETHERNET
)
784 ? "Ethernet" : "Unknown"));
788 * Put in the log file the RDMA gid addressing information,
789 * useful for folks who have trouble understanding the
790 * RDMA device hierarchy in the kernel.
792 static void qemu_rdma_dump_gid(const char *who
, struct rdma_cm_id
*id
)
796 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.sgid
, sgid
, sizeof sgid
);
797 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.dgid
, dgid
, sizeof dgid
);
798 trace_qemu_rdma_dump_gid(who
, sgid
, dgid
);
802 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
803 * We will try the next addrinfo struct, and fail if there are
804 * no other valid addresses to bind against.
806 * If user is listening on '[::]', then we will not have a opened a device
807 * yet and have no way of verifying if the device is RoCE or not.
809 * In this case, the source VM will throw an error for ALL types of
810 * connections (both IPv4 and IPv6) if the destination machine does not have
811 * a regular infiniband network available for use.
813 * The only way to guarantee that an error is thrown for broken kernels is
814 * for the management software to choose a *specific* interface at bind time
815 * and validate what time of hardware it is.
817 * Unfortunately, this puts the user in a fix:
819 * If the source VM connects with an IPv4 address without knowing that the
820 * destination has bound to '[::]' the migration will unconditionally fail
821 * unless the management software is explicitly listening on the IPv4
822 * address while using a RoCE-based device.
824 * If the source VM connects with an IPv6 address, then we're OK because we can
825 * throw an error on the source (and similarly on the destination).
827 * But in mixed environments, this will be broken for a while until it is fixed
830 * We do provide a *tiny* bit of help in this function: We can list all of the
831 * devices in the system and check to see if all the devices are RoCE or
834 * If we detect that we have a *pure* RoCE environment, then we can safely
835 * thrown an error even if the management software has specified '[::]' as the
838 * However, if there is are multiple hetergeneous devices, then we cannot make
839 * this assumption and the user just has to be sure they know what they are
842 * Patches are being reviewed on linux-rdma.
844 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context
*verbs
, Error
**errp
)
846 /* This bug only exists in linux, to our knowledge. */
848 struct ibv_port_attr port_attr
;
851 * Verbs are only NULL if management has bound to '[::]'.
853 * Let's iterate through all the devices and see if there any pure IB
854 * devices (non-ethernet).
856 * If not, then we can safely proceed with the migration.
857 * Otherwise, there are no guarantees until the bug is fixed in linux.
861 struct ibv_device
**dev_list
= ibv_get_device_list(&num_devices
);
862 bool roce_found
= false;
863 bool ib_found
= false;
865 for (x
= 0; x
< num_devices
; x
++) {
866 verbs
= ibv_open_device(dev_list
[x
]);
868 if (errno
== EPERM
) {
875 if (ibv_query_port(verbs
, 1, &port_attr
)) {
876 ibv_close_device(verbs
);
877 ERROR(errp
, "Could not query initial IB port");
881 if (port_attr
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) {
883 } else if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
887 ibv_close_device(verbs
);
893 fprintf(stderr
, "WARN: migrations may fail:"
894 " IPv6 over RoCE / iWARP in linux"
895 " is broken. But since you appear to have a"
896 " mixed RoCE / IB environment, be sure to only"
897 " migrate over the IB fabric until the kernel "
898 " fixes the bug.\n");
900 ERROR(errp
, "You only have RoCE / iWARP devices in your systems"
901 " and your management software has specified '[::]'"
902 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
911 * If we have a verbs context, that means that some other than '[::]' was
912 * used by the management software for binding. In which case we can
913 * actually warn the user about a potentially broken kernel.
916 /* IB ports start with 1, not 0 */
917 if (ibv_query_port(verbs
, 1, &port_attr
)) {
918 ERROR(errp
, "Could not query initial IB port");
922 if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
923 ERROR(errp
, "Linux kernel's RoCE / iWARP does not support IPv6 "
924 "(but patches on linux-rdma in progress)");
934 * Figure out which RDMA device corresponds to the requested IP hostname
935 * Also create the initial connection manager identifiers for opening
938 static int qemu_rdma_resolve_host(RDMAContext
*rdma
, Error
**errp
)
941 struct rdma_addrinfo
*res
;
943 struct rdma_cm_event
*cm_event
;
944 char ip
[40] = "unknown";
945 struct rdma_addrinfo
*e
;
947 if (rdma
->host
== NULL
|| !strcmp(rdma
->host
, "")) {
948 ERROR(errp
, "RDMA hostname has not been set");
952 /* create CM channel */
953 rdma
->channel
= rdma_create_event_channel();
954 if (!rdma
->channel
) {
955 ERROR(errp
, "could not create CM channel");
960 ret
= rdma_create_id(rdma
->channel
, &rdma
->cm_id
, NULL
, RDMA_PS_TCP
);
962 ERROR(errp
, "could not create channel id");
963 goto err_resolve_create_id
;
966 snprintf(port_str
, 16, "%d", rdma
->port
);
969 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
971 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
972 goto err_resolve_get_addr
;
975 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
976 inet_ntop(e
->ai_family
,
977 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
978 trace_qemu_rdma_resolve_host_trying(rdma
->host
, ip
);
980 ret
= rdma_resolve_addr(rdma
->cm_id
, NULL
, e
->ai_dst_addr
,
981 RDMA_RESOLVE_TIMEOUT_MS
);
983 if (e
->ai_family
== AF_INET6
) {
984 ret
= qemu_rdma_broken_ipv6_kernel(rdma
->cm_id
->verbs
, errp
);
993 rdma_freeaddrinfo(res
);
994 ERROR(errp
, "could not resolve address %s", rdma
->host
);
995 goto err_resolve_get_addr
;
998 rdma_freeaddrinfo(res
);
999 qemu_rdma_dump_gid("source_resolve_addr", rdma
->cm_id
);
1001 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1003 ERROR(errp
, "could not perform event_addr_resolved");
1004 goto err_resolve_get_addr
;
1007 if (cm_event
->event
!= RDMA_CM_EVENT_ADDR_RESOLVED
) {
1008 ERROR(errp
, "result not equal to event_addr_resolved %s",
1009 rdma_event_str(cm_event
->event
));
1010 error_report("rdma_resolve_addr");
1011 rdma_ack_cm_event(cm_event
);
1013 goto err_resolve_get_addr
;
1015 rdma_ack_cm_event(cm_event
);
1018 ret
= rdma_resolve_route(rdma
->cm_id
, RDMA_RESOLVE_TIMEOUT_MS
);
1020 ERROR(errp
, "could not resolve rdma route");
1021 goto err_resolve_get_addr
;
1024 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1026 ERROR(errp
, "could not perform event_route_resolved");
1027 goto err_resolve_get_addr
;
1029 if (cm_event
->event
!= RDMA_CM_EVENT_ROUTE_RESOLVED
) {
1030 ERROR(errp
, "result not equal to event_route_resolved: %s",
1031 rdma_event_str(cm_event
->event
));
1032 rdma_ack_cm_event(cm_event
);
1034 goto err_resolve_get_addr
;
1036 rdma_ack_cm_event(cm_event
);
1037 rdma
->verbs
= rdma
->cm_id
->verbs
;
1038 qemu_rdma_dump_id("source_resolve_host", rdma
->cm_id
->verbs
);
1039 qemu_rdma_dump_gid("source_resolve_host", rdma
->cm_id
);
1042 err_resolve_get_addr
:
1043 rdma_destroy_id(rdma
->cm_id
);
1045 err_resolve_create_id
:
1046 rdma_destroy_event_channel(rdma
->channel
);
1047 rdma
->channel
= NULL
;
1052 * Create protection domain and completion queues
1054 static int qemu_rdma_alloc_pd_cq(RDMAContext
*rdma
)
1057 rdma
->pd
= ibv_alloc_pd(rdma
->verbs
);
1059 error_report("failed to allocate protection domain");
1063 /* create receive completion channel */
1064 rdma
->recv_comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1065 if (!rdma
->recv_comp_channel
) {
1066 error_report("failed to allocate receive completion channel");
1067 goto err_alloc_pd_cq
;
1071 * Completion queue can be filled by read work requests.
1073 rdma
->recv_cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1074 NULL
, rdma
->recv_comp_channel
, 0);
1075 if (!rdma
->recv_cq
) {
1076 error_report("failed to allocate receive completion queue");
1077 goto err_alloc_pd_cq
;
1080 /* create send completion channel */
1081 rdma
->send_comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1082 if (!rdma
->send_comp_channel
) {
1083 error_report("failed to allocate send completion channel");
1084 goto err_alloc_pd_cq
;
1087 rdma
->send_cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1088 NULL
, rdma
->send_comp_channel
, 0);
1089 if (!rdma
->send_cq
) {
1090 error_report("failed to allocate send completion queue");
1091 goto err_alloc_pd_cq
;
1098 ibv_dealloc_pd(rdma
->pd
);
1100 if (rdma
->recv_comp_channel
) {
1101 ibv_destroy_comp_channel(rdma
->recv_comp_channel
);
1103 if (rdma
->send_comp_channel
) {
1104 ibv_destroy_comp_channel(rdma
->send_comp_channel
);
1106 if (rdma
->recv_cq
) {
1107 ibv_destroy_cq(rdma
->recv_cq
);
1108 rdma
->recv_cq
= NULL
;
1111 rdma
->recv_comp_channel
= NULL
;
1112 rdma
->send_comp_channel
= NULL
;
1118 * Create queue pairs.
1120 static int qemu_rdma_alloc_qp(RDMAContext
*rdma
)
1122 struct ibv_qp_init_attr attr
= { 0 };
1125 attr
.cap
.max_send_wr
= RDMA_SIGNALED_SEND_MAX
;
1126 attr
.cap
.max_recv_wr
= 3;
1127 attr
.cap
.max_send_sge
= 1;
1128 attr
.cap
.max_recv_sge
= 1;
1129 attr
.send_cq
= rdma
->send_cq
;
1130 attr
.recv_cq
= rdma
->recv_cq
;
1131 attr
.qp_type
= IBV_QPT_RC
;
1133 ret
= rdma_create_qp(rdma
->cm_id
, rdma
->pd
, &attr
);
1138 rdma
->qp
= rdma
->cm_id
->qp
;
1142 /* Check whether On-Demand Paging is supported by RDAM device */
1143 static bool rdma_support_odp(struct ibv_context
*dev
)
1145 struct ibv_device_attr_ex attr
= {0};
1146 int ret
= ibv_query_device_ex(dev
, NULL
, &attr
);
1151 if (attr
.odp_caps
.general_caps
& IBV_ODP_SUPPORT
) {
1159 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1160 * The responder mr registering with ODP will sent RNR NAK back to
1161 * the requester in the face of the page fault.
