Add the ability to change the FEC PHY MDIO devices numbers on i.MX7 processor
[qemu/ar7.git] / linux-user / elfload.c
blob7e7f642332dc9e3c8fe9a5695c7fa75912869543
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
6 #include <sys/shm.h>
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/queue.h"
12 #include "qemu/guest-random.h"
13 #include "qemu/units.h"
14 #include "qemu/selfmap.h"
16 #ifdef _ARCH_PPC64
17 #undef ARCH_DLINFO
18 #undef ELF_PLATFORM
19 #undef ELF_HWCAP
20 #undef ELF_HWCAP2
21 #undef ELF_CLASS
22 #undef ELF_DATA
23 #undef ELF_ARCH
24 #endif
26 #define ELF_OSABI ELFOSABI_SYSV
28 /* from personality.h */
31 * Flags for bug emulation.
33 * These occupy the top three bytes.
35 enum {
36 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
37 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
38 descriptors (signal handling) */
39 MMAP_PAGE_ZERO = 0x0100000,
40 ADDR_COMPAT_LAYOUT = 0x0200000,
41 READ_IMPLIES_EXEC = 0x0400000,
42 ADDR_LIMIT_32BIT = 0x0800000,
43 SHORT_INODE = 0x1000000,
44 WHOLE_SECONDS = 0x2000000,
45 STICKY_TIMEOUTS = 0x4000000,
46 ADDR_LIMIT_3GB = 0x8000000,
50 * Personality types.
52 * These go in the low byte. Avoid using the top bit, it will
53 * conflict with error returns.
55 enum {
56 PER_LINUX = 0x0000,
57 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
58 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
59 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
60 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
61 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
62 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
63 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
64 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
65 PER_BSD = 0x0006,
66 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
67 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
68 PER_LINUX32 = 0x0008,
69 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
70 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
71 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
72 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
73 PER_RISCOS = 0x000c,
74 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
75 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
76 PER_OSF4 = 0x000f, /* OSF/1 v4 */
77 PER_HPUX = 0x0010,
78 PER_MASK = 0x00ff,
82 * Return the base personality without flags.
84 #define personality(pers) (pers & PER_MASK)
86 int info_is_fdpic(struct image_info *info)
88 return info->personality == PER_LINUX_FDPIC;
91 /* this flag is uneffective under linux too, should be deleted */
92 #ifndef MAP_DENYWRITE
93 #define MAP_DENYWRITE 0
94 #endif
96 /* should probably go in elf.h */
97 #ifndef ELIBBAD
98 #define ELIBBAD 80
99 #endif
101 #ifdef TARGET_WORDS_BIGENDIAN
102 #define ELF_DATA ELFDATA2MSB
103 #else
104 #define ELF_DATA ELFDATA2LSB
105 #endif
107 #ifdef TARGET_ABI_MIPSN32
108 typedef abi_ullong target_elf_greg_t;
109 #define tswapreg(ptr) tswap64(ptr)
110 #else
111 typedef abi_ulong target_elf_greg_t;
112 #define tswapreg(ptr) tswapal(ptr)
113 #endif
115 #ifdef USE_UID16
116 typedef abi_ushort target_uid_t;
117 typedef abi_ushort target_gid_t;
118 #else
119 typedef abi_uint target_uid_t;
120 typedef abi_uint target_gid_t;
121 #endif
122 typedef abi_int target_pid_t;
124 #ifdef TARGET_I386
126 #define ELF_PLATFORM get_elf_platform()
128 static const char *get_elf_platform(void)
130 static char elf_platform[] = "i386";
131 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
132 if (family > 6)
133 family = 6;
134 if (family >= 3)
135 elf_platform[1] = '0' + family;
136 return elf_platform;
139 #define ELF_HWCAP get_elf_hwcap()
141 static uint32_t get_elf_hwcap(void)
143 X86CPU *cpu = X86_CPU(thread_cpu);
145 return cpu->env.features[FEAT_1_EDX];
148 #ifdef TARGET_X86_64
149 #define ELF_START_MMAP 0x2aaaaab000ULL
151 #define ELF_CLASS ELFCLASS64
152 #define ELF_ARCH EM_X86_64
154 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
156 regs->rax = 0;
157 regs->rsp = infop->start_stack;
158 regs->rip = infop->entry;
161 #define ELF_NREG 27
162 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
165 * Note that ELF_NREG should be 29 as there should be place for
166 * TRAPNO and ERR "registers" as well but linux doesn't dump
167 * those.
169 * See linux kernel: arch/x86/include/asm/elf.h
171 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
173 (*regs)[0] = env->regs[15];
174 (*regs)[1] = env->regs[14];
175 (*regs)[2] = env->regs[13];
176 (*regs)[3] = env->regs[12];
177 (*regs)[4] = env->regs[R_EBP];
178 (*regs)[5] = env->regs[R_EBX];
179 (*regs)[6] = env->regs[11];
180 (*regs)[7] = env->regs[10];
181 (*regs)[8] = env->regs[9];
182 (*regs)[9] = env->regs[8];
183 (*regs)[10] = env->regs[R_EAX];
184 (*regs)[11] = env->regs[R_ECX];
185 (*regs)[12] = env->regs[R_EDX];
186 (*regs)[13] = env->regs[R_ESI];
187 (*regs)[14] = env->regs[R_EDI];
188 (*regs)[15] = env->regs[R_EAX]; /* XXX */
189 (*regs)[16] = env->eip;
190 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
191 (*regs)[18] = env->eflags;
192 (*regs)[19] = env->regs[R_ESP];
193 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
194 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
195 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
196 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
197 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
198 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
199 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
202 #else
204 #define ELF_START_MMAP 0x80000000
207 * This is used to ensure we don't load something for the wrong architecture.
209 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
212 * These are used to set parameters in the core dumps.
214 #define ELF_CLASS ELFCLASS32
215 #define ELF_ARCH EM_386
217 static inline void init_thread(struct target_pt_regs *regs,
218 struct image_info *infop)
220 regs->esp = infop->start_stack;
221 regs->eip = infop->entry;
223 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
224 starts %edx contains a pointer to a function which might be
225 registered using `atexit'. This provides a mean for the
226 dynamic linker to call DT_FINI functions for shared libraries
227 that have been loaded before the code runs.
229 A value of 0 tells we have no such handler. */
230 regs->edx = 0;
233 #define ELF_NREG 17
234 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
237 * Note that ELF_NREG should be 19 as there should be place for
238 * TRAPNO and ERR "registers" as well but linux doesn't dump
239 * those.
241 * See linux kernel: arch/x86/include/asm/elf.h
243 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
245 (*regs)[0] = env->regs[R_EBX];
246 (*regs)[1] = env->regs[R_ECX];
247 (*regs)[2] = env->regs[R_EDX];
248 (*regs)[3] = env->regs[R_ESI];
249 (*regs)[4] = env->regs[R_EDI];
250 (*regs)[5] = env->regs[R_EBP];
251 (*regs)[6] = env->regs[R_EAX];
252 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
253 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
254 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
255 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
256 (*regs)[11] = env->regs[R_EAX]; /* XXX */
257 (*regs)[12] = env->eip;
258 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
259 (*regs)[14] = env->eflags;
260 (*regs)[15] = env->regs[R_ESP];
261 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
263 #endif
265 #define USE_ELF_CORE_DUMP
266 #define ELF_EXEC_PAGESIZE 4096
268 #endif
270 #ifdef TARGET_ARM
272 #ifndef TARGET_AARCH64
273 /* 32 bit ARM definitions */
275 #define ELF_START_MMAP 0x80000000
277 #define ELF_ARCH EM_ARM
278 #define ELF_CLASS ELFCLASS32
280 static inline void init_thread(struct target_pt_regs *regs,
281 struct image_info *infop)
283 abi_long stack = infop->start_stack;
284 memset(regs, 0, sizeof(*regs));
286 regs->uregs[16] = ARM_CPU_MODE_USR;
287 if (infop->entry & 1) {
288 regs->uregs[16] |= CPSR_T;
290 regs->uregs[15] = infop->entry & 0xfffffffe;
291 regs->uregs[13] = infop->start_stack;
292 /* FIXME - what to for failure of get_user()? */
293 get_user_ual(regs->uregs[2], stack + 8); /* envp */
294 get_user_ual(regs->uregs[1], stack + 4); /* envp */
295 /* XXX: it seems that r0 is zeroed after ! */
296 regs->uregs[0] = 0;
297 /* For uClinux PIC binaries. */
298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299 regs->uregs[10] = infop->start_data;
301 /* Support ARM FDPIC. */
302 if (info_is_fdpic(infop)) {
303 /* As described in the ABI document, r7 points to the loadmap info
304 * prepared by the kernel. If an interpreter is needed, r8 points
305 * to the interpreter loadmap and r9 points to the interpreter
306 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
307 * r9 points to the main program PT_DYNAMIC info.
309 regs->uregs[7] = infop->loadmap_addr;
310 if (infop->interpreter_loadmap_addr) {
311 /* Executable is dynamically loaded. */
312 regs->uregs[8] = infop->interpreter_loadmap_addr;
313 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
314 } else {
315 regs->uregs[8] = 0;
316 regs->uregs[9] = infop->pt_dynamic_addr;
321 #define ELF_NREG 18
322 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
324 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
326 (*regs)[0] = tswapreg(env->regs[0]);
327 (*regs)[1] = tswapreg(env->regs[1]);
328 (*regs)[2] = tswapreg(env->regs[2]);
329 (*regs)[3] = tswapreg(env->regs[3]);
330 (*regs)[4] = tswapreg(env->regs[4]);
331 (*regs)[5] = tswapreg(env->regs[5]);
332 (*regs)[6] = tswapreg(env->regs[6]);
333 (*regs)[7] = tswapreg(env->regs[7]);
334 (*regs)[8] = tswapreg(env->regs[8]);
335 (*regs)[9] = tswapreg(env->regs[9]);
336 (*regs)[10] = tswapreg(env->regs[10]);
337 (*regs)[11] = tswapreg(env->regs[11]);
338 (*regs)[12] = tswapreg(env->regs[12]);
339 (*regs)[13] = tswapreg(env->regs[13]);
340 (*regs)[14] = tswapreg(env->regs[14]);
341 (*regs)[15] = tswapreg(env->regs[15]);
343 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
344 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
347 #define USE_ELF_CORE_DUMP
348 #define ELF_EXEC_PAGESIZE 4096
350 enum
352 ARM_HWCAP_ARM_SWP = 1 << 0,
353 ARM_HWCAP_ARM_HALF = 1 << 1,
354 ARM_HWCAP_ARM_THUMB = 1 << 2,
355 ARM_HWCAP_ARM_26BIT = 1 << 3,
356 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
357 ARM_HWCAP_ARM_FPA = 1 << 5,
358 ARM_HWCAP_ARM_VFP = 1 << 6,
359 ARM_HWCAP_ARM_EDSP = 1 << 7,
360 ARM_HWCAP_ARM_JAVA = 1 << 8,
361 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
362 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
363 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
364 ARM_HWCAP_ARM_NEON = 1 << 12,
365 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
366 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
367 ARM_HWCAP_ARM_TLS = 1 << 15,
368 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
369 ARM_HWCAP_ARM_IDIVA = 1 << 17,
370 ARM_HWCAP_ARM_IDIVT = 1 << 18,
371 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
372 ARM_HWCAP_ARM_LPAE = 1 << 20,
373 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
376 enum {
377 ARM_HWCAP2_ARM_AES = 1 << 0,
378 ARM_HWCAP2_ARM_PMULL = 1 << 1,
379 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
380 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
381 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
384 /* The commpage only exists for 32 bit kernels */
386 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
388 static bool init_guest_commpage(void)
390 void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size);
391 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
392 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
394 if (addr == MAP_FAILED) {
395 perror("Allocating guest commpage");
396 exit(EXIT_FAILURE);
398 if (addr != want) {
399 return false;
402 /* Set kernel helper versions; rest of page is 0. */
403 __put_user(5, (uint32_t *)g2h(0xffff0ffcu));
405 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
406 perror("Protecting guest commpage");
407 exit(EXIT_FAILURE);
409 return true;
412 #define ELF_HWCAP get_elf_hwcap()
413 #define ELF_HWCAP2 get_elf_hwcap2()
415 static uint32_t get_elf_hwcap(void)
417 ARMCPU *cpu = ARM_CPU(thread_cpu);
418 uint32_t hwcaps = 0;
420 hwcaps |= ARM_HWCAP_ARM_SWP;
421 hwcaps |= ARM_HWCAP_ARM_HALF;
422 hwcaps |= ARM_HWCAP_ARM_THUMB;
423 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
425 /* probe for the extra features */
426 #define GET_FEATURE(feat, hwcap) \
427 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
429 #define GET_FEATURE_ID(feat, hwcap) \
430 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
432 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
433 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
434 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
435 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
436 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
437 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
438 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
