target/mips: Remove XBurst Media eXtension Unit dead code
[qemu/ar7.git] / hw / arm / mps2-tz.c
blob3fbe3d29f953c1aae93676d1526f152a99053f4b
1 /*
2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19 * "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
20 * "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
22 * Links to the TRM for the board itself and to the various Application
23 * Notes which document the FPGA images can be found here:
24 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
26 * Board TRM:
27 * https://developer.arm.com/documentation/100112/latest/
28 * Application Note AN505:
29 * https://developer.arm.com/documentation/dai0505/latest/
30 * Application Note AN521:
31 * https://developer.arm.com/documentation/dai0521/latest/
32 * Application Note AN524:
33 * https://developer.arm.com/documentation/dai0524/latest/
34 * Application Note AN547:
35 * https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/DAI0547B_SSE300_PLUS_U55_FPGA_for_mps3.pdf
37 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
38 * (ARM ECM0601256) for the details of some of the device layout:
39 * https://developer.arm.com/documentation/ecm0601256/latest
40 * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
41 * most of the device layout:
42 * https://developer.arm.com/documentation/101104/latest/
43 * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
44 * https://developer.arm.com/documentation/101773/latest/
47 #include "qemu/osdep.h"
48 #include "qemu/units.h"
49 #include "qemu/cutils.h"
50 #include "qapi/error.h"
51 #include "qemu/error-report.h"
52 #include "hw/arm/boot.h"
53 #include "hw/arm/armv7m.h"
54 #include "hw/or-irq.h"
55 #include "hw/boards.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/sysemu.h"
58 #include "hw/misc/unimp.h"
59 #include "hw/char/cmsdk-apb-uart.h"
60 #include "hw/timer/cmsdk-apb-timer.h"
61 #include "hw/misc/mps2-scc.h"
62 #include "hw/misc/mps2-fpgaio.h"
63 #include "hw/misc/tz-mpc.h"
64 #include "hw/misc/tz-msc.h"
65 #include "hw/arm/armsse.h"
66 #include "hw/dma/pl080.h"
67 #include "hw/rtc/pl031.h"
68 #include "hw/ssi/pl022.h"
69 #include "hw/i2c/arm_sbcon_i2c.h"
70 #include "hw/net/lan9118.h"
71 #include "net/net.h"
72 #include "hw/core/split-irq.h"
73 #include "hw/qdev-clock.h"
74 #include "qom/object.h"
76 #define MPS2TZ_NUMIRQ_MAX 96
77 #define MPS2TZ_RAM_MAX 5
79 typedef enum MPS2TZFPGAType {
80 FPGA_AN505,
81 FPGA_AN521,
82 FPGA_AN524,
83 FPGA_AN547,
84 } MPS2TZFPGAType;
87 * Define the layout of RAM in a board, including which parts are
88 * behind which MPCs.
89 * mrindex specifies the index into mms->ram[] to use for the backing RAM;
90 * -1 means "use the system RAM".
92 typedef struct RAMInfo {
93 const char *name;
94 uint32_t base;
95 uint32_t size;
96 int mpc; /* MPC number, -1 for "not behind an MPC" */
97 int mrindex;
98 int flags;
99 } RAMInfo;
102 * Flag values:
103 * IS_ALIAS: this RAM area is an alias to the upstream end of the
104 * MPC specified by its .mpc value
105 * IS_ROM: this RAM area is read-only
107 #define IS_ALIAS 1
108 #define IS_ROM 2
110 struct MPS2TZMachineClass {
111 MachineClass parent;
112 MPS2TZFPGAType fpga_type;
113 uint32_t scc_id;
114 uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */
115 uint32_t apb_periph_frq; /* APB peripheral frequency in Hz */
116 uint32_t len_oscclk;
117 const uint32_t *oscclk;
118 uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */
119 bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */
120 bool fpgaio_has_dbgctrl; /* Does FPGAIO have DBGCTRL register? */
121 int numirq; /* Number of external interrupts */
122 int uart_overflow_irq; /* number of the combined UART overflow IRQ */
123 uint32_t init_svtor; /* init-svtor setting for SSE */
124 const RAMInfo *raminfo;
125 const char *armsse_type;
128 struct MPS2TZMachineState {
129 MachineState parent;
131 ARMSSE iotkit;
132 MemoryRegion ram[MPS2TZ_RAM_MAX];
133 MemoryRegion eth_usb_container;
135 MPS2SCC scc;
136 MPS2FPGAIO fpgaio;
137 TZPPC ppc[5];
138 TZMPC mpc[3];
139 PL022State spi[5];
140 ArmSbconI2CState i2c[5];
141 UnimplementedDeviceState i2s_audio;
142 UnimplementedDeviceState gpio[4];
143 UnimplementedDeviceState gfx;
144 UnimplementedDeviceState cldc;
145 UnimplementedDeviceState usb;
146 PL031State rtc;
147 PL080State dma[4];
148 TZMSC msc[4];
149 CMSDKAPBUART uart[6];
150 SplitIRQ sec_resp_splitter;
151 qemu_or_irq uart_irq_orgate;
152 DeviceState *lan9118;
153 SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX];
154 Clock *sysclk;
155 Clock *s32kclk;
158 #define TYPE_MPS2TZ_MACHINE "mps2tz"
159 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
160 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
161 #define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
162 #define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
164 OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
166 /* Slow 32Khz S32KCLK frequency in Hz */
167 #define S32KCLK_FRQ (32 * 1000)
170 * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
171 * emulation of that much guest RAM, so artificially make it smaller.