1163 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd
*pd
, uint64_t addr
,
1164 uint32_t len
, uint32_t lkey
,
1165 const char *name
, bool wr
)
1167 #ifdef HAVE_IBV_ADVISE_MR
1169 int advice
= wr
? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE
:
1170 IBV_ADVISE_MR_ADVICE_PREFETCH
;
1171 struct ibv_sge sg_list
= {.lkey
= lkey
, .addr
= addr
, .length
= len
};
1173 ret
= ibv_advise_mr(pd
, advice
,
1174 IBV_ADVISE_MR_FLAG_FLUSH
, &sg_list
, 1);
1175 /* ignore the error */
1177 trace_qemu_rdma_advise_mr(name
, len
, addr
, strerror(errno
));
1179 trace_qemu_rdma_advise_mr(name
, len
, addr
, "successed");
1184 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext
*rdma
)
1187 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
1189 for (i
= 0; i
< local
->nb_blocks
; i
++) {
1190 int access
= IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
;
1192 local
->block
[i
].mr
=
1193 ibv_reg_mr(rdma
->pd
,
1194 local
->block
[i
].local_host_addr
,
1195 local
->block
[i
].length
, access
1198 if (!local
->block
[i
].mr
&&
1199 errno
== ENOTSUP
&& rdma_support_odp(rdma
->verbs
)) {
1200 access
|= IBV_ACCESS_ON_DEMAND
;
1201 /* register ODP mr */
1202 local
->block
[i
].mr
=
1203 ibv_reg_mr(rdma
->pd
,
1204 local
->block
[i
].local_host_addr
,
1205 local
->block
[i
].length
, access
);
1206 trace_qemu_rdma_register_odp_mr(local
->block
[i
].block_name
);
1208 if (local
->block
[i
].mr
) {
1209 qemu_rdma_advise_prefetch_mr(rdma
->pd
,
1210 (uintptr_t)local
->block
[i
].local_host_addr
,
1211 local
->block
[i
].length
,
1212 local
->block
[i
].mr
->lkey
,
1213 local
->block
[i
].block_name
,
1218 if (!local
->block
[i
].mr
) {
1219 perror("Failed to register local dest ram block!");
1222 rdma
->total_registrations
++;
1225 if (i
>= local
->nb_blocks
) {
1229 for (i
--; i
>= 0; i
--) {
1230 ibv_dereg_mr(local
->block
[i
].mr
);
1231 local
->block
[i
].mr
= NULL
;
1232 rdma
->total_registrations
--;
1240 * Find the ram block that corresponds to the page requested to be
1241 * transmitted by QEMU.
1243 * Once the block is found, also identify which 'chunk' within that
1244 * block that the page belongs to.
1246 * This search cannot fail or the migration will fail.
1248 static int qemu_rdma_search_ram_block(RDMAContext
*rdma
,
1249 uintptr_t block_offset
,
1252 uint64_t *block_index
,
1253 uint64_t *chunk_index
)
1255 uint64_t current_addr
= block_offset
+ offset
;
1256 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
1257 (void *) block_offset
);
1259 assert(current_addr
>= block
->offset
);
1260 assert((current_addr
+ length
) <= (block
->offset
+ block
->length
));
1262 *block_index
= block
->index
;
1263 *chunk_index
= ram_chunk_index(block
->local_host_addr
,
1264 block
->local_host_addr
+ (current_addr
- block
->offset
));
1270 * Register a chunk with IB. If the chunk was already registered
1271 * previously, then skip.
1273 * Also return the keys associated with the registration needed
1274 * to perform the actual RDMA operation.
1276 static int qemu_rdma_register_and_get_keys(RDMAContext
*rdma
,
1277 RDMALocalBlock
*block
, uintptr_t host_addr
,
1278 uint32_t *lkey
, uint32_t *rkey
, int chunk
,
1279 uint8_t *chunk_start
, uint8_t *chunk_end
)
1283 *lkey
= block
->mr
->lkey
;
1286 *rkey
= block
->mr
->rkey
;
1291 /* allocate memory to store chunk MRs */
1293 block
->pmr
= g_new0(struct ibv_mr
*, block
->nb_chunks
);
1297 * If 'rkey', then we're the destination, so grant access to the source.
1299 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1301 if (!block
->pmr
[chunk
]) {
1302 uint64_t len
= chunk_end
- chunk_start
;
1303 int access
= rkey
? IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
:
1306 trace_qemu_rdma_register_and_get_keys(len
, chunk_start
);
1308 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
, chunk_start
, len
, access
);
1309 if (!block
->pmr
[chunk
] &&
1310 errno
== ENOTSUP
&& rdma_support_odp(rdma
->verbs
)) {
1311 access
|= IBV_ACCESS_ON_DEMAND
;
1312 /* register ODP mr */
1313 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
, chunk_start
, len
, access
);
1314 trace_qemu_rdma_register_odp_mr(block
->block_name
);
1316 if (block
->pmr
[chunk
]) {
1317 qemu_rdma_advise_prefetch_mr(rdma
->pd
, (uintptr_t)chunk_start
,
1318 len
, block
->pmr
[chunk
]->lkey
,
1319 block
->block_name
, rkey
);
1324 if (!block
->pmr
[chunk
]) {
1325 perror("Failed to register chunk!");
1326 fprintf(stderr
, "Chunk details: block: %d chunk index %d"
1327 " start %" PRIuPTR
" end %" PRIuPTR
1329 " local %" PRIuPTR
" registrations: %d\n",
1330 block
->index
, chunk
, (uintptr_t)chunk_start
,
1331 (uintptr_t)chunk_end
, host_addr
,
1332 (uintptr_t)block
->local_host_addr
,
1333 rdma
->total_registrations
);
1336 rdma
->total_registrations
++;
1339 *lkey
= block
->pmr
[chunk
]->lkey
;
1342 *rkey
= block
->pmr
[chunk
]->rkey
;
1348 * Register (at connection time) the memory used for control
1351 static int qemu_rdma_reg_control(RDMAContext
*rdma
, int idx
)
1353 rdma
->wr_data
[idx
].control_mr
= ibv_reg_mr(rdma
->pd
,
1354 rdma
->wr_data
[idx
].control
, RDMA_CONTROL_MAX_BUFFER
,
1355 IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
);
1356 if (rdma
->wr_data
[idx
].control_mr
) {
1357 rdma
->total_registrations
++;
1360 error_report("qemu_rdma_reg_control failed");
1364 const char *print_wrid(int wrid
)
1366 if (wrid
>= RDMA_WRID_RECV_CONTROL
) {
1367 return wrid_desc
[RDMA_WRID_RECV_CONTROL
];
1369 return wrid_desc
[wrid
];
1373 * Perform a non-optimized memory unregistration after every transfer
1374 * for demonstration purposes, only if pin-all is not requested.
1376 * Potential optimizations:
1377 * 1. Start a new thread to run this function continuously
1379 - and for receipt of unregister messages
1381 * 3. Use workload hints.
1383 static int qemu_rdma_unregister_waiting(RDMAContext
*rdma
)
1385 while (rdma
->unregistrations
[rdma
->unregister_current
]) {
1387 uint64_t wr_id
= rdma
->unregistrations
[rdma
->unregister_current
];
1389 (wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1391 (wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1392 RDMALocalBlock
*block
=
1393 &(rdma
->local_ram_blocks
.block
[index
]);
1394 RDMARegister reg
= { .current_index
= index
};
1395 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
1397 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1398 .type
= RDMA_CONTROL_UNREGISTER_REQUEST
,
1402 trace_qemu_rdma_unregister_waiting_proc(chunk
,
1403 rdma
->unregister_current
);
1405 rdma
->unregistrations
[rdma
->unregister_current
] = 0;
1406 rdma
->unregister_current
++;
1408 if (rdma
->unregister_current
== RDMA_SIGNALED_SEND_MAX
) {
1409 rdma
->unregister_current
= 0;
1414 * Unregistration is speculative (because migration is single-threaded
1415 * and we cannot break the protocol's inifinband message ordering).
1416 * Thus, if the memory is currently being used for transmission,
1417 * then abort the attempt to unregister and try again
1418 * later the next time a completion is received for this memory.
1420 clear_bit(chunk
, block
->unregister_bitmap
);
1422 if (test_bit(chunk
, block
->transit_bitmap
)) {
1423 trace_qemu_rdma_unregister_waiting_inflight(chunk
);
1427 trace_qemu_rdma_unregister_waiting_send(chunk
);
1429 ret
= ibv_dereg_mr(block
->pmr
[chunk
]);
1430 block
->pmr
[chunk
] = NULL
;
1431 block
->remote_keys
[chunk
] = 0;
1434 perror("unregistration chunk failed");
1437 rdma
->total_registrations
--;
1439 reg
.key
.chunk
= chunk
;
1440 register_to_network(rdma
, ®
);
1441 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1447 trace_qemu_rdma_unregister_waiting_complete(chunk
);
1453 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id
, uint64_t index
,
1456 uint64_t result
= wr_id
& RDMA_WRID_TYPE_MASK
;
1458 result
|= (index
<< RDMA_WRID_BLOCK_SHIFT
);
1459 result
|= (chunk
<< RDMA_WRID_CHUNK_SHIFT
);
1465 * Consult the connection manager to see a work request
1466 * (of any kind) has completed.
1467 * Return the work request ID that completed.
1469 static uint64_t qemu_rdma_poll(RDMAContext
*rdma
, struct ibv_cq
*cq
,
1470 uint64_t *wr_id_out
, uint32_t *byte_len
)
1476 ret
= ibv_poll_cq(cq
, 1, &wc
);
1479 *wr_id_out
= RDMA_WRID_NONE
;
1484 error_report("ibv_poll_cq return %d", ret
);
1488 wr_id
= wc
.wr_id
& RDMA_WRID_TYPE_MASK
;
1490 if (wc
.status
!= IBV_WC_SUCCESS
) {
1491 fprintf(stderr
, "ibv_poll_cq wc.status=%d %s!\n",
1492 wc
.status
, ibv_wc_status_str(wc
.status
));
1493 fprintf(stderr
, "ibv_poll_cq wrid=%s!\n", wrid_desc
[wr_id
]);
1498 if (rdma
->control_ready_expected
&&
1499 (wr_id
>= RDMA_WRID_RECV_CONTROL
)) {
1500 trace_qemu_rdma_poll_recv(wrid_desc
[RDMA_WRID_RECV_CONTROL
],
1501 wr_id
- RDMA_WRID_RECV_CONTROL
, wr_id
, rdma
->nb_sent
);
1502 rdma
->control_ready_expected
= 0;
1505 if (wr_id
== RDMA_WRID_RDMA_WRITE
) {
1507 (wc
.wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1509 (wc
.wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1510 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1512 trace_qemu_rdma_poll_write(print_wrid(wr_id
), wr_id
, rdma
->nb_sent
,
1513 index
, chunk
, block
->local_host_addr
,
1514 (void *)(uintptr_t)block
->remote_host_addr
);
1516 clear_bit(chunk
, block
->transit_bitmap
);
1518 if (rdma
->nb_sent
> 0) {
1522 trace_qemu_rdma_poll_other(print_wrid(wr_id
), wr_id
, rdma
->nb_sent
);
1525 *wr_id_out
= wc
.wr_id
;
1527 *byte_len
= wc
.byte_len
;
1533 /* Wait for activity on the completion channel.
1534 * Returns 0 on success, none-0 on error.
1536 static int qemu_rdma_wait_comp_channel(RDMAContext
*rdma
,
1537 struct ibv_comp_channel
*comp_channel
)
1539 struct rdma_cm_event
*cm_event
;
1543 * Coroutine doesn't start until migration_fd_process_incoming()
1544 * so don't yield unless we know we're running inside of a coroutine.
1546 if (rdma
->migration_started_on_destination
&&
1547 migration_incoming_get_current()->state
== MIGRATION_STATUS_ACTIVE
) {
1548 yield_until_fd_readable(comp_channel
->fd
);
1550 /* This is the source side, we're in a separate thread
1551 * or destination prior to migration_fd_process_incoming()
1552 * after postcopy, the destination also in a separate thread.
1553 * we can't yield; so we have to poll the fd.
1554 * But we need to be able to handle 'cancel' or an error
1555 * without hanging forever.