439 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
440 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
441 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
443 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
444 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
445 hwcaps |= ARM_HWCAP_ARM_VFPv3;
446 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
447 hwcaps |= ARM_HWCAP_ARM_VFPD32;
448 } else {
449 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
452 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
454 return hwcaps;
457 static uint32_t get_elf_hwcap2(void)
459 ARMCPU *cpu = ARM_CPU(thread_cpu);
460 uint32_t hwcaps = 0;
462 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
463 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
464 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
465 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
466 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
467 return hwcaps;
470 #undef GET_FEATURE
471 #undef GET_FEATURE_ID
473 #define ELF_PLATFORM get_elf_platform()
475 static const char *get_elf_platform(void)
477 CPUARMState *env = thread_cpu->env_ptr;
479 #ifdef TARGET_WORDS_BIGENDIAN
480 # define END "b"
481 #else
482 # define END "l"
483 #endif
485 if (arm_feature(env, ARM_FEATURE_V8)) {
486 return "v8" END;
487 } else if (arm_feature(env, ARM_FEATURE_V7)) {
488 if (arm_feature(env, ARM_FEATURE_M)) {
489 return "v7m" END;
490 } else {
491 return "v7" END;
493 } else if (arm_feature(env, ARM_FEATURE_V6)) {
494 return "v6" END;
495 } else if (arm_feature(env, ARM_FEATURE_V5)) {
496 return "v5" END;
497 } else {
498 return "v4" END;
501 #undef END
504 #else
505 /* 64 bit ARM definitions */
506 #define ELF_START_MMAP 0x80000000
508 #define ELF_ARCH EM_AARCH64
509 #define ELF_CLASS ELFCLASS64
510 #ifdef TARGET_WORDS_BIGENDIAN
511 # define ELF_PLATFORM "aarch64_be"
512 #else
513 # define ELF_PLATFORM "aarch64"
514 #endif
516 static inline void init_thread(struct target_pt_regs *regs,
517 struct image_info *infop)
519 abi_long stack = infop->start_stack;
520 memset(regs, 0, sizeof(*regs));
522 regs->pc = infop->entry & ~0x3ULL;
523 regs->sp = stack;
526 #define ELF_NREG 34
527 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
529 static void elf_core_copy_regs(target_elf_gregset_t *regs,
530 const CPUARMState *env)
532 int i;
534 for (i = 0; i < 32; i++) {
535 (*regs)[i] = tswapreg(env->xregs[i]);
537 (*regs)[32] = tswapreg(env->pc);
538 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
541 #define USE_ELF_CORE_DUMP
542 #define ELF_EXEC_PAGESIZE 4096
544 enum {
545 ARM_HWCAP_A64_FP = 1 << 0,
546 ARM_HWCAP_A64_ASIMD = 1 << 1,
547 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
548 ARM_HWCAP_A64_AES = 1 << 3,
549 ARM_HWCAP_A64_PMULL = 1 << 4,
550 ARM_HWCAP_A64_SHA1 = 1 << 5,
551 ARM_HWCAP_A64_SHA2 = 1 << 6,
552 ARM_HWCAP_A64_CRC32 = 1 << 7,
553 ARM_HWCAP_A64_ATOMICS = 1 << 8,
554 ARM_HWCAP_A64_FPHP = 1 << 9,
555 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
556 ARM_HWCAP_A64_CPUID = 1 << 11,
557 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
558 ARM_HWCAP_A64_JSCVT = 1 << 13,
559 ARM_HWCAP_A64_FCMA = 1 << 14,
560 ARM_HWCAP_A64_LRCPC = 1 << 15,
561 ARM_HWCAP_A64_DCPOP = 1 << 16,
562 ARM_HWCAP_A64_SHA3 = 1 << 17,
563 ARM_HWCAP_A64_SM3 = 1 << 18,
564 ARM_HWCAP_A64_SM4 = 1 << 19,
565 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
566 ARM_HWCAP_A64_SHA512 = 1 << 21,
567 ARM_HWCAP_A64_SVE = 1 << 22,
568 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
569 ARM_HWCAP_A64_DIT = 1 << 24,
570 ARM_HWCAP_A64_USCAT = 1 << 25,
571 ARM_HWCAP_A64_ILRCPC = 1 << 26,
572 ARM_HWCAP_A64_FLAGM = 1 << 27,
573 ARM_HWCAP_A64_SSBS = 1 << 28,
574 ARM_HWCAP_A64_SB = 1 << 29,
575 ARM_HWCAP_A64_PACA = 1 << 30,
576 ARM_HWCAP_A64_PACG = 1UL << 31,
578 ARM_HWCAP2_A64_DCPODP = 1 << 0,
579 ARM_HWCAP2_A64_SVE2 = 1 << 1,
580 ARM_HWCAP2_A64_SVEAES = 1 << 2,
581 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
582 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
583 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
584 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
585 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
586 ARM_HWCAP2_A64_FRINT = 1 << 8,
589 #define ELF_HWCAP get_elf_hwcap()
590 #define ELF_HWCAP2 get_elf_hwcap2()
592 #define GET_FEATURE_ID(feat, hwcap) \
593 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
595 static uint32_t get_elf_hwcap(void)
597 ARMCPU *cpu = ARM_CPU(thread_cpu);
598 uint32_t hwcaps = 0;
600 hwcaps |= ARM_HWCAP_A64_FP;
601 hwcaps |= ARM_HWCAP_A64_ASIMD;
602 hwcaps |= ARM_HWCAP_A64_CPUID;
604 /* probe for the extra features */
606 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
607 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
608 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
609 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
610 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
611 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
612 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
613 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
614 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
615 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
616 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
617 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
618 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
619 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
620 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
621 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
622 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
623 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
624 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
625 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
626 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
627 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
628 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
630 return hwcaps;
633 static uint32_t get_elf_hwcap2(void)
635 ARMCPU *cpu = ARM_CPU(thread_cpu);
636 uint32_t hwcaps = 0;
638 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
639 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
640 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
642 return hwcaps;
645 #undef GET_FEATURE_ID
647 #endif /* not TARGET_AARCH64 */
648 #endif /* TARGET_ARM */
650 #ifdef TARGET_SPARC
651 #ifdef TARGET_SPARC64
653 #define ELF_START_MMAP 0x80000000
654 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
655 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
656 #ifndef TARGET_ABI32
657 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
658 #else
659 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
660 #endif
662 #define ELF_CLASS ELFCLASS64
663 #define ELF_ARCH EM_SPARCV9
665 #define STACK_BIAS 2047
667 static inline void init_thread(struct target_pt_regs *regs,
668 struct image_info *infop)
670 #ifndef TARGET_ABI32
671 regs->tstate = 0;
672 #endif
673 regs->pc = infop->entry;
674 regs->npc = regs->pc + 4;
675 regs->y = 0;
676 #ifdef TARGET_ABI32
677 regs->u_regs[14] = infop->start_stack - 16 * 4;
678 #else
679 if (personality(infop->personality) == PER_LINUX32)
680 regs->u_regs[14] = infop->start_stack - 16 * 4;
681 else
682 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
683 #endif
686 #else
687 #define ELF_START_MMAP 0x80000000
688 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
689 | HWCAP_SPARC_MULDIV)
691 #define ELF_CLASS ELFCLASS32
692 #define ELF_ARCH EM_SPARC
694 static inline void init_thread(struct target_pt_regs *regs,
695 struct image_info *infop)
697 regs->psr = 0;
698 regs->pc = infop->entry;
699 regs->npc = regs->pc + 4;
700 regs->y = 0;
701 regs->u_regs[14] = infop->start_stack - 16 * 4;
704 #endif
705 #endif
707 #ifdef TARGET_PPC
709 #define ELF_MACHINE PPC_ELF_MACHINE
710 #define ELF_START_MMAP 0x80000000
712 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
714 #define elf_check_arch(x) ( (x) == EM_PPC64 )
716 #define ELF_CLASS ELFCLASS64
718 #else
720 #define ELF_CLASS ELFCLASS32
722 #endif
724 #define ELF_ARCH EM_PPC
726 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
727 See arch/powerpc/include/asm/cputable.h. */
728 enum {
729 QEMU_PPC_FEATURE_32 = 0x80000000,
730 QEMU_PPC_FEATURE_64 = 0x40000000,
731 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
732 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
733 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
734 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
735 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
736 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
737 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
738 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
739 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
740 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
741 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
742 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
743 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
744 QEMU_PPC_FEATURE_CELL = 0x00010000,
745 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
746 QEMU_PPC_FEATURE_SMT = 0x00004000,
747 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
748 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
749 QEMU_PPC_FEATURE_PA6T = 0x00000800,
750 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
751 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
752 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
753 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
754 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
756 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
757 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
759 /* Feature definitions in AT_HWCAP2. */
760 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
761 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
762 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
763 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
764 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
765 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
766 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
767 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
768 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
769 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
770 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
771 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
772 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
775 #define ELF_HWCAP get_elf_hwcap()
777 static uint32_t get_elf_hwcap(void)
779 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
780 uint32_t features = 0;
782 /* We don't have to be terribly complete here; the high points are
783 Altivec/FP/SPE support. Anything else is just a bonus. */
784 #define GET_FEATURE(flag, feature) \
785 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
786 #define GET_FEATURE2(flags, feature) \
787 do { \
788 if ((cpu->env.insns_flags2 & flags) == flags) { \
789 features |= feature; \
791 } while (0)
792 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
793 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
794 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
795 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
796 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
797 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
798 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
799 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
800 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
801 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
802 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
803 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
804 QEMU_PPC_FEATURE_ARCH_2_06);
805 #undef GET_FEATURE
806 #undef GET_FEATURE2
808 return features;
811 #define ELF_HWCAP2 get_elf_hwcap2()
813 static uint32_t get_elf_hwcap2(void)
815 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
816 uint32_t features = 0;
818 #define GET_FEATURE(flag, feature) \
819 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
820 #define GET_FEATURE2(flag, feature) \
821 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
823 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
824 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
825 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
826 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
827 QEMU_PPC_FEATURE2_VEC_CRYPTO);
828 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
829 QEMU_PPC_FEATURE2_DARN);
831 #undef GET_FEATURE
832 #undef GET_FEATURE2
834 return features;
838 * The requirements here are:
839 * - keep the final alignment of sp (sp & 0xf)
840 * - make sure the 32-bit value at the first 16 byte aligned position of
841 * AUXV is greater than 16 for glibc compatibility.
842 * AT_IGNOREPPC is used for that.
