target/mips: Remove XBurst Media eXtension Unit dead code
[qemu/ar7.git] / hw / ppc / spapr_hcall.c
blob7b5cd3553c26a0f5019b1d0e710cb08f24883745
1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
6 #include "qemu/log.h"
7 #include "qemu/main-loop.h"
8 #include "qemu/module.h"
9 #include "qemu/error-report.h"
10 #include "cpu.h"
11 #include "exec/exec-all.h"
12 #include "helper_regs.h"
13 #include "hw/ppc/spapr.h"
14 #include "hw/ppc/spapr_cpu_core.h"
15 #include "mmu-hash64.h"
16 #include "cpu-models.h"
17 #include "trace.h"
18 #include "kvm_ppc.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/spapr_ovec.h"
21 #include "mmu-book3s-v3.h"
22 #include "hw/mem/memory-device.h"
24 static bool has_spr(PowerPCCPU *cpu, int spr)
26 /* We can test whether the SPR is defined by checking for a valid name */
27 return cpu->env.spr_cb[spr].name != NULL;
30 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
33 * hash value/pteg group index is normalized by HPT mask
35 if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
36 return false;
38 return true;
41 static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
43 MachineState *machine = MACHINE(spapr);
44 DeviceMemoryState *dms = machine->device_memory;
46 if (addr < machine->ram_size) {
47 return true;
49 if ((addr >= dms->base)
50 && ((addr - dms->base) < memory_region_size(&dms->mr))) {
51 return true;
54 return false;
57 static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr,
58 target_ulong opcode, target_ulong *args)
60 target_ulong flags = args[0];
61 target_ulong ptex = args[1];
62 target_ulong pteh = args[2];
63 target_ulong ptel = args[3];
64 unsigned apshift;
65 target_ulong raddr;
66 target_ulong slot;
67 const ppc_hash_pte64_t *hptes;
69 apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
70 if (!apshift) {
71 /* Bad page size encoding */
72 return H_PARAMETER;
75 raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
77 if (is_ram_address(spapr, raddr)) {
78 /* Regular RAM - should have WIMG=0010 */
79 if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
80 return H_PARAMETER;
82 } else {
83 target_ulong wimg_flags;
84 /* Looks like an IO address */
85 /* FIXME: What WIMG combinations could be sensible for IO?
86 * For now we allow WIMG=010x, but are there others? */
87 /* FIXME: Should we check against registered IO addresses? */
88 wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
90 if (wimg_flags != HPTE64_R_I &&
91 wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
92 return H_PARAMETER;
96 pteh &= ~0x60ULL;
98 if (!valid_ptex(cpu, ptex)) {
99 return H_PARAMETER;
102 slot = ptex & 7ULL;
103 ptex = ptex & ~7ULL;
105 if (likely((flags & H_EXACT) == 0)) {
106 hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
107 for (slot = 0; slot < 8; slot++) {
108 if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
109 break;
112 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
113 if (slot == 8) {
114 return H_PTEG_FULL;
116 } else {
117 hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
118 if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
119 ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
120 return H_PTEG_FULL;
122 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
125 spapr_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
127 args[0] = ptex + slot;
128 return H_SUCCESS;
131 typedef enum {
132 REMOVE_SUCCESS = 0,
133 REMOVE_NOT_FOUND = 1,
134 REMOVE_PARM = 2,
135 REMOVE_HW = 3,
136 } RemoveResult;
138 static RemoveResult remove_hpte(PowerPCCPU *cpu
139 , target_ulong ptex,
140 target_ulong avpn,
141 target_ulong flags,
142 target_ulong *vp, target_ulong *rp)
144 const ppc_hash_pte64_t *hptes;
145 target_ulong v, r;
147 if (!valid_ptex(cpu, ptex)) {
148 return REMOVE_PARM;
151 hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
152 v = ppc_hash64_hpte0(cpu, hptes, 0);
153 r = ppc_hash64_hpte1(cpu, hptes, 0);
154 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
156 if ((v & HPTE64_V_VALID) == 0 ||
157 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
158 ((flags & H_ANDCOND) && (v & avpn) != 0)) {
159 return REMOVE_NOT_FOUND;
161 *vp = v;
162 *rp = r;
163 spapr_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
164 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
165 return REMOVE_SUCCESS;
168 static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
169 target_ulong opcode, target_ulong *args)
171 CPUPPCState *env = &cpu->env;
172 target_ulong flags = args[0];
173 target_ulong ptex = args[1];
174 target_ulong avpn = args[2];
175 RemoveResult ret;
177 ret = remove_hpte(cpu, ptex, avpn, flags,
178 &args[0], &args[1]);
180 switch (ret) {
181 case REMOVE_SUCCESS:
182 check_tlb_flush(env, true);
183 return H_SUCCESS;
185 case REMOVE_NOT_FOUND:
186 return H_NOT_FOUND;
188 case REMOVE_PARM:
189 return H_PARAMETER;
191 case REMOVE_HW:
192 return H_HARDWARE;
195 g_assert_not_reached();
198 #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL
199 #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL
200 #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL
201 #define H_BULK_REMOVE_END 0xc000000000000000ULL
202 #define H_BULK_REMOVE_CODE 0x3000000000000000ULL
203 #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL
204 #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL
205 #define H_BULK_REMOVE_PARM 0x2000000000000000ULL
206 #define H_BULK_REMOVE_HW 0x3000000000000000ULL
207 #define H_BULK_REMOVE_RC 0x0c00000000000000ULL
208 #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL
209 #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL
210 #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL
211 #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL
212 #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL
214 #define H_BULK_REMOVE_MAX_BATCH 4
216 static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
217 target_ulong opcode, target_ulong *args)
219 CPUPPCState *env = &cpu->env;
220 int i;
221 target_ulong rc = H_SUCCESS;
223 for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
224 target_ulong *tsh = &args[i*2];
225 target_ulong tsl = args[i*2 + 1];
226 target_ulong v, r, ret;
228 if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
229 break;
230 } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
231 return H_PARAMETER;
234 *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
235 *tsh |= H_BULK_REMOVE_RESPONSE;
237 if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
238 *tsh |= H_BULK_REMOVE_PARM;
239 return H_PARAMETER;
242 ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