173 #if HOST_LONG_BITS == 32
174 #define MPS3_DDR_SIZE (1 * GiB)
175 #else
176 #define MPS3_DDR_SIZE (2 * GiB)
177 #endif
179 static const uint32_t an505_oscclk[] = {
180 40000000,
181 24580000,
182 25000000,
185 static const uint32_t an524_oscclk[] = {
186 24000000,
187 32000000,
188 50000000,
189 50000000,
190 24576000,
191 23750000,
194 static const RAMInfo an505_raminfo[] = { {
195 .name = "ssram-0",
196 .base = 0x00000000,
197 .size = 0x00400000,
198 .mpc = 0,
199 .mrindex = 0,
200 }, {
201 .name = "ssram-1",
202 .base = 0x28000000,
203 .size = 0x00200000,
204 .mpc = 1,
205 .mrindex = 1,
206 }, {
207 .name = "ssram-2",
208 .base = 0x28200000,
209 .size = 0x00200000,
210 .mpc = 2,
211 .mrindex = 2,
212 }, {
213 .name = "ssram-0-alias",
214 .base = 0x00400000,
215 .size = 0x00400000,
216 .mpc = 0,
217 .mrindex = 3,
218 .flags = IS_ALIAS,
219 }, {
220 /* Use the largest bit of contiguous RAM as our "system memory" */
221 .name = "mps.ram",
222 .base = 0x80000000,
223 .size = 16 * MiB,
224 .mpc = -1,
225 .mrindex = -1,
226 }, {
227 .name = NULL,
231 static const RAMInfo an524_raminfo[] = { {
232 .name = "bram",
233 .base = 0x00000000,
234 .size = 512 * KiB,
235 .mpc = 0,
236 .mrindex = 0,
237 }, {
238 .name = "sram",
239 .base = 0x20000000,
240 .size = 32 * 4 * KiB,
241 .mpc = 1,
242 .mrindex = 1,
243 }, {
244 /* We don't model QSPI flash yet; for now expose it as simple ROM */
245 .name = "QSPI",
246 .base = 0x28000000,
247 .size = 8 * MiB,
248 .mpc = 1,
249 .mrindex = 2,
250 .flags = IS_ROM,
251 }, {
252 .name = "DDR",
253 .base = 0x60000000,
254 .size = MPS3_DDR_SIZE,
255 .mpc = 2,
256 .mrindex = -1,
257 }, {
258 .name = NULL,
262 static const RAMInfo an547_raminfo[] = { {
263 .name = "itcm",
264 .base = 0x00000000,
265 .size = 512 * KiB,
266 .mpc = -1,
267 .mrindex = 0,
268 }, {
269 .name = "sram",
270 .base = 0x01000000,
271 .size = 2 * MiB,
272 .mpc = 0,
273 .mrindex = 1,
274 }, {
275 .name = "dtcm",
276 .base = 0x20000000,
277 .size = 4 * 128 * KiB,
278 .mpc = -1,
279 .mrindex = 2,
280 }, {
281 .name = "sram 2",
282 .base = 0x21000000,
283 .size = 4 * MiB,
284 .mpc = -1,
285 .mrindex = 3,
286 }, {
287 /* We don't model QSPI flash yet; for now expose it as simple ROM */
288 .name = "QSPI",
289 .base = 0x28000000,
290 .size = 8 * MiB,
291 .mpc = 1,
292 .mrindex = 4,
293 .flags = IS_ROM,
294 }, {
295 .name = "DDR",
296 .base = 0x60000000,
297 .size = MPS3_DDR_SIZE,
298 .mpc = 2,
299 .mrindex = -1,
300 }, {
301 .name = NULL,
305 static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc)
307 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
308 const RAMInfo *p;
310 for (p = mmc->raminfo; p->name; p++) {
311 if (p->mpc == mpc && !(p->flags & IS_ALIAS)) {
312 return p;
315 /* if raminfo array doesn't have an entry for each MPC this is a bug */
316 g_assert_not_reached();
319 static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms,
320 const RAMInfo *raminfo)
322 /* Return an initialized MemoryRegion for the RAMInfo. */
323 MemoryRegion *ram;
325 if (raminfo->mrindex < 0) {
326 /* Means this RAMInfo is for QEMU's "system memory" */
327 MachineState *machine = MACHINE(mms);
328 assert(!(raminfo->flags & IS_ROM));
329 return machine->ram;
332 assert(raminfo->mrindex < MPS2TZ_RAM_MAX);
333 ram = &mms->ram[raminfo->mrindex];
335 memory_region_init_ram(ram, NULL, raminfo->name,
336 raminfo->size, &error_fatal);
337 if (raminfo->flags & IS_ROM) {
338 memory_region_set_readonly(ram, true);
340 return ram;
343 /* Create an alias of an entire original MemoryRegion @orig
344 * located at @base in the memory map.