1557 while (!rdma
->error_state
&& !rdma
->received_error
) {
1559 pfds
[0].fd
= comp_channel
->fd
;
1560 pfds
[0].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1561 pfds
[0].revents
= 0;
1563 pfds
[1].fd
= rdma
->channel
->fd
;
1564 pfds
[1].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1565 pfds
[1].revents
= 0;
1567 /* 0.1s timeout, should be fine for a 'cancel' */
1568 switch (qemu_poll_ns(pfds
, 2, 100 * 1000 * 1000)) {
1570 case 1: /* fd active */
1571 if (pfds
[0].revents
) {
1575 if (pfds
[1].revents
) {
1576 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1578 error_report("failed to get cm event while wait "
1579 "completion channel");
1583 error_report("receive cm event while wait comp channel,"
1584 "cm event is %d", cm_event
->event
);
1585 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
1586 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
1587 rdma_ack_cm_event(cm_event
);
1590 rdma_ack_cm_event(cm_event
);
1594 case 0: /* Timeout, go around again */
1597 default: /* Error of some type -
1598 * I don't trust errno from qemu_poll_ns
1600 error_report("%s: poll failed", __func__
);
1604 if (migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) {
1605 /* Bail out and let the cancellation happen */
1611 if (rdma
->received_error
) {
1614 return rdma
->error_state
;
1617 static struct ibv_comp_channel
*to_channel(RDMAContext
*rdma
, int wrid
)
1619 return wrid
< RDMA_WRID_RECV_CONTROL
? rdma
->send_comp_channel
:
1620 rdma
->recv_comp_channel
;
1623 static struct ibv_cq
*to_cq(RDMAContext
*rdma
, int wrid
)
1625 return wrid
< RDMA_WRID_RECV_CONTROL
? rdma
->send_cq
: rdma
->recv_cq
;
1629 * Block until the next work request has completed.
1631 * First poll to see if a work request has already completed,
1634 * If we encounter completed work requests for IDs other than
1635 * the one we're interested in, then that's generally an error.
1637 * The only exception is actual RDMA Write completions. These
1638 * completions only need to be recorded, but do not actually
1639 * need further processing.
1641 static int qemu_rdma_block_for_wrid(RDMAContext
*rdma
, int wrid_requested
,
1644 int num_cq_events
= 0, ret
= 0;
1647 uint64_t wr_id
= RDMA_WRID_NONE
, wr_id_in
;
1648 struct ibv_comp_channel
*ch
= to_channel(rdma
, wrid_requested
);
1649 struct ibv_cq
*poll_cq
= to_cq(rdma
, wrid_requested
);
1651 if (ibv_req_notify_cq(poll_cq
, 0)) {
1655 while (wr_id
!= wrid_requested
) {
1656 ret
= qemu_rdma_poll(rdma
, poll_cq
, &wr_id_in
, byte_len
);
1661 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1663 if (wr_id
== RDMA_WRID_NONE
) {
1666 if (wr_id
!= wrid_requested
) {
1667 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested
),
1668 wrid_requested
, print_wrid(wr_id
), wr_id
);
1672 if (wr_id
== wrid_requested
) {
1677 ret
= qemu_rdma_wait_comp_channel(rdma
, ch
);
1679 goto err_block_for_wrid
;
1682 ret
= ibv_get_cq_event(ch
, &cq
, &cq_ctx
);
1684 perror("ibv_get_cq_event");
1685 goto err_block_for_wrid
;
1690 ret
= -ibv_req_notify_cq(cq
, 0);
1692 goto err_block_for_wrid
;
1695 while (wr_id
!= wrid_requested
) {
1696 ret
= qemu_rdma_poll(rdma
, poll_cq
, &wr_id_in
, byte_len
);
1698 goto err_block_for_wrid
;
1701 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1703 if (wr_id
== RDMA_WRID_NONE
) {
1706 if (wr_id
!= wrid_requested
) {
1707 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested
),
1708 wrid_requested
, print_wrid(wr_id
), wr_id
);
1712 if (wr_id
== wrid_requested
) {
1713 goto success_block_for_wrid
;
1717 success_block_for_wrid
:
1718 if (num_cq_events
) {
1719 ibv_ack_cq_events(cq
, num_cq_events
);
1724 if (num_cq_events
) {
1725 ibv_ack_cq_events(cq
, num_cq_events
);
1728 rdma
->error_state
= ret
;
1733 * Post a SEND message work request for the control channel
1734 * containing some data and block until the post completes.
1736 static int qemu_rdma_post_send_control(RDMAContext
*rdma
, uint8_t *buf
,
1737 RDMAControlHeader
*head
)
1740 RDMAWorkRequestData
*wr
= &rdma
->wr_data
[RDMA_WRID_CONTROL
];
1741 struct ibv_send_wr
*bad_wr
;
1742 struct ibv_sge sge
= {
1743 .addr
= (uintptr_t)(wr
->control
),
1744 .length
= head
->len
+ sizeof(RDMAControlHeader
),
1745 .lkey
= wr
->control_mr
->lkey
,
1747 struct ibv_send_wr send_wr
= {
1748 .wr_id
= RDMA_WRID_SEND_CONTROL
,
1749 .opcode
= IBV_WR_SEND
,
1750 .send_flags
= IBV_SEND_SIGNALED
,
1755 trace_qemu_rdma_post_send_control(control_desc(head
->type
));
1758 * We don't actually need to do a memcpy() in here if we used
1759 * the "sge" properly, but since we're only sending control messages
1760 * (not RAM in a performance-critical path), then its OK for now.
1762 * The copy makes the RDMAControlHeader simpler to manipulate
1763 * for the time being.
1765 assert(head
->len
<= RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
));
1766 memcpy(wr
->control
, head
, sizeof(RDMAControlHeader
));
1767 control_to_network((void *) wr
->control
);
1770 memcpy(wr
->control
+ sizeof(RDMAControlHeader
), buf
, head
->len
);
1774 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
1777 error_report("Failed to use post IB SEND for control");
1781 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_SEND_CONTROL
, NULL
);
1783 error_report("rdma migration: send polling control error");
1790 * Post a RECV work request in anticipation of some future receipt
1791 * of data on the control channel.
1793 static int qemu_rdma_post_recv_control(RDMAContext
*rdma
, int idx
)
1795 struct ibv_recv_wr
*bad_wr
;
1796 struct ibv_sge sge
= {
1797 .addr
= (uintptr_t)(rdma
->wr_data
[idx
].control
),
1798 .length
= RDMA_CONTROL_MAX_BUFFER
,
1799 .lkey
= rdma
->wr_data
[idx
].control_mr
->lkey
,
1802 struct ibv_recv_wr recv_wr
= {
1803 .wr_id
= RDMA_WRID_RECV_CONTROL
+ idx
,
1809 if (ibv_post_recv(rdma
->qp
, &recv_wr
, &bad_wr
)) {
1817 * Block and wait for a RECV control channel message to arrive.
1819 static int qemu_rdma_exchange_get_response(RDMAContext
*rdma
,
1820 RDMAControlHeader
*head
, int expecting
, int idx
)
1823 int ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RECV_CONTROL
+ idx
,
1827 error_report("rdma migration: recv polling control error!");
1831 network_to_control((void *) rdma
->wr_data
[idx
].control
);
1832 memcpy(head
, rdma
->wr_data
[idx
].control
, sizeof(RDMAControlHeader
));
1834 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting
));
1836 if (expecting
== RDMA_CONTROL_NONE
) {
1837 trace_qemu_rdma_exchange_get_response_none(control_desc(head
->type
),
1839 } else if (head
->type
!= expecting
|| head
->type
== RDMA_CONTROL_ERROR
) {
1840 error_report("Was expecting a %s (%d) control message"
1841 ", but got: %s (%d), length: %d",
1842 control_desc(expecting
), expecting
,
1843 control_desc(head
->type
), head
->type
, head
->len
);
1844 if (head
->type
== RDMA_CONTROL_ERROR
) {
1845 rdma
->received_error
= true;
1849 if (head
->len
> RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
)) {
1850 error_report("too long length: %d", head
->len
);
1853 if (sizeof(*head
) + head
->len
!= byte_len
) {
1854 error_report("Malformed length: %d byte_len %d", head
->len
, byte_len
);
1862 * When a RECV work request has completed, the work request's
1863 * buffer is pointed at the header.
1865 * This will advance the pointer to the data portion
1866 * of the control message of the work request's buffer that
1867 * was populated after the work request finished.
1869 static void qemu_rdma_move_header(RDMAContext
*rdma
, int idx
,
1870 RDMAControlHeader
*head
)
1872 rdma
->wr_data
[idx
].control_len
= head
->len
;
1873 rdma
->wr_data
[idx
].control_curr
=
1874 rdma
->wr_data
[idx
].control
+ sizeof(RDMAControlHeader
);
1878 * This is an 'atomic' high-level operation to deliver a single, unified
1879 * control-channel message.
1881 * Additionally, if the user is expecting some kind of reply to this message,
1882 * they can request a 'resp' response message be filled in by posting an
1883 * additional work request on behalf of the user and waiting for an additional
1886 * The extra (optional) response is used during registration to us from having
1887 * to perform an *additional* exchange of message just to provide a response by
1888 * instead piggy-backing on the acknowledgement.
1890 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1891 uint8_t *data
, RDMAControlHeader
*resp
,
1893 int (*callback
)(RDMAContext
*rdma
))
1898 * Wait until the dest is ready before attempting to deliver the message
1899 * by waiting for a READY message.
1901 if (rdma
->control_ready_expected
) {
1902 RDMAControlHeader resp
;
1903 ret
= qemu_rdma_exchange_get_response(rdma
,
1904 &resp
, RDMA_CONTROL_READY
, RDMA_WRID_READY
);
1911 * If the user is expecting a response, post a WR in anticipation of it.
1914 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_DATA
);
1916 error_report("rdma migration: error posting"
1917 " extra control recv for anticipated result!");
1923 * Post a WR to replace the one we just consumed for the READY message.
1925 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1927 error_report("rdma migration: error posting first control recv!");
1932 * Deliver the control message that was requested.
1934 ret
= qemu_rdma_post_send_control(rdma
, data
, head
);
1937 error_report("Failed to send control buffer!");
1942 * If we're expecting a response, block and wait for it.
1946 trace_qemu_rdma_exchange_send_issue_callback();
1947 ret
= callback(rdma
);
1953 trace_qemu_rdma_exchange_send_waiting(control_desc(resp
->type
));
1954 ret
= qemu_rdma_exchange_get_response(rdma
, resp
,
1955 resp
->type
, RDMA_WRID_DATA
);
1961 qemu_rdma_move_header(rdma
, RDMA_WRID_DATA
, resp
);
1963 *resp_idx
= RDMA_WRID_DATA
;
1965 trace_qemu_rdma_exchange_send_received(control_desc(resp
->type
));
1968 rdma
->control_ready_expected
= 1;
1974 * This is an 'atomic' high-level operation to receive a single, unified
1975 * control-channel message.
1977 static int qemu_rdma_exchange_recv(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1980 RDMAControlHeader ready
= {
1982 .type
= RDMA_CONTROL_READY
,
1988 * Inform the source that we're ready to receive a message.
1990 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &ready
);
1993 error_report("Failed to send control buffer!");
1998 * Block and wait for the message.
2000 ret
= qemu_rdma_exchange_get_response(rdma
, head
,
2001 expecting
, RDMA_WRID_READY
);
2007 qemu_rdma_move_header(rdma
, RDMA_WRID_READY
, head
);
2010 * Post a new RECV work request to replace the one we just consumed.
2012 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2014 error_report("rdma migration: error posting second control recv!");
2022 * Write an actual chunk of memory using RDMA.
2024 * If we're using dynamic registration on the dest-side, we have to
2025 * send a registration command first.