243 (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
244 &v, &r);
246 *tsh |= ret << 60;
248 switch (ret) {
249 case REMOVE_SUCCESS:
250 *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
251 break;
253 case REMOVE_PARM:
254 rc = H_PARAMETER;
255 goto exit;
257 case REMOVE_HW:
258 rc = H_HARDWARE;
259 goto exit;
262 exit:
263 check_tlb_flush(env, true);
265 return rc;
268 static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr,
269 target_ulong opcode, target_ulong *args)
271 CPUPPCState *env = &cpu->env;
272 target_ulong flags = args[0];
273 target_ulong ptex = args[1];
274 target_ulong avpn = args[2];
275 const ppc_hash_pte64_t *hptes;
276 target_ulong v, r;
278 if (!valid_ptex(cpu, ptex)) {
279 return H_PARAMETER;
282 hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
283 v = ppc_hash64_hpte0(cpu, hptes, 0);
284 r = ppc_hash64_hpte1(cpu, hptes, 0);
285 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
287 if ((v & HPTE64_V_VALID) == 0 ||
288 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
289 return H_NOT_FOUND;
292 r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
293 HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
294 r |= (flags << 55) & HPTE64_R_PP0;
295 r |= (flags << 48) & HPTE64_R_KEY_HI;
296 r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
297 spapr_store_hpte(cpu, ptex,
298 (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
299 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
300 /* Flush the tlb */
301 check_tlb_flush(env, true);
302 /* Don't need a memory barrier, due to qemu's global lock */
303 spapr_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
304 return H_SUCCESS;
307 static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr,
308 target_ulong opcode, target_ulong *args)
310 target_ulong flags = args[0];
311 target_ulong ptex = args[1];
312 int i, ridx, n_entries = 1;
313 const ppc_hash_pte64_t *hptes;
315 if (!valid_ptex(cpu, ptex)) {
316 return H_PARAMETER;
319 if (flags & H_READ_4) {
320 /* Clear the two low order bits */
321 ptex &= ~(3ULL);
322 n_entries = 4;
325 hptes = ppc_hash64_map_hptes(cpu, ptex, n_entries);
326 for (i = 0, ridx = 0; i < n_entries; i++) {
327 args[ridx++] = ppc_hash64_hpte0(cpu, hptes, i);
328 args[ridx++] = ppc_hash64_hpte1(cpu, hptes, i);
330 ppc_hash64_unmap_hptes(cpu, hptes, ptex, n_entries);
332 return H_SUCCESS;
335 struct SpaprPendingHpt {
336 /* These fields are read-only after initialization */
337 int shift;
338 QemuThread thread;
340 /* These fields are protected by the BQL */
341 bool complete;
343 /* These fields are private to the preparation thread if
344 * !complete, otherwise protected by the BQL */
345 int ret;
346 void *hpt;
349 static void free_pending_hpt(SpaprPendingHpt *pending)
351 if (pending->hpt) {
352 qemu_vfree(pending->hpt);
355 g_free(pending);
358 static void *hpt_prepare_thread(void *opaque)
360 SpaprPendingHpt *pending = opaque;
361 size_t size = 1ULL << pending->shift;
363 pending->hpt = qemu_try_memalign(size, size);
364 if (pending->hpt) {
365 memset(pending->hpt, 0, size);
366 pending->ret = H_SUCCESS;
367 } else {
368 pending->ret = H_NO_MEM;
371 qemu_mutex_lock_iothread();
373 if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
374 /* Ready to go */
375 pending->complete = true;
376 } else {
377 /* We've been cancelled, clean ourselves up */
378 free_pending_hpt(pending);
381 qemu_mutex_unlock_iothread();
382 return NULL;
385 /* Must be called with BQL held */
386 static void cancel_hpt_prepare(SpaprMachineState *spapr)
388 SpaprPendingHpt *pending = spapr->pending_hpt;
390 /* Let the thread know it's cancelled */
391 spapr->pending_hpt = NULL;
393 if (!pending) {
394 /* Nothing to do */
395 return;
398 if (!pending->complete) {
399 /* thread will clean itself up */
400 return;
403 free_pending_hpt(pending);
406 /* Convert a return code from the KVM ioctl()s implementing resize HPT
407 * into a PAPR hypercall return code */
408 static target_ulong resize_hpt_convert_rc(int ret)
410 if (ret >= 100000) {
411 return H_LONG_BUSY_ORDER_100_SEC;
412 } else if (ret >= 10000) {
413 return H_LONG_BUSY_ORDER_10_SEC;
414 } else if (ret >= 1000) {
415 return H_LONG_BUSY_ORDER_1_SEC;
416 } else if (ret >= 100) {
417 return H_LONG_BUSY_ORDER_100_MSEC;
418 } else if (ret >= 10) {
419 return H_LONG_BUSY_ORDER_10_MSEC;
420 } else if (ret > 0) {
421 return H_LONG_BUSY_ORDER_1_MSEC;
424 switch (ret) {
425 case 0:
426 return H_SUCCESS;
427 case -EPERM:
428 return H_AUTHORITY;
429 case -EINVAL:
430 return H_PARAMETER;
431 case -ENXIO:
432 return H_CLOSED;
433 case -ENOSPC:
434 return H_PTEG_FULL;
435 case -EBUSY:
436 return H_BUSY;
437 case -ENOMEM:
438 return H_NO_MEM;
439 default:
440 return H_HARDWARE;
444 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
445 SpaprMachineState *spapr,
446 target_ulong opcode,
447 target_ulong *args)
449 target_ulong flags = args[0];
450 int shift = args[1];
451 SpaprPendingHpt *pending = spapr->pending_hpt;
452 uint64_t current_ram_size;
453 int rc;
455 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
456 return H_AUTHORITY;
459 if (!spapr->htab_shift) {
460 /* Radix guest, no HPT */
461 return H_NOT_AVAILABLE;
464 trace_spapr_h_resize_hpt_prepare(flags, shift);
466 if (flags != 0) {
467 return H_PARAMETER;
470 if (shift && ((shift < 18) || (shift > 46))) {
471 return H_PARAMETER;
474 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
476 /* We only allow the guest to allocate an HPT one order above what
477 * we'd normally give them (to stop a small guest claiming a huge
478 * chunk of resources in the HPT */
479 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
480 return H_RESOURCE;
483 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
484 if (rc != -ENOSYS) {
485 return resize_hpt_convert_rc(rc);
488 if (pending) {
489 /* something already in progress */
490 if (pending->shift == shift) {
491 /* and it's suitable */
492 if (pending->complete) {
493 return pending->ret;
494 } else {
495 return H_LONG_BUSY_ORDER_100_MSEC;
499 /* not suitable, cancel and replace */
500 cancel_hpt_prepare(spapr);
503 if (!shift) {
504 /* nothing to do */
505 return H_SUCCESS;
508 /* start new prepare */
510 pending = g_new0(SpaprPendingHpt, 1);
511 pending->shift = shift;
512 pending->ret = H_HARDWARE;
514 qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
515 hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
517 spapr->pending_hpt = pending;
519 /* In theory we could estimate the time more accurately based on
520 * the new size, but there's not much point */
521 return H_LONG_BUSY_ORDER_100_MSEC;