843 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
844 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
846 #define DLINFO_ARCH_ITEMS 5
847 #define ARCH_DLINFO \
848 do { \
849 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
850 /* \
851 * Handle glibc compatibility: these magic entries must \
852 * be at the lowest addresses in the final auxv. \
853 */ \
854 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
855 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
856 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
857 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
858 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
859 } while (0)
861 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
863 _regs->gpr[1] = infop->start_stack;
864 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
865 if (get_ppc64_abi(infop) < 2) {
866 uint64_t val;
867 get_user_u64(val, infop->entry + 8);
868 _regs->gpr[2] = val + infop->load_bias;
869 get_user_u64(val, infop->entry);
870 infop->entry = val + infop->load_bias;
871 } else {
872 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
874 #endif
875 _regs->nip = infop->entry;
878 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
879 #define ELF_NREG 48
880 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
882 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
884 int i;
885 target_ulong ccr = 0;
887 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
888 (*regs)[i] = tswapreg(env->gpr[i]);
891 (*regs)[32] = tswapreg(env->nip);
892 (*regs)[33] = tswapreg(env->msr);
893 (*regs)[35] = tswapreg(env->ctr);
894 (*regs)[36] = tswapreg(env->lr);
895 (*regs)[37] = tswapreg(env->xer);
897 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
898 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
900 (*regs)[38] = tswapreg(ccr);
903 #define USE_ELF_CORE_DUMP
904 #define ELF_EXEC_PAGESIZE 4096
906 #endif
908 #ifdef TARGET_MIPS
910 #define ELF_START_MMAP 0x80000000
912 #ifdef TARGET_MIPS64
913 #define ELF_CLASS ELFCLASS64
914 #else
915 #define ELF_CLASS ELFCLASS32
916 #endif
917 #define ELF_ARCH EM_MIPS
919 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
921 static inline void init_thread(struct target_pt_regs *regs,
922 struct image_info *infop)
924 regs->cp0_status = 2 << CP0St_KSU;
925 regs->cp0_epc = infop->entry;
926 regs->regs[29] = infop->start_stack;
929 /* See linux kernel: arch/mips/include/asm/elf.h. */
930 #define ELF_NREG 45
931 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
933 /* See linux kernel: arch/mips/include/asm/reg.h. */
934 enum {
935 #ifdef TARGET_MIPS64
936 TARGET_EF_R0 = 0,
937 #else
938 TARGET_EF_R0 = 6,
939 #endif
940 TARGET_EF_R26 = TARGET_EF_R0 + 26,
941 TARGET_EF_R27 = TARGET_EF_R0 + 27,
942 TARGET_EF_LO = TARGET_EF_R0 + 32,
943 TARGET_EF_HI = TARGET_EF_R0 + 33,
944 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
945 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
946 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
947 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
950 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
951 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
953 int i;
955 for (i = 0; i < TARGET_EF_R0; i++) {
956 (*regs)[i] = 0;
958 (*regs)[TARGET_EF_R0] = 0;
960 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
961 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
964 (*regs)[TARGET_EF_R26] = 0;
965 (*regs)[TARGET_EF_R27] = 0;
966 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
967 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
968 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
969 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
970 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
971 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
974 #define USE_ELF_CORE_DUMP
975 #define ELF_EXEC_PAGESIZE 4096
977 /* See arch/mips/include/uapi/asm/hwcap.h. */
978 enum {
979 HWCAP_MIPS_R6 = (1 << 0),
980 HWCAP_MIPS_MSA = (1 << 1),
983 #define ELF_HWCAP get_elf_hwcap()
985 static uint32_t get_elf_hwcap(void)
987 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
988 uint32_t hwcaps = 0;
990 #define GET_FEATURE(flag, hwcap) \
991 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
993 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
994 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
996 #undef GET_FEATURE
998 return hwcaps;
1001 #endif /* TARGET_MIPS */
1003 #ifdef TARGET_MICROBLAZE
1005 #define ELF_START_MMAP 0x80000000
1007 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1009 #define ELF_CLASS ELFCLASS32
1010 #define ELF_ARCH EM_MICROBLAZE
1012 static inline void init_thread(struct target_pt_regs *regs,
1013 struct image_info *infop)
1015 regs->pc = infop->entry;
1016 regs->r1 = infop->start_stack;
1020 #define ELF_EXEC_PAGESIZE 4096
1022 #define USE_ELF_CORE_DUMP
1023 #define ELF_NREG 38
1024 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1026 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1027 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1029 int i, pos = 0;
1031 for (i = 0; i < 32; i++) {
1032 (*regs)[pos++] = tswapreg(env->regs[i]);
1035 for (i = 0; i < 6; i++) {
1036 (*regs)[pos++] = tswapreg(env->sregs[i]);
1040 #endif /* TARGET_MICROBLAZE */
1042 #ifdef TARGET_NIOS2
1044 #define ELF_START_MMAP 0x80000000
1046 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1048 #define ELF_CLASS ELFCLASS32
1049 #define ELF_ARCH EM_ALTERA_NIOS2
1051 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1053 regs->ea = infop->entry;
1054 regs->sp = infop->start_stack;
1055 regs->estatus = 0x3;
1058 #define ELF_EXEC_PAGESIZE 4096
1060 #define USE_ELF_CORE_DUMP
1061 #define ELF_NREG 49
1062 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1064 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1065 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1066 const CPUNios2State *env)
1068 int i;
1070 (*regs)[0] = -1;
1071 for (i = 1; i < 8; i++) /* r0-r7 */
1072 (*regs)[i] = tswapreg(env->regs[i + 7]);
1074 for (i = 8; i < 16; i++) /* r8-r15 */
1075 (*regs)[i] = tswapreg(env->regs[i - 8]);
1077 for (i = 16; i < 24; i++) /* r16-r23 */
1078 (*regs)[i] = tswapreg(env->regs[i + 7]);
1079 (*regs)[24] = -1; /* R_ET */
1080 (*regs)[25] = -1; /* R_BT */
1081 (*regs)[26] = tswapreg(env->regs[R_GP]);
1082 (*regs)[27] = tswapreg(env->regs[R_SP]);
1083 (*regs)[28] = tswapreg(env->regs[R_FP]);
1084 (*regs)[29] = tswapreg(env->regs[R_EA]);
1085 (*regs)[30] = -1; /* R_SSTATUS */
1086 (*regs)[31] = tswapreg(env->regs[R_RA]);
1088 (*regs)[32] = tswapreg(env->regs[R_PC]);
1090 (*regs)[33] = -1; /* R_STATUS */
1091 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1093 for (i = 35; i < 49; i++) /* ... */
1094 (*regs)[i] = -1;
1097 #endif /* TARGET_NIOS2 */
1099 #ifdef TARGET_OPENRISC
1101 #define ELF_START_MMAP 0x08000000
1103 #define ELF_ARCH EM_OPENRISC
1104 #define ELF_CLASS ELFCLASS32
1105 #define ELF_DATA ELFDATA2MSB
1107 static inline void init_thread(struct target_pt_regs *regs,
1108 struct image_info *infop)
1110 regs->pc = infop->entry;
1111 regs->gpr[1] = infop->start_stack;
1114 #define USE_ELF_CORE_DUMP
1115 #define ELF_EXEC_PAGESIZE 8192
1117 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1118 #define ELF_NREG 34 /* gprs and pc, sr */
1119 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1121 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1122 const CPUOpenRISCState *env)
1124 int i;
1126 for (i = 0; i < 32; i++) {
1127 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1129 (*regs)[32] = tswapreg(env->pc);
1130 (*regs)[33] = tswapreg(cpu_get_sr(env));
1132 #define ELF_HWCAP 0
1133 #define ELF_PLATFORM NULL
1135 #endif /* TARGET_OPENRISC */
1137 #ifdef TARGET_SH4
1139 #define ELF_START_MMAP 0x80000000
1141 #define ELF_CLASS ELFCLASS32
1142 #define ELF_ARCH EM_SH
1144 static inline void init_thread(struct target_pt_regs *regs,
1145 struct image_info *infop)
1147 /* Check other registers XXXXX */
1148 regs->pc = infop->entry;
1149 regs->regs[15] = infop->start_stack;
1152 /* See linux kernel: arch/sh/include/asm/elf.h. */
1153 #define ELF_NREG 23
1154 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1156 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1157 enum {
1158 TARGET_REG_PC = 16,
1159 TARGET_REG_PR = 17,
1160 TARGET_REG_SR = 18,
1161 TARGET_REG_GBR = 19,
1162 TARGET_REG_MACH = 20,
1163 TARGET_REG_MACL = 21,
1164 TARGET_REG_SYSCALL = 22
1167 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1168 const CPUSH4State *env)
1170 int i;
1172 for (i = 0; i < 16; i++) {
1173 (*regs)[i] = tswapreg(env->gregs[i]);
1176 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1177 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1178 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1179 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1180 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1181 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1182 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1185 #define USE_ELF_CORE_DUMP
1186 #define ELF_EXEC_PAGESIZE 4096
1188 enum {
1189 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1190 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1191 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1192 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1193 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1194 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1195 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1196 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1197 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1198 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1201 #define ELF_HWCAP get_elf_hwcap()
1203 static uint32_t get_elf_hwcap(void)
1205 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1206 uint32_t hwcap = 0;
1208 hwcap |= SH_CPU_HAS_FPU;
1210 if (cpu->env.features & SH_FEATURE_SH4A) {
1211 hwcap |= SH_CPU_HAS_LLSC;
1214 return hwcap;
1217 #endif
1219 #ifdef TARGET_CRIS
1221 #define ELF_START_MMAP 0x80000000
1223 #define ELF_CLASS ELFCLASS32
1224 #define ELF_ARCH EM_CRIS
1226 static inline void init_thread(struct target_pt_regs *regs,
1227 struct image_info *infop)
1229 regs->erp = infop->entry;
1232 #define ELF_EXEC_PAGESIZE 8192
1234 #endif
1236 #ifdef TARGET_M68K
1238 #define ELF_START_MMAP 0x80000000
1240 #define ELF_CLASS ELFCLASS32
1241 #define ELF_ARCH EM_68K
1243 /* ??? Does this need to do anything?
1244 #define ELF_PLAT_INIT(_r) */
1246 static inline void init_thread(struct target_pt_regs *regs,
1247 struct image_info *infop)
1249 regs->usp = infop->start_stack;
1250 regs->sr = 0;
1251 regs->pc = infop->entry;
1254 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1255 #define ELF_NREG 20
1256 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1258 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1260 (*regs)[0] = tswapreg(env->dregs[1]);
1261 (*regs)[1] = tswapreg(env->dregs[2]);
1262 (*regs)[2] = tswapreg(env->dregs[3]);
1263 (*regs)[3] = tswapreg(env->dregs[4]);
1264 (*regs)[4] = tswapreg(env->dregs[5]);
1265 (*regs)[5] = tswapreg(env->dregs[6]);
1266 (*regs)[6] = tswapreg(env->dregs[7]);
1267 (*regs)[7] = tswapreg(env->aregs[0]);
1268 (*regs)[8] = tswapreg(env->aregs[1]);
1269 (*regs)[9] = tswapreg(env->aregs[2]);
1270 (*regs)[10] = tswapreg(env->aregs[3]);
1271 (*regs)[11] = tswapreg(env->aregs[4]);
1272 (*regs)[12] = tswapreg(env->aregs[5]);
1273 (*regs)[13] = tswapreg(env->aregs[6]);
1274 (*regs)[14] = tswapreg(env->dregs[0]);
1275 (*regs)[15] = tswapreg(env->aregs[7]);
1276 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1277 (*regs)[17] = tswapreg(env->sr);
1278 (*regs)[18] = tswapreg(env->pc);
1279 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1282 #define USE_ELF_CORE_DUMP
1283 #define ELF_EXEC_PAGESIZE 8192
1285 #endif
1287 #ifdef TARGET_ALPHA
1289 #define ELF_START_MMAP (0x30000000000ULL)
1291 #define ELF_CLASS ELFCLASS64
1292 #define ELF_ARCH EM_ALPHA
1294 static inline void init_thread(struct target_pt_regs *regs,
1295 struct image_info *infop)
1297 regs->pc = infop->entry;
1298 regs->ps = 8;
1299 regs->usp = infop->start_stack;
1302 #define ELF_EXEC_PAGESIZE 8192
1304 #endif /* TARGET_ALPHA */
1306 #ifdef TARGET_S390X
1308 #define ELF_START_MMAP (0x20000000000ULL)
1310 #define ELF_CLASS ELFCLASS64
1311 #define ELF_DATA ELFDATA2MSB
1312 #define ELF_ARCH EM_S390
1314 #include "elf.h"
1316 #define ELF_HWCAP get_elf_hwcap()
1318 #define GET_FEATURE(_feat, _hwcap) \
1319 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1321 static uint32_t get_elf_hwcap(void)
1324 * Let's assume we always have esan3 and zarch.
1325 * 31-bit processes can use 64-bit registers (high gprs).