2027 static int qemu_rdma_write_one(QEMUFile
*f
, RDMAContext
*rdma
,
2028 int current_index
, uint64_t current_addr
,
2032 struct ibv_send_wr send_wr
= { 0 };
2033 struct ibv_send_wr
*bad_wr
;
2034 int reg_result_idx
, ret
, count
= 0;
2035 uint64_t chunk
, chunks
;
2036 uint8_t *chunk_start
, *chunk_end
;
2037 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[current_index
]);
2039 RDMARegisterResult
*reg_result
;
2040 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_REGISTER_RESULT
};
2041 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
2042 .type
= RDMA_CONTROL_REGISTER_REQUEST
,
2047 sge
.addr
= (uintptr_t)(block
->local_host_addr
+
2048 (current_addr
- block
->offset
));
2049 sge
.length
= length
;
2051 chunk
= ram_chunk_index(block
->local_host_addr
,
2052 (uint8_t *)(uintptr_t)sge
.addr
);
2053 chunk_start
= ram_chunk_start(block
, chunk
);
2055 if (block
->is_ram_block
) {
2056 chunks
= length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2058 if (chunks
&& ((length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2062 chunks
= block
->length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2064 if (chunks
&& ((block
->length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2069 trace_qemu_rdma_write_one_top(chunks
+ 1,
2071 (1UL << RDMA_REG_CHUNK_SHIFT
) / 1024 / 1024);
2073 chunk_end
= ram_chunk_end(block
, chunk
+ chunks
);
2076 while (test_bit(chunk
, block
->transit_bitmap
)) {
2078 trace_qemu_rdma_write_one_block(count
++, current_index
, chunk
,
2079 sge
.addr
, length
, rdma
->nb_sent
, block
->nb_chunks
);
2081 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2084 error_report("Failed to Wait for previous write to complete "
2085 "block %d chunk %" PRIu64
2086 " current %" PRIu64
" len %" PRIu64
" %d",
2087 current_index
, chunk
, sge
.addr
, length
, rdma
->nb_sent
);
2092 if (!rdma
->pin_all
|| !block
->is_ram_block
) {
2093 if (!block
->remote_keys
[chunk
]) {
2095 * This chunk has not yet been registered, so first check to see
2096 * if the entire chunk is zero. If so, tell the other size to
2097 * memset() + madvise() the entire chunk without RDMA.
2100 if (buffer_is_zero((void *)(uintptr_t)sge
.addr
, length
)) {
2101 RDMACompress comp
= {
2102 .offset
= current_addr
,
2104 .block_idx
= current_index
,
2108 head
.len
= sizeof(comp
);
2109 head
.type
= RDMA_CONTROL_COMPRESS
;
2111 trace_qemu_rdma_write_one_zero(chunk
, sge
.length
,
2112 current_index
, current_addr
);
2114 compress_to_network(rdma
, &comp
);
2115 ret
= qemu_rdma_exchange_send(rdma
, &head
,
2116 (uint8_t *) &comp
, NULL
, NULL
, NULL
);
2122 acct_update_position(f
, sge
.length
, true);
2128 * Otherwise, tell other side to register.
2130 reg
.current_index
= current_index
;
2131 if (block
->is_ram_block
) {
2132 reg
.key
.current_addr
= current_addr
;
2134 reg
.key
.chunk
= chunk
;
2136 reg
.chunks
= chunks
;
2138 trace_qemu_rdma_write_one_sendreg(chunk
, sge
.length
, current_index
,
2141 register_to_network(rdma
, ®
);
2142 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
2143 &resp
, ®_result_idx
, NULL
);
2148 /* try to overlap this single registration with the one we sent. */
2149 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2150 &sge
.lkey
, NULL
, chunk
,
2151 chunk_start
, chunk_end
)) {
2152 error_report("cannot get lkey");
2156 reg_result
= (RDMARegisterResult
*)
2157 rdma
->wr_data
[reg_result_idx
].control_curr
;
2159 network_to_result(reg_result
);
2161 trace_qemu_rdma_write_one_recvregres(block
->remote_keys
[chunk
],
2162 reg_result
->rkey
, chunk
);
2164 block
->remote_keys
[chunk
] = reg_result
->rkey
;
2165 block
->remote_host_addr
= reg_result
->host_addr
;
2167 /* already registered before */
2168 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2169 &sge
.lkey
, NULL
, chunk
,
2170 chunk_start
, chunk_end
)) {
2171 error_report("cannot get lkey!");
2176 send_wr
.wr
.rdma
.rkey
= block
->remote_keys
[chunk
];
2178 send_wr
.wr
.rdma
.rkey
= block
->remote_rkey
;
2180 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2181 &sge
.lkey
, NULL
, chunk
,
2182 chunk_start
, chunk_end
)) {
2183 error_report("cannot get lkey!");
2189 * Encode the ram block index and chunk within this wrid.
2190 * We will use this information at the time of completion
2191 * to figure out which bitmap to check against and then which
2192 * chunk in the bitmap to look for.
2194 send_wr
.wr_id
= qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE
,
2195 current_index
, chunk
);
2197 send_wr
.opcode
= IBV_WR_RDMA_WRITE
;
2198 send_wr
.send_flags
= IBV_SEND_SIGNALED
;
2199 send_wr
.sg_list
= &sge
;
2200 send_wr
.num_sge
= 1;
2201 send_wr
.wr
.rdma
.remote_addr
= block
->remote_host_addr
+
2202 (current_addr
- block
->offset
);
2204 trace_qemu_rdma_write_one_post(chunk
, sge
.addr
, send_wr
.wr
.rdma
.remote_addr
,
2208 * ibv_post_send() does not return negative error numbers,
2209 * per the specification they are positive - no idea why.
2211 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
2213 if (ret
== ENOMEM
) {
2214 trace_qemu_rdma_write_one_queue_full();
2215 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2217 error_report("rdma migration: failed to make "
2218 "room in full send queue! %d", ret
);
2224 } else if (ret
> 0) {
2225 perror("rdma migration: post rdma write failed");
2229 set_bit(chunk
, block
->transit_bitmap
);
2230 acct_update_position(f
, sge
.length
, false);
2231 rdma
->total_writes
++;
2237 * Push out any unwritten RDMA operations.
2239 * We support sending out multiple chunks at the same time.
2240 * Not all of them need to get signaled in the completion queue.
2242 static int qemu_rdma_write_flush(QEMUFile
*f
, RDMAContext
*rdma
)
2246 if (!rdma
->current_length
) {
2250 ret
= qemu_rdma_write_one(f
, rdma
,
2251 rdma
->current_index
, rdma
->current_addr
, rdma
->current_length
);
2259 trace_qemu_rdma_write_flush(rdma
->nb_sent
);
2262 rdma
->current_length
= 0;
2263 rdma
->current_addr
= 0;
2268 static inline int qemu_rdma_buffer_mergable(RDMAContext
*rdma
,
2269 uint64_t offset
, uint64_t len
)
2271 RDMALocalBlock
*block
;
2275 if (rdma
->current_index
< 0) {
2279 if (rdma
->current_chunk
< 0) {
2283 block
= &(rdma
->local_ram_blocks
.block
[rdma
->current_index
]);
2284 host_addr
= block
->local_host_addr
+ (offset
- block
->offset
);
2285 chunk_end
= ram_chunk_end(block
, rdma
->current_chunk
);
2287 if (rdma
->current_length
== 0) {
2292 * Only merge into chunk sequentially.
2294 if (offset
!= (rdma
->current_addr
+ rdma
->current_length
)) {
2298 if (offset
< block
->offset
) {
2302 if ((offset
+ len
) > (block
->offset
+ block
->length
)) {
2306 if ((host_addr
+ len
) > chunk_end
) {
2314 * We're not actually writing here, but doing three things:
2316 * 1. Identify the chunk the buffer belongs to.
2317 * 2. If the chunk is full or the buffer doesn't belong to the current
2318 * chunk, then start a new chunk and flush() the old chunk.
2319 * 3. To keep the hardware busy, we also group chunks into batches
2320 * and only require that a batch gets acknowledged in the completion
2321 * queue instead of each individual chunk.
2323 static int qemu_rdma_write(QEMUFile
*f
, RDMAContext
*rdma
,
2324 uint64_t block_offset
, uint64_t offset
,
2327 uint64_t current_addr
= block_offset
+ offset
;
2328 uint64_t index
= rdma
->current_index
;
2329 uint64_t chunk
= rdma
->current_chunk
;
2332 /* If we cannot merge it, we flush the current buffer first. */
2333 if (!qemu_rdma_buffer_mergable(rdma
, current_addr
, len
)) {
2334 ret
= qemu_rdma_write_flush(f
, rdma
);
2338 rdma
->current_length
= 0;
2339 rdma
->current_addr
= current_addr
;
2341 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2342 offset
, len
, &index
, &chunk
);
2344 error_report("ram block search failed");
2347 rdma
->current_index
= index
;
2348 rdma
->current_chunk
= chunk
;
2352 rdma
->current_length
+= len
;
2354 /* flush it if buffer is too large */
2355 if (rdma
->current_length
>= RDMA_MERGE_MAX
) {
2356 return qemu_rdma_write_flush(f
, rdma
);
2362 static void qemu_rdma_cleanup(RDMAContext
*rdma
)
2366 if (rdma
->cm_id
&& rdma
->connected
) {
2367 if ((rdma
->error_state
||
2368 migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) &&
2369 !rdma
->received_error
) {
2370 RDMAControlHeader head
= { .len
= 0,
2371 .type
= RDMA_CONTROL_ERROR
,
2374 error_report("Early error. Sending error.");
2375 qemu_rdma_post_send_control(rdma
, NULL
, &head
);
2378 rdma_disconnect(rdma
->cm_id
);
2379 trace_qemu_rdma_cleanup_disconnect();
2380 rdma
->connected
= false;
2383 if (rdma
->channel
) {
2384 qemu_set_fd_handler(rdma
->channel
->fd
, NULL
, NULL
, NULL
);
2386 g_free(rdma
->dest_blocks
);
2387 rdma
->dest_blocks
= NULL
;
2389 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2390 if (rdma
->wr_data
[idx
].control_mr
) {
2391 rdma
->total_registrations
--;
2392 ibv_dereg_mr(rdma
->wr_data
[idx
].control_mr
);
2394 rdma
->wr_data
[idx
].control_mr
= NULL
;
2397 if (rdma
->local_ram_blocks
.block
) {
2398 while (rdma
->local_ram_blocks
.nb_blocks
) {
2399 rdma_delete_block(rdma
, &rdma
->local_ram_blocks
.block
[0]);
2404 rdma_destroy_qp(rdma
->cm_id
);
2407 if (rdma
->recv_cq
) {
2408 ibv_destroy_cq(rdma
->recv_cq
);
2409 rdma
->recv_cq
= NULL
;
2411 if (rdma
->send_cq
) {
2412 ibv_destroy_cq(rdma
->send_cq
);
2413 rdma
->send_cq
= NULL
;
2415 if (rdma
->recv_comp_channel
) {
2416 ibv_destroy_comp_channel(rdma
->recv_comp_channel
);
2417 rdma
->recv_comp_channel
= NULL
;
2419 if (rdma
->send_comp_channel
) {
2420 ibv_destroy_comp_channel(rdma
->send_comp_channel
);
2421 rdma
->send_comp_channel
= NULL
;
2424 ibv_dealloc_pd(rdma
->pd
);
2428 rdma_destroy_id(rdma
->cm_id
);
2432 /* the destination side, listen_id and channel is shared */
2433 if (rdma
->listen_id
) {
2434 if (!rdma
->is_return_path
) {
2435 rdma_destroy_id(rdma
->listen_id
);
2437 rdma
->listen_id
= NULL
;
2439 if (rdma
->channel
) {
2440 if (!rdma
->is_return_path
) {
2441 rdma_destroy_event_channel(rdma
->channel
);
2443 rdma
->channel
= NULL
;
2447 if (rdma
->channel
) {
2448 rdma_destroy_event_channel(rdma
->channel
);
2449 rdma
->channel
= NULL
;
2452 g_free(rdma
->host_port
);
2454 rdma
->host_port
= NULL
;
2458 static int qemu_rdma_source_init(RDMAContext
*rdma
, bool pin_all
, Error
**errp
)
2461 Error
*local_err
= NULL
, **temp
= &local_err
;
2464 * Will be validated against destination's actual capabilities
2465 * after the connect() completes.