524 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
526 uint8_t *addr = htab;
528 addr += pteg * HASH_PTEG_SIZE_64;
529 addr += slot * HASH_PTE_SIZE_64;
530 return ldq_p(addr);
533 static void new_hpte_store(void *htab, uint64_t pteg, int slot,
534 uint64_t pte0, uint64_t pte1)
536 uint8_t *addr = htab;
538 addr += pteg * HASH_PTEG_SIZE_64;
539 addr += slot * HASH_PTE_SIZE_64;
541 stq_p(addr, pte0);
542 stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
545 static int rehash_hpte(PowerPCCPU *cpu,
546 const ppc_hash_pte64_t *hptes,
547 void *old_hpt, uint64_t oldsize,
548 void *new_hpt, uint64_t newsize,
549 uint64_t pteg, int slot)
551 uint64_t old_hash_mask = (oldsize >> 7) - 1;
552 uint64_t new_hash_mask = (newsize >> 7) - 1;
553 target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
554 target_ulong pte1;
555 uint64_t avpn;
556 unsigned base_pg_shift;
557 uint64_t hash, new_pteg, replace_pte0;
559 if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
560 return H_SUCCESS;
563 pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
565 base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
566 assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
567 avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
569 if (pte0 & HPTE64_V_SECONDARY) {
570 pteg = ~pteg;
573 if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
574 uint64_t offset, vsid;
576 /* We only have 28 - 23 bits of offset in avpn */
577 offset = (avpn & 0x1f) << 23;
578 vsid = avpn >> 5;
579 /* We can find more bits from the pteg value */
580 if (base_pg_shift < 23) {
581 offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
584 hash = vsid ^ (offset >> base_pg_shift);
585 } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
586 uint64_t offset, vsid;
588 /* We only have 40 - 23 bits of seg_off in avpn */
589 offset = (avpn & 0x1ffff) << 23;
590 vsid = avpn >> 17;
591 if (base_pg_shift < 23) {
592 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
593 << base_pg_shift;
596 hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
597 } else {
598 error_report("rehash_pte: Bad segment size in HPTE");
599 return H_HARDWARE;
602 new_pteg = hash & new_hash_mask;
603 if (pte0 & HPTE64_V_SECONDARY) {
604 assert(~pteg == (hash & old_hash_mask));
605 new_pteg = ~new_pteg;
606 } else {
607 assert(pteg == (hash & old_hash_mask));
609 assert((oldsize != newsize) || (pteg == new_pteg));
610 replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
612 * Strictly speaking, we don't need all these tests, since we only
613 * ever rehash bolted HPTEs. We might in future handle non-bolted
614 * HPTEs, though so make the logic correct for those cases as
615 * well.
617 if (replace_pte0 & HPTE64_V_VALID) {
618 assert(newsize < oldsize);
619 if (replace_pte0 & HPTE64_V_BOLTED) {
620 if (pte0 & HPTE64_V_BOLTED) {
621 /* Bolted collision, nothing we can do */
622 return H_PTEG_FULL;
623 } else {
624 /* Discard this hpte */
625 return H_SUCCESS;
630 new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
631 return H_SUCCESS;
634 static int rehash_hpt(PowerPCCPU *cpu,
635 void *old_hpt, uint64_t oldsize,
636 void *new_hpt, uint64_t newsize)
638 uint64_t n_ptegs = oldsize >> 7;
639 uint64_t pteg;
640 int slot;
641 int rc;
643 for (pteg = 0; pteg < n_ptegs; pteg++) {
644 hwaddr ptex = pteg * HPTES_PER_GROUP;
645 const ppc_hash_pte64_t *hptes
646 = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
648 if (!hptes) {
649 return H_HARDWARE;
652 for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
653 rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
654 pteg, slot);
655 if (rc != H_SUCCESS) {
656 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
657 return rc;
660 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
663 return H_SUCCESS;
666 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
668 int ret;
670 cpu_synchronize_state(cs);
672 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
673 if (ret < 0) {
674 error_report("failed to push sregs to KVM: %s", strerror(-ret));
675 exit(1);
679 static void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
681 CPUState *cs;
684 * This is a hack for the benefit of KVM PR - it abuses the SDR1
685 * slot in kvm_sregs to communicate the userspace address of the
686 * HPT
688 if (!kvm_enabled() || !spapr->htab) {
689 return;
692 CPU_FOREACH(cs) {
693 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
697 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
698 SpaprMachineState *spapr,
699 target_ulong opcode,
700 target_ulong *args)
702 target_ulong flags = args[0];
703 target_ulong shift = args[1];
704 SpaprPendingHpt *pending = spapr->pending_hpt;
705 int rc;
706 size_t newsize;
708 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
709 return H_AUTHORITY;
712 if (!spapr->htab_shift) {
713 /* Radix guest, no HPT */
714 return H_NOT_AVAILABLE;
717 trace_spapr_h_resize_hpt_commit(flags, shift);
719 rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
720 if (rc != -ENOSYS) {
721 rc = resize_hpt_convert_rc(rc);
722 if (rc == H_SUCCESS) {
723 /* Need to set the new htab_shift in the machine state */
724 spapr->htab_shift = shift;
726 return rc;
729 if (flags != 0) {
730 return H_PARAMETER;
733 if (!pending || (pending->shift != shift)) {
734 /* no matching prepare */
735 return H_CLOSED;
738 if (!pending->complete) {
739 /* prepare has not completed */
740 return H_BUSY;
743 /* Shouldn't have got past PREPARE without an HPT */
744 g_assert(spapr->htab_shift);
746 newsize = 1ULL << pending->shift;
747 rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
748 pending->hpt, newsize);
749 if (rc == H_SUCCESS) {
750 qemu_vfree(spapr->htab);
751 spapr->htab = pending->hpt;
752 spapr->htab_shift = pending->shift;
754 push_sregs_to_kvm_pr(spapr);
756 pending->hpt = NULL; /* so it's not free()d */
759 /* Clean up */
760 spapr->pending_hpt = NULL;
761 free_pending_hpt(pending);
763 return rc;
766 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
767 target_ulong opcode, target_ulong *args)
769 cpu_synchronize_state(CPU(cpu));
770 cpu->env.spr[SPR_SPRG0] = args[0];
772 return H_SUCCESS;
775 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
776 target_ulong opcode, target_ulong *args)
778 if (!has_spr(cpu, SPR_DABR)) {
779 return H_HARDWARE; /* DABR register not available */
781 cpu_synchronize_state(CPU(cpu));
783 if (has_spr(cpu, SPR_DABRX)) {
784 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
785 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
786 return H_RESERVED_DABR;
789 cpu->env.spr[SPR_DABR] = args[0];