1327 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1329 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1330 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1331 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1332 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1333 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1334 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1335 hwcap |= HWCAP_S390_ETF3EH;
1337 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1339 return hwcap;
1342 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1344 regs->psw.addr = infop->entry;
1345 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1346 regs->gprs[15] = infop->start_stack;
1349 #endif /* TARGET_S390X */
1351 #ifdef TARGET_TILEGX
1353 /* 42 bits real used address, a half for user mode */
1354 #define ELF_START_MMAP (0x00000020000000000ULL)
1356 #define elf_check_arch(x) ((x) == EM_TILEGX)
1358 #define ELF_CLASS ELFCLASS64
1359 #define ELF_DATA ELFDATA2LSB
1360 #define ELF_ARCH EM_TILEGX
1362 static inline void init_thread(struct target_pt_regs *regs,
1363 struct image_info *infop)
1365 regs->pc = infop->entry;
1366 regs->sp = infop->start_stack;
1370 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1372 #endif /* TARGET_TILEGX */
1374 #ifdef TARGET_RISCV
1376 #define ELF_START_MMAP 0x80000000
1377 #define ELF_ARCH EM_RISCV
1379 #ifdef TARGET_RISCV32
1380 #define ELF_CLASS ELFCLASS32
1381 #else
1382 #define ELF_CLASS ELFCLASS64
1383 #endif
1385 static inline void init_thread(struct target_pt_regs *regs,
1386 struct image_info *infop)
1388 regs->sepc = infop->entry;
1389 regs->sp = infop->start_stack;
1392 #define ELF_EXEC_PAGESIZE 4096
1394 #endif /* TARGET_RISCV */
1396 #ifdef TARGET_HPPA
1398 #define ELF_START_MMAP 0x80000000
1399 #define ELF_CLASS ELFCLASS32
1400 #define ELF_ARCH EM_PARISC
1401 #define ELF_PLATFORM "PARISC"
1402 #define STACK_GROWS_DOWN 0
1403 #define STACK_ALIGNMENT 64
1405 static inline void init_thread(struct target_pt_regs *regs,
1406 struct image_info *infop)
1408 regs->iaoq[0] = infop->entry;
1409 regs->iaoq[1] = infop->entry + 4;
1410 regs->gr[23] = 0;
1411 regs->gr[24] = infop->arg_start;
1412 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1413 /* The top-of-stack contains a linkage buffer. */
1414 regs->gr[30] = infop->start_stack + 64;
1415 regs->gr[31] = infop->entry;
1418 #endif /* TARGET_HPPA */
1420 #ifdef TARGET_XTENSA
1422 #define ELF_START_MMAP 0x20000000
1424 #define ELF_CLASS ELFCLASS32
1425 #define ELF_ARCH EM_XTENSA
1427 static inline void init_thread(struct target_pt_regs *regs,
1428 struct image_info *infop)
1430 regs->windowbase = 0;
1431 regs->windowstart = 1;
1432 regs->areg[1] = infop->start_stack;
1433 regs->pc = infop->entry;
1436 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1437 #define ELF_NREG 128
1438 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1440 enum {
1441 TARGET_REG_PC,
1442 TARGET_REG_PS,
1443 TARGET_REG_LBEG,
1444 TARGET_REG_LEND,
1445 TARGET_REG_LCOUNT,
1446 TARGET_REG_SAR,
1447 TARGET_REG_WINDOWSTART,
1448 TARGET_REG_WINDOWBASE,
1449 TARGET_REG_THREADPTR,
1450 TARGET_REG_AR0 = 64,
1453 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1454 const CPUXtensaState *env)
1456 unsigned i;
1458 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1459 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1460 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1461 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1462 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1463 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1464 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1465 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1466 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1467 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1468 for (i = 0; i < env->config->nareg; ++i) {
1469 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1473 #define USE_ELF_CORE_DUMP
1474 #define ELF_EXEC_PAGESIZE 4096
1476 #endif /* TARGET_XTENSA */
1478 #ifndef ELF_PLATFORM
1479 #define ELF_PLATFORM (NULL)
1480 #endif
1482 #ifndef ELF_MACHINE
1483 #define ELF_MACHINE ELF_ARCH
1484 #endif
1486 #ifndef elf_check_arch
1487 #define elf_check_arch(x) ((x) == ELF_ARCH)
1488 #endif
1490 #ifndef ELF_HWCAP
1491 #define ELF_HWCAP 0
1492 #endif
1494 #ifndef STACK_GROWS_DOWN
1495 #define STACK_GROWS_DOWN 1
1496 #endif
1498 #ifndef STACK_ALIGNMENT
1499 #define STACK_ALIGNMENT 16
1500 #endif
1502 #ifdef TARGET_ABI32
1503 #undef ELF_CLASS
1504 #define ELF_CLASS ELFCLASS32
1505 #undef bswaptls
1506 #define bswaptls(ptr) bswap32s(ptr)
1507 #endif
1509 #include "elf.h"
1511 struct exec
1513 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1514 unsigned int a_text; /* length of text, in bytes */
1515 unsigned int a_data; /* length of data, in bytes */
1516 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1517 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1518 unsigned int a_entry; /* start address */
1519 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1520 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1524 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1525 #define OMAGIC 0407
1526 #define NMAGIC 0410
1527 #define ZMAGIC 0413
1528 #define QMAGIC 0314
1530 /* Necessary parameters */
1531 #define TARGET_ELF_EXEC_PAGESIZE \
1532 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1533 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1534 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1535 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1536 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1537 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1539 #define DLINFO_ITEMS 16
1541 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1543 memcpy(to, from, n);
1546 #ifdef BSWAP_NEEDED
1547 static void bswap_ehdr(struct elfhdr *ehdr)
1549 bswap16s(&ehdr->e_type); /* Object file type */
1550 bswap16s(&ehdr->e_machine); /* Architecture */
1551 bswap32s(&ehdr->e_version); /* Object file version */
1552 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1553 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1554 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1555 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1556 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1557 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1558 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1559 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1560 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1561 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1564 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1566 int i;
1567 for (i = 0; i < phnum; ++i, ++phdr) {
1568 bswap32s(&phdr->p_type); /* Segment type */
1569 bswap32s(&phdr->p_flags); /* Segment flags */
1570 bswaptls(&phdr->p_offset); /* Segment file offset */
1571 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1572 bswaptls(&phdr->p_paddr); /* Segment physical address */
1573 bswaptls(&phdr->p_filesz); /* Segment size in file */
1574 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1575 bswaptls(&phdr->p_align); /* Segment alignment */
1579 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1581 int i;
1582 for (i = 0; i < shnum; ++i, ++shdr) {
1583 bswap32s(&shdr->sh_name);
1584 bswap32s(&shdr->sh_type);
1585 bswaptls(&shdr->sh_flags);
1586 bswaptls(&shdr->sh_addr);
1587 bswaptls(&shdr->sh_offset);
1588 bswaptls(&shdr->sh_size);
1589 bswap32s(&shdr->sh_link);
1590 bswap32s(&shdr->sh_info);
1591 bswaptls(&shdr->sh_addralign);
1592 bswaptls(&shdr->sh_entsize);
1596 static void bswap_sym(struct elf_sym *sym)
1598 bswap32s(&sym->st_name);
1599 bswaptls(&sym->st_value);
1600 bswaptls(&sym->st_size);
1601 bswap16s(&sym->st_shndx);
1604 #ifdef TARGET_MIPS
1605 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1607 bswap16s(&abiflags->version);
1608 bswap32s(&abiflags->ases);
1609 bswap32s(&abiflags->isa_ext);
1610 bswap32s(&abiflags->flags1);
1611 bswap32s(&abiflags->flags2);
1613 #endif
1614 #else
1615 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1616 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1617 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1618 static inline void bswap_sym(struct elf_sym *sym) { }
1619 #ifdef TARGET_MIPS
1620 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1621 #endif
1622 #endif
1624 #ifdef USE_ELF_CORE_DUMP
1625 static int elf_core_dump(int, const CPUArchState *);
1626 #endif /* USE_ELF_CORE_DUMP */
1627 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1629 /* Verify the portions of EHDR within E_IDENT for the target.
1630 This can be performed before bswapping the entire header. */
1631 static bool elf_check_ident(struct elfhdr *ehdr)
1633 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1634 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1635 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1636 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1637 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1638 && ehdr->e_ident[EI_DATA] == ELF_DATA
1639 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1642 /* Verify the portions of EHDR outside of E_IDENT for the target.
1643 This has to wait until after bswapping the header. */
1644 static bool elf_check_ehdr(struct elfhdr *ehdr)
1646 return (elf_check_arch(ehdr->e_machine)
1647 && ehdr->e_ehsize == sizeof(struct elfhdr)
1648 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1649 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1653 * 'copy_elf_strings()' copies argument/envelope strings from user
1654 * memory to free pages in kernel mem. These are in a format ready
1655 * to be put directly into the top of new user memory.
1658 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1659 abi_ulong p, abi_ulong stack_limit)
1661 char *tmp;
1662 int len, i;
1663 abi_ulong top = p;
1665 if (!p) {
1666 return 0; /* bullet-proofing */
1669 if (STACK_GROWS_DOWN) {
1670 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1671 for (i = argc - 1; i >= 0; --i) {
1672 tmp = argv[i];
1673 if (!tmp) {
1674 fprintf(stderr, "VFS: argc is wrong");
1675 exit(-1);
1677 len = strlen(tmp) + 1;
1678 tmp += len;
1680 if (len > (p - stack_limit)) {
1681 return 0;
1683 while (len) {
1684 int bytes_to_copy = (len > offset) ? offset : len;
1685 tmp -= bytes_to_copy;
1686 p -= bytes_to_copy;
1687 offset -= bytes_to_copy;
1688 len -= bytes_to_copy;
1690 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1692 if (offset == 0) {
1693 memcpy_to_target(p, scratch, top - p);
1694 top = p;
1695 offset = TARGET_PAGE_SIZE;
1699 if (p != top) {
1700 memcpy_to_target(p, scratch + offset, top - p);
1702 } else {
1703 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1704 for (i = 0; i < argc; ++i) {
1705 tmp = argv[i];
1706 if (!tmp) {
1707 fprintf(stderr, "VFS: argc is wrong");
1708 exit(-1);
1710 len = strlen(tmp) + 1;
1711 if (len > (stack_limit - p)) {
1712 return 0;
1714 while (len) {
1715 int bytes_to_copy = (len > remaining) ? remaining : len;
1717 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1719 tmp += bytes_to_copy;
1720 remaining -= bytes_to_copy;
1721 p += bytes_to_copy;
1722 len -= bytes_to_copy;
1724 if (remaining == 0) {
1725 memcpy_to_target(top, scratch, p - top);
1726 top = p;
1727 remaining = TARGET_PAGE_SIZE;
1731 if (p != top) {
1732 memcpy_to_target(top, scratch, p - top);
1736 return p;
1739 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1740 * argument/environment space. Newer kernels (>2.6.33) allow more,
1741 * dependent on stack size, but guarantee at least 32 pages for
1742 * backwards compatibility.
1744 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1746 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1747 struct image_info *info)
1749 abi_ulong size, error, guard;
1751 size = guest_stack_size;
1752 if (size < STACK_LOWER_LIMIT) {
1753 size = STACK_LOWER_LIMIT;
1755 guard = TARGET_PAGE_SIZE;
1756 if (guard < qemu_real_host_page_size) {
1757 guard = qemu_real_host_page_size;
1760 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1761 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1762 if (error == -1) {
1763 perror("mmap stack");
1764 exit(-1);
1767 /* We reserve one extra page at the top of the stack as guard. */
1768 if (STACK_GROWS_DOWN) {
1769 target_mprotect(error, guard, PROT_NONE);
1770 info->stack_limit = error + guard;
1771 return info->stack_limit + size - sizeof(void *);
1772 } else {
1773 target_mprotect(error + size, guard, PROT_NONE);
1774 info->stack_limit = error + size;
1775 return error;
1779 /* Map and zero the bss. We need to explicitly zero any fractional pages
1780 after the data section (i.e. bss). */
1781 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1783 uintptr_t host_start, host_map_start, host_end;
1785 last_bss = TARGET_PAGE_ALIGN(last_bss);
1787 /* ??? There is confusion between qemu_real_host_page_size and
1788 qemu_host_page_size here and elsewhere in target_mmap, which
1789 may lead to the end of the data section mapping from the file
1790 not being mapped. At least there was an explicit test and
1791 comment for that here, suggesting that "the file size must
1792 be known". The comment probably pre-dates the introduction
1793 of the fstat system call in target_mmap which does in fact
1794 find out the size. What isn't clear is if the workaround
1795 here is still actually needed. For now, continue with it,
1796 but merge it with the "normal" mmap that would allocate the bss. */
1798 host_start = (uintptr_t) g2h(elf_bss);
1799 host_end = (uintptr_t) g2h(last_bss);
1800 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1802 if (host_map_start < host_end) {
1803 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1804 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1805 if (p == MAP_FAILED) {
1806 perror("cannot mmap brk");
1807 exit(-1);
1811 /* Ensure that the bss page(s) are valid */
1812 if ((page_get_flags(last_bss-1) & prot) != prot) {
1813 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1816 if (host_start < host_map_start) {
1817 memset((void *)host_start, 0, host_map_start - host_start);
1821 #ifdef TARGET_ARM
1822 static int elf_is_fdpic(struct elfhdr *exec)
1824 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1826 #else
1827 /* Default implementation, always false. */
1828 static int elf_is_fdpic(struct elfhdr *exec)
1830 return 0;
1832 #endif
1834 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1836 uint16_t n;
1837 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1839 /* elf32_fdpic_loadseg */
1840 n = info->nsegs;
1841 while (n--) {
1842 sp -= 12;
1843 put_user_u32(loadsegs[n].addr, sp+0);
1844 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1845 put_user_u32(loadsegs[n].p_memsz, sp+8);
1848 /* elf32_fdpic_loadmap */
1849 sp -= 4;
1850 put_user_u16(0, sp+0); /* version */
1851 put_user_u16(info->nsegs, sp+2); /* nsegs */
1853 info->personality = PER_LINUX_FDPIC;
1854 info->loadmap_addr = sp;
1856 return sp;
1859 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1860 struct elfhdr *exec,
1861 struct image_info *info,
1862 struct image_info *interp_info)
1864 abi_ulong sp;
1865 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1866 int size;
1867 int i;
1868 abi_ulong u_rand_bytes;
1869 uint8_t k_rand_bytes[16];
1870 abi_ulong u_platform;
1871 const char *k_platform;
1872 const int n = sizeof(elf_addr_t);
1874 sp = p;
1876 /* Needs to be before we load the env/argc/... */
1877 if (elf_is_fdpic(exec)) {
1878 /* Need 4 byte alignment for these structs */
1879 sp &= ~3;
1880 sp = loader_build_fdpic_loadmap(info, sp);
1881 info->other_info = interp_info;
1882 if (interp_info) {
1883 interp_info->other_info = info;
1884 sp = loader_build_fdpic_loadmap(interp_info, sp);
1885 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1886 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1887 } else {
1888 info->interpreter_loadmap_addr = 0;
1889 info->interpreter_pt_dynamic_addr = 0;
1893 u_platform = 0;
1894 k_platform = ELF_PLATFORM;
1895 if (k_platform) {
1896 size_t len = strlen(k_platform) + 1;
1897 if (STACK_GROWS_DOWN) {
1898 sp -= (len + n - 1) & ~(n - 1);
1899 u_platform = sp;
1900 /* FIXME - check return value of memcpy_to_target() for failure */
1901 memcpy_to_target(sp, k_platform, len);
1902 } else {
1903 memcpy_to_target(sp, k_platform, len);
1904 u_platform = sp;
1905 sp += len + 1;
1909 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1910 * the argv and envp pointers.
1912 if (STACK_GROWS_DOWN) {
1913 sp = QEMU_ALIGN_DOWN(sp, 16);
1914 } else {
1915 sp = QEMU_ALIGN_UP(sp, 16);
1919 * Generate 16 random bytes for userspace PRNG seeding.