2467 rdma
->pin_all
= pin_all
;
2469 ret
= qemu_rdma_resolve_host(rdma
, temp
);
2471 goto err_rdma_source_init
;
2474 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2476 ERROR(temp
, "rdma migration: error allocating pd and cq! Your mlock()"
2477 " limits may be too low. Please check $ ulimit -a # and "
2478 "search for 'ulimit -l' in the output");
2479 goto err_rdma_source_init
;
2482 ret
= qemu_rdma_alloc_qp(rdma
);
2484 ERROR(temp
, "rdma migration: error allocating qp!");
2485 goto err_rdma_source_init
;
2488 ret
= qemu_rdma_init_ram_blocks(rdma
);
2490 ERROR(temp
, "rdma migration: error initializing ram blocks!");
2491 goto err_rdma_source_init
;
2494 /* Build the hash that maps from offset to RAMBlock */
2495 rdma
->blockmap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
2496 for (idx
= 0; idx
< rdma
->local_ram_blocks
.nb_blocks
; idx
++) {
2497 g_hash_table_insert(rdma
->blockmap
,
2498 (void *)(uintptr_t)rdma
->local_ram_blocks
.block
[idx
].offset
,
2499 &rdma
->local_ram_blocks
.block
[idx
]);
2502 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2503 ret
= qemu_rdma_reg_control(rdma
, idx
);
2505 ERROR(temp
, "rdma migration: error registering %d control!",
2507 goto err_rdma_source_init
;
2513 err_rdma_source_init
:
2514 error_propagate(errp
, local_err
);
2515 qemu_rdma_cleanup(rdma
);
2519 static int qemu_get_cm_event_timeout(RDMAContext
*rdma
,
2520 struct rdma_cm_event
**cm_event
,
2521 long msec
, Error
**errp
)
2524 struct pollfd poll_fd
= {
2525 .fd
= rdma
->channel
->fd
,
2531 ret
= poll(&poll_fd
, 1, msec
);
2532 } while (ret
< 0 && errno
== EINTR
);
2535 ERROR(errp
, "poll cm event timeout");
2537 } else if (ret
< 0) {
2538 ERROR(errp
, "failed to poll cm event, errno=%i", errno
);
2540 } else if (poll_fd
.revents
& POLLIN
) {
2541 return rdma_get_cm_event(rdma
->channel
, cm_event
);
2543 ERROR(errp
, "no POLLIN event, revent=%x", poll_fd
.revents
);
2548 static int qemu_rdma_connect(RDMAContext
*rdma
, Error
**errp
, bool return_path
)
2550 RDMACapabilities cap
= {
2551 .version
= RDMA_CONTROL_VERSION_CURRENT
,
2554 struct rdma_conn_param conn_param
= { .initiator_depth
= 2,
2556 .private_data
= &cap
,
2557 .private_data_len
= sizeof(cap
),
2559 struct rdma_cm_event
*cm_event
;
2563 * Only negotiate the capability with destination if the user
2564 * on the source first requested the capability.
2566 if (rdma
->pin_all
) {
2567 trace_qemu_rdma_connect_pin_all_requested();
2568 cap
.flags
|= RDMA_CAPABILITY_PIN_ALL
;
2571 caps_to_network(&cap
);
2573 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2575 ERROR(errp
, "posting second control recv");
2576 goto err_rdma_source_connect
;
2579 ret
= rdma_connect(rdma
->cm_id
, &conn_param
);
2581 perror("rdma_connect");
2582 ERROR(errp
, "connecting to destination!");
2583 goto err_rdma_source_connect
;
2587 ret
= qemu_get_cm_event_timeout(rdma
, &cm_event
, 5000, errp
);
2589 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2592 perror("rdma_get_cm_event after rdma_connect");
2593 ERROR(errp
, "connecting to destination!");
2594 goto err_rdma_source_connect
;
2597 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2598 error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2599 ERROR(errp
, "connecting to destination!");
2600 rdma_ack_cm_event(cm_event
);
2601 goto err_rdma_source_connect
;
2603 rdma
->connected
= true;
2605 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2606 network_to_caps(&cap
);
2609 * Verify that the *requested* capabilities are supported by the destination
2610 * and disable them otherwise.
2612 if (rdma
->pin_all
&& !(cap
.flags
& RDMA_CAPABILITY_PIN_ALL
)) {
2613 ERROR(errp
, "Server cannot support pinning all memory. "
2614 "Will register memory dynamically.");
2615 rdma
->pin_all
= false;
2618 trace_qemu_rdma_connect_pin_all_outcome(rdma
->pin_all
);
2620 rdma_ack_cm_event(cm_event
);
2622 rdma
->control_ready_expected
= 1;
2626 err_rdma_source_connect
:
2627 qemu_rdma_cleanup(rdma
);
2631 static int qemu_rdma_dest_init(RDMAContext
*rdma
, Error
**errp
)
2634 struct rdma_cm_id
*listen_id
;
2635 char ip
[40] = "unknown";
2636 struct rdma_addrinfo
*res
, *e
;
2640 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2641 rdma
->wr_data
[idx
].control_len
= 0;
2642 rdma
->wr_data
[idx
].control_curr
= NULL
;
2645 if (!rdma
->host
|| !rdma
->host
[0]) {
2646 ERROR(errp
, "RDMA host is not set!");
2647 rdma
->error_state
= -EINVAL
;
2650 /* create CM channel */
2651 rdma
->channel
= rdma_create_event_channel();
2652 if (!rdma
->channel
) {
2653 ERROR(errp
, "could not create rdma event channel");
2654 rdma
->error_state
= -EINVAL
;
2659 ret
= rdma_create_id(rdma
->channel
, &listen_id
, NULL
, RDMA_PS_TCP
);
2661 ERROR(errp
, "could not create cm_id!");
2662 goto err_dest_init_create_listen_id
;
2665 snprintf(port_str
, 16, "%d", rdma
->port
);
2666 port_str
[15] = '\0';
2668 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
2670 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
2671 goto err_dest_init_bind_addr
;
2674 ret
= rdma_set_option(listen_id
, RDMA_OPTION_ID
, RDMA_OPTION_ID_REUSEADDR
,
2675 &reuse
, sizeof reuse
);
2677 ERROR(errp
, "Error: could not set REUSEADDR option");
2678 goto err_dest_init_bind_addr
;
2680 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
2681 inet_ntop(e
->ai_family
,
2682 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
2683 trace_qemu_rdma_dest_init_trying(rdma
->host
, ip
);
2684 ret
= rdma_bind_addr(listen_id
, e
->ai_dst_addr
);
2688 if (e
->ai_family
== AF_INET6
) {
2689 ret
= qemu_rdma_broken_ipv6_kernel(listen_id
->verbs
, errp
);
2697 rdma_freeaddrinfo(res
);
2699 ERROR(errp
, "Error: could not rdma_bind_addr!");
2700 goto err_dest_init_bind_addr
;
2703 rdma
->listen_id
= listen_id
;
2704 qemu_rdma_dump_gid("dest_init", listen_id
);
2707 err_dest_init_bind_addr
:
2708 rdma_destroy_id(listen_id
);
2709 err_dest_init_create_listen_id
:
2710 rdma_destroy_event_channel(rdma
->channel
);
2711 rdma
->channel
= NULL
;
2712 rdma
->error_state
= ret
;
2717 static void qemu_rdma_return_path_dest_init(RDMAContext
*rdma_return_path
,
2722 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2723 rdma_return_path
->wr_data
[idx
].control_len
= 0;
2724 rdma_return_path
->wr_data
[idx
].control_curr
= NULL
;
2727 /*the CM channel and CM id is shared*/
2728 rdma_return_path
->channel
= rdma
->channel
;
2729 rdma_return_path
->listen_id
= rdma
->listen_id
;
2731 rdma
->return_path
= rdma_return_path
;
2732 rdma_return_path
->return_path
= rdma
;
2733 rdma_return_path
->is_return_path
= true;
2736 static void *qemu_rdma_data_init(const char *host_port
, Error
**errp
)
2738 RDMAContext
*rdma
= NULL
;
2739 InetSocketAddress
*addr
;
2742 rdma
= g_new0(RDMAContext
, 1);
2743 rdma
->current_index
= -1;
2744 rdma
->current_chunk
= -1;
2746 addr
= g_new(InetSocketAddress
, 1);
2747 if (!inet_parse(addr
, host_port
, NULL
)) {
2748 rdma
->port
= atoi(addr
->port
);
2749 rdma
->host
= g_strdup(addr
->host
);
2750 rdma
->host_port
= g_strdup(host_port
);
2752 ERROR(errp
, "bad RDMA migration address '%s'", host_port
);
2757 qapi_free_InetSocketAddress(addr
);
2764 * QEMUFile interface to the control channel.
2765 * SEND messages for control only.
2766 * VM's ram is handled with regular RDMA messages.
2768 static ssize_t
qio_channel_rdma_writev(QIOChannel
*ioc
,
2769 const struct iovec
*iov
,
2776 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2777 QEMUFile
*f
= rioc
->file
;
2784 RCU_READ_LOCK_GUARD();
2785 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
2791 CHECK_ERROR_STATE();
2794 * Push out any writes that
2795 * we're queued up for VM's ram.
2797 ret
= qemu_rdma_write_flush(f
, rdma
);
2799 rdma
->error_state
= ret
;
2803 for (i
= 0; i
< niov
; i
++) {
2804 size_t remaining
= iov
[i
].iov_len
;
2805 uint8_t * data
= (void *)iov
[i
].iov_base
;
2807 RDMAControlHeader head
;
2809 len
= MIN(remaining
, RDMA_SEND_INCREMENT
);
2813 head
.type
= RDMA_CONTROL_QEMU_FILE
;
2815 ret
= qemu_rdma_exchange_send(rdma
, &head
, data
, NULL
, NULL
, NULL
);
2818 rdma
->error_state
= ret
;
2830 static size_t qemu_rdma_fill(RDMAContext
*rdma
, uint8_t *buf
,
2831 size_t size
, int idx
)
2835 if (rdma
->wr_data
[idx
].control_len
) {
2836 trace_qemu_rdma_fill(rdma
->wr_data
[idx
].control_len
, size
);
2838 len
= MIN(size
, rdma
->wr_data
[idx
].control_len
);
2839 memcpy(buf
, rdma
->wr_data
[idx
].control_curr
, len
);
2840 rdma
->wr_data
[idx
].control_curr
+= len
;
2841 rdma
->wr_data
[idx
].control_len
-= len
;
2848 * QEMUFile interface to the control channel.
2849 * RDMA links don't use bytestreams, so we have to
2850 * return bytes to QEMUFile opportunistically.
2852 static ssize_t
qio_channel_rdma_readv(QIOChannel
*ioc
,
2853 const struct iovec
*iov
,
2859 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2861 RDMAControlHeader head
;
2866 RCU_READ_LOCK_GUARD();
2867 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
2873 CHECK_ERROR_STATE();
2875 for (i
= 0; i
< niov
; i
++) {
2876 size_t want
= iov
[i
].iov_len
;
2877 uint8_t *data
= (void *)iov
[i
].iov_base
;
2880 * First, we hold on to the last SEND message we
2881 * were given and dish out the bytes until we run
2884 ret
= qemu_rdma_fill(rdma
, data
, want
, 0);
2887 /* Got what we needed, so go to next iovec */
2892 /* If we got any data so far, then don't wait
2893 * for more, just return what we have */
2899 /* We've got nothing at all, so lets wait for
2902 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_QEMU_FILE
);
2905 rdma
->error_state
= ret
;
2910 * SEND was received with new bytes, now try again.
2912 ret
= qemu_rdma_fill(rdma
, data
, want
, 0);
2916 /* Still didn't get enough, so lets just return */
2919 return QIO_CHANNEL_ERR_BLOCK
;
2929 * Block until all the outstanding chunks have been delivered by the hardware.