790 return H_SUCCESS;
793 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
794 target_ulong opcode, target_ulong *args)
796 target_ulong dabrx = args[1];
798 if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
799 return H_HARDWARE;
802 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
803 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
804 return H_PARAMETER;
807 cpu_synchronize_state(CPU(cpu));
808 cpu->env.spr[SPR_DABRX] = dabrx;
809 cpu->env.spr[SPR_DABR] = args[0];
811 return H_SUCCESS;
814 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
815 target_ulong opcode, target_ulong *args)
817 target_ulong flags = args[0];
818 hwaddr dst = args[1];
819 hwaddr src = args[2];
820 hwaddr len = TARGET_PAGE_SIZE;
821 uint8_t *pdst, *psrc;
822 target_long ret = H_SUCCESS;
824 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
825 | H_COPY_PAGE | H_ZERO_PAGE)) {
826 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
827 flags);
828 return H_PARAMETER;
831 /* Map-in destination */
832 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
833 return H_PARAMETER;
835 pdst = cpu_physical_memory_map(dst, &len, true);
836 if (!pdst || len != TARGET_PAGE_SIZE) {
837 return H_PARAMETER;
840 if (flags & H_COPY_PAGE) {
841 /* Map-in source, copy to destination, and unmap source again */
842 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
843 ret = H_PARAMETER;
844 goto unmap_out;
846 psrc = cpu_physical_memory_map(src, &len, false);
847 if (!psrc || len != TARGET_PAGE_SIZE) {
848 ret = H_PARAMETER;
849 goto unmap_out;
851 memcpy(pdst, psrc, len);
852 cpu_physical_memory_unmap(psrc, len, 0, len);
853 } else if (flags & H_ZERO_PAGE) {
854 memset(pdst, 0, len); /* Just clear the destination page */
857 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
858 kvmppc_dcbst_range(cpu, pdst, len);
860 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
861 if (kvm_enabled()) {
862 kvmppc_icbi_range(cpu, pdst, len);
863 } else {
864 tb_flush(CPU(cpu));
868 unmap_out:
869 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
870 return ret;
873 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
874 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
875 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
876 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
877 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
878 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
880 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
882 CPUState *cs = CPU(cpu);
883 CPUPPCState *env = &cpu->env;
884 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
885 uint16_t size;
886 uint8_t tmp;
888 if (vpa == 0) {
889 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
890 return H_HARDWARE;
893 if (vpa % env->dcache_line_size) {
894 return H_PARAMETER;
896 /* FIXME: bounds check the address */
898 size = lduw_be_phys(cs->as, vpa + 0x4);
900 if (size < VPA_MIN_SIZE) {
901 return H_PARAMETER;
904 /* VPA is not allowed to cross a page boundary */
905 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
906 return H_PARAMETER;
909 spapr_cpu->vpa_addr = vpa;
911 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
912 tmp |= VPA_SHARED_PROC_VAL;
913 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
915 return H_SUCCESS;
918 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
920 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
922 if (spapr_cpu->slb_shadow_addr) {
923 return H_RESOURCE;
926 if (spapr_cpu->dtl_addr) {
927 return H_RESOURCE;
930 spapr_cpu->vpa_addr = 0;
931 return H_SUCCESS;
934 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
936 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
937 uint32_t size;
939 if (addr == 0) {
940 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
941 return H_HARDWARE;
944 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
945 if (size < 0x8) {
946 return H_PARAMETER;
949 if ((addr / 4096) != ((addr + size - 1) / 4096)) {
950 return H_PARAMETER;
953 if (!spapr_cpu->vpa_addr) {
954 return H_RESOURCE;
957 spapr_cpu->slb_shadow_addr = addr;
958 spapr_cpu->slb_shadow_size = size;
960 return H_SUCCESS;
963 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
965 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
967 spapr_cpu->slb_shadow_addr = 0;
968 spapr_cpu->slb_shadow_size = 0;
969 return H_SUCCESS;
972 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
974 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
975 uint32_t size;
977 if (addr == 0) {
978 hcall_dprintf("Can't cope with DTL at logical 0\n");
979 return H_HARDWARE;
982 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
984 if (size < 48) {
985 return H_PARAMETER;
988 if (!spapr_cpu->vpa_addr) {
989 return H_RESOURCE;
992 spapr_cpu->dtl_addr = addr;
993 spapr_cpu->dtl_size = size;
995 return H_SUCCESS;
998 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
1000 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1002 spapr_cpu->dtl_addr = 0;
1003 spapr_cpu->dtl_size = 0;
1005 return H_SUCCESS;
1008 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
1009 target_ulong opcode, target_ulong *args)
1011 target_ulong flags = args[0];
1012 target_ulong procno = args[1];
1013 target_ulong vpa = args[2];
1014 target_ulong ret = H_PARAMETER;
1015 PowerPCCPU *tcpu;
1017 tcpu = spapr_find_cpu(procno);
1018 if (!tcpu) {
1019 return H_PARAMETER;
1022 switch (flags) {
1023 case FLAGS_REGISTER_VPA:
1024 ret = register_vpa(tcpu, vpa);
1025 break;
1027 case FLAGS_DEREGISTER_VPA:
1028 ret = deregister_vpa(tcpu, vpa);
1029 break;
1031 case FLAGS_REGISTER_SLBSHADOW:
1032 ret = register_slb_shadow(tcpu, vpa);
1033 break;
1035 case FLAGS_DEREGISTER_SLBSHADOW:
1036 ret = deregister_slb_shadow(tcpu, vpa);
1037 break;
1039 case FLAGS_REGISTER_DTL:
1040 ret = register_dtl(tcpu, vpa);
1041 break;
1043 case FLAGS_DEREGISTER_DTL:
1044 ret = deregister_dtl(tcpu, vpa);
1045 break;
1048 return ret;
1051 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
1052 target_ulong opcode, target_ulong *args)
1054 CPUPPCState *env = &cpu->env;
1055 CPUState *cs = CPU(cpu);
1056 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1058 env->msr |= (1ULL << MSR_EE);
1059 hreg_compute_hflags(env);
1061 if (spapr_cpu->prod) {
1062 spapr_cpu->prod = false;
1063 return H_SUCCESS;
1066 if (!cpu_has_work(cs)) {
1067 cs->halted = 1;
1068 cs->exception_index = EXCP_HLT;
1069 cs->exit_request = 1;
1072 return H_SUCCESS;
1076 * Confer to self, aka join. Cede could use the same pattern as well, if
1077 * EXCP_HLT can be changed to ECXP_HALTED.