346 static void make_ram_alias(MemoryRegion *mr, const char *name,
347 MemoryRegion *orig, hwaddr base)
349 memory_region_init_alias(mr, NULL, name, orig, 0,
350 memory_region_size(orig));
351 memory_region_add_subregion(get_system_memory(), base, mr);
354 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
357 * Return a qemu_irq which will signal IRQ n to all CPUs in the
358 * SSE. The irqno should be as the CPU sees it, so the first
359 * external-to-the-SSE interrupt is 32.
361 MachineClass *mc = MACHINE_GET_CLASS(mms);
362 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
364 assert(irqno >= 32 && irqno < (mmc->numirq + 32));
367 * Convert from "CPU irq number" (as listed in the FPGA image
368 * documentation) to the SSE external-interrupt number.
370 irqno -= 32;
372 if (mc->max_cpus > 1) {
373 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
374 } else {
375 return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
379 /* Most of the devices in the AN505 FPGA image sit behind
380 * Peripheral Protection Controllers. These data structures
381 * define the layout of which devices sit behind which PPCs.
382 * The devfn for each port is a function which creates, configures
383 * and initializes the device, returning the MemoryRegion which
384 * needs to be plugged into the downstream end of the PPC port.
386 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
387 const char *name, hwaddr size,
388 const int *irqs);
390 typedef struct PPCPortInfo {
391 const char *name;
392 MakeDevFn *devfn;
393 void *opaque;
394 hwaddr addr;
395 hwaddr size;
396 int irqs[3]; /* currently no device needs more IRQ lines than this */
397 } PPCPortInfo;
399 typedef struct PPCInfo {
400 const char *name;
401 PPCPortInfo ports[TZ_NUM_PORTS];
402 } PPCInfo;
404 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
405 void *opaque,
406 const char *name, hwaddr size,
407 const int *irqs)
409 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
410 * and return a pointer to its MemoryRegion.
412 UnimplementedDeviceState *uds = opaque;
414 object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
415 qdev_prop_set_string(DEVICE(uds), "name", name);
416 qdev_prop_set_uint64(DEVICE(uds), "size", size);
417 sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
418 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
421 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
422 const char *name, hwaddr size,
423 const int *irqs)
425 /* The irq[] array is tx, rx, combined, in that order */
426 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
427 CMSDKAPBUART *uart = opaque;
428 int i = uart - &mms->uart[0];
429 SysBusDevice *s;
430 DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
432 object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
433 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
434 qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->apb_periph_frq);
435 sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
436 s = SYS_BUS_DEVICE(uart);
437 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
438 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
439 sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
440 sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
441 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2]));
442 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
445 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
446 const char *name, hwaddr size,
447 const int *irqs)
449 MPS2SCC *scc = opaque;
450 DeviceState *sccdev;
451 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
452 uint32_t i;
454 object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
455 sccdev = DEVICE(scc);
456 qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
457 qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
458 qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
459 qdev_prop_set_uint32(sccdev, "len-oscclk", mmc->len_oscclk);
460 for (i = 0; i < mmc->len_oscclk; i++) {
461 g_autofree char *propname = g_strdup_printf("oscclk[%u]", i);
462 qdev_prop_set_uint32(sccdev, propname, mmc->oscclk[i]);
464 sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
465 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
468 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
469 const char *name, hwaddr size,
470 const int *irqs)
472 MPS2FPGAIO *fpgaio = opaque;
473 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
475 object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
476 qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds);
477 qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches);
478 qdev_prop_set_bit(DEVICE(fpgaio), "has-dbgctrl", mmc->fpgaio_has_dbgctrl);
479 sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
480 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
483 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
484 const char *name, hwaddr size,
485 const int *irqs)
487 SysBusDevice *s;
488 NICInfo *nd = &nd_table[0];
490 /* In hardware this is a LAN9220; the LAN9118 is software compatible
491 * except that it doesn't support the checksum-offload feature.
493 qemu_check_nic_model(nd, "lan9118");
494 mms->lan9118 = qdev_new(TYPE_LAN9118);
495 qdev_set_nic_properties(mms->lan9118, nd);
497 s = SYS_BUS_DEVICE(mms->lan9118);
498 sysbus_realize_and_unref(s, &error_fatal);
499 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
500 return sysbus_mmio_get_region(s, 0);
503 static MemoryRegion *make_eth_usb(MPS2TZMachineState *mms, void *opaque,
504 const char *name, hwaddr size,
505 const int *irqs)
508 * The AN524 makes the ethernet and USB share a PPC port.
509 * irqs[] is the ethernet IRQ.
511 SysBusDevice *s;
512 NICInfo *nd = &nd_table[0];
514 memory_region_init(&mms->eth_usb_container, OBJECT(mms),
515 "mps2-tz-eth-usb-container", 0x200000);
518 * In hardware this is a LAN9220; the LAN9118 is software compatible
519 * except that it doesn't support the checksum-offload feature.