1921 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1922 if (STACK_GROWS_DOWN) {
1923 sp -= 16;
1924 u_rand_bytes = sp;
1925 /* FIXME - check return value of memcpy_to_target() for failure */
1926 memcpy_to_target(sp, k_rand_bytes, 16);
1927 } else {
1928 memcpy_to_target(sp, k_rand_bytes, 16);
1929 u_rand_bytes = sp;
1930 sp += 16;
1933 size = (DLINFO_ITEMS + 1) * 2;
1934 if (k_platform)
1935 size += 2;
1936 #ifdef DLINFO_ARCH_ITEMS
1937 size += DLINFO_ARCH_ITEMS * 2;
1938 #endif
1939 #ifdef ELF_HWCAP2
1940 size += 2;
1941 #endif
1942 info->auxv_len = size * n;
1944 size += envc + argc + 2;
1945 size += 1; /* argc itself */
1946 size *= n;
1948 /* Allocate space and finalize stack alignment for entry now. */
1949 if (STACK_GROWS_DOWN) {
1950 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1951 sp = u_argc;
1952 } else {
1953 u_argc = sp;
1954 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1957 u_argv = u_argc + n;
1958 u_envp = u_argv + (argc + 1) * n;
1959 u_auxv = u_envp + (envc + 1) * n;
1960 info->saved_auxv = u_auxv;
1961 info->arg_start = u_argv;
1962 info->arg_end = u_argv + argc * n;
1964 /* This is correct because Linux defines
1965 * elf_addr_t as Elf32_Off / Elf64_Off
1967 #define NEW_AUX_ENT(id, val) do { \
1968 put_user_ual(id, u_auxv); u_auxv += n; \
1969 put_user_ual(val, u_auxv); u_auxv += n; \
1970 } while(0)
1972 #ifdef ARCH_DLINFO
1974 * ARCH_DLINFO must come first so platform specific code can enforce
1975 * special alignment requirements on the AUXV if necessary (eg. PPC).
1977 ARCH_DLINFO;
1978 #endif
1979 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1980 * on info->auxv_len will trigger.
1982 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1983 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1984 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1985 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1986 /* Target doesn't support host page size alignment */
1987 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1988 } else {
1989 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1990 qemu_host_page_size)));
1992 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1993 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1994 NEW_AUX_ENT(AT_ENTRY, info->entry);
1995 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1996 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1997 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1998 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1999 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2000 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2001 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2002 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2003 NEW_AUX_ENT(AT_EXECFN, info->file_string);
2005 #ifdef ELF_HWCAP2
2006 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2007 #endif
2009 if (u_platform) {
2010 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2012 NEW_AUX_ENT (AT_NULL, 0);
2013 #undef NEW_AUX_ENT
2015 /* Check that our initial calculation of the auxv length matches how much
2016 * we actually put into it.
2018 assert(info->auxv_len == u_auxv - info->saved_auxv);
2020 put_user_ual(argc, u_argc);
2022 p = info->arg_strings;
2023 for (i = 0; i < argc; ++i) {
2024 put_user_ual(p, u_argv);
2025 u_argv += n;
2026 p += target_strlen(p) + 1;
2028 put_user_ual(0, u_argv);
2030 p = info->env_strings;
2031 for (i = 0; i < envc; ++i) {
2032 put_user_ual(p, u_envp);
2033 u_envp += n;
2034 p += target_strlen(p) + 1;
2036 put_user_ual(0, u_envp);
2038 return sp;
2041 #ifndef ARM_COMMPAGE
2042 #define ARM_COMMPAGE 0
2043 #define init_guest_commpage() true
2044 #endif
2046 static void pgb_fail_in_use(const char *image_name)
2048 error_report("%s: requires virtual address space that is in use "
2049 "(omit the -B option or choose a different value)",
2050 image_name);
2051 exit(EXIT_FAILURE);
2054 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2055 abi_ulong guest_hiaddr, long align)
2057 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2058 void *addr, *test;
2060 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2061 fprintf(stderr, "Requested guest base 0x%lx does not satisfy "
2062 "host minimum alignment (0x%lx)\n",
2063 guest_base, align);
2064 exit(EXIT_FAILURE);
2067 /* Sanity check the guest binary. */
2068 if (reserved_va) {
2069 if (guest_hiaddr > reserved_va) {
2070 error_report("%s: requires more than reserved virtual "
2071 "address space (0x%" PRIx64 " > 0x%lx)",
2072 image_name, (uint64_t)guest_hiaddr, reserved_va);
2073 exit(EXIT_FAILURE);
2075 } else {
2076 #if HOST_LONG_BITS < TARGET_ABI_BITS
2077 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2078 error_report("%s: requires more virtual address space "
2079 "than the host can provide (0x%" PRIx64 ")",
2080 image_name, (uint64_t)guest_hiaddr - guest_base);
2081 exit(EXIT_FAILURE);
2083 #endif
2087 * Expand the allocation to the entire reserved_va.
2088 * Exclude the mmap_min_addr hole.
2090 if (reserved_va) {
2091 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2092 : mmap_min_addr - guest_base);
2093 guest_hiaddr = reserved_va;
2096 /* Reserve the address space for the binary, or reserved_va. */
2097 test = g2h(guest_loaddr);
2098 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2099 if (test != addr) {
2100 pgb_fail_in_use(image_name);
2105 * pgd_find_hole_fallback: potential mmap address
2106 * @guest_size: size of available space
2107 * @brk: location of break
2108 * @align: memory alignment
2110 * This is a fallback method for finding a hole in the host address
2111 * space if we don't have the benefit of being able to access
2112 * /proc/self/map. It can potentially take a very long time as we can
2113 * only dumbly iterate up the host address space seeing if the
2114 * allocation would work.
2116 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2117 long align, uintptr_t offset)
2119 uintptr_t base;
2121 /* Start (aligned) at the bottom and work our way up */
2122 base = ROUND_UP(mmap_min_addr, align);
2124 while (true) {
2125 uintptr_t align_start, end;
2126 align_start = ROUND_UP(base, align);
2127 end = align_start + guest_size + offset;
2129 /* if brk is anywhere in the range give ourselves some room to grow. */
2130 if (align_start <= brk && brk < end) {
2131 base = brk + (16 * MiB);
2132 continue;
2133 } else if (align_start + guest_size < align_start) {
2134 /* we have run out of space */
2135 return -1;
2136 } else {
2137 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | MAP_FIXED;
2138 void * mmap_start = mmap((void *) align_start, guest_size,
2139 PROT_NONE, flags, -1, 0);
2140 if (mmap_start != MAP_FAILED) {
2141 munmap((void *) align_start, guest_size);
2142 return (uintptr_t) mmap_start + offset;
2144 base += qemu_host_page_size;
2149 /* Return value for guest_base, or -1 if no hole found. */
2150 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2151 long align, uintptr_t offset)
2153 GSList *maps, *iter;
2154 uintptr_t this_start, this_end, next_start, brk;
2155 intptr_t ret = -1;
2157 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2159 maps = read_self_maps();
2161 /* Read brk after we've read the maps, which will malloc. */
2162 brk = (uintptr_t)sbrk(0);
2164 if (!maps) {
2165 return pgd_find_hole_fallback(guest_size, brk, align, offset);
2168 /* The first hole is before the first map entry. */
2169 this_start = mmap_min_addr;
2171 for (iter = maps; iter;
2172 this_start = next_start, iter = g_slist_next(iter)) {
2173 uintptr_t align_start, hole_size;
2175 this_end = ((MapInfo *)iter->data)->start;
2176 next_start = ((MapInfo *)iter->data)->end;
2177 align_start = ROUND_UP(this_start + offset, align);
2179 /* Skip holes that are too small. */
2180 if (align_start >= this_end) {
2181 continue;
2183 hole_size = this_end - align_start;
2184 if (hole_size < guest_size) {
2185 continue;
2188 /* If this hole contains brk, give ourselves some room to grow. */
2189 if (this_start <= brk && brk < this_end) {
2190 hole_size -= guest_size;
2191 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2192 align_start += 1 * GiB;
2193 } else if (hole_size >= 16 * MiB) {
2194 align_start += 16 * MiB;
2195 } else {
2196 align_start = (this_end - guest_size) & -align;
2197 if (align_start < this_start) {
2198 continue;
2203 /* Record the lowest successful match. */
2204 if (ret < 0) {
2205 ret = align_start - guest_loaddr;
2207 /* If this hole contains the identity map, select it. */
2208 if (align_start <= guest_loaddr &&
2209 guest_loaddr + guest_size <= this_end) {
2210 ret = 0;
2212 /* If this hole ends above the identity map, stop looking. */
2213 if (this_end >= guest_loaddr) {
2214 break;
2217 free_self_maps(maps);
2219 return ret;
2222 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2223 abi_ulong orig_hiaddr, long align)
2225 uintptr_t loaddr = orig_loaddr;
2226 uintptr_t hiaddr = orig_hiaddr;
2227 uintptr_t offset = 0;
2228 uintptr_t addr;
2230 if (hiaddr != orig_hiaddr) {
2231 error_report("%s: requires virtual address space that the "
2232 "host cannot provide (0x%" PRIx64 ")",
2233 image_name, (uint64_t)orig_hiaddr);
2234 exit(EXIT_FAILURE);
2237 loaddr &= -align;
2238 if (ARM_COMMPAGE) {
2240 * Extend the allocation to include the commpage.
2241 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2242 * need to ensure there is space bellow the guest_base so we
2243 * can map the commpage in the place needed when the address
2244 * arithmetic wraps around.
2246 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2247 hiaddr = (uintptr_t) 4 << 30;
2248 } else {
2249 offset = -(ARM_COMMPAGE & -align);
2253 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2254 if (addr == -1) {
2256 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2257 * that can satisfy both. But as the normal arm32 link base address
2258 * is ~32k, and we extend down to include the commpage, making the
2259 * overhead only ~96k, this is unlikely.
2261 error_report("%s: Unable to allocate %#zx bytes of "
2262 "virtual address space", image_name,
2263 (size_t)(hiaddr - loaddr));
2264 exit(EXIT_FAILURE);
2267 guest_base = addr;
2270 static void pgb_dynamic(const char *image_name, long align)
2273 * The executable is dynamic and does not require a fixed address.
2274 * All we need is a commpage that satisfies align.
2275 * If we do not need a commpage, leave guest_base == 0.
2277 if (ARM_COMMPAGE) {
2278 uintptr_t addr, commpage;
2280 /* 64-bit hosts should have used reserved_va. */
2281 assert(sizeof(uintptr_t) == 4);
2284 * By putting the commpage at the first hole, that puts guest_base
2285 * just above that, and maximises the positive guest addresses.
2287 commpage = ARM_COMMPAGE & -align;
2288 addr = pgb_find_hole(commpage, -commpage, align, 0);
2289 assert(addr != -1);
2290 guest_base = addr;
2294 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2295 abi_ulong guest_hiaddr, long align)
2297 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2298 void *addr, *test;
2300 if (guest_hiaddr > reserved_va) {
2301 error_report("%s: requires more than reserved virtual "
2302 "address space (0x%" PRIx64 " > 0x%lx)",
2303 image_name, (uint64_t)guest_hiaddr, reserved_va);
2304 exit(EXIT_FAILURE);
2307 /* Widen the "image" to the entire reserved address space. */
2308 pgb_static(image_name, 0, reserved_va, align);
2310 #ifdef MAP_FIXED_NOREPLACE
2311 flags |= MAP_FIXED_NOREPLACE;
2312 #endif
2314 /* Reserve the memory on the host. */
2315 assert(guest_base != 0);
2316 test = g2h(0);
2317 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2318 if (addr == MAP_FAILED) {
2319 error_report("Unable to reserve 0x%lx bytes of virtual address "
2320 "space (%s) for use as guest address space (check your "
2321 "virtual memory ulimit setting or reserve less "
2322 "using -R option)", reserved_va, strerror(errno));
2323 exit(EXIT_FAILURE);
2325 assert(addr == test);
2328 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2329 abi_ulong guest_hiaddr)
2331 /* In order to use host shmat, we must be able to honor SHMLBA. */
2332 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2334 if (have_guest_base) {
2335 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2336 } else if (reserved_va) {
2337 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2338 } else if (guest_loaddr) {
2339 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2340 } else {
2341 pgb_dynamic(image_name, align);
2344 /* Reserve and initialize the commpage. */
2345 if (!init_guest_commpage()) {
2347 * With have_guest_base, the user has selected the address and
2348 * we are trying to work with that. Otherwise, we have selected
2349 * free space and init_guest_commpage must succeeded.
2351 assert(have_guest_base);
2352 pgb_fail_in_use(image_name);
2355 assert(QEMU_IS_ALIGNED(guest_base, align));
2356 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2357 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2360 /* Load an ELF image into the address space.
2362 IMAGE_NAME is the filename of the image, to use in error messages.
2363 IMAGE_FD is the open file descriptor for the image.
2365 BPRM_BUF is a copy of the beginning of the file; this of course
2366 contains the elf file header at offset 0. It is assumed that this
2367 buffer is sufficiently aligned to present no problems to the host
2368 in accessing data at aligned offsets within the buffer.