1079 static target_ulong h_confer_self(PowerPCCPU *cpu)
1081 CPUState *cs = CPU(cpu);
1082 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1084 if (spapr_cpu->prod) {
1085 spapr_cpu->prod = false;
1086 return H_SUCCESS;
1088 cs->halted = 1;
1089 cs->exception_index = EXCP_HALTED;
1090 cs->exit_request = 1;
1092 return H_SUCCESS;
1095 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
1096 target_ulong opcode, target_ulong *args)
1098 CPUPPCState *env = &cpu->env;
1099 CPUState *cs;
1100 bool last_unjoined = true;
1102 if (env->msr & (1ULL << MSR_EE)) {
1103 return H_BAD_MODE;
1107 * Must not join the last CPU running. Interestingly, no such restriction
1108 * for H_CONFER-to-self, but that is probably not intended to be used
1109 * when H_JOIN is available.
1111 CPU_FOREACH(cs) {
1112 PowerPCCPU *c = POWERPC_CPU(cs);
1113 CPUPPCState *e = &c->env;
1114 if (c == cpu) {
1115 continue;
1118 /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
1119 if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
1120 last_unjoined = false;
1121 break;
1124 if (last_unjoined) {
1125 return H_CONTINUE;
1128 return h_confer_self(cpu);
1131 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
1132 target_ulong opcode, target_ulong *args)
1134 target_long target = args[0];
1135 uint32_t dispatch = args[1];
1136 CPUState *cs = CPU(cpu);
1137 SpaprCpuState *spapr_cpu;
1140 * -1 means confer to all other CPUs without dispatch counter check,
1141 * otherwise it's a targeted confer.
1143 if (target != -1) {
1144 PowerPCCPU *target_cpu = spapr_find_cpu(target);
1145 uint32_t target_dispatch;
1147 if (!target_cpu) {
1148 return H_PARAMETER;
1152 * target == self is a special case, we wait until prodded, without
1153 * dispatch counter check.
1155 if (cpu == target_cpu) {
1156 return h_confer_self(cpu);
1159 spapr_cpu = spapr_cpu_state(target_cpu);
1160 if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
1161 return H_SUCCESS;
1164 target_dispatch = ldl_be_phys(cs->as,
1165 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
1166 if (target_dispatch != dispatch) {
1167 return H_SUCCESS;
1171 * The targeted confer does not do anything special beyond yielding
1172 * the current vCPU, but even this should be better than nothing.
1173 * At least for single-threaded tcg, it gives the target a chance to
1174 * run before we run again. Multi-threaded tcg does not really do
1175 * anything with EXCP_YIELD yet.
1179 cs->exception_index = EXCP_YIELD;
1180 cs->exit_request = 1;
1181 cpu_loop_exit(cs);
1183 return H_SUCCESS;
1186 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
1187 target_ulong opcode, target_ulong *args)
1189 target_long target = args[0];
1190 PowerPCCPU *tcpu;
1191 CPUState *cs;
1192 SpaprCpuState *spapr_cpu;
1194 tcpu = spapr_find_cpu(target);
1195 cs = CPU(tcpu);
1196 if (!cs) {
1197 return H_PARAMETER;
1200 spapr_cpu = spapr_cpu_state(tcpu);
1201 spapr_cpu->prod = true;
1202 cs->halted = 0;
1203 qemu_cpu_kick(cs);
1205 return H_SUCCESS;
1208 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
1209 target_ulong opcode, target_ulong *args)
1211 target_ulong rtas_r3 = args[0];
1212 uint32_t token = rtas_ld(rtas_r3, 0);
1213 uint32_t nargs = rtas_ld(rtas_r3, 1);
1214 uint32_t nret = rtas_ld(rtas_r3, 2);
1216 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1217 nret, rtas_r3 + 12 + 4*nargs);
1220 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
1221 target_ulong opcode, target_ulong *args)
1223 CPUState *cs = CPU(cpu);
1224 target_ulong size = args[0];
1225 target_ulong addr = args[1];
1227 switch (size) {
1228 case 1:
1229 args[0] = ldub_phys(cs->as, addr);
1230 return H_SUCCESS;
1231 case 2:
1232 args[0] = lduw_phys(cs->as, addr);
1233 return H_SUCCESS;
1234 case 4:
1235 args[0] = ldl_phys(cs->as, addr);
1236 return H_SUCCESS;
1237 case 8:
1238 args[0] = ldq_phys(cs->as, addr);
1239 return H_SUCCESS;
1241 return H_PARAMETER;
1244 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
1245 target_ulong opcode, target_ulong *args)
1247 CPUState *cs = CPU(cpu);
1249 target_ulong size = args[0];
1250 target_ulong addr = args[1];
1251 target_ulong val = args[2];
1253 switch (size) {
1254 case 1:
1255 stb_phys(cs->as, addr, val);
1256 return H_SUCCESS;
1257 case 2:
1258 stw_phys(cs->as, addr, val);
1259 return H_SUCCESS;
1260 case 4:
1261 stl_phys(cs->as, addr, val);
1262 return H_SUCCESS;
1263 case 8:
1264 stq_phys(cs->as, addr, val);
1265 return H_SUCCESS;
1267 return H_PARAMETER;
1270 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
1271 target_ulong opcode, target_ulong *args)
1273 CPUState *cs = CPU(cpu);
1275 target_ulong dst = args[0]; /* Destination address */
1276 target_ulong src = args[1]; /* Source address */
1277 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1278 target_ulong count = args[3]; /* Element count */
1279 target_ulong op = args[4]; /* 0 = copy, 1 = invert */
1280 uint64_t tmp;
1281 unsigned int mask = (1 << esize) - 1;
1282 int step = 1 << esize;
1284 if (count > 0x80000000) {
1285 return H_PARAMETER;
1288 if ((dst & mask) || (src & mask) || (op > 1)) {
1289 return H_PARAMETER;
1292 if (dst >= src && dst < (src + (count << esize))) {
1293 dst = dst + ((count - 1) << esize);
1294 src = src + ((count - 1) << esize);
1295 step = -step;
1298 while (count--) {
1299 switch (esize) {
1300 case 0:
1301 tmp = ldub_phys(cs->as, src);
1302 break;
1303 case 1:
1304 tmp = lduw_phys(cs->as, src);
1305 break;
1306 case 2:
1307 tmp = ldl_phys(cs->as, src);
1308 break;
1309 case 3:
1310 tmp = ldq_phys(cs->as, src);
1311 break;
1312 default:
1313 return H_PARAMETER;
1315 if (op == 1) {
1316 tmp = ~tmp;
1318 switch (esize) {
1319 case 0:
1320 stb_phys(cs->as, dst, tmp);
1321 break;
1322 case 1:
1323 stw_phys(cs->as, dst, tmp);
1324 break;
1325 case 2:
1326 stl_phys(cs->as, dst, tmp);
1327 break;
1328 case 3:
1329 stq_phys(cs->as, dst, tmp);
1330 break;
1332 dst = dst + step;
1333 src = src + step;
1336 return H_SUCCESS;
1339 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
1340 target_ulong opcode, target_ulong *args)
1342 /* Nothing to do on emulation, KVM will trap this in the kernel */
1343 return H_SUCCESS;
1346 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
1347 target_ulong opcode, target_ulong *args)
1349 /* Nothing to do on emulation, KVM will trap this in the kernel */
1350 return H_SUCCESS;
1353 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1354 SpaprMachineState *spapr,
1355 target_ulong mflags,
1356 target_ulong value1,
1357 target_ulong value2)
1359 if (value1) {
1360 return H_P3;