521 qemu_check_nic_model(nd, "lan9118");
522 mms->lan9118 = qdev_new(TYPE_LAN9118);
523 qdev_set_nic_properties(mms->lan9118, nd);
525 s = SYS_BUS_DEVICE(mms->lan9118);
526 sysbus_realize_and_unref(s, &error_fatal);
527 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
529 memory_region_add_subregion(&mms->eth_usb_container,
530 0, sysbus_mmio_get_region(s, 0));
532 /* The USB OTG controller is an ISP1763; we don't have a model of it. */
533 object_initialize_child(OBJECT(mms), "usb-otg",
534 &mms->usb, TYPE_UNIMPLEMENTED_DEVICE);
535 qdev_prop_set_string(DEVICE(&mms->usb), "name", "usb-otg");
536 qdev_prop_set_uint64(DEVICE(&mms->usb), "size", 0x100000);
537 s = SYS_BUS_DEVICE(&mms->usb);
538 sysbus_realize(s, &error_fatal);
540 memory_region_add_subregion(&mms->eth_usb_container,
541 0x100000, sysbus_mmio_get_region(s, 0));
543 return &mms->eth_usb_container;
546 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
547 const char *name, hwaddr size,
548 const int *irqs)
550 TZMPC *mpc = opaque;
551 int i = mpc - &mms->mpc[0];
552 MemoryRegion *upstream;
553 const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i);
554 MemoryRegion *ram = mr_for_raminfo(mms, raminfo);
556 object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC);
557 object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram),
558 &error_fatal);
559 sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
560 /* Map the upstream end of the MPC into system memory */
561 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
562 memory_region_add_subregion(get_system_memory(), raminfo->base, upstream);
563 /* and connect its interrupt to the IoTKit */
564 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
565 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
566 "mpcexp_status", i));
568 /* Return the register interface MR for our caller to map behind the PPC */
569 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
572 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
573 const char *name, hwaddr size,
574 const int *irqs)
576 /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
577 PL080State *dma = opaque;
578 int i = dma - &mms->dma[0];
579 SysBusDevice *s;
580 char *mscname = g_strdup_printf("%s-msc", name);
581 TZMSC *msc = &mms->msc[i];
582 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
583 MemoryRegion *msc_upstream;
584 MemoryRegion *msc_downstream;
587 * Each DMA device is a PL081 whose transaction master interface
588 * is guarded by a Master Security Controller. The downstream end of
589 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
590 * DMA devices can see all devices and memory that the CPU does.
592 object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
593 msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
594 object_property_set_link(OBJECT(msc), "downstream",
595 OBJECT(msc_downstream), &error_fatal);
596 object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
597 sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
599 qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
600 qdev_get_gpio_in_named(iotkitdev,
601 "mscexp_status", i));
602 qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
603 qdev_get_gpio_in_named(DEVICE(msc),
604 "irq_clear", 0));
605 qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
606 qdev_get_gpio_in_named(DEVICE(msc),
607 "cfg_nonsec", 0));
608 qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
609 ARRAY_SIZE(mms->ppc) + i,
610 qdev_get_gpio_in_named(DEVICE(msc),
611 "cfg_sec_resp", 0));
612 msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
614 object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
615 object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
616 &error_fatal);
617 sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
619 s = SYS_BUS_DEVICE(dma);
620 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
621 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
622 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
623 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2]));
625 g_free(mscname);
626 return sysbus_mmio_get_region(s, 0);
629 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
630 const char *name, hwaddr size,
631 const int *irqs)
634 * The AN505 has five PL022 SPI controllers.
635 * One of these should have the LCD controller behind it; the others
636 * are connected only to the FPGA's "general purpose SPI connector"
637 * or "shield" expansion connectors.
638 * Note that if we do implement devices behind SPI, the chip select
639 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
641 PL022State *spi = opaque;
642 SysBusDevice *s;
644 object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
645 sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
646 s = SYS_BUS_DEVICE(spi);
647 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
648 return sysbus_mmio_get_region(s, 0);
651 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
652 const char *name, hwaddr size,
653 const int *irqs)
655 ArmSbconI2CState *i2c = opaque;
656 SysBusDevice *s;
658 object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
659 s = SYS_BUS_DEVICE(i2c);
660 sysbus_realize(s, &error_fatal);
661 return sysbus_mmio_get_region(s, 0);
664 static MemoryRegion *make_rtc(MPS2TZMachineState *mms, void *opaque,
665 const char *name, hwaddr size,
666 const int *irqs)
668 PL031State *pl031 = opaque;
669 SysBusDevice *s;
671 object_initialize_child(OBJECT(mms), name, pl031, TYPE_PL031);
672 s = SYS_BUS_DEVICE(pl031);
673 sysbus_realize(s, &error_fatal);
675 * The board docs don't give an IRQ number for the PL031, so
676 * presumably it is not connected.
678 return sysbus_mmio_get_region(s, 0);
681 static void create_non_mpc_ram(MPS2TZMachineState *mms)
684 * Handle the RAMs which are either not behind MPCs or which are
685 * aliases to another MPC.