2931 static int qemu_rdma_drain_cq(QEMUFile
*f
, RDMAContext
*rdma
)
2935 if (qemu_rdma_write_flush(f
, rdma
) < 0) {
2939 while (rdma
->nb_sent
) {
2940 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2942 error_report("rdma migration: complete polling error!");
2947 qemu_rdma_unregister_waiting(rdma
);
2953 static int qio_channel_rdma_set_blocking(QIOChannel
*ioc
,
2957 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2958 /* XXX we should make readv/writev actually honour this :-) */
2959 rioc
->blocking
= blocking
;
2964 typedef struct QIOChannelRDMASource QIOChannelRDMASource
;
2965 struct QIOChannelRDMASource
{
2967 QIOChannelRDMA
*rioc
;
2968 GIOCondition condition
;
2972 qio_channel_rdma_source_prepare(GSource
*source
,
2975 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2977 GIOCondition cond
= 0;
2980 RCU_READ_LOCK_GUARD();
2981 if (rsource
->condition
== G_IO_IN
) {
2982 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
2984 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
2988 error_report("RDMAContext is NULL when prepare Gsource");
2992 if (rdma
->wr_data
[0].control_len
) {
2997 return cond
& rsource
->condition
;
3001 qio_channel_rdma_source_check(GSource
*source
)
3003 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
3005 GIOCondition cond
= 0;
3007 RCU_READ_LOCK_GUARD();
3008 if (rsource
->condition
== G_IO_IN
) {
3009 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
3011 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
3015 error_report("RDMAContext is NULL when check Gsource");
3019 if (rdma
->wr_data
[0].control_len
) {
3024 return cond
& rsource
->condition
;
3028 qio_channel_rdma_source_dispatch(GSource
*source
,
3029 GSourceFunc callback
,
3032 QIOChannelFunc func
= (QIOChannelFunc
)callback
;
3033 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
3035 GIOCondition cond
= 0;
3037 RCU_READ_LOCK_GUARD();
3038 if (rsource
->condition
== G_IO_IN
) {
3039 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
3041 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
3045 error_report("RDMAContext is NULL when dispatch Gsource");
3049 if (rdma
->wr_data
[0].control_len
) {
3054 return (*func
)(QIO_CHANNEL(rsource
->rioc
),
3055 (cond
& rsource
->condition
),
3060 qio_channel_rdma_source_finalize(GSource
*source
)
3062 QIOChannelRDMASource
*ssource
= (QIOChannelRDMASource
*)source
;
3064 object_unref(OBJECT(ssource
->rioc
));
3067 GSourceFuncs qio_channel_rdma_source_funcs
= {
3068 qio_channel_rdma_source_prepare
,
3069 qio_channel_rdma_source_check
,
3070 qio_channel_rdma_source_dispatch
,
3071 qio_channel_rdma_source_finalize
3074 static GSource
*qio_channel_rdma_create_watch(QIOChannel
*ioc
,
3075 GIOCondition condition
)
3077 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3078 QIOChannelRDMASource
*ssource
;
3081 source
= g_source_new(&qio_channel_rdma_source_funcs
,
3082 sizeof(QIOChannelRDMASource
));
3083 ssource
= (QIOChannelRDMASource
*)source
;
3085 ssource
->rioc
= rioc
;
3086 object_ref(OBJECT(rioc
));
3088 ssource
->condition
= condition
;
3093 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel
*ioc
,
3096 IOHandler
*io_write
,
3099 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3101 aio_set_fd_handler(ctx
, rioc
->rdmain
->recv_comp_channel
->fd
,
3102 false, io_read
, io_write
, NULL
, NULL
, opaque
);
3103 aio_set_fd_handler(ctx
, rioc
->rdmain
->send_comp_channel
->fd
,
3104 false, io_read
, io_write
, NULL
, NULL
, opaque
);
3106 aio_set_fd_handler(ctx
, rioc
->rdmaout
->recv_comp_channel
->fd
,
3107 false, io_read
, io_write
, NULL
, NULL
, opaque
);
3108 aio_set_fd_handler(ctx
, rioc
->rdmaout
->send_comp_channel
->fd
,
3109 false, io_read
, io_write
, NULL
, NULL
, opaque
);
3113 struct rdma_close_rcu
{
3114 struct rcu_head rcu
;
3115 RDMAContext
*rdmain
;
3116 RDMAContext
*rdmaout
;
3119 /* callback from qio_channel_rdma_close via call_rcu */
3120 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu
*rcu
)
3123 qemu_rdma_cleanup(rcu
->rdmain
);
3127 qemu_rdma_cleanup(rcu
->rdmaout
);
3130 g_free(rcu
->rdmain
);
3131 g_free(rcu
->rdmaout
);
3135 static int qio_channel_rdma_close(QIOChannel
*ioc
,
3138 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3139 RDMAContext
*rdmain
, *rdmaout
;
3140 struct rdma_close_rcu
*rcu
= g_new(struct rdma_close_rcu
, 1);
3142 trace_qemu_rdma_close();
3144 rdmain
= rioc
->rdmain
;
3146 qatomic_rcu_set(&rioc
->rdmain
, NULL
);
3149 rdmaout
= rioc
->rdmaout
;
3151 qatomic_rcu_set(&rioc
->rdmaout
, NULL
);
3154 rcu
->rdmain
= rdmain
;
3155 rcu
->rdmaout
= rdmaout
;
3156 call_rcu(rcu
, qio_channel_rdma_close_rcu
, rcu
);
3162 qio_channel_rdma_shutdown(QIOChannel
*ioc
,
3163 QIOChannelShutdown how
,
3166 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3167 RDMAContext
*rdmain
, *rdmaout
;
3169 RCU_READ_LOCK_GUARD();
3171 rdmain
= qatomic_rcu_read(&rioc
->rdmain
);
3172 rdmaout
= qatomic_rcu_read(&rioc
->rdmain
);
3175 case QIO_CHANNEL_SHUTDOWN_READ
:
3177 rdmain
->error_state
= -1;
3180 case QIO_CHANNEL_SHUTDOWN_WRITE
:
3182 rdmaout
->error_state
= -1;
3185 case QIO_CHANNEL_SHUTDOWN_BOTH
:
3188 rdmain
->error_state
= -1;
3191 rdmaout
->error_state
= -1;
3202 * This means that 'block_offset' is a full virtual address that does not
3203 * belong to a RAMBlock of the virtual machine and instead
3204 * represents a private malloc'd memory area that the caller wishes to
3208 * Offset is an offset to be added to block_offset and used
3209 * to also lookup the corresponding RAMBlock.
3211 * @size : Number of bytes to transfer
3213 * @bytes_sent : User-specificed pointer to indicate how many bytes were
3214 * sent. Usually, this will not be more than a few bytes of
3215 * the protocol because most transfers are sent asynchronously.
3217 static size_t qemu_rdma_save_page(QEMUFile
*f
,
3218 ram_addr_t block_offset
, ram_addr_t offset
,
3219 size_t size
, uint64_t *bytes_sent
)
3221 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3225 RCU_READ_LOCK_GUARD();
3226 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3232 CHECK_ERROR_STATE();
3234 if (migration_in_postcopy()) {
3235 return RAM_SAVE_CONTROL_NOT_SUPP
;
3241 * Add this page to the current 'chunk'. If the chunk
3242 * is full, or the page doesn't belong to the current chunk,
3243 * an actual RDMA write will occur and a new chunk will be formed.
3245 ret
= qemu_rdma_write(f
, rdma
, block_offset
, offset
, size
);
3247 error_report("rdma migration: write error! %d", ret
);
3252 * We always return 1 bytes because the RDMA
3253 * protocol is completely asynchronous. We do not yet know
3254 * whether an identified chunk is zero or not because we're
3255 * waiting for other pages to potentially be merged with
3256 * the current chunk. So, we have to call qemu_update_position()
3257 * later on when the actual write occurs.
3264 * Drain the Completion Queue if possible, but do not block,
3267 * If nothing to poll, the end of the iteration will do this
3268 * again to make sure we don't overflow the request queue.
3271 uint64_t wr_id
, wr_id_in
;
3272 int ret
= qemu_rdma_poll(rdma
, rdma
->recv_cq
, &wr_id_in
, NULL
);
3274 error_report("rdma migration: polling error! %d", ret
);
3278 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
3280 if (wr_id
== RDMA_WRID_NONE
) {
3286 uint64_t wr_id
, wr_id_in
;
3287 int ret
= qemu_rdma_poll(rdma
, rdma
->send_cq
, &wr_id_in
, NULL
);
3289 error_report("rdma migration: polling error! %d", ret
);
3293 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
3295 if (wr_id
== RDMA_WRID_NONE
) {
3300 return RAM_SAVE_CONTROL_DELAYED
;
3302 rdma
->error_state
= ret
;
3306 static void rdma_accept_incoming_migration(void *opaque
);
3308 static void rdma_cm_poll_handler(void *opaque
)
3310 RDMAContext
*rdma
= opaque
;
3312 struct rdma_cm_event
*cm_event
;
3313 MigrationIncomingState
*mis
= migration_incoming_get_current();
3315 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3317 error_report("get_cm_event failed %d", errno
);
3321 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
3322 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
3323 if (!rdma
->error_state
&&
3324 migration_incoming_get_current()->state
!=
3325 MIGRATION_STATUS_COMPLETED
) {
3326 error_report("receive cm event, cm event is %d", cm_event
->event
);
3327 rdma
->error_state
= -EPIPE
;
3328 if (rdma
->return_path
) {
3329 rdma
->return_path
->error_state
= -EPIPE
;
3332 rdma_ack_cm_event(cm_event
);
3334 if (mis
->migration_incoming_co
) {
3335 qemu_coroutine_enter(mis
->migration_incoming_co
);
3339 rdma_ack_cm_event(cm_event
);
3342 static int qemu_rdma_accept(RDMAContext
*rdma
)
3344 RDMACapabilities cap
;
3345 struct rdma_conn_param conn_param
= {
3346 .responder_resources
= 2,
3347 .private_data
= &cap
,
3348 .private_data_len
= sizeof(cap
),
3350 RDMAContext
*rdma_return_path
= NULL
;
3351 struct rdma_cm_event
*cm_event
;
3352 struct ibv_context
*verbs
;
3356 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3358 goto err_rdma_dest_wait
;
3361 if (cm_event
->event
!= RDMA_CM_EVENT_CONNECT_REQUEST
) {
3362 rdma_ack_cm_event(cm_event
);
3363 goto err_rdma_dest_wait
;
3367 * initialize the RDMAContext for return path for postcopy after first
3368 * connection request reached.
3370 if (migrate_postcopy() && !rdma
->is_return_path
) {
3371 rdma_return_path
= qemu_rdma_data_init(rdma
->host_port
, NULL
);
3372 if (rdma_return_path
== NULL
) {
3373 rdma_ack_cm_event(cm_event
);
3374 goto err_rdma_dest_wait
;
3377 qemu_rdma_return_path_dest_init(rdma_return_path
, rdma
);
3380 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
3382 network_to_caps(&cap
);
3384 if (cap
.version
< 1 || cap
.version
> RDMA_CONTROL_VERSION_CURRENT
) {
3385 error_report("Unknown source RDMA version: %d, bailing...",
3387 rdma_ack_cm_event(cm_event
);
3388 goto err_rdma_dest_wait
;
3392 * Respond with only the capabilities this version of QEMU knows about.
3394 cap
.flags
&= known_capabilities
;
3397 * Enable the ones that we do know about.
3398 * Add other checks here as new ones are introduced.