1362 if (value2) {
1363 return H_P4;
1366 switch (mflags) {
1367 case H_SET_MODE_ENDIAN_BIG:
1368 spapr_set_all_lpcrs(0, LPCR_ILE);
1369 spapr_pci_switch_vga(spapr, true);
1370 return H_SUCCESS;
1372 case H_SET_MODE_ENDIAN_LITTLE:
1373 spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
1374 spapr_pci_switch_vga(spapr, false);
1375 return H_SUCCESS;
1378 return H_UNSUPPORTED_FLAG;
1381 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1382 target_ulong mflags,
1383 target_ulong value1,
1384 target_ulong value2)
1386 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1388 if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1389 return H_P2;
1391 if (value1) {
1392 return H_P3;
1394 if (value2) {
1395 return H_P4;
1398 if (mflags == AIL_RESERVED) {
1399 return H_UNSUPPORTED_FLAG;
1402 spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1404 return H_SUCCESS;
1407 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
1408 target_ulong opcode, target_ulong *args)
1410 target_ulong resource = args[1];
1411 target_ulong ret = H_P2;
1413 switch (resource) {
1414 case H_SET_MODE_RESOURCE_LE:
1415 ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
1416 break;
1417 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1418 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1419 args[2], args[3]);
1420 break;
1423 return ret;
1426 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
1427 target_ulong opcode, target_ulong *args)
1429 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1430 opcode, " (H_CLEAN_SLB)");
1431 return H_FUNCTION;
1434 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
1435 target_ulong opcode, target_ulong *args)
1437 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1438 opcode, " (H_INVALIDATE_PID)");
1439 return H_FUNCTION;
1442 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
1443 uint64_t patbe_old, uint64_t patbe_new)
1446 * We have 4 Options:
1447 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1448 * HASH->RADIX : Free HPT
1449 * RADIX->HASH : Allocate HPT
1450 * NOTHING->HASH : Allocate HPT
1451 * Note: NOTHING implies the case where we said the guest could choose
1452 * later and so assumed radix and now it's called H_REG_PROC_TBL
1455 if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
1456 /* We assume RADIX, so this catches all the "Do Nothing" cases */
1457 } else if (!(patbe_old & PATE1_GR)) {
1458 /* HASH->RADIX : Free HPT */
1459 spapr_free_hpt(spapr);
1460 } else if (!(patbe_new & PATE1_GR)) {
1461 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1462 spapr_setup_hpt(spapr);
1464 return;
1467 #define FLAGS_MASK 0x01FULL
1468 #define FLAG_MODIFY 0x10
1469 #define FLAG_REGISTER 0x08
1470 #define FLAG_RADIX 0x04
1471 #define FLAG_HASH_PROC_TBL 0x02
1472 #define FLAG_GTSE 0x01
1474 static target_ulong h_register_process_table(PowerPCCPU *cpu,
1475 SpaprMachineState *spapr,
1476 target_ulong opcode,
1477 target_ulong *args)
1479 target_ulong flags = args[0];
1480 target_ulong proc_tbl = args[1];
1481 target_ulong page_size = args[2];
1482 target_ulong table_size = args[3];
1483 target_ulong update_lpcr = 0;
1484 uint64_t cproc;
1486 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1487 return H_PARAMETER;
1489 if (flags & FLAG_MODIFY) {
1490 if (flags & FLAG_REGISTER) {
1491 if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1492 if (proc_tbl & 0xfff || proc_tbl >> 60) {
1493 return H_P2;
1494 } else if (page_size) {
1495 return H_P3;
1496 } else if (table_size > 24) {
1497 return H_P4;
1499 cproc = PATE1_GR | proc_tbl | table_size;
1500 } else { /* Register new HPT process table */
1501 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1502 /* TODO - Not Supported */
1503 /* Technically caused by flag bits => H_PARAMETER */
1504 return H_PARAMETER;
1505 } else { /* Hash with SLB */
1506 if (proc_tbl >> 38) {
1507 return H_P2;
1508 } else if (page_size & ~0x7) {
1509 return H_P3;
1510 } else if (table_size > 24) {
1511 return H_P4;
1514 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1517 } else { /* Deregister current process table */
1519 * Set to benign value: (current GR) | 0. This allows
1520 * deregistration in KVM to succeed even if the radix bit
1521 * in flags doesn't match the radix bit in the old PATE.
1523 cproc = spapr->patb_entry & PATE1_GR;
1525 } else { /* Maintain current registration */
1526 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
1527 /* Technically caused by flag bits => H_PARAMETER */
1528 return H_PARAMETER; /* Existing Process Table Mismatch */
1530 cproc = spapr->patb_entry;
1533 /* Check if we need to setup OR free the hpt */
1534 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1536 spapr->patb_entry = cproc; /* Save new process table */
1538 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
1539 if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */
1540 update_lpcr |= (LPCR_UPRT | LPCR_HR);
1541 else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
1542 update_lpcr |= LPCR_UPRT;
1543 if (flags & FLAG_GTSE) /* Guest translation shootdown enable */
1544 update_lpcr |= LPCR_GTSE;
1546 spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
1548 if (kvm_enabled()) {
1549 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1550 flags & FLAG_GTSE, cproc);
1552 return H_SUCCESS;
1555 #define H_SIGNAL_SYS_RESET_ALL -1
1556 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
1558 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1559 SpaprMachineState *spapr,
1560 target_ulong opcode, target_ulong *args)
1562 target_long target = args[0];
1563 CPUState *cs;
1565 if (target < 0) {
1566 /* Broadcast */
1567 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1568 return H_PARAMETER;
1571 CPU_FOREACH(cs) {
1572 PowerPCCPU *c = POWERPC_CPU(cs);
1574 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1575 if (c == cpu) {
1576 continue;
1579 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1581 return H_SUCCESS;
1583 } else {
1584 /* Unicast */
1585 cs = CPU(spapr_find_cpu(target));
1586 if (cs) {
1587 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1588 return H_SUCCESS;
1590 return H_PARAMETER;
1594 /* Returns either a logical PVR or zero if none was found */
1595 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1596 target_ulong *addr, bool *raw_mode_supported)
1598 bool explicit_match = false; /* Matched the CPU's real PVR */
1599 uint32_t best_compat = 0;
1600 int i;
1603 * We scan the supplied table of PVRs looking for two things
1604 * 1. Is our real CPU PVR in the list?