2370 On return: INFO values will be filled in, as necessary or available. */
2372 static void load_elf_image(const char *image_name, int image_fd,
2373 struct image_info *info, char **pinterp_name,
2374 char bprm_buf[BPRM_BUF_SIZE])
2376 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2377 struct elf_phdr *phdr;
2378 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2379 int i, retval;
2380 const char *errmsg;
2382 /* First of all, some simple consistency checks */
2383 errmsg = "Invalid ELF image for this architecture";
2384 if (!elf_check_ident(ehdr)) {
2385 goto exit_errmsg;
2387 bswap_ehdr(ehdr);
2388 if (!elf_check_ehdr(ehdr)) {
2389 goto exit_errmsg;
2392 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2393 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2394 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2395 } else {
2396 phdr = (struct elf_phdr *) alloca(i);
2397 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2398 if (retval != i) {
2399 goto exit_read;
2402 bswap_phdr(phdr, ehdr->e_phnum);
2404 info->nsegs = 0;
2405 info->pt_dynamic_addr = 0;
2407 mmap_lock();
2409 /* Find the maximum size of the image and allocate an appropriate
2410 amount of memory to handle that. */
2411 loaddr = -1, hiaddr = 0;
2412 info->alignment = 0;
2413 for (i = 0; i < ehdr->e_phnum; ++i) {
2414 if (phdr[i].p_type == PT_LOAD) {
2415 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2416 if (a < loaddr) {
2417 loaddr = a;
2419 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2420 if (a > hiaddr) {
2421 hiaddr = a;
2423 ++info->nsegs;
2424 info->alignment |= phdr[i].p_align;
2428 if (pinterp_name != NULL) {
2430 * This is the main executable.
2432 * Reserve extra space for brk.
2433 * We hold on to this space while placing the interpreter
2434 * and the stack, lest they be placed immediately after
2435 * the data segment and block allocation from the brk.
2437 * 16MB is chosen as "large enough" without being so large
2438 * as to allow the result to not fit with a 32-bit guest on
2439 * a 32-bit host.
2441 info->reserve_brk = 16 * MiB;
2442 hiaddr += info->reserve_brk;
2444 if (ehdr->e_type == ET_EXEC) {
2446 * Make sure that the low address does not conflict with
2447 * MMAP_MIN_ADDR or the QEMU application itself.
2449 probe_guest_base(image_name, loaddr, hiaddr);
2450 } else {
2452 * The binary is dynamic, but we still need to
2453 * select guest_base. In this case we pass a size.
2455 probe_guest_base(image_name, 0, hiaddr - loaddr);
2460 * Reserve address space for all of this.
2462 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2463 * exactly the address range that is required.
2465 * Otherwise this is ET_DYN, and we are searching for a location
2466 * that can hold the memory space required. If the image is
2467 * pre-linked, LOADDR will be non-zero, and the kernel should
2468 * honor that address if it happens to be free.
2470 * In both cases, we will overwrite pages in this range with mappings
2471 * from the executable.
2473 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2474 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2475 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2476 -1, 0);
2477 if (load_addr == -1) {
2478 goto exit_perror;
2480 load_bias = load_addr - loaddr;
2482 if (elf_is_fdpic(ehdr)) {
2483 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2484 g_malloc(sizeof(*loadsegs) * info->nsegs);
2486 for (i = 0; i < ehdr->e_phnum; ++i) {
2487 switch (phdr[i].p_type) {
2488 case PT_DYNAMIC:
2489 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2490 break;
2491 case PT_LOAD:
2492 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2493 loadsegs->p_vaddr = phdr[i].p_vaddr;
2494 loadsegs->p_memsz = phdr[i].p_memsz;
2495 ++loadsegs;
2496 break;
2501 info->load_bias = load_bias;
2502 info->code_offset = load_bias;
2503 info->data_offset = load_bias;
2504 info->load_addr = load_addr;
2505 info->entry = ehdr->e_entry + load_bias;
2506 info->start_code = -1;
2507 info->end_code = 0;
2508 info->start_data = -1;
2509 info->end_data = 0;
2510 info->brk = 0;
2511 info->elf_flags = ehdr->e_flags;
2513 for (i = 0; i < ehdr->e_phnum; i++) {
2514 struct elf_phdr *eppnt = phdr + i;
2515 if (eppnt->p_type == PT_LOAD) {
2516 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2517 int elf_prot = 0;
2519 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2520 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2521 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2523 vaddr = load_bias + eppnt->p_vaddr;
2524 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2525 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2526 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2529 * Some segments may be completely empty without any backing file
2530 * segment, in that case just let zero_bss allocate an empty buffer
2531 * for it.
2533 if (eppnt->p_filesz != 0) {
2534 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2535 MAP_PRIVATE | MAP_FIXED,
2536 image_fd, eppnt->p_offset - vaddr_po);
2538 if (error == -1) {
2539 goto exit_perror;
2543 vaddr_ef = vaddr + eppnt->p_filesz;
2544 vaddr_em = vaddr + eppnt->p_memsz;
2546 /* If the load segment requests extra zeros (e.g. bss), map it. */
2547 if (vaddr_ef < vaddr_em) {
2548 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2551 /* Find the full program boundaries. */
2552 if (elf_prot & PROT_EXEC) {
2553 if (vaddr < info->start_code) {
2554 info->start_code = vaddr;
2556 if (vaddr_ef > info->end_code) {
2557 info->end_code = vaddr_ef;
2560 if (elf_prot & PROT_WRITE) {
2561 if (vaddr < info->start_data) {
2562 info->start_data = vaddr;
2564 if (vaddr_ef > info->end_data) {
2565 info->end_data = vaddr_ef;
2567 if (vaddr_em > info->brk) {
2568 info->brk = vaddr_em;
2571 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2572 char *interp_name;
2574 if (*pinterp_name) {
2575 errmsg = "Multiple PT_INTERP entries";
2576 goto exit_errmsg;
2578 interp_name = malloc(eppnt->p_filesz);
2579 if (!interp_name) {
2580 goto exit_perror;
2583 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2584 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2585 eppnt->p_filesz);
2586 } else {
2587 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2588 eppnt->p_offset);
2589 if (retval != eppnt->p_filesz) {
2590 goto exit_perror;
2593 if (interp_name[eppnt->p_filesz - 1] != 0) {
2594 errmsg = "Invalid PT_INTERP entry";
2595 goto exit_errmsg;
2597 *pinterp_name = interp_name;
2598 #ifdef TARGET_MIPS
2599 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2600 Mips_elf_abiflags_v0 abiflags;
2601 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2602 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2603 goto exit_errmsg;
2605 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2606 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2607 sizeof(Mips_elf_abiflags_v0));
2608 } else {
2609 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2610 eppnt->p_offset);
2611 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2612 goto exit_perror;
2615 bswap_mips_abiflags(&abiflags);
2616 info->fp_abi = abiflags.fp_abi;
2617 #endif
2621 if (info->end_data == 0) {
2622 info->start_data = info->end_code;
2623 info->end_data = info->end_code;
2624 info->brk = info->end_code;
2627 if (qemu_log_enabled()) {
2628 load_symbols(ehdr, image_fd, load_bias);
2631 mmap_unlock();
2633 close(image_fd);
2634 return;
2636 exit_read:
2637 if (retval >= 0) {
2638 errmsg = "Incomplete read of file header";
2639 goto exit_errmsg;
2641 exit_perror:
2642 errmsg = strerror(errno);
2643 exit_errmsg:
2644 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2645 exit(-1);
2648 static void load_elf_interp(const char *filename, struct image_info *info,
2649 char bprm_buf[BPRM_BUF_SIZE])
2651 int fd, retval;
2653 fd = open(path(filename), O_RDONLY);
2654 if (fd < 0) {
2655 goto exit_perror;
2658 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2659 if (retval < 0) {
2660 goto exit_perror;
2662 if (retval < BPRM_BUF_SIZE) {
2663 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2666 load_elf_image(filename, fd, info, NULL, bprm_buf);
2667 return;
2669 exit_perror:
2670 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2671 exit(-1);
2674 static int symfind(const void *s0, const void *s1)
2676 target_ulong addr = *(target_ulong *)s0;
2677 struct elf_sym *sym = (struct elf_sym *)s1;
2678 int result = 0;
2679 if (addr < sym->st_value) {
2680 result = -1;
2681 } else if (addr >= sym->st_value + sym->st_size) {
2682 result = 1;
2684 return result;
2687 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2689 #if ELF_CLASS == ELFCLASS32
2690 struct elf_sym *syms = s->disas_symtab.elf32;
2691 #else
2692 struct elf_sym *syms = s->disas_symtab.elf64;
2693 #endif
2695 // binary search
2696 struct elf_sym *sym;
2698 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2699 if (sym != NULL) {
2700 return s->disas_strtab + sym->st_name;
2703 return "";
2706 /* FIXME: This should use elf_ops.h */
2707 static int symcmp(const void *s0, const void *s1)
2709 struct elf_sym *sym0 = (struct elf_sym *)s0;
2710 struct elf_sym *sym1 = (struct elf_sym *)s1;
2711 return (sym0->st_value < sym1->st_value)
2712 ? -1
2713 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2716 /* Best attempt to load symbols from this ELF object. */
2717 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2719 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2720 uint64_t segsz;
2721 struct elf_shdr *shdr;
2722 char *strings = NULL;
2723 struct syminfo *s = NULL;
2724 struct elf_sym *new_syms, *syms = NULL;
2726 shnum = hdr->e_shnum;
2727 i = shnum * sizeof(struct elf_shdr);
2728 shdr = (struct elf_shdr *)alloca(i);
2729 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2730 return;
2733 bswap_shdr(shdr, shnum);
2734 for (i = 0; i < shnum; ++i) {
2735 if (shdr[i].sh_type == SHT_SYMTAB) {
2736 sym_idx = i;
2737 str_idx = shdr[i].sh_link;
2738 goto found;
2742 /* There will be no symbol table if the file was stripped. */
2743 return;
2745 found:
2746 /* Now know where the strtab and symtab are. Snarf them. */
2747 s = g_try_new(struct syminfo, 1);
2748 if (!s) {
2749 goto give_up;
2752 segsz = shdr[str_idx].sh_size;
2753 s->disas_strtab = strings = g_try_malloc(segsz);
2754 if (!strings ||
2755 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2756 goto give_up;
2759 segsz = shdr[sym_idx].sh_size;
2760 syms = g_try_malloc(segsz);
2761 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2762 goto give_up;
2765 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2766 /* Implausibly large symbol table: give up rather than ploughing
2767 * on with the number of symbols calculation overflowing
2769 goto give_up;
2771 nsyms = segsz / sizeof(struct elf_sym);
2772 for (i = 0; i < nsyms; ) {
2773 bswap_sym(syms + i);
2774 /* Throw away entries which we do not need. */
2775 if (syms[i].st_shndx == SHN_UNDEF
2776 || syms[i].st_shndx >= SHN_LORESERVE
2777 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2778 if (i < --nsyms) {
2779 syms[i] = syms[nsyms];
2781 } else {
2782 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2783 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2784 syms[i].st_value &= ~(target_ulong)1;
2785 #endif
2786 syms[i].st_value += load_bias;
2787 i++;
2791 /* No "useful" symbol. */
2792 if (nsyms == 0) {
2793 goto give_up;
2796 /* Attempt to free the storage associated with the local symbols
2797 that we threw away. Whether or not this has any effect on the
2798 memory allocation depends on the malloc implementation and how
2799 many symbols we managed to discard. */
2800 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2801 if (new_syms == NULL) {
2802 goto give_up;
2804 syms = new_syms;
2806 qsort(syms, nsyms, sizeof(*syms), symcmp);
2808 s->disas_num_syms = nsyms;
2809 #if ELF_CLASS == ELFCLASS32
2810 s->disas_symtab.elf32 = syms;
2811 #else
2812 s->disas_symtab.elf64 = syms;
2813 #endif
2814 s->lookup_symbol = lookup_symbolxx;
2815 s->next = syminfos;
2816 syminfos = s;
2818 return;
2820 give_up:
2821 g_free(s);
2822 g_free(strings);
2823 g_free(syms);
2826 uint32_t get_elf_eflags(int fd)
2828 struct elfhdr ehdr;
2829 off_t offset;
2830 int ret;
2832 /* Read ELF header */
2833 offset = lseek(fd, 0, SEEK_SET);
2834 if (offset == (off_t) -1) {
2835 return 0;
2837 ret = read(fd, &ehdr, sizeof(ehdr));
2838 if (ret < sizeof(ehdr)) {
2839 return 0;
2841 offset = lseek(fd, offset, SEEK_SET);
2842 if (offset == (off_t) -1) {
2843 return 0;
2846 /* Check ELF signature */
2847 if (!elf_check_ident(&ehdr)) {
2848 return 0;
2851 /* check header */
2852 bswap_ehdr(&ehdr);
2853 if (!elf_check_ehdr(&ehdr)) {
2854 return 0;
2857 /* return architecture id */
2858 return ehdr.e_flags;
2861 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2863 struct image_info interp_info;
2864 struct elfhdr elf_ex;
2865 char *elf_interpreter = NULL;
2866 char *scratch;
2868 memset(&interp_info, 0, sizeof(interp_info));
2869 #ifdef TARGET_MIPS
2870 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2871 #endif
2873 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2875 load_elf_image(bprm->filename, bprm->fd, info,
2876 &elf_interpreter, bprm->buf);
2878 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2879 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2880 when we load the interpreter. */
2881 elf_ex = *(struct elfhdr *)bprm->buf;
2883 /* Do this so that we can load the interpreter, if need be. We will
2884 change some of these later */
2885 bprm->p = setup_arg_pages(bprm, info);
2887 scratch = g_new0(char, TARGET_PAGE_SIZE);
2888 if (STACK_GROWS_DOWN) {
2889 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2890 bprm->p, info->stack_limit);
2891 info->file_string = bprm->p;
2892 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2893 bprm->p, info->stack_limit);
2894 info->env_strings = bprm->p;
2895 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2896 bprm->p, info->stack_limit);
2897 info->arg_strings = bprm->p;
2898 } else {
2899 info->arg_strings = bprm->p;
2900 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2901 bprm->p, info->stack_limit);
2902 info->env_strings = bprm->p;
2903 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2904 bprm->p, info->stack_limit);
2905 info->file_string = bprm->p;
2906 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2907 bprm->p, info->stack_limit);
2910 g_free(scratch);
2912 if (!bprm->p) {
2913 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2914 exit(-1);
2917 if (elf_interpreter) {
2918 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2920 /* If the program interpreter is one of these two, then assume
2921 an iBCS2 image. Otherwise assume a native linux image. */
2923 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2924 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2925 info->personality = PER_SVR4;
2927 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2928 and some applications "depend" upon this behavior. Since
2929 we do not have the power to recompile these, we emulate
2930 the SVr4 behavior. Sigh. */
2931 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2932 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2934 #ifdef TARGET_MIPS
2935 info->interp_fp_abi = interp_info.fp_abi;
2936 #endif
2939 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2940 info, (elf_interpreter ? &interp_info : NULL));
2941 info->start_stack = bprm->p;
2943 /* If we have an interpreter, set that as the program's entry point.