687 const RAMInfo *p;
688 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
690 for (p = mmc->raminfo; p->name; p++) {
691 if (p->flags & IS_ALIAS) {
692 SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]);
693 MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1);
694 make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base);
695 } else if (p->mpc == -1) {
696 /* RAM not behind an MPC */
697 MemoryRegion *mr = mr_for_raminfo(mms, p);
698 memory_region_add_subregion(get_system_memory(), p->base, mr);
703 static uint32_t boot_ram_size(MPS2TZMachineState *mms)
705 /* Return the size of the RAM block at guest address zero */
706 const RAMInfo *p;
707 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
709 for (p = mmc->raminfo; p->name; p++) {
710 if (p->base == 0) {
711 return p->size;
714 g_assert_not_reached();
717 static void mps2tz_common_init(MachineState *machine)
719 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
720 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
721 MachineClass *mc = MACHINE_GET_CLASS(machine);
722 MemoryRegion *system_memory = get_system_memory();
723 DeviceState *iotkitdev;
724 DeviceState *dev_splitter;
725 const PPCInfo *ppcs;
726 int num_ppcs;
727 int i;
729 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
730 error_report("This board can only be used with CPU %s",
731 mc->default_cpu_type);
732 exit(1);
735 if (machine->ram_size != mc->default_ram_size) {
736 char *sz = size_to_str(mc->default_ram_size);
737 error_report("Invalid RAM size, should be %s", sz);
738 g_free(sz);
739 exit(EXIT_FAILURE);
742 /* These clocks don't need migration because they are fixed-frequency */
743 mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
744 clock_set_hz(mms->sysclk, mmc->sysclk_frq);
745 mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
746 clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
748 object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
749 mmc->armsse_type);
750 iotkitdev = DEVICE(&mms->iotkit);
751 object_property_set_link(OBJECT(&mms->iotkit), "memory",
752 OBJECT(system_memory), &error_abort);
753 qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq);
754 qdev_prop_set_uint32(iotkitdev, "init-svtor", mmc->init_svtor);
755 qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
756 qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
757 sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
760 * If this board has more than one CPU, then we need to create splitters
761 * to feed the IRQ inputs for each CPU in the SSE from each device in the
762 * board. If there is only one CPU, we can just wire the device IRQ
763 * directly to the SSE's IRQ input.
765 assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX);
766 if (mc->max_cpus > 1) {
767 for (i = 0; i < mmc->numirq; i++) {
768 char *name = g_strdup_printf("mps2-irq-splitter%d", i);
769 SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
771 object_initialize_child_with_props(OBJECT(machine), name,
772 splitter, sizeof(*splitter),
773 TYPE_SPLIT_IRQ, &error_fatal,
774 NULL);
775 g_free(name);
777 object_property_set_int(OBJECT(splitter), "num-lines", 2,
778 &error_fatal);
779 qdev_realize(DEVICE(splitter), NULL, &error_fatal);
780 qdev_connect_gpio_out(DEVICE(splitter), 0,
781 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
782 "EXP_IRQ", i));
783 qdev_connect_gpio_out(DEVICE(splitter), 1,
784 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
785 "EXP_CPU1_IRQ", i));
789 /* The sec_resp_cfg output from the IoTKit must be split into multiple
790 * lines, one for each of the PPCs we create here, plus one per MSC.
792 object_initialize_child(OBJECT(machine), "sec-resp-splitter",
793 &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
794 object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
795 ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
796 &error_fatal);
797 qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
798 dev_splitter = DEVICE(&mms->sec_resp_splitter);
799 qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
800 qdev_get_gpio_in(dev_splitter, 0));
803 * The IoTKit sets up much of the memory layout, including
804 * the aliases between secure and non-secure regions in the
805 * address space, and also most of the devices in the system.
806 * The FPGA itself contains various RAMs and some additional devices.
807 * The FPGA images have an odd combination of different RAMs,
808 * because in hardware they are different implementations and
809 * connected to different buses, giving varying performance/size
810 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
811 * call the largest lump our "system memory".
815 * The overflow IRQs for all UARTs are ORed together.
816 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
817 * Create the OR gate for this: it has one input for the TX overflow
818 * and one for the RX overflow for each UART we might have.
819 * (If the board has fewer than the maximum possible number of UARTs
820 * those inputs are never wired up and are treated as always-zero.)