3400 if (cap
.flags
& RDMA_CAPABILITY_PIN_ALL
) {
3401 rdma
->pin_all
= true;
3404 rdma
->cm_id
= cm_event
->id
;
3405 verbs
= cm_event
->id
->verbs
;
3407 rdma_ack_cm_event(cm_event
);
3409 trace_qemu_rdma_accept_pin_state(rdma
->pin_all
);
3411 caps_to_network(&cap
);
3413 trace_qemu_rdma_accept_pin_verbsc(verbs
);
3416 rdma
->verbs
= verbs
;
3417 } else if (rdma
->verbs
!= verbs
) {
3418 error_report("ibv context not matching %p, %p!", rdma
->verbs
,
3420 goto err_rdma_dest_wait
;
3423 qemu_rdma_dump_id("dest_init", verbs
);
3425 ret
= qemu_rdma_alloc_pd_cq(rdma
);
3427 error_report("rdma migration: error allocating pd and cq!");
3428 goto err_rdma_dest_wait
;
3431 ret
= qemu_rdma_alloc_qp(rdma
);
3433 error_report("rdma migration: error allocating qp!");
3434 goto err_rdma_dest_wait
;
3437 ret
= qemu_rdma_init_ram_blocks(rdma
);
3439 error_report("rdma migration: error initializing ram blocks!");
3440 goto err_rdma_dest_wait
;
3443 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
3444 ret
= qemu_rdma_reg_control(rdma
, idx
);
3446 error_report("rdma: error registering %d control", idx
);
3447 goto err_rdma_dest_wait
;
3451 /* Accept the second connection request for return path */
3452 if (migrate_postcopy() && !rdma
->is_return_path
) {
3453 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
3455 (void *)(intptr_t)rdma
->return_path
);
3457 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_cm_poll_handler
,
3461 ret
= rdma_accept(rdma
->cm_id
, &conn_param
);
3463 error_report("rdma_accept returns %d", ret
);
3464 goto err_rdma_dest_wait
;
3467 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3469 error_report("rdma_accept get_cm_event failed %d", ret
);
3470 goto err_rdma_dest_wait
;
3473 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
3474 error_report("rdma_accept not event established");
3475 rdma_ack_cm_event(cm_event
);
3476 goto err_rdma_dest_wait
;
3479 rdma_ack_cm_event(cm_event
);
3480 rdma
->connected
= true;
3482 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
3484 error_report("rdma migration: error posting second control recv");
3485 goto err_rdma_dest_wait
;
3488 qemu_rdma_dump_gid("dest_connect", rdma
->cm_id
);
3493 rdma
->error_state
= ret
;
3494 qemu_rdma_cleanup(rdma
);
3495 g_free(rdma_return_path
);
3499 static int dest_ram_sort_func(const void *a
, const void *b
)
3501 unsigned int a_index
= ((const RDMALocalBlock
*)a
)->src_index
;
3502 unsigned int b_index
= ((const RDMALocalBlock
*)b
)->src_index
;
3504 return (a_index
< b_index
) ? -1 : (a_index
!= b_index
);
3508 * During each iteration of the migration, we listen for instructions
3509 * by the source VM to perform dynamic page registrations before they
3510 * can perform RDMA operations.
3512 * We respond with the 'rkey'.
3514 * Keep doing this until the source tells us to stop.
3516 static int qemu_rdma_registration_handle(QEMUFile
*f
, void *opaque
)
3518 RDMAControlHeader reg_resp
= { .len
= sizeof(RDMARegisterResult
),
3519 .type
= RDMA_CONTROL_REGISTER_RESULT
,
3522 RDMAControlHeader unreg_resp
= { .len
= 0,
3523 .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
3526 RDMAControlHeader blocks
= { .type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
,
3528 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3530 RDMALocalBlocks
*local
;
3531 RDMAControlHeader head
;
3532 RDMARegister
*reg
, *registers
;
3534 RDMARegisterResult
*reg_result
;
3535 static RDMARegisterResult results
[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
];
3536 RDMALocalBlock
*block
;
3543 RCU_READ_LOCK_GUARD();
3544 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
3550 CHECK_ERROR_STATE();
3552 local
= &rdma
->local_ram_blocks
;
3554 trace_qemu_rdma_registration_handle_wait();
3556 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_NONE
);
3562 if (head
.repeat
> RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
) {
3563 error_report("rdma: Too many requests in this message (%d)."
3564 "Bailing.", head
.repeat
);
3569 switch (head
.type
) {
3570 case RDMA_CONTROL_COMPRESS
:
3571 comp
= (RDMACompress
*) rdma
->wr_data
[idx
].control_curr
;
3572 network_to_compress(comp
);
3574 trace_qemu_rdma_registration_handle_compress(comp
->length
,
3577 if (comp
->block_idx
>= rdma
->local_ram_blocks
.nb_blocks
) {
3578 error_report("rdma: 'compress' bad block index %u (vs %d)",
3579 (unsigned int)comp
->block_idx
,
3580 rdma
->local_ram_blocks
.nb_blocks
);
3584 block
= &(rdma
->local_ram_blocks
.block
[comp
->block_idx
]);
3586 host_addr
= block
->local_host_addr
+
3587 (comp
->offset
- block
->offset
);
3589 ram_handle_compressed(host_addr
, comp
->value
, comp
->length
);
3592 case RDMA_CONTROL_REGISTER_FINISHED
:
3593 trace_qemu_rdma_registration_handle_finished();
3596 case RDMA_CONTROL_RAM_BLOCKS_REQUEST
:
3597 trace_qemu_rdma_registration_handle_ram_blocks();
3599 /* Sort our local RAM Block list so it's the same as the source,
3600 * we can do this since we've filled in a src_index in the list
3601 * as we received the RAMBlock list earlier.
3603 qsort(rdma
->local_ram_blocks
.block
,
3604 rdma
->local_ram_blocks
.nb_blocks
,
3605 sizeof(RDMALocalBlock
), dest_ram_sort_func
);
3606 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3607 local
->block
[i
].index
= i
;
3610 if (rdma
->pin_all
) {
3611 ret
= qemu_rdma_reg_whole_ram_blocks(rdma
);
3613 error_report("rdma migration: error dest "
3614 "registering ram blocks");
3620 * Dest uses this to prepare to transmit the RAMBlock descriptions
3621 * to the source VM after connection setup.
3622 * Both sides use the "remote" structure to communicate and update
3623 * their "local" descriptions with what was sent.
3625 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3626 rdma
->dest_blocks
[i
].remote_host_addr
=
3627 (uintptr_t)(local
->block
[i
].local_host_addr
);
3629 if (rdma
->pin_all
) {
3630 rdma
->dest_blocks
[i
].remote_rkey
= local
->block
[i
].mr
->rkey
;
3633 rdma
->dest_blocks
[i
].offset
= local
->block
[i
].offset
;
3634 rdma
->dest_blocks
[i
].length
= local
->block
[i
].length
;
3636 dest_block_to_network(&rdma
->dest_blocks
[i
]);
3637 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3638 local
->block
[i
].block_name
,
3639 local
->block
[i
].offset
,
3640 local
->block
[i
].length
,
3641 local
->block
[i
].local_host_addr
,
3642 local
->block
[i
].src_index
);
3645 blocks
.len
= rdma
->local_ram_blocks
.nb_blocks
3646 * sizeof(RDMADestBlock
);
3649 ret
= qemu_rdma_post_send_control(rdma
,
3650 (uint8_t *) rdma
->dest_blocks
, &blocks
);
3653 error_report("rdma migration: error sending remote info");
3658 case RDMA_CONTROL_REGISTER_REQUEST
:
3659 trace_qemu_rdma_registration_handle_register(head
.repeat
);
3661 reg_resp
.repeat
= head
.repeat
;
3662 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3664 for (count
= 0; count
< head
.repeat
; count
++) {
3666 uint8_t *chunk_start
, *chunk_end
;
3668 reg
= ®isters
[count
];
3669 network_to_register(reg
);
3671 reg_result
= &results
[count
];
3673 trace_qemu_rdma_registration_handle_register_loop(count
,
3674 reg
->current_index
, reg
->key
.current_addr
, reg
->chunks
);
3676 if (reg
->current_index
>= rdma
->local_ram_blocks
.nb_blocks
) {
3677 error_report("rdma: 'register' bad block index %u (vs %d)",
3678 (unsigned int)reg
->current_index
,
3679 rdma
->local_ram_blocks
.nb_blocks
);
3683 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3684 if (block
->is_ram_block
) {
3685 if (block
->offset
> reg
->key
.current_addr
) {
3686 error_report("rdma: bad register address for block %s"
3687 " offset: %" PRIx64
" current_addr: %" PRIx64
,
3688 block
->block_name
, block
->offset
,
3689 reg
->key
.current_addr
);
3693 host_addr
= (block
->local_host_addr
+
3694 (reg
->key
.current_addr
- block
->offset
));
3695 chunk
= ram_chunk_index(block
->local_host_addr
,
3696 (uint8_t *) host_addr
);
3698 chunk
= reg
->key
.chunk
;
3699 host_addr
= block
->local_host_addr
+
3700 (reg
->key
.chunk
* (1UL << RDMA_REG_CHUNK_SHIFT
));
3701 /* Check for particularly bad chunk value */
3702 if (host_addr
< (void *)block
->local_host_addr
) {
3703 error_report("rdma: bad chunk for block %s"
3705 block
->block_name
, reg
->key
.chunk
);
3710 chunk_start
= ram_chunk_start(block
, chunk
);
3711 chunk_end
= ram_chunk_end(block
, chunk
+ reg
->chunks
);
3712 /* avoid "-Waddress-of-packed-member" warning */
3713 uint32_t tmp_rkey
= 0;
3714 if (qemu_rdma_register_and_get_keys(rdma
, block
,
3715 (uintptr_t)host_addr
, NULL
, &tmp_rkey
,
3716 chunk
, chunk_start
, chunk_end
)) {
3717 error_report("cannot get rkey");
3721 reg_result
->rkey
= tmp_rkey
;
3723 reg_result
->host_addr
= (uintptr_t)block
->local_host_addr
;
3725 trace_qemu_rdma_registration_handle_register_rkey(
3728 result_to_network(reg_result
);
3731 ret
= qemu_rdma_post_send_control(rdma
,
3732 (uint8_t *) results
, ®_resp
);
3735 error_report("Failed to send control buffer");
3739 case RDMA_CONTROL_UNREGISTER_REQUEST
:
3740 trace_qemu_rdma_registration_handle_unregister(head
.repeat
);
3741 unreg_resp
.repeat
= head
.repeat
;
3742 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3744 for (count
= 0; count
< head
.repeat
; count
++) {
3745 reg
= ®isters
[count
];
3746 network_to_register(reg
);
3748 trace_qemu_rdma_registration_handle_unregister_loop(count
,
3749 reg
->current_index
, reg
->key
.chunk
);
3751 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3753 ret
= ibv_dereg_mr(block
->pmr
[reg
->key
.chunk
]);
3754 block
->pmr
[reg
->key
.chunk
] = NULL
;
3757 perror("rdma unregistration chunk failed");
3762 rdma
->total_registrations
--;
3764 trace_qemu_rdma_registration_handle_unregister_success(
3768 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &unreg_resp
);
3771 error_report("Failed to send control buffer");
3775 case RDMA_CONTROL_REGISTER_RESULT
:
3776 error_report("Invalid RESULT message at dest.");
3780 error_report("Unknown control message %s", control_desc(head
.type
));
3787 rdma
->error_state
= ret
;
3793 * Called via a ram_control_load_hook during the initial RAM load section which
3794 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3796 * We've already built our local RAMBlock list, but not yet sent the list to
3800 rdma_block_notification_handle(QIOChannelRDMA
*rioc
, const char *name
)
3806 RCU_READ_LOCK_GUARD();
3807 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
3813 /* Find the matching RAMBlock in our local list */
3814 for (curr
= 0; curr
< rdma
->local_ram_blocks
.nb_blocks
; curr
++) {
3815 if (!strcmp(rdma
->local_ram_blocks
.block
[curr
].block_name
, name
)) {
3822 error_report("RAMBlock '%s' not found on destination", name
);
3826 rdma
->local_ram_blocks
.block
[curr
].src_index
= rdma
->next_src_index
;
3827 trace_rdma_block_notification_handle(name
, rdma
->next_src_index
);
3828 rdma
->next_src_index
++;
3833 static int rdma_load_hook(QEMUFile
*f
, uint64_t flags
, void *data
)
3835 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3837 case RAM_CONTROL_BLOCK_REG
:
3838 return rdma_block_notification_handle(rioc
, data
);
3840 case RAM_CONTROL_HOOK
:
3841 return qemu_rdma_registration_handle(f
, rioc
);
3844 /* Shouldn't be called with any other values */
3849 static int qemu_rdma_registration_start(QEMUFile
*f
,
3850 uint64_t flags
, void *data
)
3852 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3855 RCU_READ_LOCK_GUARD();
3856 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3861 CHECK_ERROR_STATE();
3863 if (migration_in_postcopy()) {
3867 trace_qemu_rdma_registration_start(flags
);
3868 qemu_put_be64(f
, RAM_SAVE_FLAG_HOOK
);
3875 * Inform dest that dynamic registrations are done for now.