2944 Copy the load_bias as well, to help PPC64 interpret the entry
2945 point as a function descriptor. Do this after creating elf tables
2946 so that we copy the original program entry point into the AUXV. */
2947 if (elf_interpreter) {
2948 info->load_bias = interp_info.load_bias;
2949 info->entry = interp_info.entry;
2950 free(elf_interpreter);
2953 #ifdef USE_ELF_CORE_DUMP
2954 bprm->core_dump = &elf_core_dump;
2955 #endif
2958 * If we reserved extra space for brk, release it now.
2959 * The implementation of do_brk in syscalls.c expects to be able
2960 * to mmap pages in this space.
2962 if (info->reserve_brk) {
2963 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
2964 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
2965 target_munmap(start_brk, end_brk - start_brk);
2968 return 0;
2971 #ifdef USE_ELF_CORE_DUMP
2973 * Definitions to generate Intel SVR4-like core files.
2974 * These mostly have the same names as the SVR4 types with "target_elf_"
2975 * tacked on the front to prevent clashes with linux definitions,
2976 * and the typedef forms have been avoided. This is mostly like
2977 * the SVR4 structure, but more Linuxy, with things that Linux does
2978 * not support and which gdb doesn't really use excluded.
2980 * Fields we don't dump (their contents is zero) in linux-user qemu
2981 * are marked with XXX.
2983 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2985 * Porting ELF coredump for target is (quite) simple process. First you
2986 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2987 * the target resides):
2989 * #define USE_ELF_CORE_DUMP
2991 * Next you define type of register set used for dumping. ELF specification
2992 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2994 * typedef <target_regtype> target_elf_greg_t;
2995 * #define ELF_NREG <number of registers>
2996 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2998 * Last step is to implement target specific function that copies registers
2999 * from given cpu into just specified register set. Prototype is:
3001 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3002 * const CPUArchState *env);
3004 * Parameters:
3005 * regs - copy register values into here (allocated and zeroed by caller)
3006 * env - copy registers from here
3008 * Example for ARM target is provided in this file.
3011 /* An ELF note in memory */
3012 struct memelfnote {
3013 const char *name;
3014 size_t namesz;
3015 size_t namesz_rounded;
3016 int type;
3017 size_t datasz;
3018 size_t datasz_rounded;
3019 void *data;
3020 size_t notesz;
3023 struct target_elf_siginfo {
3024 abi_int si_signo; /* signal number */
3025 abi_int si_code; /* extra code */
3026 abi_int si_errno; /* errno */
3029 struct target_elf_prstatus {
3030 struct target_elf_siginfo pr_info; /* Info associated with signal */
3031 abi_short pr_cursig; /* Current signal */
3032 abi_ulong pr_sigpend; /* XXX */
3033 abi_ulong pr_sighold; /* XXX */
3034 target_pid_t pr_pid;
3035 target_pid_t pr_ppid;
3036 target_pid_t pr_pgrp;
3037 target_pid_t pr_sid;
3038 struct target_timeval pr_utime; /* XXX User time */
3039 struct target_timeval pr_stime; /* XXX System time */
3040 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3041 struct target_timeval pr_cstime; /* XXX Cumulative system time */
3042 target_elf_gregset_t pr_reg; /* GP registers */
3043 abi_int pr_fpvalid; /* XXX */
3046 #define ELF_PRARGSZ (80) /* Number of chars for args */
3048 struct target_elf_prpsinfo {
3049 char pr_state; /* numeric process state */
3050 char pr_sname; /* char for pr_state */
3051 char pr_zomb; /* zombie */
3052 char pr_nice; /* nice val */
3053 abi_ulong pr_flag; /* flags */
3054 target_uid_t pr_uid;
3055 target_gid_t pr_gid;
3056 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3057 /* Lots missing */
3058 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3059 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3062 /* Here is the structure in which status of each thread is captured. */
3063 struct elf_thread_status {
3064 QTAILQ_ENTRY(elf_thread_status) ets_link;
3065 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
3066 #if 0
3067 elf_fpregset_t fpu; /* NT_PRFPREG */
3068 struct task_struct *thread;
3069 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3070 #endif
3071 struct memelfnote notes[1];
3072 int num_notes;
3075 struct elf_note_info {
3076 struct memelfnote *notes;
3077 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3078 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
3080 QTAILQ_HEAD(, elf_thread_status) thread_list;
3081 #if 0
3083 * Current version of ELF coredump doesn't support
3084 * dumping fp regs etc.
3086 elf_fpregset_t *fpu;
3087 elf_fpxregset_t *xfpu;
3088 int thread_status_size;
3089 #endif
3090 int notes_size;
3091 int numnote;
3094 struct vm_area_struct {
3095 target_ulong vma_start; /* start vaddr of memory region */
3096 target_ulong vma_end; /* end vaddr of memory region */
3097 abi_ulong vma_flags; /* protection etc. flags for the region */
3098 QTAILQ_ENTRY(vm_area_struct) vma_link;
3101 struct mm_struct {
3102 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3103 int mm_count; /* number of mappings */
3106 static struct mm_struct *vma_init(void);
3107 static void vma_delete(struct mm_struct *);
3108 static int vma_add_mapping(struct mm_struct *, target_ulong,
3109 target_ulong, abi_ulong);
3110 static int vma_get_mapping_count(const struct mm_struct *);
3111 static struct vm_area_struct *vma_first(const struct mm_struct *);
3112 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3113 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3114 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3115 unsigned long flags);
3117 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3118 static void fill_note(struct memelfnote *, const char *, int,
3119 unsigned int, void *);
3120 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3121 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3122 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3123 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3124 static size_t note_size(const struct memelfnote *);
3125 static void free_note_info(struct elf_note_info *);
3126 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3127 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3128 static int core_dump_filename(const TaskState *, char *, size_t);
3130 static int dump_write(int, const void *, size_t);
3131 static int write_note(struct memelfnote *, int);
3132 static int write_note_info(struct elf_note_info *, int);
3134 #ifdef BSWAP_NEEDED
3135 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3137 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3138 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3139 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3140 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3141 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3142 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3143 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3144 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3145 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3146 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3147 /* cpu times are not filled, so we skip them */
3148 /* regs should be in correct format already */
3149 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3152 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3154 psinfo->pr_flag = tswapal(psinfo->pr_flag);
3155 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3156 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3157 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3158 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3159 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3160 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3163 static void bswap_note(struct elf_note *en)
3165 bswap32s(&en->n_namesz);
3166 bswap32s(&en->n_descsz);
3167 bswap32s(&en->n_type);
3169 #else
3170 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3171 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3172 static inline void bswap_note(struct elf_note *en) { }
3173 #endif /* BSWAP_NEEDED */
3176 * Minimal support for linux memory regions. These are needed
3177 * when we are finding out what memory exactly belongs to
3178 * emulated process. No locks needed here, as long as
3179 * thread that received the signal is stopped.
3182 static struct mm_struct *vma_init(void)
3184 struct mm_struct *mm;
3186 if ((mm = g_malloc(sizeof (*mm))) == NULL)
3187 return (NULL);
3189 mm->mm_count = 0;
3190 QTAILQ_INIT(&mm->mm_mmap);
3192 return (mm);
3195 static void vma_delete(struct mm_struct *mm)
3197 struct vm_area_struct *vma;
3199 while ((vma = vma_first(mm)) != NULL) {
3200 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3201 g_free(vma);
3203 g_free(mm);
3206 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3207 target_ulong end, abi_ulong flags)
3209 struct vm_area_struct *vma;
3211 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3212 return (-1);
3214 vma->vma_start = start;
3215 vma->vma_end = end;
3216 vma->vma_flags = flags;
3218 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3219 mm->mm_count++;
3221 return (0);
3224 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3226 return (QTAILQ_FIRST(&mm->mm_mmap));
3229 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3231 return (QTAILQ_NEXT(vma, vma_link));
3234 static int vma_get_mapping_count(const struct mm_struct *mm)
3236 return (mm->mm_count);
3240 * Calculate file (dump) size of given memory region.
3242 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3244 /* if we cannot even read the first page, skip it */
3245 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3246 return (0);
3249 * Usually we don't dump executable pages as they contain
3250 * non-writable code that debugger can read directly from
3251 * target library etc. However, thread stacks are marked
3252 * also executable so we read in first page of given region
3253 * and check whether it contains elf header. If there is
3254 * no elf header, we dump it.
3256 if (vma->vma_flags & PROT_EXEC) {
3257 char page[TARGET_PAGE_SIZE];
3259 copy_from_user(page, vma->vma_start, sizeof (page));
3260 if ((page[EI_MAG0] == ELFMAG0) &&
3261 (page[EI_MAG1] == ELFMAG1) &&
3262 (page[EI_MAG2] == ELFMAG2) &&
3263 (page[EI_MAG3] == ELFMAG3)) {
3265 * Mappings are possibly from ELF binary. Don't dump
3266 * them.
3268 return (0);
3272 return (vma->vma_end - vma->vma_start);
3275 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3276 unsigned long flags)
3278 struct mm_struct *mm = (struct mm_struct *)priv;
3280 vma_add_mapping(mm, start, end, flags);
3281 return (0);
3284 static void fill_note(struct memelfnote *note, const char *name, int type,
3285 unsigned int sz, void *data)
3287 unsigned int namesz;
3289 namesz = strlen(name) + 1;
3290 note->name = name;
3291 note->namesz = namesz;
3292 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3293 note->type = type;
3294 note->datasz = sz;
3295 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3297 note->data = data;
3300 * We calculate rounded up note size here as specified by
3301 * ELF document.