822 object_initialize_child(OBJECT(mms), "uart-irq-orgate",
823 &mms->uart_irq_orgate, TYPE_OR_IRQ);
824 object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines",
825 2 * ARRAY_SIZE(mms->uart),
826 &error_fatal);
827 qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
828 qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
829 get_sse_irq_in(mms, mmc->uart_overflow_irq));
831 /* Most of the devices in the FPGA are behind Peripheral Protection
832 * Controllers. The required order for initializing things is:
833 * + initialize the PPC
834 * + initialize, configure and realize downstream devices
835 * + connect downstream device MemoryRegions to the PPC
836 * + realize the PPC
837 * + map the PPC's MemoryRegions to the places in the address map
838 * where the downstream devices should appear
839 * + wire up the PPC's control lines to the IoTKit object
842 const PPCInfo an505_ppcs[] = { {
843 .name = "apb_ppcexp0",
844 .ports = {
845 { "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
846 { "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
847 { "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
849 }, {
850 .name = "apb_ppcexp1",
851 .ports = {
852 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } },
853 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } },
854 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } },
855 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } },
856 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } },
857 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } },
858 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } },
859 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } },
860 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } },
861 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } },
862 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 },
863 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 },
864 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 },
865 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 },
867 }, {
868 .name = "apb_ppcexp2",
869 .ports = {
870 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
871 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
872 0x40301000, 0x1000 },
873 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
875 }, {
876 .name = "ahb_ppcexp0",
877 .ports = {
878 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
879 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
880 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
881 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
882 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
883 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } },
885 }, {
886 .name = "ahb_ppcexp1",
887 .ports = {
888 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } },
889 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } },
890 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } },
891 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } },
896 const PPCInfo an524_ppcs[] = { {
897 .name = "apb_ppcexp0",
898 .ports = {
899 { "bram-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
900 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
901 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
903 }, {
904 .name = "apb_ppcexp1",
905 .ports = {
906 { "i2c0", make_i2c, &mms->i2c[0], 0x41200000, 0x1000 },
907 { "i2c1", make_i2c, &mms->i2c[1], 0x41201000, 0x1000 },
908 { "spi0", make_spi, &mms->spi[0], 0x41202000, 0x1000, { 52 } },
909 { "spi1", make_spi, &mms->spi[1], 0x41203000, 0x1000, { 53 } },
910 { "spi2", make_spi, &mms->spi[2], 0x41204000, 0x1000, { 54 } },
911 { "i2c2", make_i2c, &mms->i2c[2], 0x41205000, 0x1000 },
912 { "i2c3", make_i2c, &mms->i2c[3], 0x41206000, 0x1000 },
913 { /* port 7 reserved */ },
914 { "i2c4", make_i2c, &mms->i2c[4], 0x41208000, 0x1000 },
916 }, {
917 .name = "apb_ppcexp2",
918 .ports = {
919 { "scc", make_scc, &mms->scc, 0x41300000, 0x1000 },
920 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
921 0x41301000, 0x1000 },
922 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x41302000, 0x1000 },
923 { "uart0", make_uart, &mms->uart[0], 0x41303000, 0x1000, { 32, 33, 42 } },
924 { "uart1", make_uart, &mms->uart[1], 0x41304000, 0x1000, { 34, 35, 43 } },
925 { "uart2", make_uart, &mms->uart[2], 0x41305000, 0x1000, { 36, 37, 44 } },
926 { "uart3", make_uart, &mms->uart[3], 0x41306000, 0x1000, { 38, 39, 45 } },
927 { "uart4", make_uart, &mms->uart[4], 0x41307000, 0x1000, { 40, 41, 46 } },
928 { "uart5", make_uart, &mms->uart[5], 0x41308000, 0x1000, { 124, 125, 126 } },
930 { /* port 9 reserved */ },
931 { "clcd", make_unimp_dev, &mms->cldc, 0x4130a000, 0x1000 },
932 { "rtc", make_rtc, &mms->rtc, 0x4130b000, 0x1000 },
934 }, {
935 .name = "ahb_ppcexp0",
936 .ports = {
937 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
938 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
939 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
940 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
941 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 48 } },
946 const PPCInfo an547_ppcs[] = { {
947 .name = "apb_ppcexp0",
948 .ports = {
949 { "ssram-mpc", make_mpc, &mms->mpc[0], 0x57000000, 0x1000 },
950 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x57001000, 0x1000 },
951 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x57002000, 0x1000 },
953 }, {
954 .name = "apb_ppcexp1",
955 .ports = {
956 { "i2c0", make_i2c, &mms->i2c[0], 0x49200000, 0x1000 },