1605 * 2. What's the "best" listed logical PVR
1607 for (i = 0; i < 512; ++i) {
1608 uint32_t pvr, pvr_mask;
1610 pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1611 pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1612 *addr += 8;
1614 if (~pvr_mask & pvr) {
1615 break; /* Terminator record */
1618 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1619 explicit_match = true;
1620 } else {
1621 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1622 best_compat = pvr;
1627 *raw_mode_supported = explicit_match;
1629 /* Parsing finished */
1630 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1632 return best_compat;
1635 static
1636 target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1637 SpaprMachineState *spapr,
1638 target_ulong vec,
1639 target_ulong fdt_bufsize)
1641 target_ulong ov_table; /* Working address in data buffer */
1642 uint32_t cas_pvr;
1643 SpaprOptionVector *ov1_guest, *ov5_guest;
1644 bool guest_radix;
1645 bool raw_mode_supported = false;
1646 bool guest_xive;
1647 CPUState *cs;
1648 void *fdt;
1649 uint32_t max_compat = spapr->max_compat_pvr;
1651 /* CAS is supposed to be called early when only the boot vCPU is active. */
1652 CPU_FOREACH(cs) {
1653 if (cs == CPU(cpu)) {
1654 continue;
1656 if (!cs->halted) {
1657 warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1658 return H_MULTI_THREADS_ACTIVE;
1662 cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1663 if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1665 * We couldn't find a suitable compatibility mode, and either
1666 * the guest doesn't support "raw" mode for this CPU, or "raw"
1667 * mode is disabled because a maximum compat mode is set.
1669 error_report("Couldn't negotiate a suitable PVR during CAS");
1670 return H_HARDWARE;
1673 /* Update CPUs */
1674 if (cpu->compat_pvr != cas_pvr) {
1675 Error *local_err = NULL;
1677 if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1678 /* We fail to set compat mode (likely because running with KVM PR),
1679 * but maybe we can fallback to raw mode if the guest supports it.
1681 if (!raw_mode_supported) {
1682 error_report_err(local_err);
1683 return H_HARDWARE;
1685 error_free(local_err);
1689 /* For the future use: here @ov_table points to the first option vector */
1690 ov_table = vec;
1692 ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1693 if (!ov1_guest) {
1694 warn_report("guest didn't provide option vector 1");
1695 return H_PARAMETER;
1697 ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1698 if (!ov5_guest) {
1699 spapr_ovec_cleanup(ov1_guest);
1700 warn_report("guest didn't provide option vector 5");
1701 return H_PARAMETER;
1703 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1704 error_report("guest requested hash and radix MMU, which is invalid.");
1705 exit(EXIT_FAILURE);
1707 if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1708 error_report("guest requested an invalid interrupt mode");
1709 exit(EXIT_FAILURE);
1712 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1714 guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1717 * HPT resizing is a bit of a special case, because when enabled
1718 * we assume an HPT guest will support it until it says it
1719 * doesn't, instead of assuming it won't support it until it says
1720 * it does. Strictly speaking that approach could break for
1721 * guests which don't make a CAS call, but those are so old we
1722 * don't care about them. Without that assumption we'd have to
1723 * make at least a temporary allocation of an HPT sized for max
1724 * memory, which could be impossibly difficult under KVM HV if
1725 * maxram is large.
1727 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1728 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1730 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1731 error_report(
1732 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1733 exit(1);
1736 if (spapr->htab_shift < maxshift) {
1737 /* Guest doesn't know about HPT resizing, so we
1738 * pre-emptively resize for the maximum permitted RAM. At
1739 * the point this is called, nothing should have been
1740 * entered into the existing HPT */
1741 spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1742 push_sregs_to_kvm_pr(spapr);
1746 /* NOTE: there are actually a number of ov5 bits where input from the
1747 * guest is always zero, and the platform/QEMU enables them independently
1748 * of guest input. To model these properly we'd want some sort of mask,
1749 * but since they only currently apply to memory migration as defined
1750 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1751 * to worry about this for now.
1754 /* full range of negotiated ov5 capabilities */
1755 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1756 spapr_ovec_cleanup(ov5_guest);
1758 if (guest_radix) {
1759 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1760 error_report("Guest requested unavailable MMU mode (radix).");
1761 exit(EXIT_FAILURE);
1763 } else {
1764 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1765 && !kvmppc_has_cap_mmu_hash_v3()) {
1766 error_report("Guest requested unavailable MMU mode (hash).");
1767 exit(EXIT_FAILURE);
1770 spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1771 spapr_ovec_cleanup(ov1_guest);
1774 * Ensure the guest asks for an interrupt mode we support;
1775 * otherwise terminate the boot.
1777 if (guest_xive) {
1778 if (!spapr->irq->xive) {
1779 error_report(
1780 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1781 exit(EXIT_FAILURE);
1783 } else {
1784 if (!spapr->irq->xics) {
1785 error_report(
1786 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1787 exit(EXIT_FAILURE);
1791 spapr_irq_update_active_intc(spapr);
1794 * Process all pending hot-plug/unplug requests now. An updated full
1795 * rendered FDT will be returned to the guest.
1797 spapr_drc_reset_all(spapr);
1798 spapr_clear_pending_hotplug_events(spapr);
1801 * If spapr_machine_reset() did not set up a HPT but one is necessary
1802 * (because the guest isn't going to use radix) then set it up here.