3303 note->notesz = sizeof (struct elf_note) +
3304 note->namesz_rounded + note->datasz_rounded;
3307 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3308 uint32_t flags)
3310 (void) memset(elf, 0, sizeof(*elf));
3312 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3313 elf->e_ident[EI_CLASS] = ELF_CLASS;
3314 elf->e_ident[EI_DATA] = ELF_DATA;
3315 elf->e_ident[EI_VERSION] = EV_CURRENT;
3316 elf->e_ident[EI_OSABI] = ELF_OSABI;
3318 elf->e_type = ET_CORE;
3319 elf->e_machine = machine;
3320 elf->e_version = EV_CURRENT;
3321 elf->e_phoff = sizeof(struct elfhdr);
3322 elf->e_flags = flags;
3323 elf->e_ehsize = sizeof(struct elfhdr);
3324 elf->e_phentsize = sizeof(struct elf_phdr);
3325 elf->e_phnum = segs;
3327 bswap_ehdr(elf);
3330 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3332 phdr->p_type = PT_NOTE;
3333 phdr->p_offset = offset;
3334 phdr->p_vaddr = 0;
3335 phdr->p_paddr = 0;
3336 phdr->p_filesz = sz;
3337 phdr->p_memsz = 0;
3338 phdr->p_flags = 0;
3339 phdr->p_align = 0;
3341 bswap_phdr(phdr, 1);
3344 static size_t note_size(const struct memelfnote *note)
3346 return (note->notesz);
3349 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3350 const TaskState *ts, int signr)
3352 (void) memset(prstatus, 0, sizeof (*prstatus));
3353 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3354 prstatus->pr_pid = ts->ts_tid;
3355 prstatus->pr_ppid = getppid();
3356 prstatus->pr_pgrp = getpgrp();
3357 prstatus->pr_sid = getsid(0);
3359 bswap_prstatus(prstatus);
3362 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3364 char *base_filename;
3365 unsigned int i, len;
3367 (void) memset(psinfo, 0, sizeof (*psinfo));
3369 len = ts->info->arg_end - ts->info->arg_start;
3370 if (len >= ELF_PRARGSZ)
3371 len = ELF_PRARGSZ - 1;
3372 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3373 return -EFAULT;
3374 for (i = 0; i < len; i++)
3375 if (psinfo->pr_psargs[i] == 0)
3376 psinfo->pr_psargs[i] = ' ';
3377 psinfo->pr_psargs[len] = 0;
3379 psinfo->pr_pid = getpid();
3380 psinfo->pr_ppid = getppid();
3381 psinfo->pr_pgrp = getpgrp();
3382 psinfo->pr_sid = getsid(0);
3383 psinfo->pr_uid = getuid();
3384 psinfo->pr_gid = getgid();
3386 base_filename = g_path_get_basename(ts->bprm->filename);
3388 * Using strncpy here is fine: at max-length,
3389 * this field is not NUL-terminated.
3391 (void) strncpy(psinfo->pr_fname, base_filename,
3392 sizeof(psinfo->pr_fname));
3394 g_free(base_filename);
3395 bswap_psinfo(psinfo);
3396 return (0);
3399 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3401 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3402 elf_addr_t orig_auxv = auxv;
3403 void *ptr;
3404 int len = ts->info->auxv_len;
3407 * Auxiliary vector is stored in target process stack. It contains
3408 * {type, value} pairs that we need to dump into note. This is not
3409 * strictly necessary but we do it here for sake of completeness.
3412 /* read in whole auxv vector and copy it to memelfnote */
3413 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3414 if (ptr != NULL) {
3415 fill_note(note, "CORE", NT_AUXV, len, ptr);
3416 unlock_user(ptr, auxv, len);
3421 * Constructs name of coredump file. We have following convention
3422 * for the name:
3423 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3425 * Returns 0 in case of success, -1 otherwise (errno is set).
3427 static int core_dump_filename(const TaskState *ts, char *buf,
3428 size_t bufsize)
3430 char timestamp[64];
3431 char *base_filename = NULL;
3432 struct timeval tv;
3433 struct tm tm;
3435 assert(bufsize >= PATH_MAX);
3437 if (gettimeofday(&tv, NULL) < 0) {
3438 (void) fprintf(stderr, "unable to get current timestamp: %s",
3439 strerror(errno));
3440 return (-1);
3443 base_filename = g_path_get_basename(ts->bprm->filename);
3444 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3445 localtime_r(&tv.tv_sec, &tm));
3446 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3447 base_filename, timestamp, (int)getpid());
3448 g_free(base_filename);
3450 return (0);
3453 static int dump_write(int fd, const void *ptr, size_t size)
3455 const char *bufp = (const char *)ptr;
3456 ssize_t bytes_written, bytes_left;
3457 struct rlimit dumpsize;
3458 off_t pos;
3460 bytes_written = 0;
3461 getrlimit(RLIMIT_CORE, &dumpsize);
3462 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3463 if (errno == ESPIPE) { /* not a seekable stream */
3464 bytes_left = size;
3465 } else {
3466 return pos;
3468 } else {
3469 if (dumpsize.rlim_cur <= pos) {
3470 return -1;
3471 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3472 bytes_left = size;
3473 } else {
3474 size_t limit_left=dumpsize.rlim_cur - pos;
3475 bytes_left = limit_left >= size ? size : limit_left ;
3480 * In normal conditions, single write(2) should do but
3481 * in case of socket etc. this mechanism is more portable.
3483 do {
3484 bytes_written = write(fd, bufp, bytes_left);
3485 if (bytes_written < 0) {
3486 if (errno == EINTR)
3487 continue;
3488 return (-1);
3489 } else if (bytes_written == 0) { /* eof */
3490 return (-1);
3492 bufp += bytes_written;
3493 bytes_left -= bytes_written;
3494 } while (bytes_left > 0);
3496 return (0);
3499 static int write_note(struct memelfnote *men, int fd)
3501 struct elf_note en;
3503 en.n_namesz = men->namesz;
3504 en.n_type = men->type;
3505 en.n_descsz = men->datasz;
3507 bswap_note(&en);
3509 if (dump_write(fd, &en, sizeof(en)) != 0)
3510 return (-1);
3511 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3512 return (-1);
3513 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3514 return (-1);
3516 return (0);
3519 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3521 CPUState *cpu = env_cpu((CPUArchState *)env);
3522 TaskState *ts = (TaskState *)cpu->opaque;
3523 struct elf_thread_status *ets;
3525 ets = g_malloc0(sizeof (*ets));
3526 ets->num_notes = 1; /* only prstatus is dumped */
3527 fill_prstatus(&ets->prstatus, ts, 0);
3528 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3529 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3530 &ets->prstatus);
3532 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3534 info->notes_size += note_size(&ets->notes[0]);
3537 static void init_note_info(struct elf_note_info *info)
3539 /* Initialize the elf_note_info structure so that it is at
3540 * least safe to call free_note_info() on it. Must be
3541 * called before calling fill_note_info().
3543 memset(info, 0, sizeof (*info));
3544 QTAILQ_INIT(&info->thread_list);
3547 static int fill_note_info(struct elf_note_info *info,
3548 long signr, const CPUArchState *env)
3550 #define NUMNOTES 3
3551 CPUState *cpu = env_cpu((CPUArchState *)env);
3552 TaskState *ts = (TaskState *)cpu->opaque;
3553 int i;
3555 info->notes = g_new0(struct memelfnote, NUMNOTES);
3556 if (info->notes == NULL)
3557 return (-ENOMEM);
3558 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3559 if (info->prstatus == NULL)
3560 return (-ENOMEM);
3561 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3562 if (info->prstatus == NULL)
3563 return (-ENOMEM);
3566 * First fill in status (and registers) of current thread
3567 * including process info & aux vector.
3569 fill_prstatus(info->prstatus, ts, signr);
3570 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3571 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3572 sizeof (*info->prstatus), info->prstatus);
3573 fill_psinfo(info->psinfo, ts);
3574 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3575 sizeof (*info->psinfo), info->psinfo);
3576 fill_auxv_note(&info->notes[2], ts);
3577 info->numnote = 3;
3579 info->notes_size = 0;
3580 for (i = 0; i < info->numnote; i++)
3581 info->notes_size += note_size(&info->notes[i]);
3583 /* read and fill status of all threads */
3584 cpu_list_lock();
3585 CPU_FOREACH(cpu) {
3586 if (cpu == thread_cpu) {
3587 continue;
3589 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3591 cpu_list_unlock();
3593 return (0);
3596 static void free_note_info(struct elf_note_info *info)
3598 struct elf_thread_status *ets;
3600 while (!QTAILQ_EMPTY(&info->thread_list)) {
3601 ets = QTAILQ_FIRST(&info->thread_list);
3602 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3603 g_free(ets);
3606 g_free(info->prstatus);
3607 g_free(info->psinfo);
3608 g_free(info->notes);
3611 static int write_note_info(struct elf_note_info *info, int fd)
3613 struct elf_thread_status *ets;
3614 int i, error = 0;
3616 /* write prstatus, psinfo and auxv for current thread */
3617 for (i = 0; i < info->numnote; i++)
3618 if ((error = write_note(&info->notes[i], fd)) != 0)
3619 return (error);
3621 /* write prstatus for each thread */
3622 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3623 if ((error = write_note(&ets->notes[0], fd)) != 0)
3624 return (error);
3627 return (0);
3631 * Write out ELF coredump.
3633 * See documentation of ELF object file format in:
3634 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3636 * Coredump format in linux is following:
3638 * 0 +----------------------+ \
3639 * | ELF header | ET_CORE |
3640 * +----------------------+ |
3641 * | ELF program headers | |--- headers
3642 * | - NOTE section | |
3643 * | - PT_LOAD sections | |
3644 * +----------------------+ /
3645 * | NOTEs: |
3646 * | - NT_PRSTATUS |
3647 * | - NT_PRSINFO |
3648 * | - NT_AUXV |
3649 * +----------------------+ <-- aligned to target page
3650 * | Process memory dump |
3651 * : :
3652 * . .
3653 * : :
3654 * | |
3655 * +----------------------+
3657 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3658 * NT_PRSINFO -> struct elf_prpsinfo
3659 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3661 * Format follows System V format as close as possible. Current
3662 * version limitations are as follows:
3663 * - no floating point registers are dumped
3665 * Function returns 0 in case of success, negative errno otherwise.
3667 * TODO: make this work also during runtime: it should be
3668 * possible to force coredump from running process and then
3669 * continue processing. For example qemu could set up SIGUSR2
3670 * handler (provided that target process haven't registered
3671 * handler for that) that does the dump when signal is received.
3673 static int elf_core_dump(int signr, const CPUArchState *env)
3675 const CPUState *cpu = env_cpu((CPUArchState *)env);
3676 const TaskState *ts = (const TaskState *)cpu->opaque;
3677 struct vm_area_struct *vma = NULL;
3678 char corefile[PATH_MAX];
3679 struct elf_note_info info;
3680 struct elfhdr elf;
3681 struct elf_phdr phdr;
3682 struct rlimit dumpsize;
3683 struct mm_struct *mm = NULL;
3684 off_t offset = 0, data_offset = 0;
3685 int segs = 0;
3686 int fd = -1;
3688 init_note_info(&info);
3690 errno = 0;
3691 getrlimit(RLIMIT_CORE, &dumpsize);
3692 if (dumpsize.rlim_cur == 0)
3693 return 0;
3695 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3696 return (-errno);
3698 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3699 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3700 return (-errno);
3703 * Walk through target process memory mappings and
3704 * set up structure containing this information. After
3705 * this point vma_xxx functions can be used.
3707 if ((mm = vma_init()) == NULL)
3708 goto out;
3710 walk_memory_regions(mm, vma_walker);
3711 segs = vma_get_mapping_count(mm);
3714 * Construct valid coredump ELF header. We also
3715 * add one more segment for notes.
3717 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3718 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3719 goto out;
3721 /* fill in the in-memory version of notes */
3722 if (fill_note_info(&info, signr, env) < 0)
3723 goto out;
3725 offset += sizeof (elf); /* elf header */
3726 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3728 /* write out notes program header */
3729 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3731 offset += info.notes_size;
3732 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3733 goto out;
3736 * ELF specification wants data to start at page boundary so
3737 * we align it here.
3739 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3742 * Write program headers for memory regions mapped in
3743 * the target process.
3745 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3746 (void) memset(&phdr, 0, sizeof (phdr));
3748 phdr.p_type = PT_LOAD;
3749 phdr.p_offset = offset;
3750 phdr.p_vaddr = vma->vma_start;
3751 phdr.p_paddr = 0;
3752 phdr.p_filesz = vma_dump_size(vma);
3753 offset += phdr.p_filesz;
3754 phdr.p_memsz = vma->vma_end - vma->vma_start;
3755 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3756 if (vma->vma_flags & PROT_WRITE)
3757 phdr.p_flags |= PF_W;
3758 if (vma->vma_flags & PROT_EXEC)
3759 phdr.p_flags |= PF_X;
3760 phdr.p_align = ELF_EXEC_PAGESIZE;
3762 bswap_phdr(&phdr, 1);
3763 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3764 goto out;
3769 * Next we write notes just after program headers. No
3770 * alignment needed here.
3772 if (write_note_info(&info, fd) < 0)
3773 goto out;
3775 /* align data to page boundary */
3776 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3777 goto out;
3780 * Finally we can dump process memory into corefile as well.
3782 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3783 abi_ulong addr;
3784 abi_ulong end;
3786 end = vma->vma_start + vma_dump_size(vma);
3788 for (addr = vma->vma_start; addr < end;
3789 addr += TARGET_PAGE_SIZE) {
3790 char page[TARGET_PAGE_SIZE];
3791 int error;
3794 * Read in page from target process memory and
3795 * write it to coredump file.
3797 error = copy_from_user(page, addr, sizeof (page));
3798 if (error != 0) {
3799 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3800 addr);
3801 errno = -error;
3802 goto out;
3804 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3805 goto out;
3809 out:
3810 free_note_info(&info);
3811 if (mm != NULL)
3812 vma_delete(mm);
3813 (void) close(fd);
3815 if (errno != 0)
3816 return (-errno);
3817 return (0);
3819 #endif /* USE_ELF_CORE_DUMP */
3821 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3823 init_thread(regs, infop);