957 { "i2c1", make_i2c, &mms->i2c[1], 0x49201000, 0x1000 },
958 { "spi0", make_spi, &mms->spi[0], 0x49202000, 0x1000, { 53 } },
959 { "spi1", make_spi, &mms->spi[1], 0x49203000, 0x1000, { 54 } },
960 { "spi2", make_spi, &mms->spi[2], 0x49204000, 0x1000, { 55 } },
961 { "i2c2", make_i2c, &mms->i2c[2], 0x49205000, 0x1000 },
962 { "i2c3", make_i2c, &mms->i2c[3], 0x49206000, 0x1000 },
963 { /* port 7 reserved */ },
964 { "i2c4", make_i2c, &mms->i2c[4], 0x49208000, 0x1000 },
966 }, {
967 .name = "apb_ppcexp2",
968 .ports = {
969 { "scc", make_scc, &mms->scc, 0x49300000, 0x1000 },
970 { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 0x49301000, 0x1000 },
971 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x49302000, 0x1000 },
972 { "uart0", make_uart, &mms->uart[0], 0x49303000, 0x1000, { 33, 34, 43 } },
973 { "uart1", make_uart, &mms->uart[1], 0x49304000, 0x1000, { 35, 36, 44 } },
974 { "uart2", make_uart, &mms->uart[2], 0x49305000, 0x1000, { 37, 38, 45 } },
975 { "uart3", make_uart, &mms->uart[3], 0x49306000, 0x1000, { 39, 40, 46 } },
976 { "uart4", make_uart, &mms->uart[4], 0x49307000, 0x1000, { 41, 42, 47 } },
977 { "uart5", make_uart, &mms->uart[5], 0x49308000, 0x1000, { 125, 126, 127 } },
979 { /* port 9 reserved */ },
980 { "clcd", make_unimp_dev, &mms->cldc, 0x4930a000, 0x1000 },
981 { "rtc", make_rtc, &mms->rtc, 0x4930b000, 0x1000 },
983 }, {
984 .name = "ahb_ppcexp0",
985 .ports = {
986 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
987 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
988 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
989 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
990 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 49 } },
995 switch (mmc->fpga_type) {
996 case FPGA_AN505:
997 case FPGA_AN521:
998 ppcs = an505_ppcs;
999 num_ppcs = ARRAY_SIZE(an505_ppcs);
1000 break;
1001 case FPGA_AN524:
1002 ppcs = an524_ppcs;
1003 num_ppcs = ARRAY_SIZE(an524_ppcs);
1004 break;
1005 case FPGA_AN547:
1006 ppcs = an547_ppcs;
1007 num_ppcs = ARRAY_SIZE(an547_ppcs);
1008 break;
1009 default:
1010 g_assert_not_reached();
1013 for (i = 0; i < num_ppcs; i++) {
1014 const PPCInfo *ppcinfo = &ppcs[i];
1015 TZPPC *ppc = &mms->ppc[i];
1016 DeviceState *ppcdev;
1017 int port;
1018 char *gpioname;
1020 object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
1021 TYPE_TZ_PPC);
1022 ppcdev = DEVICE(ppc);
1024 for (port = 0; port < TZ_NUM_PORTS; port++) {
1025 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1026 MemoryRegion *mr;
1027 char *portname;
1029 if (!pinfo->devfn) {
1030 continue;
1033 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size,
1034 pinfo->irqs);
1035 portname = g_strdup_printf("port[%d]", port);
1036 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1037 &error_fatal);
1038 g_free(portname);
1041 sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
1043 for (port = 0; port < TZ_NUM_PORTS; port++) {
1044 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1046 if (!pinfo->devfn) {
1047 continue;
1049 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
1051 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
1052 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1053 qdev_get_gpio_in_named(ppcdev,
1054 "cfg_nonsec",
1055 port));
1056 g_free(gpioname);
1057 gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
1058 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1059 qdev_get_gpio_in_named(ppcdev,
1060 "cfg_ap", port));
1061 g_free(gpioname);
1064 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
1065 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1066 qdev_get_gpio_in_named(ppcdev,
1067 "irq_enable", 0));
1068 g_free(gpioname);
1069 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
1070 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1071 qdev_get_gpio_in_named(ppcdev,
1072 "irq_clear", 0));
1073 g_free(gpioname);
1074 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
1075 qdev_connect_gpio_out_named(ppcdev, "irq", 0,
1076 qdev_get_gpio_in_named(iotkitdev,
1077 gpioname, 0));
1078 g_free(gpioname);
1080 qdev_connect_gpio_out(dev_splitter, i,
1081 qdev_get_gpio_in_named(ppcdev,
1082 "cfg_sec_resp", 0));
1085 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
1087 if (mmc->fpga_type == FPGA_AN547) {
1088 create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
1089 create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
1092 create_non_mpc_ram(mms);
1094 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
1095 boot_ram_size(mms));
1098 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
1099 int *iregion, bool *exempt, bool *ns, bool *nsc)
1102 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
1103 * the Master Security Controllers. Thes have the same logic as
1104 * is used by the IoTKit for the IDAU connected to the CPU, except
1105 * that MSCs don't care about the NSC attribute.
1107 int region = extract32(address, 28, 4);
1109 *ns = !(region & 1);
1110 *nsc = false;
1111 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1112 *exempt = (address & 0xeff00000) == 0xe0000000;
1113 *iregion = region;
1116 static void mps2tz_class_init(ObjectClass *oc, void *data)
1118 MachineClass *mc = MACHINE_CLASS(oc);
1119 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
1121 mc->init = mps2tz_common_init;
1122 iic->check = mps2_tz_idau_check;
1125 static void mps2tz_set_default_ram_info(MPS2TZMachineClass *mmc)
1128 * Set mc->default_ram_size and default_ram_id from the
1129 * information in mmc->raminfo.