3876 * First, flush writes, if any.
3878 static int qemu_rdma_registration_stop(QEMUFile
*f
,
3879 uint64_t flags
, void *data
)
3881 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3883 RDMAControlHeader head
= { .len
= 0, .repeat
= 1 };
3886 RCU_READ_LOCK_GUARD();
3887 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3892 CHECK_ERROR_STATE();
3894 if (migration_in_postcopy()) {
3899 ret
= qemu_rdma_drain_cq(f
, rdma
);
3905 if (flags
== RAM_CONTROL_SETUP
) {
3906 RDMAControlHeader resp
= {.type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
};
3907 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3908 int reg_result_idx
, i
, nb_dest_blocks
;
3910 head
.type
= RDMA_CONTROL_RAM_BLOCKS_REQUEST
;
3911 trace_qemu_rdma_registration_stop_ram();
3914 * Make sure that we parallelize the pinning on both sides.
3915 * For very large guests, doing this serially takes a really
3916 * long time, so we have to 'interleave' the pinning locally
3917 * with the control messages by performing the pinning on this
3918 * side before we receive the control response from the other
3919 * side that the pinning has completed.
3921 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, &resp
,
3922 ®_result_idx
, rdma
->pin_all
?
3923 qemu_rdma_reg_whole_ram_blocks
: NULL
);
3925 fprintf(stderr
, "receiving remote info!");
3929 nb_dest_blocks
= resp
.len
/ sizeof(RDMADestBlock
);
3932 * The protocol uses two different sets of rkeys (mutually exclusive):
3933 * 1. One key to represent the virtual address of the entire ram block.
3934 * (dynamic chunk registration disabled - pin everything with one rkey.)
3935 * 2. One to represent individual chunks within a ram block.
3936 * (dynamic chunk registration enabled - pin individual chunks.)
3938 * Once the capability is successfully negotiated, the destination transmits
3939 * the keys to use (or sends them later) including the virtual addresses
3940 * and then propagates the remote ram block descriptions to his local copy.
3943 if (local
->nb_blocks
!= nb_dest_blocks
) {
3944 fprintf(stderr
, "ram blocks mismatch (Number of blocks %d vs %d) "
3945 "Your QEMU command line parameters are probably "
3946 "not identical on both the source and destination.",
3947 local
->nb_blocks
, nb_dest_blocks
);
3948 rdma
->error_state
= -EINVAL
;
3952 qemu_rdma_move_header(rdma
, reg_result_idx
, &resp
);
3953 memcpy(rdma
->dest_blocks
,
3954 rdma
->wr_data
[reg_result_idx
].control_curr
, resp
.len
);
3955 for (i
= 0; i
< nb_dest_blocks
; i
++) {
3956 network_to_dest_block(&rdma
->dest_blocks
[i
]);
3958 /* We require that the blocks are in the same order */
3959 if (rdma
->dest_blocks
[i
].length
!= local
->block
[i
].length
) {
3960 fprintf(stderr
, "Block %s/%d has a different length %" PRIu64
3961 "vs %" PRIu64
, local
->block
[i
].block_name
, i
,
3962 local
->block
[i
].length
,
3963 rdma
->dest_blocks
[i
].length
);
3964 rdma
->error_state
= -EINVAL
;
3967 local
->block
[i
].remote_host_addr
=
3968 rdma
->dest_blocks
[i
].remote_host_addr
;
3969 local
->block
[i
].remote_rkey
= rdma
->dest_blocks
[i
].remote_rkey
;
3973 trace_qemu_rdma_registration_stop(flags
);
3975 head
.type
= RDMA_CONTROL_REGISTER_FINISHED
;
3976 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, NULL
, NULL
, NULL
);
3984 rdma
->error_state
= ret
;
3988 static const QEMUFileHooks rdma_read_hooks
= {
3989 .hook_ram_load
= rdma_load_hook
,
3992 static const QEMUFileHooks rdma_write_hooks
= {
3993 .before_ram_iterate
= qemu_rdma_registration_start
,
3994 .after_ram_iterate
= qemu_rdma_registration_stop
,
3995 .save_page
= qemu_rdma_save_page
,
3999 static void qio_channel_rdma_finalize(Object
*obj
)
4001 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(obj
);
4003 qemu_rdma_cleanup(rioc
->rdmain
);
4004 g_free(rioc
->rdmain
);
4005 rioc
->rdmain
= NULL
;
4007 if (rioc
->rdmaout
) {
4008 qemu_rdma_cleanup(rioc
->rdmaout
);
4009 g_free(rioc
->rdmaout
);
4010 rioc
->rdmaout
= NULL
;
4014 static void qio_channel_rdma_class_init(ObjectClass
*klass
,
4015 void *class_data G_GNUC_UNUSED
)
4017 QIOChannelClass
*ioc_klass
= QIO_CHANNEL_CLASS(klass
);
4019 ioc_klass
->io_writev
= qio_channel_rdma_writev
;
4020 ioc_klass
->io_readv
= qio_channel_rdma_readv
;
4021 ioc_klass
->io_set_blocking
= qio_channel_rdma_set_blocking
;
4022 ioc_klass
->io_close
= qio_channel_rdma_close
;
4023 ioc_klass
->io_create_watch
= qio_channel_rdma_create_watch
;
4024 ioc_klass
->io_set_aio_fd_handler
= qio_channel_rdma_set_aio_fd_handler
;
4025 ioc_klass
->io_shutdown
= qio_channel_rdma_shutdown
;
4028 static const TypeInfo qio_channel_rdma_info
= {
4029 .parent
= TYPE_QIO_CHANNEL
,
4030 .name
= TYPE_QIO_CHANNEL_RDMA
,
4031 .instance_size
= sizeof(QIOChannelRDMA
),
4032 .instance_finalize
= qio_channel_rdma_finalize
,
4033 .class_init
= qio_channel_rdma_class_init
,
4036 static void qio_channel_rdma_register_types(void)
4038 type_register_static(&qio_channel_rdma_info
);
4041 type_init(qio_channel_rdma_register_types
);
4043 static QEMUFile
*qemu_fopen_rdma(RDMAContext
*rdma
, const char *mode
)
4045 QIOChannelRDMA
*rioc
;
4047 if (qemu_file_mode_is_not_valid(mode
)) {
4051 rioc
= QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA
));
4053 if (mode
[0] == 'w') {
4054 rioc
->file
= qemu_file_new_output(QIO_CHANNEL(rioc
));
4055 rioc
->rdmaout
= rdma
;
4056 rioc
->rdmain
= rdma
->return_path
;
4057 qemu_file_set_hooks(rioc
->file
, &rdma_write_hooks
);
4059 rioc
->file
= qemu_file_new_input(QIO_CHANNEL(rioc
));
4060 rioc
->rdmain
= rdma
;
4061 rioc
->rdmaout
= rdma
->return_path
;
4062 qemu_file_set_hooks(rioc
->file
, &rdma_read_hooks
);
4068 static void rdma_accept_incoming_migration(void *opaque
)
4070 RDMAContext
*rdma
= opaque
;
4073 Error
*local_err
= NULL
;
4075 trace_qemu_rdma_accept_incoming_migration();
4076 ret
= qemu_rdma_accept(rdma
);
4079 fprintf(stderr
, "RDMA ERROR: Migration initialization failed\n");
4083 trace_qemu_rdma_accept_incoming_migration_accepted();
4085 if (rdma
->is_return_path
) {
4089 f
= qemu_fopen_rdma(rdma
, "rb");
4091 fprintf(stderr
, "RDMA ERROR: could not qemu_fopen_rdma\n");
4092 qemu_rdma_cleanup(rdma
);
4096 rdma
->migration_started_on_destination
= 1;
4097 migration_fd_process_incoming(f
, &local_err
);
4099 error_reportf_err(local_err
, "RDMA ERROR:");
4103 void rdma_start_incoming_migration(const char *host_port
, Error
**errp
)
4106 RDMAContext
*rdma
, *rdma_return_path
= NULL
;
4107 Error
*local_err
= NULL
;
4109 trace_rdma_start_incoming_migration();
4111 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4112 if (ram_block_discard_is_required()) {
4113 error_setg(errp
, "RDMA: cannot disable RAM discard");
4117 rdma
= qemu_rdma_data_init(host_port
, &local_err
);
4122 ret
= qemu_rdma_dest_init(rdma
, &local_err
);
4128 trace_rdma_start_incoming_migration_after_dest_init();
4130 ret
= rdma_listen(rdma
->listen_id
, 5);
4133 ERROR(errp
, "listening on socket!");
4137 trace_rdma_start_incoming_migration_after_rdma_listen();
4139 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
4140 NULL
, (void *)(intptr_t)rdma
);
4144 qemu_rdma_cleanup(rdma
);
4146 error_propagate(errp
, local_err
);
4149 g_free(rdma
->host_port
);
4152 g_free(rdma_return_path
);
4155 void rdma_start_outgoing_migration(void *opaque
,
4156 const char *host_port
, Error
**errp
)
4158 MigrationState
*s
= opaque
;
4159 RDMAContext
*rdma_return_path
= NULL
;
4163 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4164 if (ram_block_discard_is_required()) {
4165 error_setg(errp
, "RDMA: cannot disable RAM discard");
4169 rdma
= qemu_rdma_data_init(host_port
, errp
);
4174 ret
= qemu_rdma_source_init(rdma
,
4175 s
->enabled_capabilities
[MIGRATION_CAPABILITY_RDMA_PIN_ALL
], errp
);
4181 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4182 ret
= qemu_rdma_connect(rdma
, errp
, false);
4188 /* RDMA postcopy need a separate queue pair for return path */
4189 if (migrate_postcopy()) {
4190 rdma_return_path
= qemu_rdma_data_init(host_port
, errp
);
4192 if (rdma_return_path
== NULL
) {
4193 goto return_path_err
;
4196 ret
= qemu_rdma_source_init(rdma_return_path
,
4197 s
->enabled_capabilities
[MIGRATION_CAPABILITY_RDMA_PIN_ALL
], errp
);
4200 goto return_path_err
;
4203 ret
= qemu_rdma_connect(rdma_return_path
, errp
, true);
4206 goto return_path_err
;
4209 rdma
->return_path
= rdma_return_path
;
4210 rdma_return_path
->return_path
= rdma
;
4211 rdma_return_path
->is_return_path
= true;
4214 trace_rdma_start_outgoing_migration_after_rdma_connect();
4216 s
->to_dst_file
= qemu_fopen_rdma(rdma
, "wb");
4217 migrate_fd_connect(s
, NULL
);
4220 qemu_rdma_cleanup(rdma
);
4223 g_free(rdma_return_path
);