1804 if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1805 /* legacy hash or new hash: */
1806 spapr_setup_hpt(spapr);
1809 fdt = spapr_build_fdt(spapr, false, fdt_bufsize);
1811 g_free(spapr->fdt_blob);
1812 spapr->fdt_size = fdt_totalsize(fdt);
1813 spapr->fdt_initial_size = spapr->fdt_size;
1814 spapr->fdt_blob = fdt;
1816 return H_SUCCESS;
1819 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1820 SpaprMachineState *spapr,
1821 target_ulong opcode,
1822 target_ulong *args)
1824 target_ulong vec = ppc64_phys_to_real(args[0]);
1825 target_ulong fdt_buf = args[1];
1826 target_ulong fdt_bufsize = args[2];
1827 target_ulong ret;
1828 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1830 if (fdt_bufsize < sizeof(hdr)) {
1831 error_report("SLOF provided insufficient CAS buffer "
1832 TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1833 exit(EXIT_FAILURE);
1836 fdt_bufsize -= sizeof(hdr);
1838 ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1839 if (ret == H_SUCCESS) {
1840 _FDT((fdt_pack(spapr->fdt_blob)));
1841 spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1842 spapr->fdt_initial_size = spapr->fdt_size;
1844 cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1845 cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1846 spapr->fdt_size);
1847 trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1850 return ret;
1853 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1854 SpaprMachineState *spapr,
1855 target_ulong opcode,
1856 target_ulong *args)
1858 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1859 ~H_CPU_CHAR_THR_RECONF_TRIG;
1860 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1861 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1862 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1863 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1864 uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1865 SPAPR_CAP_CCF_ASSIST);
1867 switch (safe_cache) {
1868 case SPAPR_CAP_WORKAROUND:
1869 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1870 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1871 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1872 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1873 break;
1874 case SPAPR_CAP_FIXED:
1875 break;
1876 default: /* broken */
1877 assert(safe_cache == SPAPR_CAP_BROKEN);
1878 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1879 break;
1882 switch (safe_bounds_check) {
1883 case SPAPR_CAP_WORKAROUND:
1884 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1885 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1886 break;
1887 case SPAPR_CAP_FIXED:
1888 break;
1889 default: /* broken */
1890 assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1891 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1892 break;
1895 switch (safe_indirect_branch) {
1896 case SPAPR_CAP_FIXED_NA:
1897 break;
1898 case SPAPR_CAP_FIXED_CCD:
1899 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1900 break;
1901 case SPAPR_CAP_FIXED_IBS:
1902 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1903 break;
1904 case SPAPR_CAP_WORKAROUND:
1905 behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1906 if (count_cache_flush_assist) {
1907 characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1909 break;
1910 default: /* broken */
1911 assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1912 break;
1915 args[0] = characteristics;
1916 args[1] = behaviour;
1917 return H_SUCCESS;
1920 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1921 target_ulong opcode, target_ulong *args)
1923 target_ulong dt = ppc64_phys_to_real(args[0]);
1924 struct fdt_header hdr = { 0 };
1925 unsigned cb;
1926 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1927 void *fdt;
1929 cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1930 cb = fdt32_to_cpu(hdr.totalsize);
1932 if (!smc->update_dt_enabled) {
1933 return H_SUCCESS;
1936 /* Check that the fdt did not grow out of proportion */
1937 if (cb > spapr->fdt_initial_size * 2) {
1938 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1939 fdt32_to_cpu(hdr.magic));
1940 return H_PARAMETER;
1943 fdt = g_malloc0(cb);
1944 cpu_physical_memory_read(dt, fdt, cb);
1946 /* Check the fdt consistency */
1947 if (fdt_check_full(fdt, cb)) {
1948 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1949 fdt32_to_cpu(hdr.magic));
1950 return H_PARAMETER;
1953 g_free(spapr->fdt_blob);
1954 spapr->fdt_size = cb;
1955 spapr->fdt_blob = fdt;
1956 trace_spapr_update_dt(cb);
1958 return H_SUCCESS;
1961 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1962 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1963 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1965 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1967 spapr_hcall_fn *slot;
1969 if (opcode <= MAX_HCALL_OPCODE) {
1970 assert((opcode & 0x3) == 0);
1972 slot = &papr_hypercall_table[opcode / 4];
1973 } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1974 /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1975 assert((opcode & 0x3) == 0);
1977 slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1978 } else {
1979 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1981 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1984 assert(!(*slot));
1985 *slot = fn;
1988 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1989 target_ulong *args)
1991 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1993 if ((opcode <= MAX_HCALL_OPCODE)
1994 && ((opcode & 0x3) == 0)) {
1995 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1997 if (fn) {
1998 return fn(cpu, spapr, opcode, args);
2000 } else if ((opcode >= SVM_HCALL_BASE) &&
2001 (opcode <= SVM_HCALL_MAX)) {
2002 spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
2004 if (fn) {
2005 return fn(cpu, spapr, opcode, args);
2007 } else if ((opcode >= KVMPPC_HCALL_BASE) &&
2008 (opcode <= KVMPPC_HCALL_MAX)) {
2009 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
2011 if (fn) {
2012 return fn(cpu, spapr, opcode, args);
2016 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
2017 opcode);
2018 return H_FUNCTION;
2021 static void hypercall_register_types(void)
2023 /* hcall-pft */
2024 spapr_register_hypercall(H_ENTER, h_enter);
2025 spapr_register_hypercall(H_REMOVE, h_remove);
2026 spapr_register_hypercall(H_PROTECT, h_protect);
2027 spapr_register_hypercall(H_READ, h_read);
2029 /* hcall-bulk */
2030 spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
2032 /* hcall-hpt-resize */
2033 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
2034 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
2036 /* hcall-splpar */
2037 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
2038 spapr_register_hypercall(H_CEDE, h_cede);
2039 spapr_register_hypercall(H_CONFER, h_confer);
2040 spapr_register_hypercall(H_PROD, h_prod);
2042 /* hcall-join */
2043 spapr_register_hypercall(H_JOIN, h_join);
2045 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
2047 /* processor register resource access h-calls */
2048 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
2049 spapr_register_hypercall(H_SET_DABR, h_set_dabr);
2050 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
2051 spapr_register_hypercall(H_PAGE_INIT, h_page_init);
2052 spapr_register_hypercall(H_SET_MODE, h_set_mode);
2054 /* In Memory Table MMU h-calls */
2055 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
2056 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
2057 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
2059 /* hcall-get-cpu-characteristics */
2060 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
2061 h_get_cpu_characteristics);
2063 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
2064 * here between the "CI" and the "CACHE" variants, they will use whatever
2065 * mapping attributes qemu is using. When using KVM, the kernel will
2066 * enforce the attributes more strongly
2068 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
2069 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
2070 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
2071 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
2072 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
2073 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
2074 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
2076 /* qemu/KVM-PPC specific hcalls */
2077 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
2079 /* ibm,client-architecture-support support */
2080 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
2082 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
2085 type_init(hypercall_register_types)