1131 MachineClass *mc = MACHINE_CLASS(mmc);
1132 const RAMInfo *p;
1134 for (p = mmc->raminfo; p->name; p++) {
1135 if (p->mrindex < 0) {
1136 /* Found the entry for "system memory" */
1137 mc->default_ram_size = p->size;
1138 mc->default_ram_id = p->name;
1139 return;
1142 g_assert_not_reached();
1145 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
1147 MachineClass *mc = MACHINE_CLASS(oc);
1148 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1150 mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
1151 mc->default_cpus = 1;
1152 mc->min_cpus = mc->default_cpus;
1153 mc->max_cpus = mc->default_cpus;
1154 mmc->fpga_type = FPGA_AN505;
1155 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1156 mmc->scc_id = 0x41045050;
1157 mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1158 mmc->apb_periph_frq = mmc->sysclk_frq;
1159 mmc->oscclk = an505_oscclk;
1160 mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1161 mmc->fpgaio_num_leds = 2;
1162 mmc->fpgaio_has_switches = false;
1163 mmc->fpgaio_has_dbgctrl = false;
1164 mmc->numirq = 92;
1165 mmc->uart_overflow_irq = 47;
1166 mmc->init_svtor = 0x10000000;
1167 mmc->raminfo = an505_raminfo;
1168 mmc->armsse_type = TYPE_IOTKIT;
1169 mps2tz_set_default_ram_info(mmc);
1172 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
1174 MachineClass *mc = MACHINE_CLASS(oc);
1175 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1177 mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
1178 mc->default_cpus = 2;
1179 mc->min_cpus = mc->default_cpus;
1180 mc->max_cpus = mc->default_cpus;
1181 mmc->fpga_type = FPGA_AN521;
1182 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1183 mmc->scc_id = 0x41045210;
1184 mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1185 mmc->apb_periph_frq = mmc->sysclk_frq;
1186 mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */
1187 mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1188 mmc->fpgaio_num_leds = 2;
1189 mmc->fpgaio_has_switches = false;
1190 mmc->fpgaio_has_dbgctrl = false;
1191 mmc->numirq = 92;
1192 mmc->uart_overflow_irq = 47;
1193 mmc->init_svtor = 0x10000000;
1194 mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */
1195 mmc->armsse_type = TYPE_SSE200;
1196 mps2tz_set_default_ram_info(mmc);
1199 static void mps3tz_an524_class_init(ObjectClass *oc, void *data)
1201 MachineClass *mc = MACHINE_CLASS(oc);
1202 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1204 mc->desc = "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
1205 mc->default_cpus = 2;
1206 mc->min_cpus = mc->default_cpus;
1207 mc->max_cpus = mc->default_cpus;
1208 mmc->fpga_type = FPGA_AN524;
1209 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1210 mmc->scc_id = 0x41045240;
1211 mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1212 mmc->apb_periph_frq = mmc->sysclk_frq;
1213 mmc->oscclk = an524_oscclk;
1214 mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1215 mmc->fpgaio_num_leds = 10;
1216 mmc->fpgaio_has_switches = true;
1217 mmc->fpgaio_has_dbgctrl = false;
1218 mmc->numirq = 95;
1219 mmc->uart_overflow_irq = 47;
1220 mmc->init_svtor = 0x10000000;
1221 mmc->raminfo = an524_raminfo;
1222 mmc->armsse_type = TYPE_SSE200;
1223 mps2tz_set_default_ram_info(mmc);
1226 static void mps3tz_an547_class_init(ObjectClass *oc, void *data)
1228 MachineClass *mc = MACHINE_CLASS(oc);
1229 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1231 mc->desc = "ARM MPS3 with AN547 FPGA image for Cortex-M55";
1232 mc->default_cpus = 1;
1233 mc->min_cpus = mc->default_cpus;
1234 mc->max_cpus = mc->default_cpus;
1235 mmc->fpga_type = FPGA_AN547;
1236 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m55");
1237 mmc->scc_id = 0x41055470;
1238 mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1239 mmc->apb_periph_frq = 25 * 1000 * 1000; /* 25MHz */
1240 mmc->oscclk = an524_oscclk; /* same as AN524 */
1241 mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1242 mmc->fpgaio_num_leds = 10;
1243 mmc->fpgaio_has_switches = true;
1244 mmc->fpgaio_has_dbgctrl = true;
1245 mmc->numirq = 96;
1246 mmc->uart_overflow_irq = 48;
1247 mmc->init_svtor = 0x00000000;
1248 mmc->raminfo = an547_raminfo;
1249 mmc->armsse_type = TYPE_SSE300;
1250 mps2tz_set_default_ram_info(mmc);
1253 static const TypeInfo mps2tz_info = {
1254 .name = TYPE_MPS2TZ_MACHINE,
1255 .parent = TYPE_MACHINE,
1256 .abstract = true,
1257 .instance_size = sizeof(MPS2TZMachineState),
1258 .class_size = sizeof(MPS2TZMachineClass),
1259 .class_init = mps2tz_class_init,
1260 .interfaces = (InterfaceInfo[]) {
1261 { TYPE_IDAU_INTERFACE },
1266 static const TypeInfo mps2tz_an505_info = {
1267 .name = TYPE_MPS2TZ_AN505_MACHINE,
1268 .parent = TYPE_MPS2TZ_MACHINE,
1269 .class_init = mps2tz_an505_class_init,
1272 static const TypeInfo mps2tz_an521_info = {
1273 .name = TYPE_MPS2TZ_AN521_MACHINE,
1274 .parent = TYPE_MPS2TZ_MACHINE,
1275 .class_init = mps2tz_an521_class_init,
1278 static const TypeInfo mps3tz_an524_info = {
1279 .name = TYPE_MPS3TZ_AN524_MACHINE,
1280 .parent = TYPE_MPS2TZ_MACHINE,
1281 .class_init = mps3tz_an524_class_init,
1284 static const TypeInfo mps3tz_an547_info = {
1285 .name = TYPE_MPS3TZ_AN547_MACHINE,
1286 .parent = TYPE_MPS2TZ_MACHINE,
1287 .class_init = mps3tz_an547_class_init,
1290 static void mps2tz_machine_init(void)
1292 type_register_static(&mps2tz_info);
1293 type_register_static(&mps2tz_an505_info);
1294 type_register_static(&mps2tz_an521_info);
1295 type_register_static(&mps3tz_an524_info);
1296 type_register_static(&mps3tz_an547_info);
1299 type_init(mps2tz_machine_init);